Syntactic Abstraction in Component Interfaces

Ryan Culpepper!, Scott Owens?, and Matthew Flatt?

! Northeastern University (ryanc@ccs.neu.edu)
2 University of Utah ([sowens, mflatt]@cs.utah.edu)

Abstract. In this paper, we show how to combine a component system
and a macro system. A component system separates the definition of a
program fragment from the statements that link it, enabling indepen-
dent compilation of the fragment. A macro system, in contrast, relies
on explicit links among fragments that import macros, since macro ex-
pansion must happen at compile time. Our combination places macro
definitions inside component signatures, thereby permitting macro ex-
pansion at compile time, while still allowing independent compilation
and linking for the run-time part of components.

1 Introduction

Good programmers factor large software projects into smaller components or
modules. Each module addresses a specific concern, and a program consists of
a network of cooperating modules. First-order module systems provide name
management, encapsulation, and control over separate compilation [1]. However,
first-order module systems use internal linkage, in which modules refer directly
to other modules.

A module system can support component programming [2] by separating
module definition from linking. Thus, components use external linkage, in which
a component refers indirectly to other components through a parameterization
mechanism. Additionally, a component must be compilable and deployable by
itself, apart from any linkages that use the component. In analogy to separate
compilation, we call this property independent compilation. A single indepen-
dently compiled component is therefore re-usable in various situations, linked
with a variety of other components. Although many module systems [3-5] sup-
port component-style parameterization, we concentrate here on a system de-
signed expressly for component programming: Units [6].

Units and other component systems allow a component to import and export
values and types, but not macros. Macro support is desirable because macros
allow the definition of domain-specific language extensions, and components
may benefit from these extensions. Because Scheme [7] supports sophisticated,
lexically-scoped macros [8], implementors have devised module systems that sup-
port the import and export of macros [5,9-12], but these module systems do not
support component-style parameterization with independent compilation.

This paper explains how to integrate macros and components while main-
taining the desirable properties of both. In particular, our macros respect the
lexical scope of the program and our components can be compiled before linking.

Section 2 introduces an example of a component-based program in PLT
Scheme, our implementation substrate. Section 3 explains how the use of macros
improves the program and introduces the macro system. Section 4 shows how
we combine macros and components, and Section 5 shows more uses of macros
in components. Section 6 discusses related work, and Section 7 concludes.

2 Programming with Units

Units are software components with explicit import and export interfaces. These
interfaces serve as the canonical mechanism for designing systems and communi-
cating documentation. Furthermore, since units are externally linked, they can
be independently compiled.

Using the PLT Scheme unit system, programmers can organize programs
as networks of components. Units are heavily used in the major applications
distributed with PLT Scheme, including DrScheme and the PLT web server.

2.1 The unit system

Signatures are the interfaces that connect units. A signature specifies a set of

bindings that a unit may either import or export. A unit specifies one signa-

ture that lists its exported bindings, but it can specify many signatures listing

imported bindings to support importing from multiple different units.
Signatures are defined using the define-signature form:

(define-signature signature-id
(variable-id*))

The unit /sig expression specifies an atomic unit as follows:
(unit/sig (import signature-id*) (export signature-id)

definition-or-expression™)

The export signature indicates which definitions in the unit body are exported,
and the import signatures indicate what variables are bound in the unit body.
Unit expressions need not be closed. Like procedures, unit values close over the
unit expression’s free variables.

Units are externally linked; that is, a unit expression cannot refer specifically
to the contents of another unit. Thus, compilation of a unit body does not require
knowledge of any other unit, so units are independently compilable. Unit com-
pilation depends only on signatures to determine import and export variables.
These variables are compiled to use an indirection that supports linking.

Programs use a separate linking form called compound-unit/sig to link
units together, satisfying each unit’s import signatures:

(compound-unit/sig
(import (tag : signature)®)
(link (tag : signature (unit-expr tag™))™")

(export (var tag : identifier)”)) T

The tags correspond to the nodes of the linkage graph, and the lists of tags
in the link clauses specify the edges of the graph. The result is another unit
whose imports are specified by the import clause and whose export signature
is computed from the variables listed in the export clause.

