Reachability-Based Memory Accounting

Adam Wick
awick@cs.utah.edu

Matthew Flatt
mflatt@cs.utah.edu

Wilson Hsieh
wilson@cs.utah.edu

University of Utah, School of Computing
50 South Central Campus Drive, Room 3190
Salt Lake City, Utah 84112-9205

ABSTRACT

Many language implementations provide a mechanism to
express concurrent processes, but few provide support for
terminating a process based on its resource consumption.
Those implementations that do support termination gener-
ally charge the cost of a resource to the principal that al-
locates the resource, rather than the principal that retains
the resource. The difference matters if principals represent
distinct but cooperating processes.

In this paper, we present preliminary results for a ver-
sion of MzScheme that supports termination conditions for
resource-abusing processes. Unlike the usual approach to
resource accounting, our approach assigns fine-grained (per-
object) allocation charges to the process that retains a re-
source, instead of the process that allocates the resource.

1. MOTIVATION

Users of modern computing environments expect applica-
tions to cooperate in sophisticated ways. For example, users
expect web browsers to launch external media players to
view certain forms of data, and users expect a word proces-
sor to support active spreadsheets embedded in other doc-
uments. In a conventional operating system, however, pro-
grammers must exert considerable effort to integrate appli-
cations. Indeed, few software developers have the resources
to integrate applications together as well as, for example,
Adobe Acrobat in Microsoft’s Internet Explorer.

Implementing cooperating applications in a conventional
OS is difficult because the OS isolates applications to contain
malfunctions. Cooperating applications must overcome this
built-in isolation. In contrast, language run-time systems
(a.k.a. “virtual machines”) typically rely on language safety,
rather than isolation, to contain malfunctions. Since VMs
otherwise play the same role as OSes, and since they lack a
bias towards isolation, safe VMs seem ideally suited as the
platform for a next generation of application software.

Mere safety, however, does not provide the level of protec-
tion between applications that conventional OSes provide.

Permission to make digital or hard copies, to republish, to post on se
or to redistribute to lists all or part of this work is granted without f}
provided that copies are not made or distributed for profit or comme
advantage and that copies bear this notice and the full citation or
first page. To otherwise copy or redistribute requires prior spe
permission.

Third Workshop on Scheme and Functional Programming. Octobg
2002, Pittsburgh, Pennsylvania, USA.

Copyright 2002 Adam Wick, Matthew Flatt, Wilson Hsieh.

vers
ee
cial
the
ific

or 3,

Although language-based safety can prevent a program from
trampling on another program’s data structures, it cannot
prevent a program from starving another process or from
leaking resources. Regardless of the degree of cooperation,
a practical OS/VM must track each application’s resource
consumption and prevent over-consuming applications from
taking down the entire system.

A variation on conventional isolation can certainly enable
resource tracking in a VM. For example, the VM can restrict
values passed from one process to another to those values
allocated within a certain pool of memory [1]. This com-
promise provides something better than a traditional OS, in
that a suitably allocated value can be passed directly and
safely between applications. Nevertheless, this kind of iso-
lation continues to interfere with cooperation: even if a pro-
gram can move values from one allocation pool to another,
explicit accounting with allocation pools amounts to manual
memory management as in malloc and free. This manual
management encourages narrow communication channels; in
order to foster communication, applications must be free to
exchange arbitrary data with potentially complex allocation
patterns.

We are investigating memory-management techniques that
place the responsibility for accounting with the run-time sys-
tem, instead of the programmer, while still enabling control
over an application’s memory use. The essential idea is that
a garbage collector can account for memory use using reach-
ability from an application’s roots. Thus, an application is
charged not for what it allocates, but for what it retains.
This differentiation is critical in systems where one appli-
cation may use memory allocated by another application.
The central design problem is how to deal with these shared
values usefully and efficiently.

We present preliminary results on our exploration, based
on a new garbage collector for MzScheme [7]. Our results
suggest that a garbage collector can maintain usefully pre-
cise accounting information with a low overhead, but that
the implementation of the rest of the VM requires extra care
to trigger reliable termination of over-consuming processes.
This extra care is of the same flavor as avoiding references
in the VM that needlessly preserve values from collection.

Section 2 describes the existing notion of “process” within
MzScheme, and Section 3 describes our new API for resource
enforcement. Section 4 describes in more detail possible ac-
counting policies behind the API, including the two that we
have implemented. Section 5 reports on our implementa-
tions, and Section 6 reports on our experience with them.
Section 7 presents performance results.

