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Abstract

Nominal subtyping forces programmers to explicitly state all of the subtyping re-
lationships in the program. This limits component reuse, because programmers cannot
anticipate all of the contexts in which a particular class might be used. In contrast,
structural subtyping implicitly allows any type with appropriate structure to be used
in a given context. Languagues with contracts exacerbate the problem. Since contracts
are typically expressed as refinements of types, contracts in nominally typed languages
introduce additional obstacles to reuse.

To overcome this problem we show how to extend a nominally typed language with
semantic casts that introduce a limited form of structural subtyping. The new language
must dynamically monitor contracts, as new subtyping relationships are exploited via
semantic casts. In addition, it must also track the casts to properly assign blame in case
interface contract are violated.

1 Enriching Nominal Subtypes with Semantic Casts

Conventional class-based object-oriented languages like[@5], C# [34], Eftfel [33],

and Java [18] come with nominal typing systems. In such systems, a programmer ex-

plicity names the superclass(es) and the implemented interfaces of a class. Thus, the
declared type of any instance of a class must be one of the explicitly named interfaces

or classes.

Language designers choose nominal type systems because they are easy to under-
stand and easy to implement. A programmer doesn’t need to investigate the structure
of an interfacd to find out whether an instaneeof a classC can have type; it suf-
fices to check whether the definition 6fmentionsl as an implemented interface (or
whether the superclasses and superinterfaces metidrwompiler writer, in turn, can
build a class graph and an interface graph and type check expressions and statements
by comparing points in a graph.

Nominal typing, however, is also a known obstacle to software reuse. In particular,

a programmer can only compose two objects if the creators of the two respective classes
used the same (nominal) types. Unfortunately, in a world of software components where
third-party programmers compose existing pieces of software, the implementor of a
class cannot possibly anticipate all possible types for an object. Hence, programmers
resort to casts and have invented adapter patterns to bridge the gap between third-party
components.
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One way to overcome this problem is to switch to a structural type system. The
research community has long recognized this shortcoming of nominal subtype systems
and that structural subtype systems do ndiiesifrom this flaw. Some modern research
languages like LOOM [3], OCaml [29], OML [40], PolyTOIL [4], and Moby [13] adopt
structural subtype systems. Their designs demonstrate how their structural subtype sys-
tems empower their user communities to reuse classes in unanticipated situations.

Changing a language’s subtype system from a nominal to a structural perspective is
a drastic step. We therefore propose an alternative, smaller change to conventional lan-
guages that also overcomes the reuse problem. Specifically, our proposal is to introduce
a “semantic cast” mechanism. The cast allows programmers to change the type of an
object according to a structural subtype criteria. Thus, if an existing Classisfies the
needs of some interfadebut doesn't explicitly implement it, a programmer can, even
retroactively, specify that an instance®fs of typel.

Naturally, the programmer should only take such an action if the semantics of the
class is that of the interface. We therefore allow the programmer to describe an ex-
ecutable approximation of the interface’'s semantics—caltattractshere—and use
that semantics to monitor the validity of the cast. If the cast object behaves according
to the contracts, the execution proceeds as normal. Otherwise, the monitoring system
raises an exception and attributes the misbehavior to a specific compioaestther
the object’s use-context, the object itself, or the cast.

In this paper, we explain the need for these contract-based casts, their design, their
implementation, and our experience with the contract system. We present the ideas in
a Java-like setting to show how they can be adapted to conventional languages. Indeed,
we only present the internal form of the new construct, rather than a surface syntax.
Section 2 describes a common situation where nominal subtyping fails to support reuse
effectively. Section 3 presents our semantic cast construct and reformulates the example
from section 2 with this construct. Section 4 precisely specifies the new contract checker
with a calculus. Section 5 discusses our implementation. The last three sections discuss
related work, future work, and present our conclusions.

2 Contracts and Component Reuse

In this section, we introduce object-oriented contracts and illustrate how languages with
contracts that augment a nominal subtyping hierarchy inhibit reuse.

Consider the canonical queue implementation in figure 1 (in Java syntax, using
JML [27] notation for contracts). The queue supports three operatiomgo add an
element to the queuégeqto remove an element from the queue, @amdptyto test if
the queue contains any elements. The post-condition contragh@guarantees that
the queue is not empty after an element is added and the pre-condition contdact on
requires that there is an element in the queue to remove.

Enforcing pre- and post-conditions such as these is straightforward. Whendhe
method returns, the post-condition code is run and if it prodfess, evaluation ter-
minates anangis blamed for breaking its contract. Similarly, whéegis called, the
pre-condition code is run and if it produckaése, evaluation terminates anltdds caller
is blamed for breakingleds contract. Although these contracts do not ensure that the
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interface 1Queue{ class Q implements IQueue {
void endint X); void endint x) { ... }
/| @post lempty) int deq) { ...}

booleanempty) { ... }
void dedint X); }
/| @pre lempty)

boolean empty);

Fig. 1. Queues

queue implementation is correct, experience has shown that such weak contracts pro-
vide a good balance between correctness and run-time overhead [41].

Object-oriented languages allow much more complex forms of interaction than
those between the queue and its client. Since objects may be passed as arguments or
returned as results from methods, the call structure of the program can depend on the
flow of values in the program. Putftirently, invoking an object’s methods may trigger
nested callbacks (a.k.a upcalls) between components [46].

class Q implements IQueue { interface I0Observer{
IObserver ¢ void onEndqQueue ¢ int x);
void endint X) { /| @post !g.empty)
if (0o != null) o.onEndthis, x); void onDedQueue ¢ int X);
} /| @pre g.empty)
int deq) { }
int hd=..;

if (0 != null) o.onDedthis, hd);

return hd,
}
boolean empty) { ... }
void registerObglObserver o) {0=_0;}

}

Fig. 2. Queues with Observers

Consider the revised queue class in figure 2; this variant of the class supports an
observer. The additional methoegisterObsaccepts an observer object. This observer
object is saved in a field of the queue and its methods are invoked when an element is
enqueued or dequeued from the queue.
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Although this addition may seem innocuous at first, consider the misbehaved ob-
server in figure 3. Instances of this observer immediately dequeue any objects added to
the queue. Imagine that an instance of this observer were registered with an instance of
the Q class. The first time thengmethod is invoked, it adds an integer to the queue
and then invokes the observer. Then the observer removes the integer, befeng the
method returns. Due to trenEngpost-condition in théObserverinterface, however,
BadOis immediately indicted, ensuring tiigclass can always meet its contracts.

class BadO implements I0bserver {

.o‘r;Enc[Queue gint x) {
a.ded); }}

Fig. 3.Bad Observer

Programming language designers (including the authors of this paper) have histor-
ically been satisfied with contracts in interfaces and abstract classes [2,8,12,17, 22—
25, 32, 33]. Unfortunately, this design decision exacerbates the problems with software
reuse in a nominally typed world. Independent producers of components cannot pos-
sibly foresee the precise contracts that some component should satisfy. Indeed, if they
aim to produce software components that are as flexible as possible they must have the
least constraining interface contracts (that are still safe). Accordingly, contract check-
ers must allow component programmers to refine a component’s contracts. These re-
finements, in turn, allow programmers to rely offelient extensions of a component’s
contracts when using it in flerent contexts.

