
Semantic Casts
Contracts and Structural Subtyping in a Nominal World

Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

1 University of Chicago; Chicago, IL, USA;robby@cs.uchicago.edu
2 University of Utah; Salt Lake City, UT, USA;mflatt@cs.utah.edu

3 Northeastern University; Boston, MA, USA;matthias@ccs.neu.edu

Abstract

Nominal subtyping forces programmers to explicitly state all of the subtyping re-
lationships in the program. This limits component reuse, because programmers cannot
anticipate all of the contexts in which a particular class might be used. In contrast,
structural subtyping implicitly allows any type with appropriate structure to be used
in a given context. Languagues with contracts exacerbate the problem. Since contracts
are typically expressed as refinements of types, contracts in nominally typed languages
introduce additional obstacles to reuse.

To overcome this problem we show how to extend a nominally typed language with
semantic casts that introduce a limited form of structural subtyping. The new language
must dynamically monitor contracts, as new subtyping relationships are exploited via
semantic casts. In addition, it must also track the casts to properly assign blame in case
interface contract are violated.

1 Enriching Nominal Subtypes with Semantic Casts

Conventional class-based object-oriented languages like C++ [45], C# [34], Eiffel [33],
and Java [18] come with nominal typing systems. In such systems, a programmer ex-
plicitly names the superclass(es) and the implemented interfaces of a class. Thus, the
declared type of any instance of a class must be one of the explicitly named interfaces
or classes.

Language designers choose nominal type systems because they are easy to under-
stand and easy to implement. A programmer doesn’t need to investigate the structure
of an interfaceI to find out whether an instanceo of a classC can have typeI; it suf-
fices to check whether the definition ofC mentionsI as an implemented interface (or
whether the superclasses and superinterfaces mentionI). A compiler writer, in turn, can
build a class graph and an interface graph and type check expressions and statements
by comparing points in a graph.

Nominal typing, however, is also a known obstacle to software reuse. In particular,
a programmer can only compose two objects if the creators of the two respective classes
used the same (nominal) types. Unfortunately, in a world of software components where
third-party programmers compose existing pieces of software, the implementor of a
class cannot possibly anticipate all possible types for an object. Hence, programmers
resort to casts and have invented adapter patterns to bridge the gap between third-party
components.

2 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

One way to overcome this problem is to switch to a structural type system. The
research community has long recognized this shortcoming of nominal subtype systems
and that structural subtype systems do not suffer from this flaw. Some modern research
languages like LOOM [3], OCaml [29], OML [40], PolyTOIL [4], and Moby [13] adopt
structural subtype systems. Their designs demonstrate how their structural subtype sys-
tems empower their user communities to reuse classes in unanticipated situations.

Changing a language’s subtype system from a nominal to a structural perspective is
a drastic step. We therefore propose an alternative, smaller change to conventional lan-
guages that also overcomes the reuse problem. Specifically, our proposal is to introduce
a “semantic cast” mechanism. The cast allows programmers to change the type of an
object according to a structural subtype criteria. Thus, if an existing classC satisfies the
needs of some interfaceI but doesn’t explicitly implement it, a programmer can, even
retroactively, specify that an instance ofC is of typeI.

Naturally, the programmer should only take such an action if the semantics of the
class is that of the interface. We therefore allow the programmer to describe an ex-
ecutable approximation of the interface’s semantics—calledcontractshere—and use
that semantics to monitor the validity of the cast. If the cast object behaves according
to the contracts, the execution proceeds as normal. Otherwise, the monitoring system
raises an exception and attributes the misbehavior to a specific component,i.e., either
the object’s use-context, the object itself, or the cast.

In this paper, we explain the need for these contract-based casts, their design, their
implementation, and our experience with the contract system. We present the ideas in
a Java-like setting to show how they can be adapted to conventional languages. Indeed,
we only present the internal form of the new construct, rather than a surface syntax.
Section 2 describes a common situation where nominal subtyping fails to support reuse
effectively. Section 3 presents our semantic cast construct and reformulates the example
from section 2 with this construct. Section 4 precisely specifies the new contract checker
with a calculus. Section 5 discusses our implementation. The last three sections discuss
related work, future work, and present our conclusions.

2 Contracts and Component Reuse

In this section, we introduce object-oriented contracts and illustrate how languages with
contracts that augment a nominal subtyping hierarchy inhibit reuse.

Consider the canonical queue implementation in figure 1 (in Java syntax, using
JML [27] notation for contracts). The queue supports three operations:enq to add an
element to the queue,deq to remove an element from the queue, andemptyto test if
the queue contains any elements. The post-condition contract onenqguarantees that
the queue is not empty after an element is added and the pre-condition contract ondeq
requires that there is an element in the queue to remove.

Enforcing pre- and post-conditions such as these is straightforward. When theenq
method returns, the post-condition code is run and if it producesfalse, evaluation ter-
minates andenqis blamed for breaking its contract. Similarly, whendeqis called, the
pre-condition code is run and if it producesfalse, evaluation terminates anddeq’s caller
is blamed for breakingdeq’s contract. Although these contracts do not ensure that the

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 3

interface IQueue {
void enq(int x);
// @post !empty()

void deq(int x);
// @pre !empty()

boolean empty();
}

class Q implements IQueue {
void enq(int x) { . . . }
int deq() { . . . }
boolean empty() { . . . }
}

Fig. 1.Queues

queue implementation is correct, experience has shown that such weak contracts pro-
vide a good balance between correctness and run-time overhead [41].

Object-oriented languages allow much more complex forms of interaction than
those between the queue and its client. Since objects may be passed as arguments or
returned as results from methods, the call structure of the program can depend on the
flow of values in the program. Put differently, invoking an object’s methods may trigger
nested callbacks (a.k.a upcalls) between components [46].

class Q implements IQueue {
IObserver o;
void enq(int x) {
. . .

if (o != null) o.onEnq(this, x);
}

int deq() {
int hd = . . .;
if (o != null) o.onDeq(this, hd);
. . .

return hd;
}

boolean empty() { . . . }
void registerObs(IObserver o) {o= o;}
}

interface IObserver {
void onEnq(Queue q, int x);
// @post !q.empty()

void onDeq(Queue q, int x);
// @pre !q.empty()
}

Fig. 2.Queues with Observers

Consider the revised queue class in figure 2; this variant of the class supports an
observer. The additional methodregisterObsaccepts an observer object. This observer
object is saved in a field of the queue and its methods are invoked when an element is
enqueued or dequeued from the queue.

4 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

Although this addition may seem innocuous at first, consider the misbehaved ob-
server in figure 3. Instances of this observer immediately dequeue any objects added to
the queue. Imagine that an instance of this observer were registered with an instance of
the Q class. The first time theenqmethod is invoked, it adds an integer to the queue
and then invokes the observer. Then the observer removes the integer, before theenq
method returns. Due to theonEnqpost-condition in theIObserverinterface, however,
BadOis immediately indicted, ensuring theQ class can always meet its contracts.

class BadO implements IObserver {
. . .

onEnq(Queue q, int x) {
q.deq(); }}

Fig. 3.Bad Observer

Programming language designers (including the authors of this paper) have histor-
ically been satisfied with contracts in interfaces and abstract classes [2, 8, 12, 17, 22–
25, 32, 33]. Unfortunately, this design decision exacerbates the problems with software
reuse in a nominally typed world. Independent producers of components cannot pos-
sibly foresee the precise contracts that some component should satisfy. Indeed, if they
aim to produce software components that are as flexible as possible they must have the
least constraining interface contracts (that are still safe). Accordingly, contract check-
ers must allow component programmers to refine a component’s contracts. These re-
finements, in turn, allow programmers to rely on different extensions of a component’s
contracts when using it in different contexts.

Concretely, consider the interfaceIPosQueueand static methodProcessManager
in figure 4. The interface limits the queue to contain only positive integers by adding a
pre-condition toenqguaranteeing that its input is bigger than zero and a post-condition
to deqpromising that the result is bigger than zero. The static methodProcessManager
accepts instances ofIPosQueue. Clearly, theQ class satisfies theIPosQueueinterface.
Regardless, since interfaces must be declared when the class is declared, the code in
figure 4 cannot be combined with the independently produced code in figure 2.

Programmers can work around this mismatch with several techniques, especially
the adapter pattern. In this particular example, the programmer could derive a class
from Q that inherits all the methods and superimposes the new, stronger contract inter-
face. In general, however, the programmer that wishes to impose additional contracts
to an object is not the programmer that originally created the object. In these other
cases, a programmer may create an entirely new class that bridges the gap between the
two components that are to be composed. No matter which solution the programmer
chooses, however, the requirement to build and manually maintain an adapter, includ-
ing error checking that catches and flags errors inside the adapter, is an obstacle to
controlled composition of software. Worse, a programmer-produced mechanism for as-

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 5

interface IPosQueue{
void enq(int x);
// @pre x > 0
// @post !empty()

int deq();
// @pre !empty()
// @post deq > 0

boolean empty();
}

class QueueClient{
static void ProcessManager(IPosQueue q) {
. . .