2. PROCESSES IN MZSCHEME

In MzScheme, no single language construct encompasses
all aspects of a conventional process. Instead, various or-
thogonal constructs implement different aspects of processes:

e Threads implement the execution aspect of a process.
The MzScheme thread function takes a thunk and cre-
ates a new thread to execute the thunk.

The following example runs two concurrent loops, one
that prints “1”s and another that prints “2”s:

(letrec ([loop (lambda (v)
(display v)
(loop v))
(thread (lambda () (loop 1)))
(loop 2))

e Parameters implement process-specific settings, such
as the current working directory. Each parameter is
represented by a procedure, such as current-directory,
that gets and sets the parameter value. Every thread
has its own value for each parameter, so that setting
a parameter value affects the value only in the current
thread. Newly created threads inherit initial parame-
ter values based on the current values in the creating
thread.

The following example sets the current directory to
"/tmp" while running do-work, then restores the cur-
rent directory:!

(let ([orig-dir (current-directory)])
(current-directory " /tmp")
(do-work)

(current-directory orig-dir))

Meanwhile, the current-directory setting of other exe-
cuting threads is unaffected by the above code.

e Custodians implement the resource-management as-
pect of a process. Whenever a thread object is created,
port object opened, GUI object displayed, or network-
listener object started, the object is assigned to the
current custodian, which is determined by the current-
custodian parameter. The main operation on a cus-
todian is custodian-shutdown-all, which terminates all
of the custodian’s threads, closes all of its ports, and
so on. In addition, every new custodian created with
make-custodian is created as a child of the current cus-
todian. Shutting down a custodian also shuts down all
of its children custodians.

The following example runs child-work-thunk in its
own thread, then terminates the thread after one sec-
ond (also shutting down any other resources used by
the child thread):

(let ([child-custodian (make-custodian)]
[parent-custodian (current-custodian)])
(current-custodian child-custodian)
(thread child-work-thunk)
(current-custodian parent-custodian)
(

(custodian-shutdown-all child-custodian))

!Production code would use the parameterize form so that
the directory is restored if do-work raises an exception.

A thread’s current custodian is not the same as the
custodian that manages the thread. The latter is de-
termined permanently when the thread is created. A
thread can, however, change its current custodian at
any time. In the above example, since child-custodian
is current when the child thread is created, the child is
placed into the management of child-custodian. Thus,
(custodian-shutdown-all child-custodian) reliably termi-
nates the child thread. In addition, if child-custodian is
the only custodian accessible in child-work-thunk, then
any custodian, thread, port, or network listener cre-
ated by the child is reliably shut down by (custodian-
shutdown-all child-custodian).

Evaluating (current-custodian) immediately in child-
work-thunk would produce child-custodian, because the
initial parameter values for the child thread are in-
herited at the point of thread creation. The child
thread may then change its current custodian at any
time, perhaps creating a new custodian for a grand-
child thread. Again, if child-custodian is the only cus-
todian accessible in child-work-thunk, then newly cre-
ated custodians necessarily fall under the management
of child-custodian.

MzScheme includes additional constructs to handle other
process aspects, such as code namespaces and event queues,
but those constructs are irrelevant to accounting.

3. ACCOUNTING API

Accounting information in MzScheme depends only on
custodians and threads. Accounting depends on custodians
because they act as a kind of process ID for termination pur-
poses. In particular, since the motivation for accounting is
to terminate over-consuming processes, MzScheme charges
memory consumption at the granularity of custodians. Ac-
counting also depends on threads, because threads encom-
pass the execution aspect of a process, and the execution
context defines the set of reachable values. Thus, the mem-
ory consumption of a custodian is defined in terms of the
values reachable from the custodian’s threads.

We defer discussion of specific accounting policies until the
next section. For now, given that accounting is attached to
custodians, we define a resource-limiting API that is similar
to Unix process limits:

e (custodian-limit-memory cust! limit-k cust2) installs a
limit of limit-k bytes on the memory charged to the
custodian cust!. If there comes a time when custl
uses more than limit-k bytes, then cust2 is shut down.

Typically, cust! and cust2 are the same custodian,
but distinguishing the accounting center from the cost
center can be useful when cust! is the parent of cust2
or vice-versa.