Concretely, consider the interfatBosQueueand static metho®rocessManager
in figure 4. The interface limits the queue to contain only positive integers by adding a
pre-condition teengguaranteeing that its input is bigger than zero and a post-condition
to degpromising that the result is bigger than zero. The static meffrodessManager
accepts instances tfosQueueClearly, theQ class satisfies thE?osQueueénterface.
Regardless, since interfaces must be declared when the class is declared, the code in
figure 4 cannot be combined with the independently produced code in figure 2.

Programmers can work around this mismatch with several techniques, especially
the adapter pattern. In this particular example, the programmer could derive a class
from Q that inherits all the methods and superimposes the new, stronger contract inter-
face. In general, however, the programmer that wishes to impose additional contracts
to an object is not the programmer that originally created the object. In these other
cases, a programmer may create an entirely new class that bridges the gap between the
two components that are to be composed. No matter which solution the programmer
chooses, however, the requirement to build and manually maintain an adapter, includ-
ing error checking that catches and flags errors inside the adapter, is an obstacle to
controlled composition of software. Worse, a programmer-produced mechanism for as-
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interface IPosQueue{ class QueueClient{
void endint Xx); static void ProcessManagé€iPosQueue Jj {
/| @pre x > 0
// @post lempty) }
}
int deq);

// @pre lempty)
// @postdeq> 0

boolean empty);

Fig. 4. Positive Queues, in a Separate Component

signing blame is ad-hoc and therefore less trustworthy than a mechanism designed into
the programming language.

3 Contract Checking for Semantic Casts

The problem is that allowing contracts only in interfaces and classes means that each
object supports only a fixed, pre-determined set of contracts, which prevents the direct
use of aQ object as anPosQueuabject. To overcome this problem, we propese
manticCast, a new construct that allows programmers to cast an object to a structurally
equivalent typé.

The shape of aemanticCastexpression is:

4 For the purposes of this paper, we treamanticCastas a regular member of the program-
ming language, to be written in programs at the programmer’s whim. In fully integrated sys-
tem, howeversemanticCastexpressions should only appear at component boundaries. For
example, if Java’s package system or some other form of module system were used to orga-
nize a programsemanticCastexpressions should be inserted around each variable reference
between modules. Abstractly, imagine that a moduiefers to an export of modulB, say
B.x. The context of the variable reference expects it to match intetfaaethe actual type of
the variable is a compatible, butférent interfacé’. The variable reference would be replaced
by semanticCas(B.x : I, I, “B”, “A”) allowing the user of the exported variable to refine the
contracts in’ to I, while still ensuring that blame is properly assigned.

In a component model similar to Corba [36], components explicitly establish connections
to each other via a function call protocol. To add contracts to this style of component system,
semanticCastexpressions would be added by the calls that establish the connections between
the components.

Although each component system synthessasanticCasexpressions in a fferent man-
ner, all component systems can use some formeafianticCastexpression. In essence, our
intention is that ssemanticCastexpressiordefineshe component boundaries, as far as our
model is concerned. Accordinly, to understand its essence, we treat it as a feature in the pro-
gramming language directly, with the understanding that it is only truly available to the pro-
grammer who implements the component mechanism.
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semanticCasfobj : t, Intf, in_str, outstr)

It consists of four subexpressions: an object (annotated with its type), an interface, and
two strings. The expression constructs an object that behavesbjkexcept with type
Intf (including the contracts intf). The typing rules guarantee that the typeobf
has the same methods names and typesithsbut does not require thatbj's class
implementsintf, allowing obj to take on the contracts imtf. In fact, the typing rules
synthesize the type ahbjfrom the context, but we include it explicitly here, for clarity.
The stringin_str represents the guilty party @bj is not treated as amtf by the context,
and the stringput str represents the guilty party dfitself does not behave according to
the contracts inintf. As a first approximationin_str is blamed if a pre-condition imtf
is violated ancbut stris blamed if a post-condition dftf is violated.
UsingsemanticCast we can now combine the code from figure 4 with the original
Qclass:

public static void Main(String argV]) {
Q g = new Q();
IQueue iq= semanticCasfq : Q, IQueue “Main”, “Q");
IPosQueue ipg= semanticCasfiq : 1Queue IPosQueug “QueueClient”, “Main”);
QueueClienProcessManag€ipq);
}

In the first line of its bodyMain creates & object. In the second line, tlsemantic-

Cast expression states that the new instance must behave according to the contracts in
IQueue® The third argument teemanticCastindicates thaMain is responsible for any
violations oflIQueueés pre-conditions. The fourth argument indicates (Qas responsi-

ble for any violations ofQueues post-conditions. The result of the fistmanticCast

is bound tag.

In the third line,Main uses asemanticCastexpression to add the contracts of
IPosQueueo ig. The third argument t@emanticCastindicates thaQueueClients
responsible for pre-condition violations of the contractgiosQueueThe fourth argu-
ment tosemanticCastindicates thaMain is responsible for post-condition violations.

The result of the secormkmanticCastexpression is bound ipg. Finally, in the fourth
line, ipq is passed tQueueClienProcessManager

Intuitively, the queue object itself is like the core of an onion, and eachantic-
Castexpression corresponds to a layer of that onion. When a method is invoked, each
layer of the onion is peeled back, and the corresponding pre-condition checked, to re-
veal the core. Upon reaching the core, the actual method is invoked. Once the method
returns, the layers of the onion are restored as the post-condition checking occurs.

For instance, imagine th&@ueueClienProcessManageinvokes its argument’s
engmethod, with a positive number. First, the pre-conditioneoigin IPosQueuds
checked, since the lasemanticCastexpression addellPosQueuis contracts to the

5 Of course, theQ class declares that it implements ti@ueueclass and the contracts could
have been compiled directly into its methods. Since we are focusing on semantic casts here,
we assume that contracts are only checked with explicitly spesifisthnticCastexpressions.
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queue. The input is positive, so it passes. If it had failed, the blame would lie with the
queue client. Next, that outer layer is peeled back to reveal an object that must meet
IQueués contracts. Accordingly, thengpre-condition inQueueis checked. This pre-
condition is empty, and thus trivially true. After removing this layer we reach the core,
so theengmethod in theQ class is invoked.

Once theengmethod returns, its post-conditions are checked. Firstettggpost-
condition inlQueueis checked. If it fails, the blame lies wit, since“Q” is the last
argument to the innermosemanticCast Assuming it succeeds, the post-condition on
enqin IPosQueuas checked. If it fails, the blame lies witklain, since“Main” is the
last argument to the outeemanticCastexpression.