}

}

Fig. 4.Positive Queues, in a Separate Component

signing blame is ad-hoc and therefore less trustworthy than a mechanism designed into
the programming language.

3 Contract Checking for Semantic Casts

The problem is that allowing contracts only in interfaces and classes means that each
object supports only a fixed, pre-determined set of contracts, which prevents the direct
use of aQ object as anIPosQueueobject. To overcome this problem, we proposese-
manticCast, a new construct that allows programmers to cast an object to a structurally
equivalent type.4

The shape of asemanticCastexpression is:

4 For the purposes of this paper, we treatsemanticCastas a regular member of the program-
ming language, to be written in programs at the programmer’s whim. In fully integrated sys-
tem, however,semanticCastexpressions should only appear at component boundaries. For
example, if Java’s package system or some other form of module system were used to orga-
nize a program,semanticCastexpressions should be inserted around each variable reference
between modules. Abstractly, imagine that a moduleA refers to an export of moduleB, say
B.x. The context of the variable reference expects it to match interfaceI but the actual type of
the variable is a compatible, but different interfaceI′. The variable reference would be replaced
by semanticCast(B.x : I′, I, “B”, “A”) allowing the user of the exported variable to refine the
contracts inI′ to I, while still ensuring that blame is properly assigned.

In a component model similar to Corba [36], components explicitly establish connections
to each other via a function call protocol. To add contracts to this style of component system,
semanticCastexpressions would be added by the calls that establish the connections between
the components.

Although each component system synthesizessemanticCastexpressions in a different man-
ner, all component systems can use some form ofsemanticCastexpression. In essence, our
intention is that asemanticCastexpressiondefinesthe component boundaries, as far as our
model is concerned. Accordinly, to understand its essence, we treat it as a feature in the pro-
gramming language directly, with the understanding that it is only truly available to the pro-
grammer who implements the component mechanism.

6 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

semanticCast(obj : t, Intf, in str, out str)

It consists of four subexpressions: an object (annotated with its type), an interface, and
two strings. The expression constructs an object that behaves likeobj, except with type
Intf (including the contracts inIntf). The typing rules guarantee that the type ofobj
has the same methods names and types asIntf, but does not require thatobj’s class
implementsIntf, allowing obj to take on the contracts inIntf. In fact, the typing rules
synthesize the type ofobj from the context, but we include it explicitly here, for clarity.
The stringin str represents the guilty party ifobj is not treated as anIntf by the context,
and the stringout str represents the guilty party ifo itself does not behave according to
the contracts inIntf. As a first approximation,in str is blamed if a pre-condition inIntf
is violated andout str is blamed if a post-condition ofIntf is violated.

UsingsemanticCast, we can now combine the code from figure 4 with the original
Q class:

public static void Main(String argv[]) {
Q q = new Q();
IQueue iq= semanticCast(q : Q, IQueue, “Main”, “Q”);
IPosQueue ipq= semanticCast(iq : IQueue, IPosQueue, “QueueClient”, “Main”);
QueueClient.ProcessManager(ipq);

}

In the first line of its body,Main creates aQ object. In the second line, thesemantic-
Cast expression states that the new instance must behave according to the contracts in
IQueue.5 The third argument tosemanticCastindicates thatMain is responsible for any
violations ofIQueue’s pre-conditions. The fourth argument indicates thatQ is responsi-
ble for any violations ofIQueue’s post-conditions. The result of the firstsemanticCast
is bound toiq.

In the third line,Main uses asemanticCastexpression to add the contracts of
IPosQueueto iq. The third argument tosemanticCastindicates thatQueueClientis
responsible for pre-condition violations of the contracts inIPosQueue. The fourth argu-
ment tosemanticCastindicates thatMain is responsible for post-condition violations.
The result of the secondsemanticCastexpression is bound toipq. Finally, in the fourth
line, ipq is passed toQueueClient.ProcessManager.

Intuitively, the queue object itself is like the core of an onion, and eachsemantic-
Cast expression corresponds to a layer of that onion. When a method is invoked, each
layer of the onion is peeled back, and the corresponding pre-condition checked, to re-
veal the core. Upon reaching the core, the actual method is invoked. Once the method
returns, the layers of the onion are restored as the post-condition checking occurs.

For instance, imagine thatQueueClient.ProcessManagerinvokes its argument’s
enqmethod, with a positive number. First, the pre-condition onenq in IPosQueueis
checked, since the lastsemanticCastexpression addedIPosQueue’s contracts to the

5 Of course, theQ class declares that it implements theIQueueclass and the contracts could
have been compiled directly into its methods. Since we are focusing on semantic casts here,
we assume that contracts are only checked with explicitly specifiedsemanticCastexpressions.

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 7

queue. The input is positive, so it passes. If it had failed, the blame would lie with the
queue client. Next, that outer layer is peeled back to reveal an object that must meet
IQueue’s contracts. Accordingly, theenqpre-condition inIQueueis checked. This pre-
condition is empty, and thus trivially true. After removing this layer we reach the core,
so theenqmethod in theQ class is invoked.

Once theenqmethod returns, its post-conditions are checked. First, theenqpost-
condition in IQueueis checked. If it fails, the blame lies withQ, since“Q” is the last
argument to the innermostsemanticCast. Assuming it succeeds, the post-condition on
enq in IPosQueueis checked. If it fails, the blame lies withMain, since“Main” is the
last argument to the outersemanticCastexpression.

3.1 Supporting Positive Queues with Positive Observers

The code in figure 5 shows observers added toIPosQueue, mirroring the extension of
the IQueueinterface in figure 2. In addition to theonEnqandonDeqcontracts from
IObserver, the integer argument to bothonEnqandonDeqis guaranteed to be positive.

interface IPosObserver{
void onEnq(IPosQueue q, int x);
// @pre x > 0
// @post !q.empty()

void onDeq(IPosQueue q, int x);
// @pre x > 0
// @pre !q.empty()
}

interface IPosQueue{
...

void registerObs(IPosObserver o);
}

Fig. 5.Positive Queue with Observer

Imagine that the body of theQueueClient.ProcessManagerstatic method creates
an instance of some class that implements theIPosObserverinterface and passes that
object to theregisterObsmethod of its argument:

class QueueClient{
...
static void ProcessManager(IPosQueue ipq) {

IPosObserver po= new ProcessObserver();
ipq.registerObs(po);
ipq.enq(5);
}

}

Adding observers to the positive queue triggers additional, indirect contract obliga-
tions on the code that casts the queue object to a positive queue. To understand how the

8 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

indirect contracts are induced and who should be blamed if they fail, let us examine the
sequence of steps that occur whenipq.enqis invoked in the body ofProcessManager.
There are five key steps:

(1) ipq.enq(5)
...

(2) testIPosQueuepre-condition, blameQueueClientif failure
...

(3) q.enq(5)
...

(4) po.onEnq(q,5)
...

(5) testIPosObserverpre-condition, blameMain if failure.

In the first step,ipq.enq is invoked, with5 as an argument. This immediately triggers
a check of theIPosQueuepre-condition, according to the contract added inMain. The
contract check succeeds because5 is a positive number. If, however, the check had
failed, blame would lie withQueueClientbecauseQueueClientsupplied the argument
to ipq.

Next, in step three, the originalIQueueobject’senqmethod is invoked, which per-
forms the actual work of enqueing the object into the queue. As part of this work, it
calls the observer (recall figure 2). In this case,QueueClientregistered the objectpo
with the queue, sopo.onEnqis invoked with the queue and with the integer that was
just enqueued.

Since the observer is anIPosObserverobject, its pre-condition must be established,
namely the argument must be a positive number. Because theQ class’senq method
supplies its input toonEnq, we know that the contract succeeds at this point. The in-
teresting question, however, is who should be blamed ifQ had negated the number and
passed it to the observer, forcing theonEnqcontract to fail.

Clearly, Q must not be blamed for a failure to establish this pre-condition, since
Q did not declare that it meets the contracts in theIPosQueueinterface and, in fact,
IPosQueuewas defined afterQ. Additionally,QueueClientmust not be blamed. It only
agreed to enqueue positive integers into the queue; if the queue object mis-manages the
positive integers before they arrive at the observer, this cannot beQueueClient’s fault.

