
Binding as Sets of Scopes

Abstract
Our new macro expander for Racket builds on a novel approach to
hygiene. Instead of basing macro expansion on variable renamings
that are mediated by expansion history, our new expander tracks
binding through a set of scopes that an identifier acquires from
both binding forms and macro expansions. The resulting model of
macro expansion is simpler and more uniform than one based on
renaming, and it is sufficiently compatible with Racket’s current
expander to be practical.

1. Introduction: Lexical vs. Macro Scope
Hygienic macro expansion is desirable for the same reason as lex-
ical scope: both enable local reasoning about binding so that pro-
gram fragments compose reliably. The analogy suggests specifying
hygienic macro expansion as a kind of translation into lexical-scope
machinery. In particular, variables must be renamed to match the
mechanisms of lexical scope as variables interact with macros.

A specification of hygiene in terms of renaming accommodates
simple binding forms well, but it becomes unwieldy for recursive
definition contexts (Flatt et al. 2012, section 3.8), especially for
contexts that allow a mixture of macro and non-macro definitions.
The renaming approach is also difficult to implement compactly
and efficiently in a macro system that supports “hygiene bending”
operations, such as datum->syntax, because a history of re-
namings must be recorded for replay on an arbitrary symbol.

In a new macro expander for Racket, we discard the renaming
approach and start with a generalized idea of macro scope, where
lexical scope is just a special case of macro scope when applied
to a language without macros. Roughly, every binding form and
macro expansion creates a scope, and each fragment of syntax
acquires a set of scopes that determines binding of identifiers within
the fragment. In a language without macros, each scope set is
identifiable by a single innermost scope. In a language with macros,
identifiers acquire scope sets that overlap in more general ways.

Our experience is that this set-of-scopes model is simpler to use
that the current macro expander, especially for macros that work
with recursive-definition contexts or create unusual binding pat-
terns. Along similar lines, the expander’s implementation is sim-
pler than the current one based on renaming, and the implementa-
tion avoids bugs that have proven difficult to repair in the current
expander. Finally, the new macro expander is able to provide more
helpful debugging information when binding resolution fails.
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This change to the expander’s underlying model of binding can
affect the meaning of existing Racket macros. A small amount of
incompatibility seems acceptable and even desirable if it enables
easier reasoning overall. Drastic incompatibilities would be sus-
pect, however, both because the current expander has proven effec-
tive and because large changes to code base would be impractical.
Consistent with those aims, purely pattern-based macros work with
the new expander the same as with the old one, except for unusual
macro patterns within a recursive definition context. More gener-
ally, our experiments indicate that the majority of existing Racket
macros work unmodified, and other macros can be adapted with
reasonable effort.

2. Background: Scope and Macros
An essential consequence of hygienic macro expansion is to en-
able macro definitions via patterns and templates—also known as
macros by example (Kohlbecker and Wand 1987; Clinger and Rees
1991). Although pattern-based macros are limited in various ways,
a treatment of binding that can accommodate patterns and tem-
plates is key to the overall expressiveness of a hygienic macro sys-
tem, even for macros that are implemented with more general con-
structs.

As an example of a pattern-based macro, suppose that a Racket
library implements a Java-like object system and provides a send
form, where

(send a-pt rotate 90)

evaluates a-pt to an object, locates a function mapped to the
symbol 'rotate within the object, and calls the function as a
method by providing the object itself followed by the argument
90. Assuming a lookup-method function that locates a method
within an object, the send form can be implemented by a pattern-
based macro as follows:

(define-syntax-rule (send obj-expr method-name arg)
(let ([obj obj-expr])

((lookup-method obj 'method-name) obj arg)))

With this definition, the example use of send above matches the
pattern with a-pt as obj-expr, rotate as method-name,
and 90 as arg , so the send use expands to

(let ([obj a-pt])
((lookup-method obj 'rotate) obj 90))

Hygienic macro expansion ensures that the identifier obj is not
accidentally referenced in an expression that replaces arg in a use
of send (Kohlbecker et al. 1986). For example, the body of

(lambda (obj)
(send a-pt same? obj))

must call the same? method of a-pt with the function argument
obj, and not with a-pt itself as bound to obj in the macro tem-
plate for send. Along similar lines, a local binding of lookup-
method at a use site of send must not affect the meaning of
lookup-method in send’s template. That is,



(let ([lookup-method #f])
(send a-pt rotate 90))

should still call the rotate method of a-pt.
Macros can be bound locally, and macros can even expand to

definitions of macros. For example, suppose that the library also
provides a with-method form that performs a method lookup
just once for multiple sends:

(with-method ([rot-a-pt (a-pt rotate)]) ; find rotate
(for ([i 1000000])

(rot-a-pt 90))) ; send rotate to point many times

The implementation of with-method can make rot-a-pt a
local macro binding, where a use of rot-a-pt expands to a
function call with a-pt added as the first argument to the function.
That is, the full expansion is

(let ([obj a-pt])
(let ([rot-a-pt-m (lookup-method obj 'rotate)])

(for ([i 1000000])
(rot-a-pt-m obj 90))))

but the intermediate expansion is

(let ([obj a-pt])
(let ([rot-a-pt-m (lookup-method obj 'rotate)])

(let-syntax ([rot-a-pt (syntax-rules ()
[(rot-a-pt arg)

(rot-a-pt-m obj arg)])])
(for ([i 1000000])

(rot-a-pt 90)))))

where let-syntax locally binds the macro rot-a-pt. The
macro is implemented by a syntax-rules form that produces
an anonymous pattern-based macro (in the same way that lambda
produces an anonymous function).

In other words, with-method is a binding form, it is a macro-
generating macro, it relies on local-macro binding, and the macro
that it generates refers to a private binding obj that is also macro-
introduced. Nevertheless, with-method is straightforwardly im-
plemented as a pattern-based macro:

(define-syntax-rule
(with-method ([local-id (obj-expr method-name)])

body)
(let ([obj obj-expr])

(let ([method (lookup-method obj 'method-name)])
(let-syntax ([local-id (syntax-rules ()

[(local-id arg)
(method obj arg)])])

body))))

Note that the obj binding cannot be given a permanently distinct
name within with-method. A distinct name must be generated
for each use of with-method, so that nested uses create local
macros that reference the correct obj.

In general, the necessary bindings or even the binding struc-
ture of a macro’s expansion cannot be predicted in advance of
expanding the macro. For example, the let identifier that starts
the with-method template could be replaced with a macro ar-
gument, so that either let or, say, a lazy variant of let could
be supplied to the macro. The expander must accommodate such
macros by delaying binding decisions as long as possible. Mean-
while, the expander must accumulate information about the origin
of identifiers to enable correct binding decisions.

Even with additional complexities—where the macro-generated
macro is itself a binding form, where uses can be nested so the
different uses of the generated macro must have distinct bindings,
and so on—pattern-based macros support implementations that are
essentially specifications (Kohlbecker and Wand 1987). A naive
approach to macros and binding fails to accommodate the speci-

fications (Adams 2015), while existing formalizations of suitable
binding rules detour into concepts of marks and renamings that are
distant from the programmer’s sense of the specification.