3.1 Supporting Positive Queues with Positive Observers

The code in figure 5 shows observers addePasQueuemirroring the extension of
the IQueueinterface in figure 2. In addition to thenEngand onDeqcontracts from
IObserver the integer argument to botimEngandonDeqis guaranteed to be positive.

interface IPosObserver{ interface IPosQueug(
void onEndIPosQueue gint x);
/| @pre x > 0

/| @post 'g.empty) void registerObglIPosObserver j

}
void onDedIPosQueue gint X);

/| @pre x > 0
/I @pre !g.empty)

Fig. 5. Positive Queue with Observer

Imagine that the body of th@ueueClienProcessManagestatic method creates
an instance of some class that implementsiB@sObserveinterface and passes that
object to theregisterObamethod of its argument:

class QueueClient{

static void ProcessManagé€lPosQueue ipj {
IPosObserver po= new ProcessObservéy,
ipg.registerOb¢po);
ipg.end(5);
}
}

Adding observers to the positive queue triggers additional, indirect contract obliga-
tions on the code that casts the queue object to a positive queue. To understand how the
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indirect contracts are induced and who should be blamed if they fail, let us examine the
sequence of steps that occur whpg.enqis invoked in the body oProcessManager
There are five key steps:

(1) ipg.end(5)

(2) testiPosQueugore-condition, blam&ueueClientf failure

(3) q.ends)
(4) po..onEnc(q,S)

(5) testiPosObservepre-condition, blaméain if failure.

In the first stepjpg.enqis invoked, with5 as an argument. This immediately triggers
a check of thdPosQueugre-condition, according to the contract added/iain. The
contract check succeeds becabsis a positive number. If, however, the check had
failed, blame would lie witltQueueClienbecaus&ueueCliensupplied the argument
toipq.

Next, in step three, the originBQueueobject’'senqgmethod is invoked, which per-
forms the actual work of enqueing the object into the queue. As part of this work, it
calls the observer (recall figure 2). In this caeieueClientegistered the objegio
with the queue, spo.onEngis invoked with the queue and with the integer that was
just enqueued.

Since the observer is dRosObservebbiject, its pre-condition must be established,
namely the argument must be a positive number. Becaus® ttlass’senqg method
supplies its input tamnEng we know that the contract succeeds at this point. The in-
teresting question, however, is who should be blam&hfd negated the number and
passed it to the observer, forcing thieEnqcontract to fail.

Clearly, Q must not be blamed for a failure to establish this pre-condition, since
Q did not declare that it meets the contracts in BResQueuenterface and, in fact,
IPosQueueavas defined afte®. Additionally, QueueClientust not be blamed. It only
agreed to enqueue positive integers into the queue; if the queue object mis-manages the
positive integers before they arrive at the observer, this cannQuieeeClieris fault.

That leavedMain. In fact, Main should be blamed if thBPosObservepbject does
not receive a positive integer, sindéain declared that instances € behave like
IPosQueusabjects knowing that these objects must respeasObserves contracts.

Put another way, if th€ class had declared it implemented tR®sQueuenterface,
it would have been responsible for the pre-conditiontPaisQueueAccordingly, by
casting an instance @) to IPosQueueMain is promising tha) does indeed live up to
the contracts ilPosQueuegsoMain must be blamed i fails to do so.

More generally, since objects have higher-order behavior, the third and fourth ar-
guments tosemanticCastdo not merely represent who to blame for pre- and post-
condition violations of the object with the contract. Instead, the last argumergde a
manticCast expression indicates who is to blame for any contract that is violated as a
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value flowsoutof the object with the contract, whether the value flows out as a result of
a method or flows out by calling a method of an object passed into the original object.
Conversely, the third argument tesamanticCastexpression indicates who is to blame
for any contract that is violated as a value flowgo the object, no matter if the bad
value flows in by calling a method, or via a callback that returns the bad value.

This suggests that the casted objects must propagate contracts to method arguments
and method results, when those arguments or results are themselves objects. The fol-
lowing equation roughly governs hasemanticCastexpressions propagate (assuming
that the immediate pre and post-conditions are satisfied):

semanticCasfo: |, J, in_str, out.str).m(x)

semanticCasfo.m(semanticCasfx : C, D, outstr, in_str)) : B,
C,
in_str,
outstr)

if I andJ have these shapes:

interface | { interface J {
B mD x); C m(C x);
} }

andB is a subtype o€, which is a subtype db.

Informally, the equation says that when a metmo@df an objected casted tois
invoked, the cast is distributed s argument anan'’s result. Further, the distribution
is based om's signature inl.

Notice that the blame strings are reversed in the cast around the argument object
and stay in the same order in the cast around the result. This capturesténendie
between values that flow into and out of the object. That is, if a value flows into the
argument object, it is flowing out of the original object and if a value flows out of the
argument object, it is flowing into the original object. In contrast, when the context
invokes methods on the result (assuming it is an object), the sense of the blame is
like the original. The reversal corresponds to the standard notion of contra-variance for
method or function arguments.

4 Calculus

This section presents a calculus for a core sequential Java (without reflection), enriched
with semanticCastexpressions, and it gives meaning to the semantic cast expressions
via a translation to the calculus without them.

For familiarity, this paper builds on our model of Java [10, 16], but the core ideas
carry over to any class-based object-oriented language, includirg C#, Eifel, or
even MzScheme’s class-based object system.
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P ;= defrr e P ::= defrr e P ::= defrr e
defn ::= classc extendsc defn::= classc extendsc defn::= classc extendsc
implements i* implements i* implements i*
{ fld* mth } { fld* mth } { fld* mth }
| interface i extendsi* | interface i extendsi* | interface i extendsi*
{ imth* } { imth* } { imth* }
fld ::= tfd fid == tfd fld == tfd
mth ::= t md(arg*) { body} = tmd(arg*) { body} mth ::= tmd(arg*) { body}
imth ::=t md ( arg* ) imth 2=t md ( arg* ) imth := tmd(arg*)
@pre { e} @pre { e}
@post{ e } @post{ e}
arg = tvar arg ;= tvar arg = tvar
body ::= e | abstract body ::= e | abstract body ::= e | abstract
e = newc | var | null e ::= newc | var | null e = newc | var | null
|efd| efd=e |e:cfd|e:c.fd=e |e:cfd|e:cfd=e
| emd(e*) | emd(e¥) | emd(e¥)
| super.md (e*) | super=this.c.md(e*) | super=this.c.md(e*)
| viewte | viewte | viewte
| einstanceofi | einstanceofi | einstanceofi
| let { binding* }in e | let { binding* }in e | let { binding* }in e
| if (e)eelsee | if (e) eelsee | if (e) eelsee
| true | false | true | false | true | false
|e==e |e==e |e==e
| elle|le | ellelle | ellelle
[ {e;e} I {e;e} I {e;e}
| str | str | str
| semanticCas(e, i, €, €) | semanticCast | blame(e)
(e:i,i,e e
binding ::= var=e binding ::= var=e binding ::= var=e
var ::= avariable name dhis ::= avariable name dhis var ::= avariable name dhis
¢ ::= aclass name ddbject a class name ddbject ¢ ::= aclass name dDbject
i = interface name cdEmpty interface name cEmpty i = interface name cdEmpty
fd ::= afield name a field name fd ::= afield name
md ::= a method name a method name md ::= a method name
str = “a” | “ab” | ... t=fat] fab” | ... str = "a" | “ab” | ...
t =i | boolean| String t ::=i | boolean| String t ::=i | boolean| String
(a) Surface Syntax (b) Typed Contract Syntax (c) Core Syntax
Fig. 6. Syntax; before and after contracts are compiled away
4.1 Syntax