That leavesMain. In fact,Main should be blamed if theIPosObserverobject does
not receive a positive integer, sinceMain declared that instances ofQ behave like
IPosQueueobjects knowing that these objects must respectIPosObserver’s contracts.
Put another way, if theQ class had declared it implemented theIPosQueueinterface,
it would have been responsible for the pre-conditions ofIPosQueue. Accordingly, by
casting an instance ofQ to IPosQueue, Main is promising thatQ does indeed live up to
the contracts inIPosQueue, soMain must be blamed ifQ fails to do so.

More generally, since objects have higher-order behavior, the third and fourth ar-
guments tosemanticCastdo not merely represent who to blame for pre- and post-
condition violations of the object with the contract. Instead, the last argument to ase-
manticCast expression indicates who is to blame for any contract that is violated as a

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 9

value flowsoutof the object with the contract, whether the value flows out as a result of
a method or flows out by calling a method of an object passed into the original object.
Conversely, the third argument to asemanticCastexpression indicates who is to blame
for any contract that is violated as a value flowsin to the object, no matter if the bad
value flows in by calling a method, or via a callback that returns the bad value.

This suggests that the casted objects must propagate contracts to method arguments
and method results, when those arguments or results are themselves objects. The fol-
lowing equation roughly governs howsemanticCastexpressions propagate (assuming
that the immediate pre and post-conditions are satisfied):

semanticCast(o: I, J, in str, out str).m(x)
=

semanticCast(o.m(semanticCast(x : C, D, out str, in str)) : B,
C,
in str,
out str)

if I andJ have these shapes:

interface I {
B m(D x);
}

interface J {
C m(C x);
}

andB is a subtype ofC, which is a subtype ofD.
Informally, the equation says that when a methodm of an objected casted toI is

invoked, the cast is distributed tom’s argument andm’s result. Further, the distribution
is based onm’s signature inI.

Notice that the blame strings are reversed in the cast around the argument object
and stay in the same order in the cast around the result. This captures the difference
between values that flow into and out of the object. That is, if a value flows into the
argument object, it is flowing out of the original object and if a value flows out of the
argument object, it is flowing into the original object. In contrast, when the context
invokes methods on the result (assuming it is an object), the sense of the blame is
like the original. The reversal corresponds to the standard notion of contra-variance for
method or function arguments.

4 Calculus

This section presents a calculus for a core sequential Java (without reflection), enriched
with semanticCastexpressions, and it gives meaning to the semantic cast expressions
via a translation to the calculus without them.

For familiarity, this paper builds on our model of Java [10, 16], but the core ideas
carry over to any class-based object-oriented language, including C++, C#, Eiffel, or
even MzScheme’s class-based object system.

10 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

P ::= defn* e

defn ::= class c extends c
implements i*

{ fld* mth* }
| interface i extends i*
{ imth* }

fld ::= t fd
mth ::= t md(arg*) { body}

imth ::= t md (arg*)
@pre { e }
@post { e }

arg ::= t var
body ::= e| abstract

e ::= newc | var | null
| e.fd | e.fd= e
| e.md(e*)
| super.md(e*)
| view t e
| e instanceofi
| let { binding* } in e
| if (e) eelsee
| true | false
| e== e
| e || e | ! e
| { e ; e }
| str
| semanticCast(e, i, e, e)

binding ::= var= e
var ::= a variable name orthis

c ::= a class name orObject
i ::= interface name orEmpty

fd ::= a field name
md ::= a method name
str ::= “a” | “ab” | . . .

t ::= i | boolean| String

(a) Surface Syntax

P ::= defn* e

defn ::= class c extends c
implements i*

{ fld* mth* }
| interface i extends i*
{ imth* }

fld ::= t fd
mth ::= t md(arg*) { body}

imth ::= t md (arg*)
@pre { e }
@post { e }

arg ::= t var
body ::= e| abstract

e ::= newc | var | null
| e : c .fd | e : c .fd= e
| e.md(e*)
| super≡this:c.md(e*)
| view t e
| e instanceofi
| let { binding* } in e
| if (e) eelsee
| true | false
| e== e
| e || e | ! e
| { e ; e }
| str
| semanticCast

(e : i, i, e, e)
binding ::= var= e

var ::= a variable name orthis
c ::= a class name orObject
i ::= interface name orEmpty

fd ::= a field name
md ::= a method name
str ::= “a” | “ab” | . . .

t ::= i | boolean| String

(b) Typed Contract Syntax

P ::= defn* e

defn ::= class c extends c
implements i*

{ fld* mth* }
| interface i extends i*
{ imth* }

fld ::= t fd
mth ::= t md(arg*) { body}

imth ::= t md(arg*)

arg ::= t var
body ::= e| abstract

e ::= newc | var | null
| e : c .fd | e : c .fd= e
| e.md(e*)
| super≡this:c.md(e*)
| view t e
| e instanceofi
| let { binding* } in e
| if (e) eelsee
| true | false
| e== e
| e || e | ! e
| { e ; e }
| str
| blame(e)

binding ::= var= e
var ::= a variable name orthis

c ::= a class name orObject
i ::= interface name orEmpty

fd ::= a field name
md ::= a method name
str ::= “a” | “ab” | . . .

t ::= i | boolean| String

(c) Core Syntax

Fig. 6.Syntax; before and after contracts are compiled away

4.1 Syntax

Figure 6 contains the syntax for our enriched Java. The syntax is divided into three
parts. Programmers use syntax (a) to write their programs. The type checker elaborates
syntax (a) to syntax (b), which contains type annotations for use by the evaluator. The
contract compiler elaborates syntax (b) to syntax (c). It elaborates the pre- and post-
conditions andsemanticCastexpressions into monitoring code; the result is accepted
by the evaluator for plain Java.

A programP is a sequence of class and interface definitions followed by an expres-
sion that represents the body of themain method. Each class definition consists of a
sequence of field declarations followed by a sequence of method declarations. An in-
terface consists of method specifications and their contracts. The contracts are arbitrary
Java expressions that have typeboolean. To simplify the model, we do not allow classes
as types. This is not a true restriction to Java, however, since each class can be viewed

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 11

as (implicitly) defining a interface based on its method signatures. This interface can be
used everywhere the class was used as a type.

A method body in a class can beabstract, indicating that the method must be over-
ridden in a subclass before the class is instantiated. Unlike in Java, the body of a method
is just an expression whose result is the result of the method. Like in Java, classes are
instantiated with thenew operator, but there are no class constructors; instance vari-
ables are initialized tonull . Theview form represents Java’s casting expressions and
instanceof tests if an object has membership in a particular type. Thelet forms rep-
resent the capability for binding variables locally. Theif expressions test the value of
the first expression, if it istrue the if expression results in the value of the second
subexpression and if it isfalse the if expression results in the value of the third subex-
pression.6 The== operator compares objects by their location in the heap. The|| and
! operators are the boolean operations disjunction and negation, respectively. Expres-
sions of the form{ e ; e } are used for sequencing. The first expression is executed for
its effect and the result of the entire expression is the result of the second expression.
Finally, str stands for the string literals.

The expressions following@pre and@post in a method interface declaration are
the pre- and post-conditions for that method, respectively. The method’s argument vari-
ables are bound in both the expressions and the name of the method is bound to the
result of calling the method, but only in the post-condition expression.

In the code fragments presented in this paper, we use several shorthands. We omit
theextendsandimplementsclauses when nothing would appear after them. We write
sequencing expressions such as{ e1 ; e2 ; e3 ; . . . } to stand for{ e1 ; {e2 ; {e3 ; . . . }}} and
sometimes add extra{} to indicate grouping. For field declarations, we writet fd1, fd2

to stand fort fd1 ; t fd2.
The type checker translates syntax (a) to syntax (b). It inserts additional information

(underlined in the figure) to be used by the evaluator. In particular, field update and
field reference are annotated with the class containing the field, and calls tosuper are
annotated with the class.

The contract compiler produces syntax (c) and the evaluator accepts it. The@pre
and@postconditions are removed from interfaces, and inserted into wrapper classes.
Syntax (c) also adds theblame construct to the language, which is used to signal con-
tract violations. This construct is only available to the programmer indirectly via the
compilation process, to preserve the integrity of blame assignment (assuming correct
synthesis of blame strings forsemanticCast).