The details of a formalization matter more when moving be-
yond pattern-matching macros to procedural macros, where the
expansion of a macro can be implemented by an arbitrary compile-
time function. The syntax-case and syntax forms provide
the pattern-matching and template-construction facilities, respec-
tively, of syntax-rules, but they work as expressions within
a compile-time function (Dybvig et al. 1993). This combination
allows a smooth transition from pattern-based macros to proce-
dural macros for cases where more flexibility is needed. In fact,
syntax-rules is itself simply a macro that expands to a proce-
dure:

(define-syntax-rule (syntax-rules literals
[pattern template] ...)

(lambda (stx)
(syntax-case stx literals

[pattern #'template] ; #'_ is short for (syntax _)
...)))

Besides allowing arbitrary computation mixed with pattern match-
ing and template construction, the syntax-case system pro-
vides operations for manipulating program representations as syn-
tax objects. Those operations include “bending” hygiene by attach-
ing the binding context of one syntax object to another. For exam-
ple, a macro might accept an identifier point and synthesize the
identifier make-point, giving the new identifier the same con-
text as point so that make-point behaves as if it appeared in
the same source location with respect to binding.

Racket provides an especially rich set of operations on syntax
objects to enable macros that compose and cooperate (Flatt et al.
2012). Racket’s macro system also relies on a module layer that
prevents interference between run-time and compile-time phases
of a program, since interference would make macros compose less
reliably (Flatt 2002). Finally, modules can be nested and macro-
generated, which enables macros and modules to implement facets
of a program that have different instantiation times—such as the
program’s run-time code, its tests, and its configuration meta-
data (Flatt 2013). The module-level facets of Racket’s macro sys-
tem are, at best, awkwardly accommodated by existing models
of macro binding; those models are designed for expression-level
binding, where α-renaming is straightforward, while modules ad-
dress a more global space of mutually recursive macro and variable
definitions. A goal of our new binding model is to more simply and
directly account for such definition contexts.

3. Scope Sets for Pattern-Based Macros
Like previous models of macro expansion, our set-of-scopes ex-
pander operates on a program from the outside in. The expander
detects bindings, macro uses, and references as part of the outside-
to-inside traversal. The difference in our expander is the way that
bindings and macro expansions are recorded and attached to syntax
fragments during expansion.

3.1 Scope Sets
A scope corresponds to a binding context, and every identifier in
a program has a set of scopes. For example, if we treat let and
lambda as primitive binding forms, then in the fully expanded
expression

(let ([x 1])
(lambda (y)

z))

the let form corresponds to a scope alet, and the lambda form
corresponds to blam. That is, everything in the let’s body is in



alet, and everything in the inner lambda’s body is in blam; the set
of scopes associated with z is {alet, blam}.1

In a macro-extensible language, expanding a use of a macro
creates a new scope in the same way that a binding form creates
a new scope. Starting with

(let ([x 1])
(let-syntax ([m (syntax-rules ()

[(m) x])])
(lambda (x)

(m))))

the right-hand side of the m binding has the scope set {alet}, while
the final m has scope set {alet, bls, clam} corresponding to the let,
let-syntax, and lambda forms. We can write the scope sets
next to each x and m at the point where macro expansion reaches
the (m) form:

(let ([x{alet} 1])
(let-syntax ([m{alet , bls} (syntax-rules ()

[(m) #'x{alet}])])
(lambda (x{alet , bls , clam})

(m{alet , bls , clam}))))

The expansion of (m) produces x with the scope set {alet, dintro},
where dintro is a new scope for identifiers that are introduced by the
macro’s expansion:

(let ([x{alet} 1])
(let-syntax ([m{alet , bls} (syntax-rules ()

[(m) #'x{alet}])])
(lambda (x{alet , bls , clam})

x{alet , dintro})))

The absence of clam on the final x explains why it doesn’t refer to
the inner binding of x. At the same time, if a different m places a
macro-introduced x in a binding position around an x from a macro
use (m x), the x from the use is not macro-introduced and doesn’t
have the scope dintro, so it wouldn’t refer to the macro-introduced
binding.

Lexical scoping corresponds to sets that are constrained to a
particular shape: For any given set, there’s a single scope s that
implies all the others (i.e., the ones around s in the program). As
a result, s by itself is enough information to identify a binding for
a given reference. We normally describe lexical scope in terms of
the closest such s for some notion of “closest.” Given scope sets
instead of individual scopes, we can define “closest” as the largest
relevant set.

More generally, we can define binding based on subsets: A
reference’s binding is found as one whose set of scopes is a subset
of the reference’s own scopes (in addition to having the same
symbolic name). The advantage of using sets of scopes is that
macro expansion creates scope sets that overlap in more general
ways; there’s not always a s that implies all the others. Absent a
determining s, we can’t identify a binding by a single scope, but
we can identify it by a set of scopes.

If arbitrary sets of scopes are possible, then two different bind-
ings might have overlapping scopes, neither might be a subset of the
other, and both might be subsets of a particular reference’s scope
set. In that case, the reference is ambiguous. Creating an ambiguous
with only pattern-based macros is possible, but it requires a defini-
tion context that supports mingled macro definitions and uses; we
provide an example in section 3.5.

1 We might say that “the environment of z is {alet , blam},” but for macro
expansion, we also use the word “environment” to refer to a mapping from
bindings to variables and compile-time values. To avoid confusion, we’ll
refrain from using “environment” to mean a set of scopes.

3.2 Bindings
When macro expansion encounters a binding form, it

• creates a new scope;
• adds the scope to every identifier in binding position, as well as

to the region where the bindings apply; and
• extends a global table that maps a xsymbol, scope sety pair to a

representation of a binding.

Each local binding is represented by a unique, opaque value (e.g.,
a gensym).

For example,

(let ([x 1])
(let-syntax ([m (syntax-rules ()

[(m) x])])
(lambda (x)

(m))))

more precisely expands as

(let ([x{alet} 1])
(let-syntax ([m{alet , bls}

(syntax-rules ()
[(m) #'x{alet}])])

(lambda (x{alet , bls , clam})
x{alet , dintro})))

x{alet} Ñ x4
m{alet , bls} Ñ m8
x{alet , bls , clam} Ñ x16

where the compile-time environment along the way (not shown)
maps x4 to a variable, m8 to a macro, and x16 to another variable.
The reference x{alet , dintro} has the binding x4, because x{alet} is
the mapping for x in the binding table that has the largest subset of
{alet, dintro}.

The distinction between the binding table and the compile-time
environment is important for a purely “syntactic” view of bind-
ing, where a term can be expanded, manipulated, transferred to a
new context, and then expanded again. Some approaches to macros,
such as syntactic closures (Bawden and Rees 1988) and explicit re-
naming (Clinger 1991), tangle the binding and environment facets
of expansion so that terms cannot be manipulated with the same
flexibility.

The binding table can grow forever, but when a particular scope
becomes unreachable (i.e., when no reachable syntax object in-
cludes a reference to the scope), then any mapping that includes
the scope becomes unreachable. This weak mapping can be ap-
proximated by attaching the mapping to the scope, instead of using
an actual global table. Any scope in a scope set can house the bind-
ing, since the binding can only be referenced using all of the scopes
in the set. Attaching to the most recently allocated scope is a good
heuristic, because the most recent scope is likely to be maximally
distinguishing and have the shortest lifetime.