Although custodian-limit-memory is useful in simple settings,
it does not compose well. For example, if a parent process
has 100 MB to work with and its child processes typically use
1 MB but sometimes 20 MB, should the parent limit itself
to the worst case by running at most 5 children? And how
does the parent know that it has 100 MB to work with in the
case of parent-siblings with varying memory consumption?

In order to address the needs of a parent more directly
and in a more easily composed form, we introduce a second
interface:

e (custodian-require-memory cust! need-k cust2) installs
a request for meed-k bytes to be available for custo-
dian cust!. If there comes a time when cust! would
be unable to allocate need-k bytes, then cust2 is shut
down.

Using custodian-require-memory, a parent process can declare
a safety cushion for its own operation but otherwise allow
each child process to consume as much memory as is avail-
able. A parent can also combine custodian-require-memory
and custodian-limit-memory to declare its own cushion and
also prevent children from using more than 20 MB without
limiting the total number of children to 5.

In addition to the two memory-monitoring procedures,
MzScheme provides a function that reports a given custo-
dian’s current charges:

e (current-memory-use cust) returns the number of allo-
cated bytes currently charged to custodian cust.

4. ACCOUNTING POLICIES
4.1 Reachability

As described in the previous section, we define a custo-
dian’s memory consumption in terms of the values reachable
from the custodian’s threads, as opposed to the values orig-
inally allocated by the threads. In addition, we require that
the custodian hierarchy propagates accounting charges: if a
custodian B is charged for a value, then its parent custodian
is charged for the value as well.

Generally, reachability for accounting coincides with reach-
ability for garbage collection. In particular, a value is not
charged to a custodian if it is accessible through only weak
pointers. Finalization poses no problem for accounting, be-
cause every finalizer in Mzscheme is created with respect
to a will executor. Running a finalizer requires an explicit
action on the executor, which means that a finalized object
can be charged to the holder of the finalizer’s executor.

Accounting reachability deviates from garbage-collection
reachability in one respect. If a value is reachable from
thread A only because thread A holds a reference to thread
B, then B’s custodian is charged and not A’s (unless A’s cus-
todian is an ancestor of B’s). Similarly, if a value is reachable
by A only through a custodian C, then C is charged instead
of A’s custodian.

This deviation makes intuitive sense, because holding a
reference to another process does not provide any access to
the process’s values. Moreover, this deviation is necessary
for making accounting useful in our test programs, as we
explain in Section 6.

4.2 Sharing

In a running system, some values may be reachable from
multiple custodians. Different accounting policies might al-
locate charges for shared values in different ways, depending,
on the amount of sharing among custodians, the hierarchi-
cal relationship of the custodians, the original allocator for
a particular value or other factors. Among the policies that
seem useful, we have implemented two:

e The precise policy charges every custodian for each
value that it reaches. If two custodians share a value,
they are both charged the full cost of the value. For
example, in figure 1, objects w and z will be charged

to both custodians A and B, object x will be charged
to both custodians B and C, and object Y will be
charged only to custodian C.

e The blame-the-child policy charges every value to at
least one custodian, but not every custodian that reaches
the value. The main guarantee for blame-the-child ap-
plies to custodians A and B when A is an ancestor of
B; in that case, if A and B both reach some value,
then A is charged if and only if B is charged. Mean-
while, if B and C share a value but neither custodian
is an ancestor of the other, then at most one of them
will be charged for the object. For example, in figure
1, object Y will be charged only to custodian C' as in
the precise policy. Also, since custodian B is a child
of custodian A, B will necessarily be charged for W
and Z. In the case of X, since there is no ancestral
relationship between B and C, no guarantees are given
as to which will be charged.

The precise policy is the most obvious one, and seems easi-
est to reason about. We have explored the blame-the-child
policy, in addition, because it can be implemented more ef-
ficiently than the precise policy (at least in theory).

The blame-the-child policy, despite its imprecision, can
work with custodian-limit-memory to control the memory
consumption of a single sand-boxed application. Since the
sand-boxed application will share only with its parent, ac-
counting will reliably track consumption in the sand box.

Blame-the-child is less useful with custodian-limit-memory
in a setting of multiple cooperating children. In that case,
a well-behaved, cooperating application might incur all of
the cost of all shared values, triggering the termination of
the over-charged child (possibly leaving the rest stuck, lost
without a collaborator). However, blame-the-child always
works well with custodian-require-memory. With memory
requirements instead of memory limits, how memory charges
are allocated among children does not matter.