4.2 Relations and Predicates

A valid program satisfies a number of simple predicates and relations; these are de-
scribed in figures 7 and 8. The sets of names for variables, classes, interfaces, fields, and
methods are assumed to be mutually distinct. The meta-variableT is used for method
signatures (t . . . −→ t), V for variable lists (var. . .), andΓ for environments mapping
variables to types. Ellipses on the baseline (. . .) indicate a repeated pattern or contin-

6 The if in our calculus matchese?e : eexpressions in Java, rather than Java’sif statements.

12 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

≺c
P Class is declared as an immediate subclass

c ≺c
P c′ ⇔ classc extendsc′ · · · { · · · } is in P

≤c
P Class is a subclass

≤c
P ≡ the transitive, reflexive closure of≺c

P

∈∈c
P Method is declared in class

〈md, (t1 . . . tn −→ t), (var1 . . . varn), e〉 ∈∈c
P c

⇔ classc · · · { · · · t md(t1 var1 . . . tn varn) {e} · · · } is in P
∈c

P Method is contained in a class
〈md, T, V, e〉 ∈c

P c
⇔ (〈md, T, V, e〉 ∈∈c

P c′ andc′ = min{c′′ | c ≤c
P c′′ and∃e′,V′ s.t.〈md, T, V′, e′〉 ∈∈c

P c′′})
∈∈c

P Field is declared in a class
〈c.fd, t〉 ∈∈c

P c⇔ classc · · · { · · · t fd · · · } is in P
∈c

P Field is contained in a class
〈c′.fd, t〉 ∈c

P c
⇔ 〈c′.fd, t〉 ∈∈c

P c′ andc′ = min{c′′ | c ≤c
P c′′ and∃t′ s.t.〈c′′.fd, t′〉 ∈∈c

P c′′}
≺P Interface is declared as an immediate subinterface

i ≺P i′ ⇔ interface i extends· · · i′ · · · { · · · } is in P
≤P Interface is a subinterface

≤P ≡ the transitive, reflexive closure of≺P

∈∈ i
P Method is declared in an interface
〈md, (t1 . . . tn −→ t), (var1 . . . varn), eb, ea〉 ∈∈

i
P i

⇔ interface i · · · { · · · t md(t1 var1, . . . tn varn) @pre { eb }@post{ ea } · · · } is in P
∈ i

P Method is contained in an interface
〈md, T, V, eb, ea〉 ∈

i
P i ⇔ ∃i′ s.t. i ≤P i′ and〈md, T, V, eb, ea〉 ∈∈

i
P i′

∈P Field or Method is in a type (method/interface)
〈md, T〉 ∈P i ⇔ ∃V,eb, ea s.t.〈md, T, V, eb, ea〉 ∈

i
P i

∈P Field or Method is in a type (field/type)
〈c.fd, t〉 ∈P c⇔ 〈c.fd, t〉 ∈c

P c
≺≺c

P Class declares implementation of an interface
c ≺≺c

P i ⇔ classc · · · implements · · · i · · · { · · · } is in P
�c

P Class implements an interface
c�c

P i ⇔ ∃c′,i′ s.t.c ≤c
P c′ andi′ ≤P i andc′ ≺≺c

P i′

RP Structural subtyping for interfaces
i RP i′ ⇔
∀ 〈md, T, V, eb, ea〉 ∈

i
P i′, ∃ 〈md, T′, V′, e′b, e′a〉 ∈

i
P i, such thatT RRP T′

RP Structural subtyping for other types
String RP String booleanRP boolean

RRP Structural subtyping for method type specifications
t1 . . . tn −→ t RRP t′1 . . . t

′
n −→ t′ ⇔ t′1 RP t1, ..., t′n RP tn, t RP t′

Fig. 7.Relations on enriched Java programs

ued sequence, while centered ellipses (· · ·) indicate arbitrary missing program text (not
spanning a class or interface definition).

Figure 7 is separated into four groups: relations for classes, relations for interfaces,
relations that relate classes and interfaces, and finally the structural subtyping relations.
As an example relation, theCO(P) predicate states that each class name is de-
fined at most once in the programP. The relation≺c

P associates each class name inP
to the class it extends, and the (overloaded)∈∈c

P relations capture the field and method
declarations of the classes inP.

The syntax-summarizing relations induce a second set of relations and predicates
that summarize the class structure of a program. The first of these is the subclass re-
lation ≤c

P, which is a partial order if theCC(P) predicate holds and the
WFC(P) predicate holds. In this case, the classes declared inP form a
tree that hasObject at its root.

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 13

CO(P) Each class name is declared only once
classc · · · classc′ · · · is in P =⇒ c , c′

FOPC(P) Field names in each class declaration are unique
class· · · { · · · fd · · · fd′ · · · } is in P =⇒ fd , fd′

MOPC(P) Method names in each class declaration are unique
class· · · { · · ·md(· · ·) { · · · } · · ·md′ (· · ·) { · · · } · · · } is in P =⇒ md, md′

IO(P) Each interface name is declared only once
interface i · · · interface i′ · · · is in P =⇒ i , i′

MAD(P) Each method argment name is unique
md(t1 var1 . . . tn varn) { · · · } is in P =⇒ var1, . . . varn, andthisare distinct

CC(P) Classes that are extended are defined
rng(≺c

P) ⊆ dom(≺c
P)∪{Object}

WFC(P) Class hierarchy is an order
≤c

P is antisymmetric
CMOK(P) Method overriding preserves the type

(〈md, T, V, e〉 ∈∈c
P c and〈md, T′, V′, e′〉 ∈∈c

P c′) =⇒ (T = T′ or c �c
P c′)

CI(P) Extended/implemented interfaces are defined
rng(≺P) ∪ rng(≺≺c

P) ⊆ dom(≺P)∪{Empty}
WFI(P) Interface hierarchy is an order

≤P is antisymmetric
IMOK(P) Interface inheritance or redeclaration of methods is consistent

〈md, T, V, eb, ea〉 ∈∈
i
P i and〈md, T′, V′, e′b, e′a〉 ∈∈

i
P i′

=⇒ (T = T′ or ∀i′′(i′′ �P i or i′′ �P i′))
CIA(P) Classes supply methods to implement interfaces

c ≺≺c
P i =⇒ (∀md,T 〈md, T, V, eb, ea〉 ∈

i
P i =⇒ ∃e,V′ s.t.〈md, T, V′, e〉 ∈c

P c)

Fig. 8.Predicates on enriched Java programs

If the program describes a tree of classes, we can associate each class in the tree
with the collection of fields and methods that it accumulates from local declarations
and inheritance. The source declaration of any field or method in a class can be com-
puted by finding theminimumsuperclass (i.e., farthest from the root) that declares the
field or method. This algorithm is described precisely by the∈c

P relations. The∈c
P rela-

tion retains information about the source class of each field, but it does not retain the
source class for a method. This reflects the property of Java classes that fields cannot be
overridden (so instances of a subclass always contain the field), while methods can be
overridden (and may become inaccessible).

Interfaces have a similar set of relations. The subinterface declaration relation≺P

induces a subinterface relation≤P. Unlike classes, a single interface can have multiple
proper superinterfaces, so the subinterface order forms a instead of a tree. The set
of methods of an interface, as described by∈ i

P, is the union of the interface’s declared
methods and the methods of its superinterfaces. Classes and interfaces are related by
implementsdeclarations, as captured in the≺≺c

P relation.

The structural subtyping predicateRP relates types in a structural manner. The base
typesbooleanandString are only related to themselves. Two interface types are related
if one has a subset of the methods of the other and the corresponding method arguments
and result are related. Note that the relation is contra-variant for method arguments and
co-variant for method results.

The type system usesRP to ensure thatsemanticCastexpressions are well-formed.

14 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

4.3 Types

Type elaboration is defined by the following judgments:

`p P⇒ P′ : t P elaborates toP′ with typet
P `d defn⇒ defn′ defnelaborates todefn′

P, c `m mth⇒ mth′ mth in c elaborates tomth′

P, i `i imth⇒ imth′ imth in i elaborates toimth′

P, Γ `e e⇒ e′ : t eelaborates toe′ with typet in Γ
P, Γ `s e⇒ e′ : t eelaborates toe′ with typet in Γ, using subsumption

P `t t t is a well-formed type inP

Type elaboration for complete programs ensures that the properties described in the
previous section hold for the complete program and ensures that each subexpression
in the program is properly typed. Type checking for classes and interface definitions
merely ensures that each expression mentioned in each method is properly typed and
that the types written in the method specifications are well-formed and that the method
specifications match up with the bodies of the methods.

For each form of expression, the intended use dictates the types of its constituents.
For example, the arguments to|| and ! must be booleans. Similarly, the type of the
first subexpression ofif must be a boolean and the types of the two branches must
match. There are four places where subsumption is allowed: at field assignment, method
invocations (for the arguments), super calls, and, of course,view expressions. These
correspond to the places where implicit or explicit casts occur. These rules are the same
as in our prior work [16] and many are omitted here.

The typing rule for interface methods ensures that pre- and post-conditions use ap-
propriate variables and have type boolean. The typing rule forsemanticCastensures
that the last two arguments are both strings and that the first argument is an object. Fur-
ther, the static type of the object must have the same structure as the type in the second
argument, as determined by theRP relation.