Figure 6 contains the syntax for our enriched Java. The syntax is divided into three
parts. Programmers use syntax (a) to write their programs. The type checker elaborates
syntax (a) to syntax (b), which contains type annotations for use by the evaluator. The
contract compiler elaborates syntax (b) to syntax (c). It elaborates the pre- and post-
conditions andsemanticCastexpressions into monitoring code; the result is accepted

by the evaluator for plain Java.

A programP is a sequence of class and interface definitions followed by an expres-
sion that represents the body of tirain method. Each class definition consists of a
sequence of field declarations followed by a sequence of method declarations. An in-
terface consists of method specifications and their contracts. The contracts are arbitrary
Java expressions that have tyjolean To simplify the model, we do not allow classes
as types. This is not a true restriction to Java, however, since each class can be viewed
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as (implicitly) defining a interface based on its method signatures. This interface can be
used everywhere the class was used as a type.

A method body in a class can hbstract, indicating that the method must be over-
ridden in a subclass before the class is instantiated. Unlike in Java, the body of a method
is just an expression whose result is the result of the method. Like in Java, classes are
instantiated with thenew operator, but there are no class constructors; instance vari-
ables are initialized towull. The view form represents Java’s casting expressions and
instanceoftests if an object has membership in a particular type. [Ehéorms rep-
resent the capability for binding variables locally. Tihexpressions test the value of
the first expression, if it isrue the if expression results in the value of the second
subexpression and if it f&lsetheif expression results in the value of the third subex-
pressiorf. The == operator compares objects by their location in the heap.|[Tred
! operators are the boolean operations disjunction and negation, respectively. Expres-
sions of the form{ e ; e} are used for sequencing. The first expression is executed for
its effect and the result of the entire expression is the result of the second expression.
Finally, str stands for the string literals.

The expressions followin@pre and @postin a method interface declaration are
the pre- and post-conditions for that method, respectively. The method’s argument vari-
ables are bound in both the expressions and the name of the method is bound to the
result of calling the method, but only in the post-condition expression.

In the code fragments presented in this paper, we use several shorthands. We omit
theextendsandimplements clauses when nothing would appear after them. We write
sequencing expressions sucH as; e, ;€3 ;... }tostand fof{ e; ; {e;; {e3;...}}} and
sometimes add extrd to indicate grouping. For field declarations, we wiitil;, fd,
to stand fort fd; ; t fd,.

The type checker translates syntax (a) to syntax (b). It inserts additional information
(underlined in the figure) to be used by the evaluator. In particular, field update and
field reference are annotated with the class containing the field, and calip¢oare
annotated with the class.

The contract compiler produces syntax (c) and the evaluator accepts i@pte
and @postconditions are removed from interfaces, and inserted into wrapper classes.
Syntax (c) also adds tH#ame construct to the language, which is used to signal con-
tract violations. This construct is only available to the programmer indirectly via the
compilation process, to preserve the integrity of blame assignment (assuming correct
synthesis of blame strings fesemanticCas}.

4.2 Relations and Predicates

A valid program satisfies a number of simple predicates and relations; these are de-
scribed in figures 7 and 8. The sets of names for variables, classes, interfaces, fields, and
methods are assumed to be mutually distinct. The meta-vaffaldaised for method
signaturest(... — t), V for variable lists yar...), andI" for environments mapping
variables to types. Ellipses on the baseline)(indicate a repeated pattern or contin-

6 Theif in our calculus matches? e : e expressions in Java, rather than Jaifagatements.
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<% Class is declared as an immediate subclass
c<p ¢ & classcextendsc ---{:--} isinP
<p Class is a subclass
<% = the transitive, reflexive closure ef
€p Method is declared in class
(md (t;...t, — t), (vary ... var,), €) €b ¢
o classc---{---tmd(ty vary ... t, var,) {e} --- }isinP
b Method is contained in a class
(md T,V,e)epc
o (md T,V,e) ek ¢ andc’ = min{c” |c<p ¢’ andIe, V' s.t.imd T, V', &) €p c”’})
€p Field is declared in a class
(cfd,tyepbce classc---{---tfd---}isinP
ep Field is contained in a class
(c'.fd,t) eb c
& (¢ .fd, t) €b ¢ andc’ = min{c” | c <p ¢’ and3t’ s.t.(c”.fd, t') €b "}
<p Interface is declared as an immediate subinterface
i <pi’ @ interfacei extends:---i’---{---} isin P

<p Interface is a subinterface
<p = the transitive, reflexive closure ef
eb Method is declared in an interface
(md, (ty ...ty — t), (vary ...var,), e, €) €p i
o interfacei--- {---t mdty var, ... t, var,) @pre{ e, } @post{e; }---} isinP
eb Method is contained in an interface
mMmdT,V,ey,e)ebied sti<pi’andmd T,V, &, ey ep i’
ep Field or Method is in a type (methgidterface)
(mMd TYepi e Ve, e st.(md T,V, &, ) b i
ep Field or Method is in a type (fieltype)
(cfd, tyepce (cfd, t) ep

<p Class declares implementation of an interface
c<pieclassc:--implements:--i---{---} isinP
<p Class implements an interface
ckpiedl,i’st.c<p c andi’ <piandc <p i’
©p Structural subtyping for interfaces
iepi’ &
V(md T,V, &, e)ebi’, 3(md T", V', &, &) e i, such thall @p T’
©p Structural subtyping for other types
String ©p String booleanep boolean
@p Structural subtyping for method type specifications
t1...th > tp t’l...ta — t @Ii ©pty, ...,thepty tept

Fig. 7. Relations on enriched Java programs

ued sequence, while centered ellipses) (ndicate arbitrary missing program text (not
spanning a class or interface definition).