One policy that we have not explored is a variant of precise
that splits charges among sharing custodians. For example,
suppose that = custodians share a value of size y. With split-
ting, each of the x custodians would be charged y/x. This
policy is normally considered troublesome, because termi-
nating one of the x custodians triggers a sudden jump in
the cost of the other x — 1. Like blame-the-child, though,
this policy might be useful with custodian-require-memory.
We have not explored the cost-splitting policy because it
seems expensive to implement, and it does not appear to
offer any advantage over blame-the-child.

4.3 Timing

Ideally, a policy should guarantee the termination of a cus-
todian immediately after it violates a limit or requirement.
A naive implementation of this guarantee obviously cannot
work, as it amounts to a full collection for every allocation.

The policies that we have implemented enforce limits and
requirements only after a full collection. Consequently, a
custodian can overrun its limit temporarily. This tempo-
rary overrun seems to cause no problems in practice, be-
cause a custodian that allocates lots of memory (and thus
might violate limits or requirements) tends to trigger fre-
quent collections. Furthermore, a failure in allocation for
any custodian triggers a garbage collection which will then
terminate usage offenders to satisfy the allocation.

Custodians

Figure 1: An example set of custodians and roots with a small heap

One potential problem is that a child overrun could push
its parent past a limit, where terminating the child earlier
might have saved the parent. Another problem is that a
child overrun may occur at a time when custodians cannot
be safely terminated. These potential problems have not ap-
peared in practice, primarily because programmers cannot
know the exact cost of values and must include significant
safety margins. Nevertheless, the problems merit further
investigation.

5. IMPLEMENTATION

The implementation of both the precise and blame-the-
child policies proceeds roughly as follows:?

1. When a thread is created, the creating thread’s current
custodian is recorded in the new thread.

2. The collector’s mark procedure treats thread objects
as roots and as it marks from each thread, it charges
the thread’s custodian.

3. After collection, the collector checks the accumulated
charges against registered memory limits and require-
ments. The collector schedules custodians for destruc-
tion (on the next thread-scheduling boundary) accord-
ing to the comparison results.

Our two implementations differ only in the details of step
2. We first describe the implementation of precise account-
ing, then the implementation of blame-the-child accounting.
Finally, we discuss the impact of generational garbage col-
lection on the algorithms.

5.1 Precise Accounting

For precise accounting, the collector reserves space in the
header of each object to record the object’s set of charged

2The algorithms described should work in any collection sys-
tem. We use the terminology of a mark/sweep style collector
to simplify the description.

.

CS

CS., | CS,, | CS., | CS

m m m m m

Figure 2: Mark queue with an object

custodians (C'S, in figure 2). During collection, the mark
queue contains objects paired with the custodian set to be
charged for the object. Initially, the charged set for all ob-
jects is the empty set. The initial mark queue contains all
thread objects, where each thread is paired to the charged
set containing only the thread’s custodian.

When mark propagation reaches an object (see figure 2),
the charged set in the object’s header (C'S,) is compared
to the charge used in marking (C'S,,). If the charge set
for marking is a subset of the charged set C'S, in the object
header, no further work is performed for the object.® Other-
wise, the union of the sets is computed and installed into the
object’s header, and charges for the object are shifted from
the old set (if it is non-empty) to the unioned set. Mark-
ing continues with the object’s content using the unioned
set. After marking is complete, all garbage objects have an
empty charged set, and the charges accumulated for each
set can be relayed back to the set members.

31f the object contains a charge set, then it has been marked,
and the mark propagation has either already been done or
is queued. Since the item’s charged set is a superset of the
mark’s charge set, then no additional information is avail-
able and no further work needs to be done.

In the case of a single custodian, the above algorithm de-
generates to plain garbage collection, since the only possible
charge sets are the empty set and the set containing the one
custodian. In the case of ¢ custodians, collection potentially
requires c revisions to the charged set of every object. Thus,
in the worst case, collection requires O(c % r) time, where 7
is the size of reachable memory and c is the size of the set
of all custodians. An entire heap containing only a single
linked list with every thread pointing to the head of the list
is an example of this worst case.

5.2 Blame-the-child

Unlike precise accounting, blame-the-child accounting re-

quires only linear time in the amount of live memory. Roughly,

the blame-the-child implementation works in the same way
as the precise implementation, except that objects with non-
empty charge sets are never re-marked. This change is
enough to achieve linear time collection.