The invoke-unit /sig form invokes a unit with no imports:

(invoke-unit /sig unit-expr)

An invocation evaluates all definitions and expressions in the unit’s (atomic or
compound) body in order.

2.2 An example

Throughout the rest of this paper, we use the example of a hotel registration
system that uses a database for persistent storage. The business logic consists
of the following code:?

(define-signature db-sig (query make-select-cmd))
(define-signature hotel-reg-sig (get-reservation get-empty-rooms))

(define hotel-reg-unit
(unit/sig (import db-sig) (export hotel-reg-sig)
;; get-reservation : string date — reservation
(define (get-reservation name date)
(——— (query (make-select-cmd ’reservations
(list ’room ’rate ’duration)
(list (cons 'name name) (cons 'date date)))

—)))
;; get-empty-rooms : date — (list-of (cons string number))
(define (get-empty-rooms date) —)))

The third definition binds hotel-reg-unit to a unit satisfying the hotel-reg-sig
interface. It must be linked with a database unit that exports the db-sig interface
before it can be used.

The hotel-reg-unit component can be linked with any database component
that exports the db-sig interface. In turn, the hotel-reg-unit unit provides the
functionality represented by the hotel-reg-sig signature. This functionality may
be used by any number of different components in the system, such as a graphical
user interface for finding reservations and vacancies.

Assembling these components—the database code, the business logic, and
the user-interface code—creates a complete program:

(define hotel-program-unit
(compound-unit/sig
(import)
(link [HOTEL-DB : db-sig (PrestigeInc-db-unit)]
[HOTEL-REG : hotel-reg-sig (hotel-reg-unit HOTEL-DB)]
[GUI : hotel-gui-sig (hotel-gui-unit HOTEL-REG)))
(export)))

(invoke-unit /sig hotel-program-unit)

3 In the code fragments, we use ——— to indicate elided code.

The hotel’s programmers can also write a web interface and assemble a second
view for the registration software:

(define hotel-serviet-unit
(compound-unit/sig
(import (SERVER : servlet-import-sig)
(link [HOTFEL-DB : db-sig (GargantuWare-db-unit)]
[HOTEL-REG : hotel-reg-sig (hotel-reg-unit HOTEL-DB)]
[WEB-UI : servlet-sig (hotel-webui-unit SERVER HOTEL-DB)))

(export))))

The web server would then link hotel-servlet-unit against a unit providing con-
trolled access to the web server’s functionality and invoke the resulting unit.

Signatures not only control the linking process; they also guide programmers
in writing the components that implement and use the interfaces they represent.
The brief signature definition of db-sig, however, is insufficient as a guide to
implementing or using the the database unit. The true interface consists of not
only the set of imported names, but also the types of those names, descriptions of
their meanings, and advice on their use. Figure 1 shows an improved description
of the db-sig interface.

(define-signature db-sig
[;; query : select-cmd ((list-of string) — «) — (list-of «)
;; Applies the procedure to the each record returned, accumulating the final result.
query

;; a constraint is (pair-of symbol {string|number|boolean})

;; make-select-cmd : (list-of symbol) symbol (list-of constraint) — select-cmd
make-select-cmd

;; Example: to return a list of the concatenations of fields

;3 ‘f17 and ‘f2° in table ‘tabl’ where ‘f3’ equals 0:

i; (query (make-select-cmd (list ’f1 f2) ’tabl (list (cons ’f3 0)))

5 (lambda (fieldset)

5 (string-append (list-ref fieldset 0) ":" (list-ref fieldset 1))))

Lines with “;;” are comments.
kR

Fig. 1. Database interface

The comments in this revised signature specify function headers and contain
a usage example for query, a complex function. The example shows how to use
query to select two fields, f1 and f2, from the table named tabl. Only the rows
where field f3 is zero are processed. The argument function extracts the fields

from fieldset by position and concatenates them. The call to query returns the
accumulated list of concatenated strings.