3.3 Recursive Macros and Use-Site Scopes
So far, our characterization of macro-invocation scopes works only
for non-recursive macro definitions. To handle recursive macro
definitions, in addition to a fresh scope to distinguish forms that
are introduced by a macro, a fresh scope is needed to distinguish
forms that are present at the macro use site.

Consider the following letrec-syntax expression, whose
meaning depends on whether a use-site identifier captures a macro-
introduced identifier:

(letrec-syntax ([identity (syntax-rules ()
[(_ misc-id)

(lambda (x)
(let ([misc-id 'other])

x))])])
(identity x))



Assuming that the letrec-syntax form creates a scope als, the
scope must be added to both the right-hand side and body of the
letrec-syntax form to create a recursive binding:

(letrec-syntax ([identity (syntax-rules ()
[(_ misc-id)

(lambda (x{als})
(let ([misc-id 'other])

x{als}))])])
(identity x{als}))

If we create a scope only for introduced forms in a macro expan-
sion, then expanding (identity x{als}) creates the scope set
bintro and produces

(lambda (x{als , bintro})
(let ([x{als} 'other])

x{als , bintro}))

where bintro is added to each of the two introduced xs. The
lambda introduces a new scope clam, and let introduces dlet,
producing

(lambda (x{als , bintro , clam})
(let ([x{als , clam , dlet} 'other])

x{als , bintro , clam , dlet}))

At this point, the binding of the innermost x is ambiguous: {als,
bintro, clam, dlet} is a superset of both {als, bintro, clam} and {als,
clam, dlet}, neither of which is a subset of the other. Instead, we
want x to refer to the lambda binding.

Adding a scope for the macro-use site corrects this problem. If
we call the use-site scope euse, then we start with

(identity x{als , euse})

which expands to

(lambda (x{als , bintro})
(let ([x{als , euse} 'other])

x{als , bintro}))

which ends up as

(lambda (x{als , bintro , clam})
(let ([x{als , clam , dlet , euse} 'other])

x{als , bintro , clam , dlet}))

There’s no ambiguity, and the final x refers to the lambda binding
as intended. In short, each macro expansion needs a use-site scope
as the symmetric counterpart to the macro-induction scope.

3.4 Use-Site Scopes and Macro-Generated Definitions
In a binding form such as let or letrec, bindings are clearly dis-
tinguished from uses by their positions within the syntactic form.
In addition to these forms, Racket (like Scheme) supports definition
contexts that mingle binding forms and expressions. For example,
the body of a module contains a mixture of definitions and expres-
sions, all in a single recursive scope. Definitions can include macro
definitions, expressions can include uses of those same macros, and
macro uses can even expand to further definitions.

With set-of-scopes macro expansion, macro definitions and uses
within a single context interact badly with use-site scopes. For ex-
ample, consider a define-identity macro that is intended to
expand to a definition of a given identifier as the identity function:

(define-syntax-rule (define-identity id)
(define id (lambda (x) x)))

(define-identity f)
(f 5)

If the expansion of (define-identity f) adds a scope to the
use-site f, the resulting definition does not bind the f in (f 5).

The underlying issue is that a definition context must treat use-
site and introduced identifiers asymmetically as binding identifiers.
In

(define-syntax-rule (define-five misc-id)
(begin

(define misc-id 5)
x))

(define-five x)

the introduced x should refer to an x that is defined in the enclosing
scope, which turns out to be the same x that appears at the use site
of define-five. But in

(define-syntax-rule (define-other-five misc-id)
(begin

(define x 5)
misc-id))

(define-other-five x)

the x from the use site should not refer to the macro-introduced
binding x.

To support macros that expand to definitions of given identifiers,
a definition context must keep track of scopes created for macro
uses, and it must remove those scopes from identifiers that end up
in binding positions. In the define-identity and define-
five examples, the use-site scope is removed from the binding
identifiers x and f, so they are treated the same as if their defini-
tions appeared directly in the source.

This special treatment of use-site scopes adds complexity to the
macro expander, but it is of the kind of complexity that mutually re-
cursive binding contexts create routinely (e.g., along the same lines
as ensuring that variables are defined before they are referenced).
Definition contexts in Racket have proven convenient and expres-
sive enough to be worth the extra measure of complexity.

3.5 Ambiguous References
The combination of use-site scopes to solve local-binding problems
(as in section 3.3) versus reverting use-site scopes to accommodate
macro-generated definitions (as in section 3.4) creates the possibil-
ity of generating an identifier whose binding is ambiguous.

The following example defines m through a def-m macro, and
it uses m in the same definition context:

(define-syntax-rule (def-m m given-x)
(begin

(define x 1)
(define-syntax-rule (m)

(begin
(define given-x 2)
x))))

(def-m m x)
(m)

The expansion, after splicing begins, ends with an ambiguous
reference:

(define-syntax-rule (def-m{adef } ....) ....)
(define x{adef , bintro1} 1)
(define-syntax-rule (m{adef })

(begin
(define x{adef , buse1} 2)
x{adef , bintro1}))

(define x{adef , cintro2} 2)
x{adef , bintro1 , cintro2}

The scope adef corresponds to the definition context, bintro1 and
buse1 correspond to the expansion of def-m, cintro2 corresponds to



the expansion of m. The final reference to x is ambiguous, because
it was introduced through both macro layers.

Unlike the ambiguity that is resolved by use-site scopes, this
ambiguity arguably reflects an inherent ambiguity in the macro.
Absent the (define x 1) definition generated by def-m, the
final x reference should refer to the definition generated from
(define given-x 2); similarly, absent the definition gener-
ated from (define given-x 2), the final x should refer to the
one generated from (define x 1). Neither of those definitions
is more specific than the other, since they are generated by differ-
ent macro invocations, so our new expander rejects the reference as
ambiguous.

Our previous model of macro expansion to cover definition
contexts (Flatt et al. 2012) would treat the final x always as a
reference to the definition generated from (define x 1) and
never to the definition generated from (define given-x 2).
So far, we have not encountered a practical example that exposes
the difference between the expanders’ treatment of pattern-based
macros in definition contexts.

4. Procedural Macros and Modules
Although our set-of-scopes expander resolves bindings differ-
ently than in previous models, it still works by attaching infor-
mation to identifiers, and so it can provide a smooth path from
pattern-matching macros to procedural macros in the same way
as syntax-case (Dybvig et al. 1993). Specifically, (syntax
form) quotes the S-expression form while preserving its scope-
set information, so that form can be used to construct the result of
a macro.

More precisely, the primitive (quote-syntax form) quotes
form with its scope sets in Racket. The derived (syntax
form) detects uses of pattern variables and replaces them with
their matches while quoting any non-pattern content in form
with quote-syntax. A (syntax form) can be abbreviated
#'form, and when form includes no pattern variables, #'form
is equivalent to (quote-syntax form).

The result of a quote-syntax or syntax form is a syntax
object. When a syntax object’s S-expression component is just a
symbol, then the syntax object is an identifier.