To completely implement the blame-the-child policy, the
collector sorts the set of custodians before collection so that
descendents precede ancestors. Then, the threads of each
custodians are taken individually. Each thread is marked
and the marks are propagated as far as possible before con-
tinuing with the next threads. Due to this ordering, objects
reachable from both a parent and child will be first reached
by tracing from the child’s threads, and thus charged to the
child. Once collection is complete, charges to child custodi-
ans are propagated back to their parents.

In our implementation, the blame-the-child implementa-
tion also incurs a smaller per-object overhead, since object
headers need not contain a charge set. During marking, ex-
actly one custodian is charged at a time, so that charges
can be accumulated directly to the custodian. Each object
needs only a mark bit, as in a normal collector.

A naive implementation of blame-the-child allows an ob-
vious security hole. By creating sacrificial children, a malev-
olent custodian may arbitrarily delay its destruction when
it uses too much memory. Such children would have point-
ers back into the malevolent custodian’s space so that they
would be blamed for its bad behavior. These, then, would
be killed instead of the parent.

Several possible mechanisms can be used to keep this from
happening, and we simply chose the easiest one from an
implementation perspective. They are:

1. Place an order on the list of limits and requirements so
that older custodians are killed first. In this case, the
parent will be killed before the children, so creating
sacrificial children is useless.

2. Kill every custodian that breaks a limit or requirement,
rather than just one. Since a child’s usage is included
in the parent’s usage, both will be killed.

3. Choose a random ordering. In this way, a malevolent
program would have no guarantee that the above tactic
would work.

Our implementation chooses the second tactic.

5.3 Generational Collection

After a full collection is finished and accounting is com-
plete, comparing charges to registered limits and require-
ments is simple. Therefore, the collector can guarantee that

a custodian is terminated after the first garbage collection
cycle after which a limit or requirement is violated. This
implies that there may be some delay between the detec-
tion of a violation and the actual violation. However, if the
program is allocating this delay will be small, as frequent
allocation will quickly trigger a garbage collection.

Accounting information after a minor collection is neces-
sarily imprecise, however, since the minor collection does not
examine the entire heap. Previously computed sets of custo-
dians for older objects might be used regardless of changes
since their promotion to an older generation. This old in-
formation may arbitrarily skew accounting. Worse, in the
blame-the-child implementation described above, the collec-
tor does not preserve charges in object headers, so there
is no information for older generations available to partial
collections (except those that reclaim only the nursery).

Our implementation therefore enforces limits and require-
ments only after a full collection. This choice can delay
enforcement by several collections, but should not introduce
any new inherent potential for limit overruns, since overruns
must lead to a full collection eventually.

6. EXPERIENCE

To determine the usefulness of our accounting policies in
realistic environments, we wrote and modified several pro-
grams to take advantage of accounting. One program simply
tests the ability of a parent to kill an easily sand-boxed child.
A second program, DrScheme, tests child control where the
parent and child work closely together. A third program,
a web server allowing arbitrary servlet plug-ins, tests child
control with some cooperation among the children.

6.1 Simple Kill Test

In the simple kill test, the main process creates a single
sub-custodian, places a 64 MB limit on the sub-custodian’s
memory use, and creates a single thread in the sub-custodian
that allocates an unbounded amount of memory:

(let ([child-custodian (make-custodian)])
(custodian-limit-memory child-custodian
(* 64 1024 1024) child-custodian)
(current-custodian child-custodian)
(thread-wait ; blocks until the thread completes
(thread (lambda ()
(let loop ()

(+ 1 (loop)))))))

Since accounting works, the child custodian is destroyed,
which in turn halts the child thread, and the entire program
completes. If accounting were not successful, then the pro-
gram would not terminate. Under both of our accounting
system implementations, we find this program terminates.
Unfortunately, it terminates several garbage collection cy-
cles after the limit is actually violated.

Although simple, this program presents two items of in-
terest. First, it shows that the blame-the-child policy can
work, and that it allows the natural creation of parent/child
pairs where the parent wishes to limit its children. Second,
the program shows that generational collection does delay
the detection of resource overruns.

Safety nets in our garbage collector assure that a program
does not run out of available memory before its limit is no-
ticed, but in systems with tight memory requirements, our
technique may not be acceptable. We are investigating ways

to detect overruns more quickly.

6.2 DrScheme

The DrScheme programming environment consists of one
or more windows, where each window is split into two parts.
The top part of the window is used to edit programs. The
bottom part is an interactive Scheme interpreter loop where
the program can be tested. Each interpreter (one per win-
dow frame) is run under its own custodian. With a single
line of code, we modified DrScheme to constrain each inter-
preter to 16 MB of memory.