Figure 7 is separated into four groups: relations for classes, relations for interfaces,
relations that relate classes and interfaces, and finally the structural subtyping relations.
As an example relation, the.assesOnce(P) predicate states that each class name is de-
fined at most once in the prografn The relation<g associates each class namdin
to the class it extends, and the (overloadeglyelations capture the field and method
declarations of the classeskn

The syntax-summarizing relations induce a second set of relations and predicates
that summarize the class structure of a program. The first of these is the subclass re-
lation <B, which is a partial order if theCompLereCLassEs(P) predicate holds and the
WEeLLFounpepCrasses(P) predicate holds. In this case, the classes declarétform a
tree that ha®bject at its root.
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CrassesOnce(P) Each class name is declared only once
classc---classc’ --- isinP = c#c
FieLpOncePerCrass(P) Field names in each class declaration are unique
class---{---fd---fd’ --- }isinP = fd # fd’
MerHopOncePerCrass(P)  Method names in each class declaration are unique
class---{---md(---){---}---md (---){---}---}isinP = md# md
InTerFacesOnce(P) Each interface name is declared only once
interface i --- interfacei’ --- isinP =i #1’
MerropArasDistiver(P) - Each method argment name is unique
md(ty vary ...ty varm) { - }isin P = vary, ... var,, andthis are distinct
CompLeTeCLasses(P) Classes that are extended are defined

rng(<p) € dom(<p)u{Object}
WerLFounpenCrasses(P)  Class hierarchy is an order
<p is antisymmetric
CrassMetropsOK (P) Method overriding preserves the type
((mdT,V,e)epcandimd T, V', €)epb ') = (T=T’orc£p )
CompretelnTerraces( P) Extended@implemented interfaces are defined
mg(<p) U mng(<k) € dom(p)U{Empty}
WELLFOUNDEDINTERFACES(P) Interface hierarchy is an order
<p is antisymmetric
IntereaceMETHODSOK(P)  Interface inheritance or redeclaration of methods is consistent
(md T,V, &, e)ebiandimd T’,V’, €, e)epi’
= (T=T orVi"(i” £gpiori” £pi’))
CrassesivpLementALL(P)  Classes supply methods to implement interfaces
c<pi=>(YmdT(MdT,V, e, e)echi = eV st.imd T, V', e) €k ¢)

Fig. 8. Predicates on enriched Java programs

If the program describes a tree of classes, we can associate each class in the tree
with the collection of fields and methods that it accumulates from local declarations
and inheritance. The source declaration of any field or method in a class can be com-
puted by finding theninimumsuperclassi., farthest from the root) that declares the
field or method. This algorithm is described precisely bydfeelations. Thesb rela-
tion retains information about the source class of each field, but it does not retain the
source class for a method. This reflects the property of Java classes that fields cannot be
overridden (so instances of a subclass always contain the field), while methods can be
overridden (and may become inaccessible).

Interfaces have a similar set of relations. The subinterface declaration relgtion
induces a subinterface relatigp. Unlike classes, a single interface can have multiple
proper superinterfaces, so the subinterface order formes mstead of a tree. The set
of methods of an interface, as describeddbyis the union of the interface’s declared
methods and the methods of its superinterfaces. Classes and interfaces are related by
implementsdeclarations, as captured in thg relation.

The structural subtyping predicage relates types in a structural manner. The base
typesbooleanandString are only related to themselves. Two interface types are related
if one has a subset of the methods of the other and the corresponding method arguments
and result are related. Note that the relation is contra-variant for method arguments and
co-variant for method results.

The type system us&s to ensure thasemanticCastexpressions are well-formed.
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4.3 Types

Type elaboration is defined by the following judgments:

Fo P=P ot P elaborates t® with typet
P 4 defn= defd defnelaborates tolefr
P,crn, mth= mth  mthin c elaborates tonth
Pi r imth= imt imthini elaborates tamth
Prreesé€:t e elaborates t& with typetin I
Prrse=¢e:t e elaborates t& with typet in I', using subsumption
P rt tis a well-formed type iP

Type elaboration for complete programs ensures that the properties described in the
previous section hold for the complete program and ensures that each subexpression
in the program is properly typed. Type checking for classes and interface definitions
merely ensures that each expression mentioned in each method is properly typed and
that the types written in the method specifications are well-formed and that the method
specifications match up with the bodies of the methods.

For each form of expression, the intended use dictates the types of its constituents.
For example, the arguments ffoand ! must be booleans. Similarly, the type of the
first subexpression daf must be a boolean and the types of the two branches must
match. There are four places where subsumption is allowed: at field assignment, method
invocations (for the arguments), super calls, and, of cowisgy expressions. These
correspond to the places where implicit or explicit casts occur. These rules are the same
as in our prior work [16] and many are omitted here.

The typing rule for interface methods ensures that pre- and post-conditions use ap-
propriate variables and have type boolean. The typing rulsdaranticCastensures
that the last two arguments are both strings and that the first argument is an object. Fur-
ther, the static type of the object must have the same structure as the type in the second
argument, as determined by tbe relation.

4.4 Contract Compilation

The contract compiler eliminateemanticCastexpressions from the program and in-
sertsblame expressions. Thblame expression is a primitive mechanism that, when
evaluated, aborts the program and assigns blame to a spagifinticCastfor a con-
tract violation.

The contract compile[ ], is defined by the following judgments:

CIPl =P ifr,P—=P

Fo P— P P elaborates t¢”

+q defn defs— defri, def$  defnelaborates talefri extendingdefsto defs
tp body, defs— body, def$ bodyelaborates tdbody extendingdefsto defs
e € defs— €, defs e elaborates t@ extendingdefsto defs

The+, judgment rewrites a complete program from the second syntax in figure 6 to
the third syntax. The other three judgments rewrite definitions, bodies, and expressions,
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Fp
CLASSESON:E(P) |NTERFACESONCE(P) METHODONCEPERCLASS(P) FIELDOACEPERCLASS(P) COMFLETECLASSES(P)WELLFOUY\DEDCLASSES(P) COMFLETE|NTERFACES(P)
WertFounpeninterraces(P)  IntereaceMeTnopsOK(P)  MermnopArasDistiner(P)  CrassesiveevieniA(P) P kg defry = defq for je[1,n]
Pllree=¢€:t whereP = defny ... defn, e
+p defny ... defr, e= defrf ... defrf, & : t

Fa Prtjfor je[ln] P, C km mthe = mity, for k € [1, p]
Prgclassc --- { t; fd; ... t, fdy = classc --- { t; fd; ... ty fdy
mthy ... mth, } mthl...thp]
P i imth; = imth; for j € [1, p]
Pitqinterface i --- { imthy ... imth, } = interface i --- { imthy ... imth, }
Fm Pt Pretjfor je[l,n] P,[this: to,vary :ty,...vam (o Frse=> € : t
Pto Fm tmd(ty var ...ty var) {e} = tmd(ty var, ...ty varn) { € }
Pret Pty for je[l,n]
P to Fm tmd(ty var; ... t, var,) { abstract} = t md(t; var; ... t, var,) { abstract }
Fi Prt Plthis:i,vary 1 t;, ... vam : tn] Fe & = €, : boolean
Pty for je[l,n] P[this:i, md:t,var : ty, ... var, : ty] Fe € = €, : boolean
Piritmd(ty argy ... ty argy) =t md (&1 args ... t, args)
@pre { & } @pre { € }
@post { €, } @post { €, }
ke
Prrse=>¢€:t Pltree=é€:t t € dom(<p)U{Empty}
P I viewte= € :t P I'te viewte= viewte :t
Prrse=¢€:t Plrtce=>¢€:t t € dom(<p)U{Empty}
P, I e einstanceoft = {€ ; true} : boolean P, I +e einstanceoft = € instanceoft : boolean
P, I" ¢ pos= pos : String P,I' +e neg= ned : String Plrree=¢:t tept
P, I" +e semanticCasfe, t, pos neg = semanticCas(e’ : t’, t, pos, ned) : t
Fs.bt Plrirse=¢:t t<pt t € dom(<p)U{Empty, boolean String}
Plrree=¢€:t Pt

Fig. 9. Context-sensitive checks and type elaboration rules

respectively. Each accepts a term and a set of definitions and produces the rewritten
term and a new set of definitions.