4.1 Identifier Comparisons with Scope Sets
Various compile-time functions work on syntax objects and iden-
tifiers. Two of the most commonly used functions are free-
identifier=? and bound-identifier=?, each of which
takes two identifiers. The free-identifier=? function is
used to recognize a reference to a known binding, such as recogniz-
ing a use of else in a conditional. The bound-identifier=?
function is used to check whether two identifiers would conflict as
bindings in the same context, such as when a macro that expands to
a binding form checks that identifiers in the macro use are suitably
distinct.

These two functions are straightforward to implement with
scope sets. A free-identifier=? comparison on identifiers
checks whether the two identifiers have the same binding by con-
sulting the global binding table. A bound-identifier=? com-
parison checks that two identifiers have exactly the same scope sets,
independent of the binding table.

4.2 Local Bindings and Syntax Quoting
The set-of-scopes approach to binding works the same as previous
models for macros that are purely pattern-based, but the set-of-
scopes approach makes finer distinctions among identifiers than
would be expected by existing procedural Racket macros that use
#` or quote-syntax. To be consistent with the way that Racket

macros are currently written, quote-syntax must discard some
scopes.

For example, in the macro

(lambda (stx)
(let ([id #'x])

#`(let ([#,id 1])
x)))

the x that takes the place of #,id should bind the x that is in the
resulting let’s body. The x that is bound to id, however, is not in
the scope that is introduced by the compile-time let:

(lambda (stx{alam})
(let ([id{alam , blet} #'x{alam}])

#`(let ([#,id{alam , blet} 1])
x{alam , blet})))

If quote-syntax (implicit in #`) preserves all scopes on an
identifier, then with set-of-scopes binding, the x that replaces #,id
will not capture the x in the generated let body.

It’s tempting to think that the compile-time let should in-
troduce a phase-specific scope that applies only for compile-time
references, in which case it won’t affect x as a run-time refer-
ence. That adjustment doesn’t solve the problem in general, since
a macro can generate compile-time bindings and references just as
well as run-time bindings and references.

A solution is for the expansion of quote-syntax to discard
certain scopes on its content. The discarded scopes are those from
binding forms that enclosed the quote-syntax form up to a
phase crossing or module top-level, as well as any use-site scopes
recorded for macro invocations within those binding forms. In the
case of a quote-syntax form within a macro binding’s right-
hand side, those scopes cover all of the scopes introduced on the
right-hand side of the macro binding.

The resulting macro system is different than the current Racket
macro system. Experiments suggest that the vast majority of macro
implementations work either way, but it’s easy to construct an
example that behaves differently:

(free-identifier=? (let ([x 1]) #'x)
#'x)

In Racket’s current macro system, the result is #f. The set-of-
scopes system with a scope-pruning quote-syntax produces
#t, instead, because the let-generated scope is stripped away
from #'x.

If quote-syntax did not prune scopes, then not only would
the result above be #f, it would also be #f with (let ([y 1])
#'x) instead of (let ([x 1]) #'x). That similarity reflects
the switch to attaching identifier-independent scopes to identifiers
instead of attaching identifier-specific renamings.

Arguably, the issue here is the way that pieces of syntax from
different local scopes are placed into the same result syntax object,
with the expectation that all the pieces are treated the same way. In
other words, Racket programmers have gotten used to an unusual
variant of quote-syntax, and most macros could be written just
as well with a non-pruning variant.

Supplying a second, non-pruning variant of quote-syntax
poses no problems. Our set-of-scopes implementation for Racket
implements the non-pruning variant when a #:local keyword is
added to a quote-syntax form. For example,

(free-identifier=? (let ([x 1])
(quote-syntax x #:local))

(quote-syntax x #:local))

produces #f instead of #t, because the scope introduced by let
is preserved in the body’s syntax object. The non-pruning variant
of quote-syntax is useful for embedding references in a pro-
gram’s full expansion that are meant to be inspected by tools other



than the Racket compiler; Typed Racket’s implementation uses the
#:local variant of quote-syntax to embed type declarations
(including declarations for local bindings) in a program’s expan-
sion for use by its type checker.

4.3 First-Class Definition Contexts
Racket exposes the expander’s support for definition contexts (see
section 3.4) so that new macros can support definition contexts
while potentially changing the meaning of a macro or variable
definition. For example, the class macro allows local macro
definitions in the class body while it rewrites specified function
definitions to methods and other variable definitions to fields. The
unit form similarly rewrites variable definitions to a mixture of
private and exported definitions with a component.

Implementing a definition context starts with a call to syntax-
local-make-definition-context, which creates a first-
class (at compile time) value that represents the definition context.
A macro can force expansion of forms in the definition context,
it can add variable bindings to the definition context, and it can
add compile-time bindings and values that are referenced by further
macro expansion within the definition context. To a first approxi-
mation, a first-class definition context corresponds to a scope that
is added to any form expanded within the definition context and
that houses the definition context’s bindings. A definition context
also has a compile-time environment frame (extending the context
of the macro use) to house the mapping of bindings to variables and
compile-time values.

Like other definition contexts (see section 3.4), the compile-
time environment must track use-site scopes that are generated
for macro expansions within a first-class definition context. If the
macro moves any identifier into a binding position in the over-
all expansion, then the macro normally must remove accumulated
use-site scopes (for the current definition context only) by apply-
ing syntax-local-identifier-as-binding to the iden-
tifier. For example, the unit form implements a definition context
that is similar to the body of a lambda, but variables are inter-
nally transformed to support mutually recursive references across
unit boundaries.

(unit (import)
(export)

(define x 1)
x)

In this example, (define x 1) is expanded to (define-
values (x) 1) with a use-site scope on x, but the intent
is for this definition of x to capture the reference at the end
of the unit form. If the unit macro simply moved the bind-
ing x into a letrec right-hand side, the x would not capture
the final x as moved into the letrec body; the use-site scope
on the definition’s x would prevent it from capturing the use.
The solution is for the unit macro to apply syntax-local-
identifier-as-binding to the definition’s x before using
it as a letrec binding. Macros that use a definition context
and bound-identifier=? must similarly apply syntax-
local-identifier-as-binding to identifiers before com-
paring them with bound-identifier=?.

Even if a macro does not create a first-class definition context,
some care is needed if a macro forces the expansion of subforms
and moves pieces of the result into binding positions. Such a macro
probably should not use syntax-local-identifier-as-
binding, but it should first ensure that the macro use is in an
expression context before forcing any subform expansions. Other-
wise, the subform expansions could interact in unexpected ways
with the use-site scopes of an enclosing definition context.

Use-site scopes associated with a first-class definition context
are not stored directly in the compile-time environment frame for

the definition context. Instead, they are stored in the closest frame
that is not for a first-class definition context, so that the scopes
are still tracked when the definition context is discarded (when the
macro returns, typically). The scope for the definition context itself
is similarly recorded in the closest such frame, so that quote-
syntax can remove it, just like other binding scopes.

4.4 Rename Transformers
Racket’s macro API includes support for binding aliases through
rename transformers. A compile-time binding to the result of
make-rename-transformer is similar to a binding to a
macro transformer that replaces the binding’s identifier with the
aliased identifier. In addition, however, binding to a rename trans-
former causes free-identifier=? to report #t for the origi-
nal identifier and its alias.