The example exposes the awkwardness of the unadorned query function. The
results come back in a list of 3-tuples (also represented with lists) that must be
unpacked by position. This fragile relationship breaks when fields are reordered,
inserted, or deleted. The programmer should be able to refer to field values
by name rather than by position, and the database library should provide an
abstraction that manages the connection between field names and their offsets
in the result tuples. Ideally, the field names would be variables in the result-
handling code. Creating a variable binding based on arguments is beyond the
power of procedural abstraction, but it is a standard use of macros.

3 Programming with Macros

A declarative select form, specifically designed for expressing database queries,
is more robust and less awkward to use than the query function. It can express
the example query from Fig. 1 as follows:

;; Example: to return a list of the concatenations of fields
;3 ‘17 and ‘f2° in table ‘tabl’ where ‘f3’ equals 0:
(select [(f1 f2) tabl with (f3 = 0)]

(string-append f1 ":" f2))

The select form is implemented with a macro that compiles a select expression
into a call to the query function. In Scheme, a define-syntax expression binds
a compile-time function as a macro.

(define-syntax (macro-name stz)
macro-body)

A macro takes in and produces annotated s-expressions called syntaz objects.
In a macro body, the syntax-case form matches a syntax object against patterns
and binds pattern variables, and the #’ operator creates a syntax object from
a template. Each pattern variable used in a template refers to the portion of
the input expression matched by that variable. The postfix ellipsis operator in
a pattern matches the previous pattern zero or more times (similar to Kleene
star); in a template it repeats the previous template for every match.

Figure 2 presents the select macro in the syntax-case [8] macro system. For
the above select example, this macro generates code equivalent to the query
example in Fig. 1.

The select macro uses field, table, fI, v2, and body as pattern variables, but
with and = are matched as literals. The macro uses the name field both as a
symbol (by putting it inside a quote form) passed to make-select-cmd and as
a variable name. Because body is placed within that lambda expression, field
is bound in body, and the evaluation of body is delayed until the procedure is
applied.

The macro expander invokes the select macro when it encounters an expres-
sion of the form (select ————). The macro’s parameter, here stz, is bound

(define-syntax (select stz)
(syntax-case stz (with =)

[(select [(field ...) table with (fI = v2) ...] body)

;; table, all field, and all fI are identifiers

;; each v2 can be any expression

;; body is an expression

#’(query (make-select-cmd (list (quote field) ...)
(quote table)
(list (cons (quote f1) v2) ...))

(lambda (fieldset)
(apply (lambda (field ...) body)

fieldset)))]))

Fig. 2. A simple select macro

to the select expression. Macro expansion replaces the select expression with
the result of the select macro and continues processing the program.

3.1 Respecting lexical scope

Unlike macros in LISP or C, Scheme’s macros respect lexical scoping.? Variable
references introduced in a macro’s template are bound in the environment of
the macro’s definition (i.e. to the lexically apparent binding occurrence), instead
of the environment of the macro’s use. Hence, the macro’s user can use local
variables that coincide with those chosen by the macro implementer without
altering the macro’s behavior. In addition, templated identifiers that become
binding occurrences never capture references received through the macro’s ar-
gument. This property protects the meaning of the macro user’s code from the
macro definition’s choice of temporary variables.

For example, consider the definition of the select macro in Fig. 2. The tem-
plate contains a use of the query variable. Since the macro is defined at the
top-level, the expanded code always refers to the top-level variable of that name,
even if select is used in a context where query is shadowed by a local binding.

Scheme’s macro system stores information about the lexical context of iden-
tifiers in the syntax objects that macros manipulate. The following superscript
annotations are intended to illustrate the information that the syntax objects
carry:

(define query®? ———)
(define-syntax (select°P stz)
(syntax-case stz (with =)
[(select [(field ...) table with (fI = v2) ...] body)
(query'°P (make-select-cmd P (list'°P (quote®©P field) ...) ——)

)

4 Historically, a lexically-scoped macro system has also been called hygienic [13] and
referentially transparent [14].

Thus, the following code

(let ([query'®® "What is the meaning of life?"])
(select®P [(f1 f2) tabl with (f3 = 0)]
(string-append™P f1 ":" f2)))

expands into the following:

(let ([query'®® "What is the meaning of life?"])
(query®®P (make-select-cmd®? (list™P (quote®®P f1) (quotet®P f2)) ———)

—)

The macro system uses the lexical context information to ensure that the use of
query'°P is not bound by query'c, but refers to the top-level binding.