4.4 Contract Compilation

The contract compiler eliminatessemanticCastexpressions from the program and in-
sertsblame expressions. Theblame expression is a primitive mechanism that, when
evaluated, aborts the program and assigns blame to a specificsemanticCastfor a con-
tract violation.

The contract compiler,C[[·]], is defined by the following judgments:

C[[P]] = P′ if `p P⇀ P′

`p P⇀ P′ P elaborates toP′

`d defn, defs⇀ defn′, defs′ defnelaborates todefn′ extendingdefsto defs′

`b body, defs⇀ body′, defs′ bodyelaborates tobody′ extendingdefsto defs′

`e e, defs⇀ e′, defs′ eelaborates toe′ extendingdefsto defs′

The `p judgment rewrites a complete program from the second syntax in figure 6 to
the third syntax. The other three judgments rewrite definitions, bodies, and expressions,

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 15

`p

CO(P) IO(P) MOPC(P)FOPC(P) CC(P)WFC(P) CI(P)
WFI(P) IMOK(P) MAD(P) CIA(P) P `d defnj ⇒ defn′j for j ∈ [1,n]
P, [] `e e⇒ e′ : t whereP = defn1 . . . defnn e

`p defn1 . . . defnn e⇒ defn′1 . . . defn′n e′ : t

`d P `t t j for j ∈ [1,n] P, c `m mthk ⇒ mth′k for k ∈ [1, p]

P `d class c · · · { t1 fd1 . . . tn fdn

mth1 . . . mthp }

⇒ class c · · · { t1 fd1 . . . tn fdn

mth′1 . . . mth′p }

P `i imthj ⇒ imthj for j ∈ [1, p]

P, i `d interface i · · · { imth1 . . . imthp } ⇒ interface i · · · { imth1 . . . imthp }

`m P `t t P `t t j for j ∈ [1,n] P,[this : to, var1 : t1, . . . varn : tn] `s e⇒ e′ : t

P, to `m t md(t1 var1 . . . tn varn) { e } ⇒ t md(t1 var1 . . . tn varn) { e′ }

P `t t P `t t j for j ∈ [1,n]

P, to `m t md(t1 var1 . . . tn varn) { abstract } ⇒ t md(t1 var1 . . . tn varn) { abstract }

`i P `t t P,[this : i, var1 : t1, . . . varn : tn] `e eb⇒ e′b : boolean
P `t t j for j ∈ [1,n] P,[this : i, md: t, var1 : t1, . . . varn : tn] `e ea⇒ e′a : boolean

P, i `i t md (t1 arg1 . . . tn argn)
@pre { eb }

@post { ea }

⇒ t md (t1 arg1 . . . tn argn)
@pre { e′b }
@post { e′a }

`e

P, Γ `s e⇒ e′ : t

P, Γ `e view t e⇒ e′ : t

P, Γ `e e⇒ e′ : t′ t ∈ dom(≺P)∪{Empty}

P, Γ `e view t e⇒ view t e′ : t

P, Γ `s e⇒ e′ : t

P, Γ `e e instanceoft⇒ {e′ ; true} : boolean

P, Γ `e e⇒ e′ : t′ t ∈ dom(≺P)∪{Empty}

P, Γ `e e instanceoft⇒ e′ instanceoft : boolean

P, Γ `e pos⇒ pos′ : String P, Γ `e neg⇒ neg′ : String P, Γ `e e⇒ e′ : t′ t′ RP t

P, Γ `e semanticCast(e, t, pos, neg)⇒ semanticCast(e′ : t′, t, pos′, neg′) : t

`s, `t P, Γ `s e⇒ e′ : t′ t′ ≤P t

P, Γ `e e⇒ e′ : t

t ∈ dom(≺P)∪{Empty, boolean, String}

P `t t

Fig. 9.Context-sensitive checks and type elaboration rules

respectively. Each accepts a term and a set of definitions and produces the rewritten
term and a new set of definitions.

The rules for the judgements are given in figures 10 and 11. The rule for`p rewrites
the definitions and expressions in the program, threading the sets of definitions through
the rewriting of the subterms. Its result is the rewritten definitions and expressions,
combined with the final set of threaded definitions. With the exception of the rule for
semanticCast, all of the other rules produces the same term they accept, carrying for-
ward the definitions sets from their subexpressions.

ThesemanticCastrule for booleans and strings merely removes the semantic cast.
For interfaces, however, it adds the elaborated definition for the classCast i′ i to the

16 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

`p
`e e, ∅⇀ e′, defs0 `d defnj , defsj−1⇀ defn′j , defsj for j ∈ [1,n]

P `d defn1 . . . defnn e⇀ defsn defn′1 . . . defn′n e′

`d `b ej , defsj−1⇀ e′j , defsj for j ∈ [1,n]

P `d class c · · · {
fld . . .
t md(t11 x11 . . . t1 j x1 j) { e1 } . . .
t md(tn1 xn1 . . . tn j xn j) { en }

}

, defs0⇀ class c · · · {
fld . . .
t md(t11 x11 . . . t1 j x1 j) { e′1 } . . .
t md(tn1 xn1 . . . tn j xn j) { e′n }
}

, defsn

`d interface i extends i′ · · · {
t md(t1 x1 . . . tn xn)

@pre { e b } @post { e a } . . .
}

, defs⇀ interface i extends i′ · · · {
t md(t1 x1 . . . tn xn) . . .
}

, defs

`b

`b abstract, defs⇀ abstract, defs

`e e, defs⇀ e′, defs′

`b e, defs⇀ e′, defs′

Fig. 10.Contract Elaboration, part 1

set of definitions it produces (without duplication), and replaces the semantic cast with
code that creates and initializes an instance ofCast i′ i.

Figure 12 shows the full definition of theCast i′ i classes, where the interfacesi′

andi match the interface schemas shown. The class contains all of the methods ofi, plus
three instance variables. Two instance variables are strings representing the classes that
are to be blamed for values flowing in to and out of the object, respectively. The other
instance variable holds the unwrapped object. Whenever a method is called through the
wrapper object, the following tasks are performed:

– The pre-condition contract is checked andinBlameis blamed if it fails.
– All of the arguments are wrapped, according to their types.
– The method of the unwrapped object is invoked with the newly wrapped arguments

and the result is stored in a variable with the same name as the method.
– The post-condition contract is checked andoutBlameis blamed if it fails.
– The result of the unwrapped call is wrapped according to the result type of the

method and the new wrapper object is the result of the method.

Note that the wrapper classes containsemanticCastexpressions. Thus, compiling these
expressions generates new classes. This means that an implementation of the contract
compiler must not generate new classes for each occurrence ofsemanticCastit en-
counters, or it would not terminate. Instead, it is must only generate oneCast i′ i class
for each unique pair of interfaces,i′ andi.

4.5 Operational Semantics

The operational semantics is defined as a contextual rewriting system on pairs of ex-
pressions and stores [16, 47]. Each evaluation rule has this shape:

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 17

`e

`e newc, defs⇀ newc, defs `e var, defs⇀ var, defs `e null , defs⇀ null , defs

`e e, defs⇀ e′, defs′

`e e : c .fd, defs⇀ e′ : c .fd, defs′
`e e, defs⇀ e′, defs′ `e ev, defs′ ⇀ e′v, defs′′

`e e : c .fd= ev, defs⇀ e′ : c .fd= e′v, defs′′

`e e, defs⇀ e′, defs0 `e ej , defsj−1⇀ e′j , defsj for j ∈ [1,n]

`e e : c .md(e1 . . . en), defs⇀ e′ : c .md(e′1 . . . e
′
n), defsn

`e ej , defsj−1⇀ e′j , defsj for j ∈ [1,n]

`e super≡this:c.md(e1 . . . en), t⇀ defs0, super≡this:c.md(e′1 . . . e
′
n) defsn

`e e, defs⇀ e′, defs′

`e view t e, defs⇀ view t e′, defs′
`e e, defs⇀ e′, defs′

`e e instanceoft, defs⇀ e′ instanceoft, defs′

`e e1, defs⇀ e′1, defs′ `e e2, defs′ ⇀ e′2, defs′′

`e e1 == e2, defs⇀ e′1 == e′2, defs′′

`e e, defs⇀ e′, defs0 `e ej , defsj−1⇀ e′j , defsj for j ∈ [1,n]

`e let { var1 = e1 . . . varn = en } in e, defs⇀ let { var1 = e′1 . . . varn = e′n } in e′, defsn