With set-of-scopes binding, a binding alias is supported through
an extension of the binding table. The mapping from a xsymbol,
scope sety pair is to a xbinding, maybe-aliasedy pair, where an
maybe-aliased is either empty or another identifier (i.e., a symbol
and scope set) to which the mapped identifier should be considered
free-identifier=?. When a transformer-binding form such
as define-syntax or letrec-syntax detects that the value
to be installed for a binding as a rename transformer, it updates the
binding table to register the identifier within the transformer as an
optional-alias.

The implementation of free-identifier=? must follow
alias chains. Cycles are possible, and they cause the aliased identi-
fier to be treated as unbound.

4.5 Modules and Phases
The module form creates a new scope for its body. More precisely,
a module form creates two new scopes: one that roughly reflects
“outside edge” of the module, covering everything that is originally
in the module body, and one for the “inside edge” of the module,
covering everything that appears in the module through macro
expansion for forms in the module’s top level. The “inside edge”
scope is the one that’s like any definition context, while the “outside
edge” scope distinguishes identifiers that had no scopes before
being introduced through macro expansion.

A (module* name #f ....) submodule form, where #f
indicates that the enclosing module’s bindings should be visible,
creates an additional scope in the obvious way. For other mod-
ule* and module submodule forms, the macro expander pre-
vents access to the enclosing module’s bindings by removing the
two scopes of the enclosing module.

A module distinguishes bindings that have the same name but
different phases. For example, lambda might have one meaning
for run-time code within a module, but a different meaning for
compile-time code within the same module. Furthermore, instan-
tiating a module at a particular phase implies a phase shift in its
syntax literals. Consider the module

(define x 1)
(define-for-syntax x 2)

(define id #'x)
(define-for-syntax id #'x)

(provide id (for-syntax id))

and suppose that the module is imported both normally and for
compile time, the later with a s: prefix. In a compile-time context
within the importing module, both id and s:id will be bound to
an identifier x that had the same scopes originally, but they should
refer to different x bindings (in different module instances with
different values).



Among the possibilities for distinguishing phases, having per-
phase sets of scopes on an identifier makes the phase-shifting
operation most natural. A local binding or macro expansion can
add scopes at all phases, while module adds a distinct inside-
edge scope to every phase (and the same outside-edge scope to all
phases). Since every binding within a module is forced to have that
module’s phase-specific inside-edge scopes, bindings at different
scopes will be appropriately distinguished.

Having a distinct “root” scope for each phase makes most local
bindings phase-specific. That is, in

(define-for-syntax x 10)
(let ([x 1])

(let-syntax ([y x])
....))

the x on the right-hand side of let-syntax see the top-level
phase-1 x binding, not the phase-0 local binding. This is a change
from Racket’s current approach to binding and phases, but the
only programs that are affected are ones that would trigger an
out-of-context error in the current system. Meanwhile, macros can
construct identifiers that have no module scope, so out-of-context
errors are still possible.

4.6 The Top Level
A namespace in Racket is a top-level evaluation context. Each call
to eval uses a particular namespace (either the current names-
pace or one supplied to eval), and each read–eval–print
loop works in a particular namespace. Namespaces are first-class
values in Racket. A namespace can be created as fresh (e.g., for
a sandbox), or it can be extracted from a module instantiation to
simulate further evaluation in the module’s body.

As the connection to modules may suggest, a top-level names-
pace corresponds to a pair of scopes in the same way that a module
has a scope. Each top-level namespace has the same outside-edge
scope, but a distinct inside-edge scope where bindings reside.

A troublesome aspect of top-level namespaces in Racket is that
a form might be captured (via quote-syntax), expanded, or
compiled in one namespace, and then evaluated in another names-
pace. Historically, top-level bindings have been equated with “un-
bound,” so that expanded and compiled forms originating in a top-
level context could move freely among namespaces. This treatment
as “unbound” has been fuzzy, however, and forms that originate
from module namespaces have been treated differently from forms
that originate in a non-module namespace.

To accommodate top-level namespaces with as much consis-
tency (of binding treatment) and convenience (of moving forms
among top-level namespaces) as possible, we introduce one more
dimension to syntax objects. Instead of having a single set of scopes
per phase, each syntax object has a sequence of scope sets per
phase. When a syntax object is introduced to a top-level context
that is not already included in its scope set (at a gven phase), the
current scope set is cloned as a new first item of the list of sets; all
further scope-set manipulations affect that first item. When looking
up an identifier’s binding, however, the sequence is traversed un-
til a binding is found. In other words, all but the first item in the
list act as fallbacks for locating a binding. In practice, this fallback
mechanisms is consistent with most existing code without other-
wise interfering with scope management (since the fallbacks apply
only when an identifier is otherwise unbound).

5. Implementation and Experience
Scope sets have an intuitive appeal as a model of binding, but a true
test of the model is whether it can accommodate a Racket-scale
use of macros—for constructing everything from simple syntactic
abstractions to entirely new languages. Indeed, the set-of-scopes

model was motivated in part by a fraying of Racket’s current
macro expander at the frontiers of its implementation, e.g., for
submodules (Flatt 2013).2

We have implemented a set-of-scopes expander as a replace-
ment of Racket’s existing macro expander. A snapshot of the main
Racket distribution with the replacement expander is provided as
supplementary material.

Build times, memory use, and bytecode footprint are essentially
unchanged compared to the current expander. Getting performance
on par with the previous system required about two weeks of effort,
which we consider promising in comparison to a system that has
been tuned over the past 15 years.

5.1 Initial Compatibility Results
The packages in Racket’s main distribution have been adjusted to
build without error (including all documentation), and most tests in
the corresponding test suite pass; 43 out of 7501 modules currently
fail.3 Correcting the failures will most likely require small changes
to accommodate the new macro expander.

Achieving the current level of success required small changes
to 15 out of about 200 packages in the distribution, plus several
substantial macro rewrites in the core package:

• Changed macros in the core package include the unit, class,
and define-generics macros, all of which manipulate
scope in unusual ways.

• The Typed Racket implementation, which is generally sensitive
to the details of macro expansion, required a handful of adjust-
ments to deal with changed expansions of macros and the new
scope-pruning behavior of quote-syntax.

• Most other package changes involve languages implementa-
tions that generate modules or submodules and rely on a non-
composable treatment of module scopes by the current ex-
pander (which creates trouble for submodules in other con-
texts).

In about half of all cases, the adjustments for set-of-scopes expan-
sion are compatible with the existing expander. In the other half, the
macro adjustments were incompatible with the previous expander
and the two separate implementations seem substantially easier to
produce than one unified implementation.