Initial experiments with the single-line change did not pro-
duce the desired result, even with precise accounting. After
opening several windows, and after making one interpreter
allocate an unbounded amount of memory, every interpreter
custodian in DrScheme terminated. Investigation revealed
the problem:

e Each interpreter holds a reference into the DrScheme
GUI. For example, the value of the parameter current-
output-port is a port that writes to the text widget for
the interaction half of the window. The text widget
holds a reference to the whole window, and all open
Drscheme windows are chained together.

e FEach window maintains a reference to the interpreter
thread, custodian, and other interpreter-specific val-
ues, including the interpreter’s top-level environment.

Due to these references, every interpreter thread reaches ev-
ery other interpreter’s data through opaque closures and ob-
jects, even though programs running in different interpreters
cannot interfere with each other. Hence, in the precise ac-
counting system, every thread was charged for every value
in the system, which obviously defeats the purpose of ac-
counting.

Correcting the problem required only a slight modification
to DrScheme. We modified it so that a window retains only
weak links to interpreter-specific values. In other words, we
disallow direct references from the parent to the child. Thus
a child may trace references back to the parent’s values, but
will never trace these references back down to another child.

Finding the parent-to-child references in DrScheme—a fairly

large and complex system—required only a couple of hours
with garbage-collector instrumentation. The actual changes

required only a half hour. In all, five references were changed:

two were converted into weak links, two were extraneous and
simply removed, and one was removed by pushing the value
into a parameter within the child’s thread.

Breaking links from parent to child may seem backward,
but breaking links in the other direction would have required
far too much work to be practical. For example, we could not
easily modify the interpreter-owned port to weakly reference
the DrScheme window. The port requires access to many in-
ternal structures within the GUI widget. Indeed, such a con-
version would amount to the file-descriptor/handle approach
of conventional operating systems—precisely the kind of de-
sign that we are trying to escape when implementing coop-
eration.

6.3 Web Server

In the DrScheme architecture, children never cooperate
and share data. In the web server, however, considerable

sharing exists between child processes. Whenever a server
connection is established, the server creates a fresh custo-
dian to take charge of the connection. If the connection
requires the invocation of a servlet, then another fresh cus-
todian is created for the servlet’s execution. However, the
servlet custodian is created with the same parent as the
connection custodian, not as a child of the connection custo-
dian, because a servlet session may span connections. Thus,
a connection custodian and a servlet custodian are siblings,
and they share data because both work to satisfy the same
request.

The precise accounting system performs well when a servlet
allocates an unbounded amount of memory. The offending
servlet is killed right after allocating too much memory, and
the web server continues normally.

The blame-the-child system performs less well, in that
the servlet kill is sometimes delayed, but works acceptably
well for our purposes. The delayed kill with blame-the-child
arises from the sibling relationship between the connection
custodian and the servlet custodian. When the servlet runs,
the connection is sometimes blamed for the servlet’s memory
use. In practice, this happens often. The result is that
the connection is killed, and then the still-live memory is
not charged to the servlet until the next garbage collection.
This example points again to the need for better guarantees
in terms of the time at which accounting charges trigger
termination, which is one subject of our ongoing work.

7. PERFORMANCE EVALUATION

Memory accounting incurs some cost, with trade-offs in
terms of speed, space usage, and accounting accuracy. To
measure these costs, we have implemented these two mem-
ory accounting systems within MzScheme.* Our collector is
a generational, copying collector[8] implemented in C. This
collector is designed for production-level systems; it can han-
dle all situations that the default MzScheme garbage collec-
tor handles, including finalizers which may resurrect dying
objects. For analysis purposes, the collector can be tuned
statically to behave as one the following:

e NoAccnt: The base-line collector. No memory ac-
counting functionality is included in this collector.

e Precise: The base-line collector plus the memory ac-
counting system described in section 5.1.

e BTC: The base-line collector plus the memory blame-
the-child accounting system described in section 5.2.

We evaluate the space usage, accuracy and time penalty of
the BTC and Precise collectors on the following bench-
mark programs:

e Prod: An implementation of a producer/consumer
system, with five producers and five consumers paired
off. A different custodian is used for each producing or
consuming thread. This case covers situations wherein
sibling custodians share a large piece of common data;
in this case, they share a common queue.

e Kill: A basic kill test for accounting. A child custo-
dian is created and a limit is placed on its memory use.