The select macro also relies on the other guarantee of lexically-scoped macro
expansion. The macro expander uses another form of annotation on syntax ob-
jects to track identifiers introduced by macros. When those identifiers become
binding occurrences, such as fieldset in the template of select, they bind only
uses also generated by the same macro expansion. Consider this use of the select
macro:

(let ([fieldset (lambda (new-value) (set! last-field-seen new-value))])
(select [(f1 f2) tabl with (f3 = 0)]
(fieldset (+ f1 f2))))

This expands into the following:

(let ([fieldset (lambda (new-value) (set! last-field-seen new-value))])

(query
(lambda (fieldsety)

(apply (lambda (f1 f2) (fieldset (+ f1 f2)))
fieldset1))))

Again, the binding of fieldset; does not capture the use of fieldset.

These two guarantees made by lexically-scoped macro systems are crucial
to writing and using reliable macros. Without static knowledge of the binding
structure of macros, reasoning about them becomes impossible.

However, consider the implications for programming with units. A macro
such as select which uses the query function must be defined in a context where
query is bound. Since query is a unit variable, it is only available to other units,
through an import clause. Thus the macro definition must occur within the body
of the importing unit:

(define hotel-reg-unit
(unit/sig (import db-sig) (export hotel-reg-sig)
(define-syntax select —)

—)

Putting the macro definitions in the client code, however, defeats the compo-
nent abstraction. The database component should provide everything necessary
to write client code—both dynamic and static constructs—so that every appli-
cation component can use these facilities.

One attempt at a solution might define select in the database component
and export it to the client components. With this solution, the client component

could not be compiled until it is linked with a particular database component,
for two reasons. First, compilation of a unit depends on the definition of every
syntactic extension used in its body. Second, the contents of a unit are not
available to other units until link-time. Thus if the definition of a macro resides
in a unit, then its clients cannot be compiled until link-time. Furthermore, the
same client unit might be compiled differently for every linkage it participates in.
Thus, this proposal violates the important property of component programming
that a component be independently compilable.

4 Signatures and static information

Our solution integrates macros and components by including macro definitions
in signatures. Since signatures specify the static properties of units, they are a
natural place to put syntactic extensions. In this section we present the design,
pragmatics, and implementation of the new unit system.

4.1 Extended signatures

A signature contains the set of names that make up a unit’s interface. In the ex-
tended system, it also contains macro definitions that can refer to the signature’s
names.

The extended syntax of signature definitions is:

(define-signature signature-id
(variable-id*

macro-definition™))

With this extension, it is possible to put the select macro in the db-sig signature,
rather than manually copying it into every client unit:

(define-signature db-sig
[query
make-select-cmd
(define-syntax (select stz)

—D

The syntax for units remains the same. When the db-sig signature is used in
an import clause, however, it also inserts the select macro into the unit:

(unit/sig (import db-sig) (export application-sig)
(select [(room rate) rooms with (available = true)]
(format "~a, available for just $”a" room rate)))

Macro expansion of the unit body produces the desired target code:

(unit/sig (import db-sig) (export application-sig)
(query (make-select-cmd (list ’room ’rate)
‘rooms
(list (cons ’available true)))
(lambda (fieldset)
(apply (lambda (room rate)
(format "~a, available for just $”a" room rate))

fieldset))))

The expansion of the macro does not depend on the particular version of the
database unit linked at run-time. In fact, the above unit may be linked to many
database units during the course of the same program execution.

4.2 Preserving lexical scope

As discussed in Sect. 3.1, respect for lexical scope is a critical property of
Scheme’s macro systems. It ensures that variable references behave in the natural
way. In particular, variable references inserted by a macro refer to the variables
in the macro definition’s context, not those in the context of the macro’s use.