Besides porting the main Racket distribution to a set-of-scopes
expander, we tried building and testing all packages registered
at http://pkgs.racket-lang.org/. The result shows 46
failures out of about 400 packages, as opposed to to 21 failures for
the same set of packages with the current Racket release. Many new
failures involve packages that implement non-S-expression read-
ers and rely on namespace-interaction details (as discussed in sec-
tion 4.6) that change with scope sets; the language implementations
can be adjusted to use a different technique that is compatible with
both expanders.4

2 For an example of a bug report about submodules, see problem report
14521 at http://bugs.racket-lang.org/query/?debug=
&database=default&cmd=view+audit-trail&cmd=
view&pr=14521. The example program fails with the current ex-
pander, due to problems meshing mark-oriented module scope with
renaming-oriented local scope, but the example works with the set-of-
scopes expander.
3 Many failures are unrelated to the macro system.
4 See the discussion on compatibility of a reader implementation on
the Racket mailing list at https://groups.google.com/d/msg/
racket-dev/6khgHKygmS4/cDIfw5cimDEJ.

http://pkgs.racket-lang.org/
http://bugs.racket-lang.org/query/?debug=&database=default&cmd=view+audit-trail&cmd=view&pr=14521
http://bugs.racket-lang.org/query/?debug=&database=default&cmd=view+audit-trail&cmd=view&pr=14521
http://bugs.racket-lang.org/query/?debug=&database=default&cmd=view+audit-trail&cmd=view&pr=14521
https://groups.google.com/d/msg/racket-dev/6khgHKygmS4/cDIfw5cimDEJ
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5.2 Longer-Term Compatibility Considerations
As the initial experiments confirm, most Racket programs expand
and run the same with a set-of-scope expander as with the cur-
rent expander. Pattern-based macros are rarely affected. When
changes are needed to accommodate the set-of-scopes expander,
those changes often can be made compatible with the existing ex-
pander. In a few cases, incompatibilities appear unavoidable.

Macros that manipulate bindings or scope in unusual ways can
easily expose the difference between the macro systems. As an
example, the following program produces 1 with Racket’s current
expander, but it provokes an ambiguous-binding error with the set-
of-scopes expander:
(define-syntax-rule (define1 id)

(begin
(define x 1)
; stash a reference to the introduced identifier:
(define-syntax id #'x)))

(define-syntax (use stx)
(syntax-case stx ()

[(_ id)
(with-syntax ([old-id (syntax-local-value #'id)])

#'(begin
(define x 2)
; reference to old-id ends up ambiguous:
old-id))]))

(define1 foo)
(use foo)

In the set-of-scopes model, define1 and use introduce bindings
from two separate macro expansions, and they also arrange for
an reference to be introduced by both of those macros, hence the
ambiguity. Arguably, in this case, the use macro is brokenThe use
macro can be fixed by applying syntax-local-introduce to
the result of (syntax-local-value #'id), which cancels
the macro-introduction scope on the identifier, since the identifier
conceptually exists outside of this macro’s expansion. Such an
application of syntax-local-introduce is typically needed
and typically present in existing Racket macros that bring stashed
identifiers into a new context.

The example above illustrates a typical level of macro complex-
ity needed to expose differences between the existing and set-of-
scopes expanders. Other existing Racket macros that may fail with
the set-of-scopes expander include macros that expand to nested
module forms, macros that use explicit internal-definition con-
texts, and macros that introduce identifiers that originate in differ-
ent modules but expect capture among the identifiers.

The documentation for Racket’s current macro system avoids
references to the underlying mark-and-rename model. As a result,
the documentation is often too imprecise to expose differences
created by a change to set-of-scope binding. One goal of the new
model is to allow the specification and documentation of Racket’s
macro expander to be tightened; scope sets are precise enough for
specification, but abstract enough to allow high-level reasoning.

5.3 Benefits for New Macros
Certain existing macros in the Racket distribution had to be reim-
plemented wholesale for the set-of-scopes expander. A notable ex-
ample is the package macro, which simulates the module sys-
tem of Chez Scheme (Waddell and Dybvig 1999). The implemen-
tation of package for the current Racket macro expander uses
first-class definition contexts, rename transformers, and a facility
for attaching mark changes to a rename transformer (to make an in-
troduced name have marks similar to the reference). The implemen-
tation with the set-of-scopes expander is considerably simpler, us-
ing only scope-set operations and basic rename transformers. Scope

sets more directly implement the idea of packages as nested lexi-
cal environments. The new implementation is 345 lines versus 459
lines for the original implementation; both versions share much of
the same basic structure, and the extra 100 lines of the old imple-
mentation represent especially complex pieces.

A similar example was discussed on the Racket mailing list.
The in-package form is intended to simulate Common Lisp
namespaces, where definitions are implicitly prefixed with a pack-
age name, a package can import unprefixed names from a dif-
ferent package with use-package, and a package can stop us-
ing unprefixed names for the remainder its body with unuse-
package. In this case, an implementation for the current expander
uses marks, but the implementation is constrained so that macros
exported by one package cannot expand to definitions in another
package. Again, the set-of-scopes expander is conceptually sim-
pler, more directly reflects binding regions with scopes, and allows
definition-producing macros to be used across package boundaries.
The version for the current expander also works with the set-of-
scopes expander, although with the same limitations as for the cur-
rent expander; in fact, debugging output from the set-of-scopes ex-
pander was instrumental in making that version of in-package
work.

These two anecdotes involve similar macros that better fit the
set-of-scopes model for essentially the same reason, but out expe-
rience with others macros—the unit macro, class macro, and
define-generics macro—has been similarly positive. In all
cases, the set-of-scopes model has felt easier to reason about, and
the expander could more readily provide tooling in support of the
coneptual model.

5.4 Debugging Support
Although the macro debugger (Culpepper and Felleisen 2010) has
proven to be a crucial tool for macro implementors, binding reso-
lution in Racket’s current macro expander is completely opaque to
macro implementers. When something goes wrong, the expander or
macro debugger can report little more than “unbound identifier” or
“out of context”, because the process of replaying renamings and
the encodings used for the renamings are difficult to unpack and
relate to the programmer.

A set-of-scopes expander is more frequently in a position to re-
port “unbound identifier, but here are the identifier’s scopes, and
here are some bindings that are connected to those scopes.” In the
case of ambiguous bindings, the expander can report the referenc-
ing identifier’s scopes and the scopes of the competing bindings.
These details are reported in a way similar to stack traces: subject
to optimization and representation choices, and underspecified as a
result, but invaluable for debugging purposes.

For example, when placed in a module named m, the ambigious-
reference error from section 5.2 produces an error like this one:

x: identifier's binding is ambiguous
context...:

#(1772 module) #(1773 module m 0) #(2344 macro)
#(2358 macro)

matching binding...:
#<module-path-index:()>
#(1772 module) #(1773 module m 0) #(2344 macro)

matching binding...:
#<module-path-index:()>
#(1772 module) #(1773 module m 0) #(2358 macro)

in: x
Each scope is printed as a Racket vector, where the vector starts
with a number that is distinct for every scope. A symbol afterward
provides a hint at the scope’s origin: 'module for a module
scope, 'macro for a macro-introduction scope, 'use-site for
a macro use-site scope, or 'local for a local binding form. In
the case of a 'module scope that corresponds to the inside edge,



the module’s name and a phase (since an inside-edge scope is
generated for each phase) are shown.

The #<module-path-index:()>s in the error correspond
to the binding, and they mean “in this module.” Overall, the mes-
sage shows that x has scopes corresponding to two different macro
expansions, and it’s bound by definitions that were produced by the
expansions separately.

5.5 Scope Sets for JavaScript
Although the set-of-scopes model of binding was developed with
Racket as a target, it is also intended as a more understandable
model of macros to facilitate the creation of macro systems for
other languages. In fact, the Racket implementation was not the
first implementation of the model to become available.