4Accounting builds on the “precisely” collected variant of
MzScheme, instead of the “conservatively” collected variant.

Precise BTC
Test # of owner sets | Additional required space | # of owner sets | Additional required space
‘Web 360 60,054 bytes 360 30,570 bytes
Prod 35 3,842 bytes 21 1,130 bytes
DrScheme | 15 6100 bytes 9 5076 bytes
PSearch 4 266 bytes 3 186 bytes
Kill 2 146 bytes 2 146 bytes
Figure 3: Additional space requirements for accounting.
NoAccnt BTC Precise
Time S.D. | Time S.D. % slowdown | Time S.D. % slowdown
‘Web 1.30 0.05 | .77 0.06 36.2% | 1.80 0.06 38.5%
Prod 2.60 0.05 | 1.31 0.04 n/a | 141 0.04 n/a
DrScheme | 23.10 0.14 | 23.55 0.11 1.7% | 43.19 1.73 87.0%
PSearch 2.33 0.12 | 241 0.12 3.4% | 2.42 0.13 3.9%
Kill n/a n/a | 1.74 0.03 n/a | 1.76 0.04 n/a

Figure 4: Timing results in seconds of user time with standard deviations. Where applicable, the table
provides a percentage slowdown relative to the NoAccnt collector. All benchmark programs were run on
a 1.8Ghz Pentium IV with 256 MB of memory, running under FreeBSD 4.3 and MzScheme (or DrScheme)

version 200prel9.

Under the child custodian, memory is then allocated
until the limit is reached. This case covers the situ-
ation wherein proper accounting is necessary for the
proper functioning of a program.

e PSearch: A search program that seeks its target us-
ing both breadth-first and depth-first search and uses
whichever it finds first. This case is included to con-
sider situations where there are a small number of
custodians, but those custodians have large, unshared
memory use.

e Web: A web server using custodians. This test was
included as a realistic example where custodians may
be necessary. The server is initialized, and then three
threads each request a page 200 times. Every thread
on the server side which answers a query is run in its
own custodian.

e DrScheme: A program, run inside DrScheme, that
creates three custodian/thread pairs and starts a new
DrScheme process in each.

7.1 Space Usage

Regardless of the implemented policy, some additional
space is required for memory accounting. Space is required
internally to track the custodian of registered roots, and to
track owner sets. In the case of Precise, additional space
may be required for objects whose headers do not contain
sufficient unused space to hold the owner set information for
the object.

In our tests, the space requirements usually depend on the
number of owner sets. Figure 3 shows the amount of space
required for each of our test cases. These numbers show the
additional space overhead tracking, roughly, the number of
owner sets in the system. The numbers for DrScheme do
not scale with the others because the start-up process for
the underlying GUI system installs a large number of roots.

As expected, the additional space needed for precise ac-
counting is somewhat larger than the space required for

blame-the-child accounting. This space is used for union
sets (owner sets which are derived as the union of two owner
sets), and the blame-the-child implementation never per-
forms a set union. The difference thus depends entirely upon
the number of custodians and the sharing involved.

The MzScheme distribution includes a garbage collector
that is tuned for space. In particular, it shrinks the headers
of one common type of object, but this shrinking leaves no
room for owner set information. Compared to the space-
tuned collector, the NoAccnt and the accounting collectors
require between 15% and 35% more memory overall.

7.2 Accuracy

To check the accuracy of memory accounting for different
collectors, we tested each program under the precise sys-
tem and compared the results to the blame-the-child sys-
tem. The results were exactly as expected: the blame-the-
child algorithm accounts all the shared memory to one ran-
dom child. For example, in DrScheme, precise accounting
showed that around 49 MB of data was shared among the
children. Under BT'C, one of the custodians (and not neces-
sarily the same one every time) and its parent were charged
49 MB, but the other two child custodians were charged only
for local data (around 80 KB each).

7.3 Time efficiency

To measure the trade-off between the accuracy of account-
ing information and the execution speed of the collector (and
hence the program as a whole), we recorded the total run-
ning time of the test programs. Figure 4 shows the results
of these benchmarks.