The problem becomes more complex when we allow macros to occur inside
of signatures. When a signature macro refers to a signature variable, there is
no definite binding of the variable for the macro to refer to. Rather, when the
signature is instantiated, that is, when it is used in a unit’s import clause, the
instance of the macro will refer to the instance of the imported variable.

This observation suggests a natural extension of the principle of lexical scop-
ing for macros. In a signature, a free occurrence of a name in a #’-form should
have the same meaning as it does in the context of the signature definition, un-
less the name is also a signature element. In the latter case, the name should
refer to the variable linkage created when the signature is used in a unit import
clause.

To illustrate this principle, consider the example from earlier:

(define-signature db-sig

[query
make-select-cmd
(define-syntax (select stz)
(syntax-case stz (with =)
[(select [(field ...) table with (fI = v2) ...] body)
#’(query (make-select-cmd (list (quote field) ...) ————)

(lambda (fieldset) (apply —)))))])

In the template for select, query and make-select-cmd must denote the unit
import variables. In contrast, list and apply must refer to the standard Scheme
procedures, because those were their meanings where the macro was defined. Any
other interpretation of macro definitions would violate the scoping principle of
Scheme. It is the task of the implementation to make sure that these properties
hold.

4.3 Implementation

In order to compile units, the compiler must be able to completely expand the
definitions and expressions in a unit’s body and identify all imported and ex-
ported variables. The information necessary to do this is statically bound to the
signature names, and the compilation of a unit/sig form consists of fetching
this static information, eliminating the signatures from the code, and compiling
the resulting core unit form.

Signature definition When the compiler encounters a define-signature form,
it builds a catalog consisting of the variable names and macro definitions that the
signature contains. The catalog contains syntax objects, which are closed in the
syntactic environment in which the macro signature occurs. This ensures that
when the macro definitions are imported into a unit, lexical scoping is preserved.

Finally, it statically binds the signature name to a signature structure con-
taining the information above. Thus,

(define-signature db-sig
[query
make-select-cmd
(define-syntax (select stz)

—

binds db-sig to the static information

(make-signature ’db-sig
;; Variables
(list #’query #’make-select-cmd)
;; Macro names
(list #'select)
;; Macro definitions
(list #(define-syntax (select str) ——)))

When db-sig appears in the import clause of a unit/sig form, the compiler looks
up the static binding of db-sig and uses the catalog to eliminate the use of the
signature.

Signature elimination The compiler translates unit/sig forms into an in-
termediate core unit form, replacing signatures with their contents. In the re-
sulting code, imported and exported variables are explicitly enumerated, and
all signature-carried macro definitions are inlined into the core unit body. This
elimination process respects scoping, as outlined in Sect. 4.2.

Consider the following example:

(define-signature db-sig
[query make-select-cmd (define-syntax select ————)])

(let ([query'*® ———1])
(unit/sig (import db-sig) (export application-sig) ——))

The select macro definition that occurs in the signature refers to a variable
whose name appears in the let binding. The macro definition must be closed in
the environment of the signature definition so that those names are not captured
by the let binding. By using syntax objects in the signature catalog, we retain
the correct syntactic environment for the macro definition.

There are two problems to overcome in implementing unit/sig correctly.
First, the environment of the macro definitions is not quite complete; it lacks
bindings for the signature’s variables. Second, the names in the signature, being
closed in a different environment, will not bind the names in unit body.

To illustrate, we write query®™ for the identifier closed in the signature’s
environment and query“t for the identifier occurring in the unit body. Given
the unit/sig expression

(unit/sig (import db-sig) (export application-sig)

(queryunit.
(select"™ [(room rate) rooms with (available = true)] (——

rooms rate)))

if the variable names and macro definitions from db-sig were copied into the unit
body, their identifiers would still have sig superscripts.