Based on an early draft of this report, Tim Disney revised the
Sweet.js macro implementation for JavaScript (Disney et al. 2014;
Disney et al. 2015)5 to use scope sets even before the initial Racket
prototype was complete. Disney reports that the implementation of
hygiene for the macro expander is now “mostly understandable”
and faster.

6. Model
We present a formal model of set-of-scope expansion following the
style of Flatt et al. (2012). Complete models, both in typeset form
and executable form using PLT Redex, are provided as supplemen-
tary material.

As a first step, we present a model where only run-time ex-
pressions are expanded, and implementations of macros are simply
parsed. As a second step, we generalize the model to include phase-
specific scope sets and macro expansion at all phases. The third step
adds support for local expansion, and the fourth step adds first-class
definition contexts. The model does not cover modules or top-level
namespaces.

6.1 Single-Phase Expansion
Our macro-expansion model targets a language that includes with
variables, function calls, functions, atomic constants, lists, and syn-
tax objects:
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Since the model is concerned with macro expansion and program-
matic manipulation of program terms, we carefully distinguish
among

• names, which are abstract tokens;
• variables, which correspond to function arguments and ref-

erences in an AST and are formed by wrapping a name as
���������;

• symbols, which are values with respect to the evaluator and are
formed by prefixing a name with a quote; and

• identifiers, which are also values, are formed by combining a
symbol with a set of scopes, and are a subset of syntax objects.

For a further explanation of the distinctions among these different
uses of names, see Flatt et al. (2012, section 3.2.1).

5 See pull request 461 at https://github.com/mozilla/sweet.
js/pull/461.

The model’s evaluator is standard and relies on a � function to
implement primitives:
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Interesting primitives include the ones that manipulate syntax ob-
jects,

���������stx-e���mk-stx�������

where stx-e extracts the content of a syntax object, and mk-stx
creates a new syntax object with a given content and the scopes of
a given existing syntax object:
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Macro expansion takes a program that is represented as as a
syntax object and produces a fully expanded syntax object. To
evaluate the program, the syntax object must be parsed into an
AST. The parser uses a ������� metafunction that takes an identifier
and a binding store, �. The names lambda, quote, and syntax,
represent the core syntactic forms, along with the implicit forms of
function calls and variable reference:
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The ������� metafunction extracts an identifier’s name and its bind-
ing context. For now, we ignore phases and define a binding context
as simply a set of scopes. A binding store maps a name to a map-
ping from scope sets to bindings, where bindings are represented
by fresh names.
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The �������metafunction uses these pieces along with a ��������������
helper function to select a binding. If no binding is available in the
store, the identifier’s symbol’s name is returned, which effectively
allows access to the four primitive syntactic forms; the macro ex-
pander will reject any other unbound reference.
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Finally, we’re ready to define the ������ metafunction. In ad-
dition to a syntax object (for a program to expand) and a bind-
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ing store, the expander needs an environment, �, that maps bind-
ings to compile-time meanings. The possible meanings of a bind-
ing are the three primitive syntactic forms recognized by �����, the
let-syntax primitive form, a reference to a function argument,
or a compile-time value—where a compile-time function repre-
sents a macro transformer.
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The process of macro expansion creates new bindings, so the
������ metafunction produces a tuple containing an updated bind-
ing store along with the expanded program. For example, the sim-
plest case is for the quote form, which leaves the body of the
form and the store as-is:

�����������������→�〈������〉
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Since we are not yet dealing with expansion of compile-time terms,
no scope pruning is needed for syntax, and it can be essentially
the same as quote.
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Expansion of a lambda form creates a fresh name and fresh scope
for the argument binding. Adding the new scope to the formal
argument (we define the ��� metafunction later) creates the binding
identifier. The new binding is added to the store, �, and it is also
recorded in the compile-time environment, �, as a variable binding.
The body of the function is expanded with those extensions after
receiving the new scope, and the pieces are reassembled into a
lambda form.
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When the generated binding is referenced (i.e., when resolving
an identifier produces a binding that is mapped as a variable),
then the reference is replaced with the recorded binding, so that
the reference is bound-identifier=? to the binding in the
expansion result.
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A local macro binding via let-syntax is similar to an argument
binding, but the compile-time environment records a macro trans-
former instead of a variable. The transformer is produced by using
����� and then ���� on the compile-time expression for the trans-
former. After the body is expanded, the macro binding is no longer
needed, so the body expansion is the result.
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Finally, when the expander encounters an identifier that resolves
to a binding mapped to a macro transformer, the transformer is
applied to the macro use. Fresh scopes are generated to represent
the use site, ����, and introduced syntax, ����, where the introduced-
syntax scope is applied using ��� to both the macro argument and

result, where ��� corresponds to an exclusive-or operation to leave
the scope intact on syntax introduced by the macro (see below).

����������������������� ��� ��������������������������������

������������������������������������������������������������

����������������������������

�����������������〈��������〉��
������������������〈��������〉��
��������������������������������������������������������

The only remaining case of ������ is to recur for function-call
forms, threading through the binding store using an accumulator-
style ������� helper:

�������������������������������������������������� ��� 〈����������������������������������������������〉
������������������������������������������������������〈������������������������������〉

����������������������������������→�〈������������〉
�������������������������������� ��� 〈����������������〉
��������������������������������������������� ��� ��������������������������������������������������

���������������������������������〈������������〉

For completeness, here are the ��� and ��� metafunctions for prop-
agating scopes to all parts of a syntax object, where ����⊕���� adds
��� to ��� if is not already in ��� or removes it otherwise:

��������������→����

������������������������ �������������������∪�����
���������������������������������� ���������������������������������������∪�����

��������������→����

������������������������ �����������������⊕�����
���������������������������������� �������������������������������������⊕�����

To take a program from source to value, use ������, then �����,
then ����.

6.2 Multi-Phase Expansion
To support phase-specific scope sets, we change the definition of
��� so that it is a mapping from phases to scope sets:

��������������

��������������������������������

With this change, many metafunctions must be indexed by the cur-
rent phase of expansion. For example, the result of ������� depends
on the current phase:

������������������→�����

����������������������������� ��������������

������������������������������ ����������������

������������������������������������������������������

�������� ����������������������������������������

����������������������������� �������

Phase-specific expansion allows let-syntax to expand the
compile-time expression for a macro implementation, instead of
just parsing the expression. Note that the uses of ������ and �����

on the transformer expression are indexed by ����:

������������������������→�〈������〉
��������������������������������������������������������������� ��� ���������������������������������

���������������������������������let-syntax������������������〈�����������〉��
������������������〈����������〉�����������������������������
��������� �����������������������������������������������∅��������〈����������〉��
���������� ����������������������������������������������������������������������

���������∪�������������



In addition to carrying a phase index, the revised ������ takes a
set of scopes created for bindings. Those scopes are the ones to be
pruned from quoted syntax by the revised syntax expansion:

��������������������������������������������������� ��� 〈��������������������������������������〉
�������������������������������������syntax��������������������������������

The ����� metafunction recurs through a syntax object to remove
all of the given scopes at the indicated phase:

�������������������→����

����������������������������� �������������������� ��������∖�������

��������������������������������������� ������������������������������������ ��������∖�������
����������������������������������������������������

6.3 Local Expansion
Environment inspection via syntax-local-value and local
expansion via local-expand are accommodated in the model
essentially as in Flatt et al. (2012), but since local expansion can
create bindings, the ���� metafunction must consume and produce
a binding store. The ���� metafunction also must be index by the
phase used for syntax operations.