`e true, defs⇀ true, defs `e false, defs⇀ false, defs `e str, defs⇀ str, defs

`e e1, defs⇀ e′1, defs′ `e e2, defs′ ⇀ e′2, defs′′ `e e3, defs′′ ⇀ e′3, defs′′′

`e if (e1) e2 elsee3, defs⇀ if (e′1) e′2 elsee′3, defs′′′

`e e1, defs⇀ e′1, defs′ `e e2, defs′ ⇀ e′2, defs′′

`e { e1 ; e2 }, defs⇀ { e′1 ; e′2 }, defs′′

`e e1, defs⇀ e′1, defs′

`e ! e, defs⇀ ! e′, defs′
`e e1, defs⇀ e′1, defs′ `e e2, defs′ ⇀ e′2, defs′′

`e e1 || e2, defs⇀ e′1 || e
′
2 , defs′′

`e e1, defs⇀ e′1, defs′ `e e2, defs′ ⇀ e′2, defs′′ `e e3, defs′′ ⇀ e′3, defs′′′

t is booleanor String andx not free ine′2 or e′3
`e semanticCast(e1 : t, t, e2, e3), defs⇀ let {x= e′1} in { e

′
2 ; e′3 ; x }, defs′′′

`e e1, defs⇀ e′1, defs′ `e e2, defs′ ⇀ e′2, defs′′ `e e3, defs′′ ⇀ e′3, defs′′′ `d classCast i′ i . . ., defs′′′ ⇀ defn, defs′′′′

`e semanticCast(e1 : i′, i, e2, e3), defs⇀ let { x = e′1 i = e′2 o = e′3
w = new Cast i′ i() }

in { w : Cast i′ i .unwrapped= x;
w : Cast i′ i .inBlame= i;
w : Cast i′ i .outBlame= o;
w}

, defn] defs′′′′

Fig. 11.Contract Elaboration, part 2

P ` 〈e, S〉 ↪→ 〈e, S〉 [reduction rule name]

A store (S) is a mapping fromobjects (a set of identifiers distinct from the program
variables) to class-tagged field records. A field record (F) is a mapping from field
names to values. We consider configurations of expressions and stores equivalent up to

18 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

class Cast i′ i implements i {
String inBlame, outBlame;
i′ unwrapped;
t md(t1 x1 . . . tn xn) {

if (eb) {
let {md = unwrapped.md(semanticCast(x1 : t1, t′1, outBlame, inBlame) . . .

semanticCast(xn : tn, t′n, outBlame, inBlame))}
in { if (ea) {

semanticCast(md : t′, t, inBlame, outBlame);
} else { blame(outBlame); }}

} else { blame(inBlame); }}
. . .
}

where i and i′ match:

interface i extends . . . { t md(t1 x1 . . . tn xn) @pre { eb } @post { ea } . . .}
interface i′ extends . . . { t′ md(t′1 x1 . . . t′n xn) . . . }

Fig. 12.Compiler-generated Wrapper Classes

e = . . . | object
v = object| null
| true | false
| str

E = [] | E : c .fd | E : c .fd= e | v : c .fd= E
| E .md(e . . .) | v.md(v . . . E e . . .)
| super≡v:c.md(v . . . E e . . .)
| view t E | let var= v . . . var= E var= e . . . in e
| if (E) eelsee | E instanceofi | E == e | v== E
| E || e | ! E | { E ; e } | blame(E)

Fig. 13.Expressions, values, and contexts

α-renaming; the variables in the store bind the free variables in the expression. Eache
is an expression andP is a program, as defined in figure 6. Figure 13 shows the contexts
where reductions can occur.

The complete evaluation rules are in Figure 14. For example, thecall rule models a
method call by replacing the call expression with the body of the invoked method and
syntactically replacing the formal parameters with the actual parameters. The dynamic
aspect of method calls is implemented by selecting the method based on the run-time
type of the object (in the store). In contrast, thesuperreduction performssupermethod
selection using the class annotation that is statically determined by the type-checker.

The blame expressions terminate the program by throwing away the context and
reducing to a configuration containing just an error, just like mis-use ofnull or a bad
cast.

4.6 Soundness

A näıve soundness theorem for a contract compiler would guarantee that the additional
code that the contract compiler adds to the program changes the behavior of the program
only by signaling contract errors. Put positively, if no contract violations are signaled,

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 19

P ` 〈E[object: t.md(v1, . . ., vn)], S〉 ↪→ 〈E[e[object/this, v1/var1, . . . vn/varn]], S〉 [call]
whereS(object) = 〈c, F 〉 and〈md, (t1 . . . tn −→ t), (var1 . . . varn), e〉 ∈c

P c

P ` 〈E[super≡object:c.md(v1, . . ., vn)], S〉
↪→ 〈E[e[object/this, v1/var1, . . . vn/varn]], S〉

[super]

where〈md, (t1 . . . tn −→ t), (var1 . . . varn), e〉 ∈c
P c

P ` 〈E[new c], S〉 ↪→ 〈E[object], S[object7→〈c, F 〉]〉 [new]
whereobject< dom(S)
andF = {c′.fd7→null | c ≤c

P c′ and∃t s.t.〈c′.fd, t〉 ∈∈c
P c′}

P ` 〈E[object: c′ .fd], S〉 ↪→ 〈E[v], S〉 [get]
whereS(object) = 〈c, F 〉 andF (c′.fd) = v

P ` 〈E[object: c′ .fd= v], S〉 ↪→ 〈E[v], S[object7→〈c, F [c′.fd7→v]〉]〉 [set]
whereS(object) = 〈c, F 〉

P ` 〈E[view t′ object], S〉 ↪→ 〈E[object], S〉 [cast]
whereS(object) = 〈c, F 〉 andc�c

P t′

P ` 〈E[objectinstanceoft′], S〉 ↪→ 〈E[true] , S〉 [ipass]
whereS(object) = 〈c, F 〉 andc�c

P t′

P ` 〈E[objectinstanceoft′], S〉 ↪→ 〈E[false], S〉 [ifail]
whereS(object) = 〈c, F 〉 andc3c

P t′

P ` 〈E[bool== bool′], S〉 ↪→ 〈E[if (bool) bool′ else! bool′], S〉 [==b]
P ` 〈E[let var1 = v1 . . . varn = vn in e], S〉 ↪→ 〈E[e[v1/var1 ... vn/varn]], S〉 [let]
P ` 〈E[if (true) e1 elsee2], S〉 ↪→ 〈E[e1], S〉 [iftrue]
P ` 〈E[if (false) e1 elsee2], S〉 ↪→ 〈E[e2], S〉 [iffalse]
P ` 〈E[true || e], S〉 ↪→ 〈E[true] , S〉 [ortrue]
P ` 〈E[false || e], S〉 ↪→ 〈E[e], S〉 [orfalse]
P ` 〈E[! true] , S〉 ↪→ 〈E[false], S〉 [nottrue]
P ` 〈E[! false], S〉 ↪→ 〈E[true] , S〉 [notfalse]
P ` 〈E[{ v ; e }], S〉 ↪→ 〈E[e], S〉 [seq]

P ` 〈E[blame(s)], S〉 ↪→ 〈error: s violated contract, S〉 [blame]
P ` 〈E[view t′ object], S〉 ↪→ 〈error: bad cast, S〉 [xcast]

whereS(object) = 〈c, F 〉 andc3c
P t′

P ` 〈E[view t′ null] , S〉 ↪→ 〈error: bad cast, S〉 [ncast]
P ` 〈E[null : c .fd], S〉 ↪→ 〈error: dereferenced null, S〉 [nget]
P ` 〈E[null : c .fd= v], S〉 ↪→ 〈error: dereferenced null, S〉 [nset]
P ` 〈E[null .md(v1, . . ., vn)], S〉 ↪→ 〈error: dereferenced null, S〉 [ncall]
P ` 〈E[null instanceof i], S〉 ↪→ 〈error: dereferenced null, S〉 [nisa]
P ` 〈E[null == v], S〉 ↪→ 〈error: dereferenced null, S〉 [n==l]
P ` 〈E[v== null] , S〉 ↪→ 〈error: dereferenced null, S〉 [n==r]

Fig. 14.Operational semantics

the original program with the contracts erased and the contract compiled program must
behave identically.

Unfortunately, that theorem is too strong, for two reasons. First, the contract ex-
pressions themselves may change the behavior of the program (via side-effects or non-
termination). So, we only consider a class of contracts that do not affect the behavior of
the program, captured by this definition:

Definition 1 (Effect Free).An expression e is said to beeffect freeif, for any storeS
and program P (that bind the free variables in e),

P ` 〈e,S〉 ↪→∗ 〈v,S〉

for some value, v.

20 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

Second, because semantic casts allow structural subtyping, simply removing them
would yield a type-incorrect Java program. Accordingly, we must replace semantic casts
with wrapper classes that perform the type adaptation, but do not check contracts.