The rules for the judgements are given in figures 10 and 11. The rulg fewrites
the definitions and expressions in the program, threading the sets of definitions through
the rewriting of the subterms. Its result is the rewritten definitions and expressions,
combined with the final set of threaded definitions. With the exception of the rule for
semanticCast all of the other rules produces the same term they accept, carrying for-
ward the definitions sets from their subexpressions.

ThesemanticCastrule for booleans and strings merely removes the semantic cast.
For interfaces, however, it adds the elaborated definition for the €lass’_i to the
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Fe e 0 — €, defs Fq defny, defs_q — defr{, defs for j € [1,n
n g S

P g defny ... defr, e — defs, defrf ... defrf, &

Fa kp €, defg 1 — €, defg for j € [1,n]

Prgclassc --- { ,defg — classc - { , defs,
fld ... fld ...
t m((tu X171 .- tlj le) {e }... t mc(tu X11 ... tlj Xl]) { e’l |-
t mdtay Xn1 ... thj Xnj) { €0} t mdtay Xn1 ... taj Xnj) { €}
} }
+q interface i extendsi’ --- { , defs— interface i extendsi’ --- { , defs
th(tl X1 ...ty Xn) tm({tlxl...tn Xn)

@pre { eb } @post{ ea} ... }

ko Fe & defs— &, defg
+, abstract, defs— abstract, defs by € defs— €, defs

Fig. 10.Contract Elaboration, part 1

set of definitions it produces (without duplication), and replaces the semantic cast with
code that creates and initializes an instanc€adti’ _i.

Figure 12 shows the full definition of th@asti’_i classes, where the interfacés
andi match the interface schemas shown. The class contains all of the methgoplsief
three instance variables. Two instance variables are strings representing the classes that
are to be blamed for values flowing in to and out of the object, respectively. The other
instance variable holds the unwrapped object. Whenever a method is called through the
wrapper object, the following tasks are performed:

— The pre-condition contract is checked @anBlameis blamed if it fails.

— All of the arguments are wrapped, according to their types.

— The method of the unwrapped object is invoked with the newly wrapped arguments
and the result is stored in a variable with the same name as the method.

— The post-condition contract is checked andBlameis blamed if it fails.

— The result of the unwrapped call is wrapped according to the result type of the
method and the new wrapper object is the result of the method.

Note that the wrapper classes contsgémanticCastexpressions. Thus, compiling these
expressions generates new classes. This means that an implementation of the contract
compiler must not generate new classes for each occurrensentdnticCastit en-
counters, or it would not terminate. Instead, it is must only generat€asti’ _i class

for each unique pair of interface$andi.

4.5 Operational Semantics

The operational semantics is defined as a contextual rewriting system on pairs of ex-
pressions and stores [16, 47]. Each evaluation rule has this shape:
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Fe
+e Newc, defs— newc, defs te var, defs— var, defs e null, defs— null, defs
e € defs— ¢, defd e € defs— ¢, defd ke &y, defs — €, defs’
e €: c .fd, defs— € : c .fd, defd re e:c.fd=g, defs— & :c.fd= €|, defd’
e € defs— ¢, defg ke €, defg_y — eg defg for j € [1,n]

Fe€:c.md(e; ... &), defs— & :c.md(€ ... €,), defs,

re €, defg_ g — e’l defg for j € [1,n]

re Super=thisc.mde ... &), t — defg, supersthiscmde, ... €,) defs,

e € defs— €, defd ke € defs— ¢, defd
e Viewt g, defs— viewt €, defd ke €instanceoft, defs— € instanceoft, defs

Fe €1, defs— €, def¢ Fe €2, defs — €, defs’
Fe €1 == €, defs— €] == &), def¢’

e € defs— €, defg Fe €, defg_y — eg defg for j € [1,n]

telet{var =e;...van =&, }in e defs— let{var, = €, ... var, = €, } in &, defs,

ke true, defs— true, defs te false defs— false, defs ke Str, defs— str, defs

ke €1, defs— €, defé$  re &, defs — &), defs’ . €3, defs’ — ¢, defg”
re if (1) & elsees, defs— if (€)) €, elseg], defs”

Fe €1, defs— €, def¢ Fe €2, defs — €, defs’
Fe{er; e}, defs— { € ; &}, defs’

Fe €1, defs— ¢, def$ Fe €1, defs— €, def$ Fe €, defé — €, defs’
Fe ! € defs— ! &, defd te €1 || &, defs— € || € , def¢’
re €1, defs— €, def¢ Fe €, defé — €, defs’ ke €3, defe’ — €, defs”

tis booleanor String andx not free ine, or €
e SemanticCas(e; : t, t, e, ), defs— let {(x=¢}}in { & ; & ; x}, defg”

Fe €1, defs— €, def$ e €, defs — €, defe’ re €3, defs’ — &, defs” +q classCasti’i ..., def¢” — defn defs”

e SemanticCaste; : i’ i, €, €3), defs—let { x = € i = €, 0 = € , defnw defd”
w = new Casti’_i() }
in { w: Casti’_i .unwrapped= x;
w : Casti’_i .inBlame = i;
w : Casti’_i .outBlame= o;
w}

Fig. 11.Contract Elaboration, part 2

Pt (e S)— (e S)[reduction rule name]

A store (S) is a mapping fronobjecs (a set of identifiers distinct from the program
variables) to class-tagged field records. A field recofd (s a mapping from field
names to values. We consider configurations of expressions and stores equivalent up to
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class Casti’_i implementsi {
String inBlame outBlame
i’ unwrapped
tmdty X1 ... th Xn) {
if (en) {
let {md = unwrappedndsemanticCasfx; : ti, t;, outBlame inBlame) ...
semanticCasfx, : t,, t,, outBlame inBlamg)}
in { if () {
semanticCasfmd : t’, t, inBlame outBlamg;
} else{ blame(outBlame; }}
} else{ blame(inBlamg; }}

]...

wherei and i’ match:

interface i extends... { t md{t; x; ... th Xy) @pre { & } @post{ €, } ...}
interface i’ extends... { ' mdt; x; ... t) X)) ... }

Fig. 12. Compiler-generated Wrapper Classes

E=[]|E:cfd|E:cfd=e|v:cfd=E
e = ... | object | E.mde...)|vmdv...Ee...)
v = object| null | super=sv.icmdv...Ee..))
| true | false | viewtE |letvar=v...var=Evar=e...ine
| str | if (E)eelsee|Einstanceofi| E==e | v==E

| Ellel! EI{E;e}|blame(E)

Fig. 13.Expressions, values, and contexts

a-renaming; the variables in the store bind the free variables in the expressione Each
is an expression arfdis a program, as defined in figure 6. Figure 13 shows the contexts
where reductions can occur.