In every case, precise accounting takes additional time.
The amount of additional time depends on the number of
custodians, the amount of sharing among the custodians,
and the size of the data set. In Web, Prod, PSearch,
and Kill, the custodians and heap are arranged so that the
additional penalty of precise accounting (that is, the penalty
beyond that of BTC accounting) is minimal. The greatest
slowdown in those cases, around two percent, is for Web. In

contrast, for cases where there is considerable sharing and
the heap is large, the penalty for precise accounting can be
quite large. DrScheme fits this profile, and the slowdown
for precise accounting is predictably quite high.

Blame-the-child accounting also incurs a performance penalty.

In both DrScheme and PSearch, the penalty is small. In
Web, the penalty is significant. The difference between the
former two tests and the latter one is primarily in the num-
ber of owner sets they use. The penalty difference, then, may
result from cache effects during accounting. Since owner-
set space usage is kept in a table, this table may become
large enough that it no longer fits in cache. By reading
and writing to this table on every mark, a large number
of owner sets imply considerably more cache pressure and
hence cache misses. In ongoing work, we are investigating
this possibility.

The strange case in our results is Prod. In this case,
the work of accounting actually speeds up the program. In
ongoing work we are trying to determine the cause of the
speed-up.

8. RELATED WORK

Recent research has focused on providing hard resource
boundaries between applications to prevent denial-of-service.
For example, the KaffeOS virtual machine [1] for Java pro-
vides the ability to precisely account for memory consump-
tion by applications. Similar systems include MVM [5],
Alta [2], and J-SEAL2 [4]. This line of work is limited in that
it constrains sharing between applications to provide tight
resource controls. Such restrictions are necessary to execute
untrusted code safely, but they are not flexible enough to
support high levels of cooperation between applications.

More generally, the existing work on resource controls—
including JRes [6] and research on accounting principals in
operating systems, such as the work on resource contain-
ers [3]—addresses only resource allocation, and does not
track actual resource usage.

9. CONCLUSIONS

We have presented preliminary results on our memory-
accounting garbage collection system for MzScheme. Our
approach charges for resource consumption based on the re-
tention of values, as opposed to allocation, and it requires
no explicit declaration of sharing by the programmer. Our
policy definitions apply to any runtime system that includes
a notion of accounting principles that is tied to threads,

In the long run, we expect our blame-the-child account-
ing policy to become the default accounting mechanism in
MzScheme. It provides accounting information that seems
precise enough for many applications, and it can be imple-
mented with a minimal overhead.

The main question for ongoing work concerns the timing
of accounting checks. Our current implementation checks for
limit violations only during full collections, and the charges
for a terminated custodian are not transferred until the fol-
lowing full collection. Both of these effects delay the en-
forcement of resource limits in a way that is difficult for
programmers to reason about, and we expect that much
better guarantees can be provided to programmers.

A second question concerns the suitability of weak links
for breaking accounted sharing between a parent and child,
and perhaps between peers. The current approach of weak-

ening the parent-to-child links worked well for our test pro-
grams, but we need more experience with cooperating ap-
plications.

The collectors described in this paper are distributed with
versions 200 and above of the PLT distribution of Scheme for
Unix.® Interactive performance of the accounting collectors
is comparable to the performance of the default collector,
although some pause times (particularly when doing precise
accounting) are noticeably longer.

10. REFERENCES

[1] G. Back, W. C. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, resource management, and sharing
in Java. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation, San
Diego, CA, Oct. 2000. USENIX.

[2] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and
J. Lepreau. Java operating systems: Design and
implementation. In Proceedings of the USENIX 2000
Technical Conference, pages 197-210, San Diego, CA,
June 2000.

[3] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management in
server systems. In Proc. ACM Symposium on Operating
System Design and Implementation, Feb. 1999.

[4] W. Binder, J. G. Hulaas, and A. Villazén. Portable
resource control in java: The J-SEAL2 approach. In
Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 139-155, 2001.

[5] G. Czajkowski and L. Daynes. Multitasking without
compromise: a virtual machine evolution. In Proc.
ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 125—138,
2001.

[6] G. Czajkowski and T. von Eicken. JRes: A resource
accounting interface for Java. In Proc. ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 21-35, 1998.

[7] M. Flatt. PLT MzScheme: Language manual. Technical
Report TR97-280, Rice University, 1997.
http://download.plt-scheme.org/doc/.

[8] P. R. Wilson. Uniprocessor garbage collection
techniques. In Proc. Int. Workshop on Memory
Management, number 637, Saint-Malo (France), 1992.
Springer-Verlag.

®Configure with --enable-account and make the 3m target.