Definition 2 (Erasure).
The functionE[[·]] behaves just like the contract compiler, except forsemanticCast

expressions, where it instantiates adapter classes instead of the wrapper classes, ac-
cording to this rule:

`e e1, defs⇀ e′1, defs′ `e e2, defs′ ⇀ e′2, defs′′ `e e3, defs′′ ⇀ e′3, defs′′′

`d classAdapt i′ i . . ., defs′′′ ⇀ defn, defs′′′′

`e semanticCast(e1 : i′, i, e2, e3), defs⇀ let { x = e′1 i = e′2 o = e′3
w = new Adapt i′ i() }

in { w : Adapt i′ i .unwrapped= x;
w}

, defn] defs′′′′

class Adapt i′ i implements i {
i′ unwrapped;
t md(t1 x1 . . . tn xn) {

let {md = unwrapped.md(semanticCast(x1 : t1, t′1, “”, “”) . . .
semanticCast(xn : tn, t′n, “”, “”))}

in { semanticCast(md : t′, t, “”, “”); }} . . .
}

Since the adapter classes never signal contract violations, the third and fourth argu-
ments tosemanticCastare ignored by the replacement`e rule. Similarly, the adapter
class can safely use bogus string arguments to the nestedsemanticCastexpressions.

In order to meaningfully state a soundness result, we must also ensure that the con-
tract compiler and the erasure procedure both preserve the typing structure of programs.

Lemma 1. For any program P= defn. . . e that type checks:

`p P⇒ P′ : t

the erased and compiled versions of P must also type check and have the same type:

`p C[[P]] ⇒ P′′ : t `p Ep[[P]] ⇒ P′′′ : t

Proof (sketch).Both the erasure and contract compilation leave all expressions intact,
except forsemanticCastexpressions. Inspection of the compiler and erasure definitions
shows that they produce well-typed expressions and the typing rule forsemanticCast
gives the same types that erasure and the compiler give.�

With that background, we can now formulate a soundness theorem for our contract
checker.

Theorem 1. Let P= defn . . . e be a program such where all the contract expressions
are effect free. LetC[[P]] = Pc = defnc . . . ec and letE[[P]]= Pe = defne . . . ee. One of
the following situation occurs:

• Pc ` 〈ec, ∅〉 ↪→∗ 〈blame(s), S〉
• Pc ` 〈ec, ∅〉 ↪→∗ 〈error: str,S〉 and Pe ` 〈ee, ∅〉 ↪→∗ 〈error: str,S〉

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 21

• Pc ` 〈ec, ∅〉 ↪→∗ 〈v,S〉 and Pe ` 〈ee, ∅〉 ↪→∗ 〈v′, S〉 where either v= v′ and v is not
an object, or both v and v′ are objects.
• For each e′ such that Pc ` 〈ec, ∅〉 ↪→∗ 〈e′, S〉 there exists an e′′ such that Pc ` 〈e′,
S〉 ↪→ 〈e′′, S〉 and for each e′ such that Pe ` 〈ee, ∅〉 ↪→∗ 〈e′, S〉 there exists an e′′

such that Pe ` 〈e′, S〉 ↪→ 〈e′′, S〉

The formal statement of the theorem is divided into four cases, based on the be-
havior of the contract compiled program. If the contract compiled program produces a
blame error, the theorem does not say anything about the erased program. If, however,
the contract compiled program produces a value, a safety error, or does not terminate,
the original program and the contract-free program must behave in the same manner.
Note that if the contract compiled program produces an object, the erased program only
has to produce an object, not necessarily the same object. If the contract compiled pro-
gram results in a boolean or a string, the erased program must produce the same boolean
or string.

Proof (sketch).The proof operates by relating the reduction sequences of the original
program to the compiled program. Clearly, if there are nosemanticCastexpressions in
the program, the new program contains extra definitions, but they are unused. Accord-
ingly, the two programs reduce in lockstep until the firstsemanticCastexpression. At
that point, the erased program produces the adapter object and the compiled program
produces a wrapper object. If the wrapper object ever signals a contract violation, we
know that the theorem holds. If it does not, we can see from the definition of the wrap-
per objects that they behave identically to the adapter object when a method is invoked,
because the contract expressions are effect free, by assumption.�

5 Implementation Status

We have implemented this contract checker as part of DrScheme [9], a 200,000 line
MzScheme [15] program. Although the class system of MzScheme is not statically
typed, its design is otherwise similar to the design of Java’s class system. That is, the
safety properties that Java’s type system guarantees,e.g., each method call has a re-
ceiver, are all also guaranteed, but the enforcement is entirely dynamic and implemented
in terms of runtime checks. Accordingly, MzScheme benefits from contracts just as we
have described in this paper.

Although the contract system described in this paper (with extensions to support
all of the details of MzScheme’s class system) has been implemented and is part of
the current pre-release of DrScheme, the contract checker for the object sub-language
is not widely used yet. In addition to contracts on objects, however, DrScheme also
has a contract checker for higher-order functions. As far as contracts are concerned, a
function is essentially an object with a single method.

We have studied the performance impact of contracts in DrScheme. An instru-
mented version of DrScheme counts the number of functions and function contracts.
After starting up DrScheme and opening a few windows and Help Desk, there are 27962
reachable functions and only 507 wrappers,i.e., slightly less than 2% of the functions
are wrapped. With a different accounting annotation, DrScheme can also determine the

22 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

number of function calls and calls to contract functions; for basically the same start-up
action, the program performs 2,142,000 calls to user-defined functions, of which 1425
are calls to contract wrappers. That is, 0.06% of the calls to user-defined functions are
calls to wrappers. Unfortunately, it is difficult to generalize these experiments, because
it is a major undertaking to write contracts for a large system of components. Still, the
experiment with DrScheme suggests that well-chosen contracts have little performance
impact on a large program. Based on our experience, the number of contracts in a com-
ponent rarely exceeds 10% of the number of functions proper. Yet, even if our system
were to contain that many wrapper functions, our experiments suggest that only .3%
of the function calls would be calls to wrapper functions. In short, we don’t expect
semantic casts to affect the overall system performance in a noticeable manner.

6 Related Work

Contracts have a long history. In 1972, Parnas [37] first suggested equipping module
interfaces with contracts. His objective was to state the purpose of his proposed units
of reuse in a formal manner. Soon thereafter, contracts appeared in a range of program-
ming languages, including ADA [31], Euclid [26], and Turing [21]. In the 1980s, the
designers of OO programming languages began to incorporate contracts [33] and OO
researchers investigated the meaning of contracts in an OO context [1, 30]. By now, a
fair number of OO languages support contracts either directly or as add-on packages [2,
5, 6, 8, 17, 22–25, 32, 33, 38, 39].

Over the past three years, we have investigated the theory and practice of contract
and contract checking. Thus far, our theoretical research has focused on the sound-
ness of contract checking in class hierarchies and in the presence of higher-order func-
tions [10–12]. Our practical efforts have led to the implementation of a contract check-
ing system for our Scheme class and mixin system. Experience with contracts in our
DrScheme product suggested the proposal for a semantic cast in this paper.

Beyond contract checking systems, researchers are also investigating notations, the-
orem provers, and other tools for supporting contracts. For example, JML [27] is a
notation for stating and reasoning about contracts. We use it in this paper to notate
our contracts. JML is also used for many tools that go well beyond mere dynamically
checked behavioral contracts. For example, ESC/Java [7, 14] is a theorem-prover that
can validate theorems about JML contracts. In addition to ESC/Java, EML [42, 43] and
Larch [19] are systems that statically verify contracts. Although our work focuses on
dynamic validation, we believe that a static validation of such contracts is feasible and
useful. Specifically, we hope that existing extended static checking efforts, like those of
Flanagan et al [14], can be modified to account for semantic casts.

ML’s module and signature language [35, 28] has been a different source of inspi-
ration. It has long supportedsignature ascription, the ability to refine an existing ML
structure’s interface with the rest of the program. Our work can be seen as an extension
of signature ascription to dynamically checked contracts.

The implementation ofsemanticCastwith wrapper objects is suggestive of creat-
ing a denotational retract [44]. Although this intuition does not carry over directly, it

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 23

suggested certain directions for our investigations. Also, our wrapper classes are remi-
niscent of the coercions that Henglein considers in his work [20].

7 Future Work

So far, we have only explored semantic up casts, that is, casts from a subtype to a
supertype. It may, however, be useful to permit some form of semantic down casts. In
particular, if an object were first cast to a super type, it is often useful to be able to
cast it back to its original type. For example, when using container classes, the type
of the container is some supertype of all of the objects that may ever be stored in the
container. Accordingly, when retrieving objects from the container, it may be sensible
to down cast them to a type with more information.