(unit/sig (import (querys'ig make-select-cmd®9)) (export application-sig)
(deﬁne-s}fyntax (select®® stx) ——— #'query®”d ——)
(query™™
(select™* [(room rate) rooms with (available = true)] (——

rooms rate)))

Note that query¥ is bound in the resulting unit body, so the environment for
the definition of select®® is complete. Unfortunately, query™ and select“ it
are still unbound in the unit body.

To solve this problem, the compiler must identify the unit’s local identifier
for each signature identifier. For example, given querys9, the compiler must
determine that the local name is query®™®. Each such pair of foreign and local
identifiers must have the same meaning. The compiler extends the environment
of the unit form with bindings that alias each local identifier to the corresponding
imported identifier.

(make-signed-unit
;; Metadata (intentionally omitted)

;; Core unit . .
(unit (import query®Y make-select-cmd®*9)
(export —)
;; Imported macro definitions .
(define-syntax (select®'® stz) ———— # query®? ————)
;; Alias code
(define-alias (select"™t = select®!8)
(que,,,yunit _ querysig)

(make-select-cmd "™ = make-select-cmd "))
;; Code from unit/sig begins here
(query™™ ————)
(select™™ [(room rate) rooms with (available = true)] (——

room rate))))

Fig. 3. Translation into core unit

In summary, the compiler copies each macro definition from its imported
signatures into the unit body, explicitly enumerates the imports and exports
(using the foreign names), and creates aliases for the local names. This pass

eliminates the signatures and produces an intermediate core unit form in which
all imported and exported variables are explicit, and the body consists of macro
definitions, definitions, and expressions.

Figure 3 shows the result of this translation, using unit as the syntax for
core unit forms and a define-alias instruction to create aliases. The define-
alias form can be implemented with the low-level primitives of the PLT Scheme
macro system.

Core units Once the signatures have been eliminated, all import and export
variables are explicitly enumerated and the unit body contains all imported
macros definitions.

Compiling a core unit involves expanding the body—a simple process once
the macro definitions have been brought into the proper context—and compiling
imported and exported variables as cells managed by the unit linker rather than
primitive Scheme variables.

5 Static Programming

Many constructs can be expressed with a macro whose output depends only on
the macro’s input. The select macro (Fig. 2) is an example of such a construct.
However, the compilation of some constructs relies on information from other
locations in the program. For example, the pattern matching construct for al-
gebraic datatypes relies on the definition of the datatype being matched. PLT
Scheme’s macro system supports the implementation of these kinds of constructs
by letting macros communicate using compile-time variables.

A database has a statically-known structure called its schema that deter-
mines what queries are valid. We could add a mechanism to db-sig that lets
clients specify the schema. Then select would be able to check at compile time
that every query will succeed when run.

The database-table form lets a programmer express information about the
database’s relevant tables, fields, and types, and make the information accessible
to the select macro.

;; database-table’s syntax: (database-table table-name (field-name field-type) ...)
(database-table rooms (room number) (rate number) (available boolean))
(database-table reservations (room number) (name text) (when date))

Using these table declarations, the select macro can ensure that the table
in question is declared, and that it contains the given fields. It can also emit
run-time checks for the field types.

The database-table and select macros communicate through a compile-
time variable named schema, which contains a mutable box. Compile-time vari-
ables are introduced using the define-for-syntax form, and they exist during
macro expansion. See Fig. 4 for the implementation of schema and database-
table. The begin-for-syntax form in the expansion of the database-table
form indicates that the enclosed expression should execute during macro expan-
sion. The database-table form is similar to examples from previous work [12].