The complete evaluation rules are in Figure 14. For examplesatheule models a
method call by replacing the call expression with the body of the invoked method and
syntactically replacing the formal parameters with the actual parameters. The dynamic
aspect of method calls is implemented by selecting the method based on the run-time
type of the object (in the store). In contrast, uperreduction performsuper method
selection using the class annotation that is statically determined by the type-checker.

The blame expressions terminate the program by throwing away the context and
reducing to a configuration containing just an error, just like mis-useutifor a bad
cast.

4.6 Soundness

A naive soundness theorem for a contract compiler would guarantee that the additional
code that the contract compiler adds to the program changes the behavior of the program
only by signaling contract errors. Put positively, if no contract violations are signaled,
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P+ (E[object: t.mdvs, ..., vn)], S) — (E[e[objectthis, vi/vary, ... vy/vary]], S) [call]
whereS(objec) = (c, ¥) and(md, (t; ...ty — t), (vary ... van,),e) ep c

P+ (E[super=objectc.mdvi, ..., Vo), S) [supeq

< (E[€[objectthis, vi/var, ... vy/var]], S)

where(md, (t; ...ty — t), (vary ... van),e) ep c

P+ (E[newc], S) — (E[objecl, S[object>(c, ¥)]) [new]
whereobjectg dom(S)
and¥ = {¢’.fd—~null | c <p ¢’ and3t s.t.(c’ .fd, t) €b '}

P+ (E[object: ¢ fd], S) — (E[V], S) [gef
whereS(objec) = (¢, ¥) andF (¢’ fd) = v

P+ (E[object: ¢’ .fd = V], S) — (E[V], S[object>(c, F[c .fd—V])]) [sef
whereS(objec) = (c, 7)

P+ (E[view t’ objeci, S) — (E[objeci, S) [casf
whereS(objec) = (c, ¥) andc <p t’

P + (E[objectinstanceoft’], S) — (E[true], S) [ipasd
whereS(objec) = (¢, ) andc <p t’

P + (E[objectinstanceoft’], S) — (E[false], S) [ifail ]
whereS(objec) = (c, ¥) andc «bp t’

P+ (E[bool == bool], S) — (E[if (bool) bool else! bool], S) [==D]

P (E[letvar, = vy ...vam = Vyin €, S) — (E[e]vi/var ...va/var]], S) [let]

P+ (E[if (true ) e; elseey], S) — (E[e1], S) [iftrue]

P+ (E[if (false) e, elseey], S) — (E[e2], S) [iffalsg

P (E[true || €], S) — (E[true], S) [ortrue]

P+ (E[false|| €], S) — (E[€], S) [orfalse]

P+ (E[! true], S) — (E[false], S) [nottrue]

P+ (E[! false], S) — (E[true], S) [notfalse]

PH(E[{v;el],S) — (Eld,S) [sed

P+ (E[blame(s)], S) — (error: sviolated contract, S) [blame]

P+ (E[view t’ objeci, S) — (error: bad cast, S) [xcasi
whereS(objec) = (c, ) andc «bp t/

P+ (E[view t’ null], S) — (error: bad cast, S) [ncasi

P+ (E[null : c .fd], S) < (error: dereferenced null, S) [ngef]

P+ (E[null :c.fd=V], S) — (error: dereferenced null, S) [nsef

P+ (E[null. md(vy, ..., Va)], S) — (error: dereferenced null, S) [ncall]

P+ (E[null instanceofi], S) < (error: dereferenced null, S) [nisal

P+ (E[null ==V], S) — (error: dereferenced null, S) [n==I]

P+ (E[v==null], S) — (error: dereferenced null, S) [n==r]

Fig. 14.Operational semantics

the original program with the contracts erased and the contract compiled program must
behave identically.

Unfortunately, that theorem is too strong, for two reasons. First, the contract ex-
pressions themselves may change the behavior of the program (viaf&des-er non-
termination). So, we only consider a class of contracts that doffesttahe behavior of
the program, captured by this definition:

Definition 1 (Effect Free).An expression e is said to leffect freeif, for any storeS
and program P (that bind the free variables in e),

Pr,S8) =" (v,S)

for some value, v.
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Second, because semantic casts allow structural subtyping, simply removing them
would yield a type-incorrect Java program. Accordingly, we must replace semantic casts
with wrapper classes that perform the type adaptation, but do not check contracts.

Definition 2 (Erasure).

The functiorS[[-] behaves just like the contract compiler, exceptsamanticCast
expressions, where it instantiates adapter classes instead of the wrapper classes, ac-
cording to this rule:

ke €, defs— ¢, def$ Fe €, def$ — €, def¢’ ke €3, def’ — €, def¢”
4 ClassAdapti’i ..., def¢” — defn, defs”
e semanticCasfe; : i’, i, &, €3), defs—let { x = € i = & 0 = ¢ , defnwy defg”

w = new Adapti’_i() }
in { w: Adapti’_i .unwrapped= X;
w}

class Adapti’_i implementsi {

i’ unwrapped
t mdty xg ... th %) {
let {md = unwrappedndsemanticCasfx; : ti, tj, “, ) ...
semanticCastx, : t, t,, “, “)}
in { semanticCasfmd : t/, t, “", “); }} ...

}

Since the adapter classes never signal contract violations, the third and fourth argu-
ments tosemanticCastare ignored by the replacementrule. Similarly, the adapter
class can safely use bogus string arguments to the nesteanticCastexpressions.

In order to meaningfully state a soundness result, we must also ensure that the con-
tract compiler and the erasure procedure both preserve the typing structure of programs.

Lemma 1. For any program P= defn. .. e that type checks:
FoP=P 0t
the erased and compiled versions of P must also type check and have the same type:
ko CIP] = P” i t ko EplPl = P : t
Proof (sketch)Both the erasure and contract compilation leave all expressions intact,
except forsemanticCastexpressions. Inspection of the compiler and erasure definitions

shows that they produce well-typed expressions and the typing rutefoanticCast
gives the same types that erasure and the compilermgive.

With that background, we can now formulate a soundness theorem for our contract
checker.