Clearly, one simple way to support semantic down casts is to remove layers of
wrapping from the downcast object. Unfortunately, this would circumvent the contract
checking. In general, components depend on contracts being enforced on the objects
that play a role in their communication with other components. That is, if a downcast
were to remove the contract checking code from some object, one component’s con-
tract violation may not be detected, leading to another component being blamed for a
subsequent contract violation, or perhaps even erroneous output.

We have not yet found a consistent, simple extension to a nominally typed language
design that manages to both support semantic down casts and preserves contract check-
ing.

8 Conclusion

This paper introduces semantic casts, a modest extension to languages with nominal
subtype systems. A semantic cast enables programmers to reuse classes and inter-
faces that match structurally but not nominally. Our calculus validates that doing so
is compatible with conventional languages such as C++ [45], C# [34], Eiffel [33], and
Java [18]. In the future, we plan to continue our investigations of how contracts can
overcome the limitations of conventional type systems in a safe manner.

Acknowledgments

Thanks to Adam Wick for instrumenting his garbage collector so we could collect wrap-
per and function counts. Thanks also to the anonymous ECOOP reviewers for their
comments.

References

1. America, P. Designing an object-oriented programming language with behavioural subtyp-
ing. In Proceedings of Foundations of Object-Oriented Languages, volume 489 ofLecture
Notes in Computer Science, pages 60–90. Springer-Verlag, 1991.

24 Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen

2. Bartetzko, D., C. Fischer, M. Moller and H. Wehrheim. Jass - Java with assertions. In
Workshop on Runtime Verification, 2001. Held in conjunction with the 13th Conference on
Computer Aided Verification, CAV’01.

3. Bruce, K. B., A. Fiech and L. Petersen. Subtyping is not a good “match” for object-oriented
languages. InProceedings of European Conference on Object-Oriented Programming, pages
104–127, 1997.

4. Bruce, K. B., A. Schuett and R. van Gent. PolyTOIL: A type-safe polymorphic object-
oriented language.Lecture Notes in Computer Science, 952:27–51, 1995.

5. Carrillo-Castellon, M., J. Garcia-Molina, E. Pimentel and I. Repiso. Design by contract in
smalltalk.Journal of Object-Oriented Programming, 7(9):23–28, 1996.

6. Cheon, Y. A runtime assertion checker for the Java Modelling Language. Technical Report
03-09, Iowa State University Computer Science Department, April 2003.

7. Detlefs, D. L., K. Rustan, M. Leino, G. Nelson and J. B. Saxe. Extended static checking.
Technical Report 158, Compaq SRC Research Report, 1998.

8. Duncan, A. and U. Ḧolzle. Adding contracts to Java with handshake. Technical Report
TRCS98-32, The University of California at Santa Barbara, December 1998.

9. Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler and
M. Felleisen. DrScheme: A programming environment for Scheme.Journal of Functional
Programming, 12(2):159–182, March 2002. A preliminary version of this paper appeared in
PLILP 1997, LNCS volume 1292, pages 369–388.

10. Findler, R. B. and M. Felleisen. Contract soundness for object-oriented languages. InObject-
Oriented Programming, Systems, Languages, and Applications, 2001.

11. Findler, R. B. and M. Felleisen. Contracts for higher-order functions. InProceedings of
ACM SIGPLAN International Conference on Functional Programming, 2002.

12. Findler, R. B., M. Latendresse and M. Felleisen. Behavioral contracts and behavioral sub-
typing. InProceedings of ACM Conference Foundations of Software Engineering, 2001.

13. Fisher, K. and J. H. Reppy. The design of a class mechanism for Moby. InProceedings of
ACM SIGPLAN Conference on Programming Language Design and Implementation, 1999.

14. Flanagan, C., K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe and R. Stata. Extended
static checking for Java. InProceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 234–245, 2002.

15. Flatt, M. PLT MzScheme: Language manual. Technical Report TR97-280, Rice University,
1997. http://www.mzscheme.org/.

16. Flatt, M., S. Krishnamurthi and M. Felleisen. Classes and mixins. InProceedings of the
ACM Conference Principles of Programming Languages, pages 171–183, Janurary 1998.

17. Gomes, B., D. Stoutamire, B. Vaysman and H. Klawitter.A Language Manual for Sather
1.1, August 1996.

18. Gosling, J., B. Joy and J. Guy Steele.The Java(tm) Language Specification. Addison-Wesley,
1996.

19. Guttag, J. V. and J. J. Horning.Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

20. Henglein, F. Dynamic typing: Syntax and proof theory.Science of Computer Programming,
22(3):197–230, 1994.

21. Holt, R. C. and J. R. Cordy. The Turing programming language. InCommunications of the
ACM, volume 31, pages 1310–1423, December 1988.

22. Karaorman, M., U. Ḧolzle and J. Bruno. jContractor: A reflective Java library to support
design by contract. InProceedings of Meta-Level Architectures and Reflection, volume 1616
of lncs, July 1999.

23. Kizub, M. Kiev language specification. http://www.forestro.com/kiev/, 1998.
24. Kölling, M. and J. Rosenberg.Blue: Language Specification, version 0.94, 1997.

Semantic Casts: Contracts and Structural Subtyping in a Nominal World 25

25. Kramer, R. iContract: The Java design by contract tool. InTechnology of Object-Oriented
Languages and Systems, 1998.

26. Lampson, B. W., J. J. Horning, R. L. London, J. G. Mitchell and G. J. Popek. Report on the
programming language Euclid.ACM Sigplan Notices, 12(2), Feburary 1977.

27. Leavens, G. T., K. R. M. Leino, E. Poll, C. Ruby and B. Jacobs. JML: notations and tools
supporting detailed design in Java. InObject-Oriented Programming, Systems, Languages,
and Applications Companion, pages 105–106, 2000. Also Department of Computer Science,
Iowa State University, TR 00-15, August 2000.

28. Leroy, X. Applicative functors and fully transparent higher-order modules. InProceedings
of the ACM Conference Principles of Programming Languages, pages 142–153. ACM Press,
1995.

29. Leroy, X.The Objective Caml system, Documentation and User’s guide, 1997.
30. Liskov, B. H. and J. Wing. Behavioral subtyping using invariants and constraints. Technical

Report CMU CS-99-156, School of Computer Science, Carnegie Mellon University, July
1999.

31. Luckham, D. C. and F. von Henke. An overview of Anna, a specification language for Ada.
In IEEE Software, volume 2, pages 9–23, March 1985.

32. Man Machine Systems. Design by contract for Java using JMSAssert.
http://www.mmsindia.com/DBCForJava.html, 2000.

33. Meyer, B.Eiffel: The Language. Prentice Hall, 1992.
34. Microsoft Corporation.Microsoft C# Language Specifications. Microsoft Press, 2001.
35. Milner, R., M. Tofte and R. Harper.The Definition of Standard ML. MIT Press, 1990.
36. Object Management Group. The object management architecture guide, 1997.

http://www.omg.org/.
37. Parnas, D. L. A technique for software module specification with examples.Communications

of the ACM, 15(5):330–336, May 1972.
38. Pl̈osch, R. Design by contract for Python. InIEEE Proceedings of the Joint Asia Pacific

Software Engineering Conference, 1997. http://citeseer.nj.nec.com/257710.html.
39. Pl̈osch, R. and J. Pichler. Contracts: From analysis to C++ implementation. InTechnology

of Object-Oriented Languages and Systems, pages 248–257, 1999.
40. Ŕemy, D. and J. Vouillon. Objective ML: A simple object-oriented extension of ML. In

Proceedings of the ACM Conference Principles of Programming Languages, pages 40–53,
January 1997.

41. Rosenblum, D. S. A practical approach to programming with assertions.IEEE Transactions
on Software Engineering, 21(1):19–31, Janurary 1995.

42. Sannella, D. Formal program development in Extended ML for the working programmer.
In Proc. 3rd BCS/FACS Workshop on Refinement; Springer Workshops in Computing, pages
99–130, 1991.

43. Sannella, D. and A. Tarlecki. Essential concepts of algebraic specification
and program development. Formal Aspects of Computing, 9:229–269, 1997.
http://www.dcs.ed.ac.uk/home/dts/eml/.

44. Scott, D. S. Data types as lattices.Society of Industrial and Applied Mathematics (SIAM)
Journal of Computing, 5(3):522–586, 1976.

45. Stroustrup, B.The C++ Programming Language. Addison-Wesley, 1997.
46. Szyperski, C.Component Software. Addison-Wesley, second edition, 1998.
47. Wright, A. and M. Felleisen. A syntactic approach to type soundness.Information and Com-

putation, pages 38–94, 1994. First appeared as Technical Report TR160, Rice University,
1991.

This research is partially supported by the National Science Foundation.