(define-for-syntax schema (boz null))

(define-syntax (database-table stz)
(syntax-case stz ()
[(database-table table (field-name field-type) ...)
#’ (begin-for-syntax
(let ([table-record ’(table (field-name field-type) ...)])
(set-box! schema (cons table-record (unbox schema)))))]))

Fig. 4. Implementation of database-table

(define-syntax (select stz)
;; get-table-info : identifier — table-info
;; Given a table name, returns the list of fields and types associated with it,
;; or raises an exception if the table is not known.
(define (get-table-info table-stx)

(let ([table-entry (assoc (syntax-object— datum table-stx) (unbox schema))])
(if table-entry

(cdr table-entry)
(raise-syntaz-error ’select "unknown table" table-stz))))

;; check-field : identifier table-info — void
;; Checks that the given field name belongs to the table.
(define (check-field field-stx table-info)

(let ([field-record (assoc (syntaz-object— datum field-stz) table-info)])
(unless field-record

(raise-syntaz-error ’select "field not declared" field-stz))))

(syntax-case stz (with =)
[(select [(field ...) table with (fI = v2) ...] body)
(let ([table-info (get-table-info #’table)])
(for-each (lambda (field-id) (check-field field-id table-info))
(syntaz—list #(field ...)))
;; The resulting code is the same as before (see Fig. 2)

)

Fig. 5. Implementation of select with static checking

The new select macro checks the table name and fields it receives against the
information in the stored schema. The revised implementation shown in Fig. 5
produces the same code as the previous select macro, but it additionally uses
helper procedures to check that the table and fields are declared. If they are not,
the macro signals a compile time error.’

Consider the following unit that uses the new db-sig facilities:

(unit/sig (import db-sig) (export application-sig)
(database-table rooms (room number) (rate number) (available boolean))
(database-table reservations (room number) (name text) (when date))
(select [(room rate) rooms with (available = true)] (cons room rate))
(select [(room duration) reservations with] (———— duration ———))

The first use of select is correct, but the second use triggers a compile-time error,
notifying the programmer that duration is not a valid field in the reservations
table.

The db-sig signature contains the definitions of the schema variable and
database-table macro alongside the select macro. Thus, when a unit’s import
specifies the db-sig signature, schema’s and database-table’s definitions are
copied into the unit’s body. Consequently, each unit with a db-sig import receives
its own schema box, keeping table definitions from mixing between different
units.

The select and database-table macros present other opportunities for
static extensions that we do not explore here. For example, the database-table
form could produce code to dynamically verify the accuracy of the static schema
description, and the select macro could add additional code to check whether
constant field specifications have the correct type.

6 Related Work

Bawden [16] has proposed a system of lexically-scoped, “first-class” macros based
on a type system. The “first-class” macros are statically resolvable, which pre-
serves compilability, but the values for the bindings used in a macro’s expansion
can be passed into and returned from functions. A “first-class” macro is defined
in a template that includes macro definitions and a listing of variables that the
macro is parameterized over, similar to our signatures. His system uses types
to statically track macro uses, whereas in our system signatures are statically
attached to units, avoiding the need for a type system.

Krishnamurthi’s unit/lang construct [17] allows programmers to specify the
programming language of a component in addition to its external interface. A
language contains new macro-like extensions (in fact, languages are more pow-
erful than macros) and run-time primitives. A unit/lang component internally
specifies which language it imports, similar to how our units specify their sig-
natures. However, the internally specified language position does not coordinate

5 A programming environment such as DrScheme [15] can use the information provided
to raise-syntaz-error to highlight the source of the problem.

with the externally linked component parameters, so lexically-scoped macros
cannot refer to these parameters. Our system also makes it simpler to mix to-
gether orthogonal language extensions, since there is no need to manually define
a language that contains the desired combination of extensions.

The Scheme community has formalized the principles of scope-respecting
macros. Kohlbecker et al. [13] first introduced the hygiene property for macros,
and subsequent papers developed referential transparency [8, 14]. Recent papers
have addressed macros and internally-linked modules [11], including a notion of
phase separation for macros and modules [12]. Other work in macro semantics
from MacroML [18,19] has not addressed the full complexity of Scheme macros.
In particular, these systems do not model macros that can expand into macro
definitions.

A different line of research has developed module systems to support compo-
nent programming. Components are parameterized using collections of code that
obey static interfaces, but the information carried by these interfaces is generally
limited. In ML module systems [4, 20, 21], signatures contain types (and kinds,
i.e., types for types) and datatype shapes (used for pattern matching). Similarly,
the signatures in the original model of units [6] contain types and kinds. In the
Jiazzi unit system [22], signatures contain class shapes, which play a type-like
role.