Theorem 1. Let P = defn... e be a program such where all the contract expressions
are gfect free. LeC[P] = P. = defn. ... e; and letE[P] = Pe = defn, ... €. One of
the following situation occurs:

o P.+ (&, 0) —* (blame(s), S)
o P. (&, 0) —* (error: str,S) and P + (&, 0) —* {error: str, S)
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o P+ (e, 0) =*{v,S)and P I (&, 0) —* (V, S) where either =V and v is not
an object, or both v and’\are objects.

e For each é such that R+ (e, 0) —* (¢/, S) there exists an’esuch that R+ (¢,
S) — (€¢’, S) and for each esuch that R+ (&, 0) —* (¢, S) there exists an’é
such that R+ (€, S) — (¢’, S)

The formal statement of the theorem is divided into four cases, based on the be-
havior of the contract compiled program. If the contract compiled program produces a
blame error, the theorem does not say anything about the erased program. If, however,
the contract compiled program produces a value, a safety error, or does not terminate,
the original program and the contract-free program must behave in the same manner.
Note that if the contract compiled program produces an object, the erased program only
has to produce an object, not necessarily the same object. If the contract compiled pro-
gram results in a boolean or a string, the erased program must produce the same boolean
or string.

Proof (sketch)The proof operates by relating the reduction sequences of the original
program to the compiled program. Clearly, if there aressamanticCastexpressions in

the program, the new program contains extra definitions, but they are unused. Accord-
ingly, the two programs reduce in lockstep until the fgsianticCastexpression. At

that point, the erased program produces the adapter object and the compiled program
produces a wrapper object. If the wrapper object ever signals a contract violation, we
know that the theorem holds. If it does not, we can see from the definition of the wrap-
per objects that they behave identically to the adapter object when a method is invoked,
because the contract expressions #iiecefree, by assumptiom

5 Implementation Status

We have implemented this contract checker as part of DrScheme [9], a 200,000 line
MzScheme [15] program. Although the class system of MzScheme is not statically
typed, its design is otherwise similar to the design of Java's class system. That is, the
safety properties that Java’s type system guarantegseach method call has a re-
ceiver, are all also guaranteed, but the enforcement is entirely dynamic and implemented
in terms of runtime checks. Accordingly, MzScheme benefits from contracts just as we
have described in this paper.

Although the contract system described in this paper (with extensions to support
all of the details of MzScheme’s class system) has been implemented and is part of
the current pre-release of DrScheme, the contract checker for the object sub-language
is not widely used yet. In addition to contracts on objects, however, DrScheme also
has a contract checker for higher-order functions. As far as contracts are concerned, a
function is essentially an object with a single method.

We have studied the performance impact of contracts in DrScheme. An instru-
mented version of DrScheme counts the number of functions and function contracts.
After starting up DrScheme and opening a few windows and Help Desk, there are 27962
reachable functions and only 507 wrappeéies, slightly less than 2% of the functions
are wrapped. With a ffierent accounting annotation, DrScheme can also determine the
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number of function calls and calls to contract functions; for basically the same start-up
action, the program performs 2,142,000 calls to user-defined functions, of which 1425
are calls to contract wrappers. That is, 0.06% of the calls to user-defined functions are
calls to wrappers. Unfortunately, it isficult to generalize these experiments, because

it is a major undertaking to write contracts for a large system of components. Still, the
experiment with DrScheme suggests that well-chosen contracts have little performance
impact on a large program. Based on our experience, the number of contracts in a com-
ponent rarely exceeds 10% of the number of functions proper. Yet, even if our system
were to contain that many wrapper functions, our experiments suggest that only .3%
of the function calls would be calls to wrapper functions. In short, we don't expect
semantic casts taf@ct the overall system performance in a noticeable manner.

6 Related Work

Contracts have a long history. In 1972, Parnas [37] first suggested equipping module
interfaces with contracts. His objective was to state the purpose of his proposed units
of reuse in a formal manner. Soon thereafter, contracts appeared in a range of program-
ming languages, including ADA [31], Euclid [26], and Turing [21]. In the 1980s, the
designers of OO programming languages began to incorporate contracts [33] and OO
researchers investigated the meaning of contracts in an OO context [1, 30]. By now, a
fair number of OO languages support contracts either directly or as add-on packages [2,
5,6,8,17,22-25,32, 33,38, 39].

Over the past three years, we have investigated the theory and practice of contract
and contract checking. Thus far, our theoretical research has focused on the sound-
ness of contract checking in class hierarchies and in the presence of higher-order func-
tions [10-12]. Our practicalfforts have led to the implementation of a contract check-
ing system for our Scheme class and mixin system. Experience with contracts in our
DrScheme product suggested the proposal for a semantic cast in this paper.

Beyond contract checking systems, researchers are also investigating notations, the-
orem provers, and other tools for supporting contracts. For example, JML [27] is a
notation for stating and reasoning about contracts. We use it in this paper to notate
our contracts. JML is also used for many tools that go well beyond mere dynamically
checked behavioral contracts. For example, B8@ [7, 14] is a theorem-prover that
can validate theorems about JML contracts. In addition to/HS@, EML [42, 43] and
Larch [19] are systems that statically verify contracts. Although our work focuses on
dynamic validation, we believe that a static validation of such contracts is feasible and
useful. Specifically, we hope that existing extended static checkiog® like those of
Flanagan et al [14], can be modified to account for semantic casts.

ML's module and signature language [35, 28] has beerfardnt source of inspi-
ration. It has long supportesignature ascriptionthe ability to refine an existing ML
structure’s interface with the rest of the program. Our work can be seen as an extension
of signature ascription to dynamically checked contracts.

The implementation ofemanticCastwith wrapper objects is suggestive of creat-
ing a denotational retract [44]. Although this intuition does not carry over directly, it
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suggested certain directions for our investigations. Also, our wrapper classes are remi-
niscent of the coercions that Henglein considers in his work [20].

7 Future Work

So far, we have only explored semantic up casts, that is, casts from a subtype to a
supertype. It may, however, be useful to permit some form of semantic down casts. In
particular, if an object were first cast to a super type, it is often useful to be able to
cast it back to its original type. For example, when using container classes, the type
of the container is some supertype of all of the objects that may ever be stored in the
container. Accordingly, when retrieving objects from the container, it may be sensible
to down cast them to a type with more information.

Clearly, one simple way to support semantic down casts is to remove layers of
wrapping from the downcast object. Unfortunately, this would circumvent the contract
checking. In general, components depend on contracts being enforced on the objects
that play a role in their communication with other components. That is, if a downcast
were to remove the contract checking code from some object, one component’s con-
tract violation may not be detected, leading to another component being blamed for a
subsequent contract violation, or perhaps even erroneous output.

We have not yet found a consistent, simple extension to a nominally typed language
design that manages to both support semantic down casts and preserves contract check-

ing.

8 Conclusion

This paper introduces semantic casts, a modest extension to languages with hominal
subtype systems. A semantic cast enables programmers to reuse classes and inter-
faces that match structurally but not nominally. Our calculus validates that doing so

is compatible with conventional languages such as- @45], C# [34], Eitel [33], and

Java [18]. In the future, we plan to continue our investigations of how contracts can
overcome the limitations of conventional type systems in a safe manner.
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