The Scheme48 [5] module system provides some support for modules with
parameterized imports. However, the signatures for the imports only contain the
information that a binding is a macro, and the not macro itself. Consequently,
parameterized modules that import macros cannot be independently compiled.
We believe that our techniques could correct this problem.

7 Conclusion

We have designed and implemented an extension of the PLT Scheme unit sys-
tem that allows programmers to attach language extensions to signatures, thus
enriching the interfaces available to client code. Our extension preserves the
essential properties of the unit system, such as independent compilation and
external linking, as well as the lexical scoping principles of the macro system.

References

1. Wirth, N.: Programming in MODULA-2 (3rd corrected ed.). Springer-Verlag New
York, Inc., New York, NY, USA (1985)

2. Szyperski, C.: Component Software. Addison-Wesley (1998)

3. MacQueen, D.: Modules for standard ml. In: Proceedings of the 1984 ACM Sym-
posium on LISP and Functional Programming. (1984) 198-207

4. Leroy, X.: Manifest types, modules, and separate compilation. In: ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. (1994) 109-122

5. Kelsey, R., Rees, J., Sperber, M.: Scheme48 Reference Manual. 1.1 edn. (2005)
http://s48.org/1.1/manual /sd8manual.html.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Flatt, M., Felleisen, M.: Units: Cool modules for HOT languages. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation. (1998)
236—248

Kelsey, R., Clinger, W., Rees (Editors), J.: Revised® report of the algorithmic
language Scheme. ACM SIGPLAN Notices 33 (1998) 26-76

Dybvig, R.K., Hieb, R., Bruggeman, C.: Syntactic abstraction in Scheme. Lisp
and Symbolic Computation 5 (1993) 295-326

Queinnec, C.: Modules in scheme. In: Proceedings of the Third Workshop on
Scheme and Functional Programming. (2002) 89-95

Serrano, M.: Bigloo: A “practical Scheme compiler”. 2.7a edn. (2005) http://www-
sop.inria.fr/mimosa/fp/Bigloo/doc/bigloo.html.

Waddell, O., Dybvig, R.K.: Extending the scope of syntactic abstraction. In:
Conference Record of POPL 99: The 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Antonio, Texas, New York, NY
(1999) 203-213

Flatt, M.: Composable and compilable macros: You want it when? In: ACM
SIGPLAN International Conference on Functional Programming. (2002)
Kohlbecker, E.E., Friedman, D.P., Felleisen, M., Duba, B.F.: Hygienic macro ex-
pansion. In: ACM Symposium on Lisp and Functional Programming. (1986) 151
161

Clinger, W., Rees, J.: Macros that work. In: ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. (1991) 155-162

Findler, R.B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler,
P., Felleisen, M.: DrScheme: A programming environment for Scheme. Journal of
Functional Programming 12 (2002) 159-182 A preliminary version of this paper
appeared in PLILP 1997, LNCS volume 1292, pp. 369-388.

Bawden, A.: First-class macros have types. In: Proc. symposium on Principles of
programming languages, ACM Press (2000) 133-141

Krishnamurthi, S.: Linguistic Reuse. PhD thesis, Rice University (2001)

Ganz, S.E., Sabry, A., Taha, W.: Macros as multi-stage computations: Type-safe,
generative, binding macros in macroml. In: International Conference on Functional
Programming. (2001) 74-85

Taha, W., Johann, P.: Staged notational definitions. In: Proceedings of the second
international conference on Generative programming and component engineering.
(2003) 97-116

Harper, R., Lillibridge, M.: A type-theoretic approach to higher-order modules with
sharing. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. (1994) 123-137

Harper, R., Pierce, B.C.: Design issues in advanced module systems. In Pierce,
B.C., ed.: Advanced Topics in Types and Programming Languages. MIT Press
(2004) To appear.

McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: New-age components for old-
fashioned Java. In: Proc. conference on Object oriented programming, systems,
languages, and applications, ACM Press (2001) 211-222