Local expansion needs the current macro expansion’s introduc-
tion scope, if any. In addition, local expansions that move identifiers
into binding positions need syntax-local-identifier-
as-binding, which requires information about scopes in the
current expansion context. Local expansion, meanwhile, can create
new such scopes. To support those interactions, ���� and ������

must both consume and produce scope sets for the current use-site
scopes, and binding scopes must also be available for local expan-
sion of syntax forms. To facilitate threading through all of that
information, we define ��� as an optional current scope and � as an
extended store:
���������������

������〈�����������〉

The second part of a � tuple is a set of scopes to be pruned at
syntax forms. The third part is a subset of those scopes that are
the current expansion context’s use-site scopes, which are pruned
by syntax-local-identifier-as-binding. The differ-
ent parts of a � tuple vary in different ways: the � part is consis-
tently threaded through evaluation and expansion, while the scope-
set parts are stack-like for expansion and threaded through evalua-
tion. In the case of a macro-application step, the scope-set parts of
the tuple are threaded through expansion, too, more like evaluation.

In the model, the lvalue, lexpand, and lbinder primi-
tives represent syntax-local-value, local-expand, and
syntax-local-identifier-as-binding, respectively:

����������������������→�〈������〉
�����������lvalue��������������������� ��� 〈������������������������������〉
����������������������������������������〈������������〉�������〈����_��_〉
�����������lexpand��������������������������������� ��� 〈�����������������������〉
������������������������������������������〈�������〉��

��������������������������������〈���������������������〉��
���� ���������������������∈���������������������
�����〈����_��_〉��
������������������������������� ����������������������������������������������

�����������������������������������������〈����������〉
�����������lbinder��������������������� ��� 〈����������������������������〉
����������������������������������������〈������������〉�������〈_��_�������〉

The implementation of lexpand uses a new ���������������
transformer to make an identifier a stopping point for expansion
while remembering the former ��������� mapping of the identifier.
The ������ helper function strips away a ���� constructor:

�������������������→����������

����������������������� ��� ���������

����������������� ��� ���������

The expander must recognize ���� transformers to halt expansion
at that point:

��������������������→�〈������〉
������������������������������������������������ ��� 〈�����������������������������������〉
����������������〈���_��_〉���������������������������������_�

The revised macro-application rule for ������ shows how the use-
site scopes component of � is updated and how the current appli-
cation’s macro-introduction scope is passed to ����:

�����������������������〈�������������〉� ��� 〈�������������〉
������������������������������������������������������������

�����������������������������������������������〈��������〉��
������������������〈��������〉��
〈�����������∪��������������∪�����〉�������
���������������������������������������������������������������������〈����������〉��
���������������������������������������〈�������������〉

In contrast, the revised lambda rule shows how the pruning scope
set is extended for expanding the body of the function, the use-site
scope set is reset to empty, and all extensions are discarded in the
expansion’s resulting store tuple.

���������������������������������������������������〈�������������〉�
��� 〈����������������������������������������〈��������������〉〉
����������������������������������lambda������������������〈�����������〉��

������������������〈����������〉��������������������������������
��������� ������������������������� ��������������������

���������������������������������������〈�������������∪�������∅〉����〈����������〈����_��_〉〉

6.4 First-Class Definition Contexts
Supporting first-class definition contexts requires no further changes
to the ������ metafunction, but the ���� metafunction must be
extended to implement the new-defs and def-bind primi-
tives, which model the syntax-local-make-definition-
context and syntax-local-bind-syntaxes functions.

The new-defs primitive allocates a new scope to represent
the definition context, and it also allocates a mutable reference to
a compile-time environment that initially references the current
environment. The two pieces are combined with a ���� value
constructor:

�����������new-defs������������〈�������������〉� ��� 〈��������������������������〉
�����������������������������〈�����������〉����������������������〈�����������〉��

〈����������� ��������������∪�����������〉�����

The def-bind primitive works in two modes. In the first mode, it
is given only a definition context and an identifier, and it creates a
new binding for the identifier that includes the definition context’s
scope. The new binding is mapped to variable in an updated envi-
ronment for definition context:

�����������def-bind������������������������������ ��� 〈���〈����������������〉〉
������������������������������������������〈��������������������������〉��

�����������������������������〈���������〉�������〈����������������〉��
�������������������������������������������������������������

�����������������〈�����������〉������������ ���������������

���������������������

����������� �������������� ������������������

When def-bind is given an additional syntax object, it expands
and evaluates the additional syntax object as a compile-time ex-
pression, and it adds a macro binding to the definition context’s
environment:



�����������def-bind�������������������������������������� ��� 〈���〈����������������〉〉
������������������������������������������〈��������������������������〉��

�����������������������������〈���������〉��
������������������������������〈����������〉�������〈����������������〉��
�������������������������������������������������������������〈����∅��∅〉����〈��������〈����_��_〉〉��
������������������������������������〈�����������∅〉����〈��������〈����_��_〉〉��
����������������������������������������������������������������������������������

�����������������〈�����������〉������������ ���������������

����������� �������������� �������������

Note that def-bind in this mode defines a potentially recursive
macro, since the definition context’s scope is added to compile-time
expression before expanding and parsing it.

Finally, a definition context is used to expand an expression by
providing the definition context as an extra argument to lexpand.
The implementation of the new case for lexpand is similar to
the old one, but the definition context’s scope is applied to the
given syntax object before expanding it, and the definition context’s
environment is used for expansion.

�����������lexpand������������������������������������������ ��� 〈�����������������������〉
������������������������������������������〈�������〉��

��������������������������������〈���������������������〉��
�������������������������������〈��������������������������〉�������〈����_��_〉��
���������������������

���� �������������������������∈�������������������������
������������������������������� ��������������������������������������������������

���������������������������������������������������������〈����������〉

7. Defining Hygiene
Although most previous work on hygienic macros has focused on
expansion algorithms, some work addresses the question of what
hygiene means independent of a particular expansion algorithm. In
his dissertation, Herman (2008) addresses the question through a
type system that constrains and exposes the binding structure of
macro expansions, so that α-renaming can be applied to unex-
panded programs. More recently, Adams (2015) defines hygienic
macro-expansion steps as obeying invariants that are expressed in
terms of renaming via nominal logic (Pitts 2003), and the concept
of equivariance plays an important role in characterizing hygienic
macro transformers.

Since our notion of binding is based on scope sets instead of re-
naming, previous work on defining hygiene via renaming does not
map directly into our setting. A related obstacle is that our model
transforms a syntax object to a syntax object, instead of directly
producing an AST; that difference is necessary to support local and
partial expansion, which in turn is needed for definition contexts.
A more technical obstacle is that we have specified expansion in
terms of a meta-function (i.e., a big-step semantics) instead of as a
rewriting system (i.e., a small-step semantics).

Adams’s approach to defining hygiene nevertheless seems ap-
plicable to our notion of binding. We leave a full exploration for
future work, but we can offer an informed guess about how that
exploration will turn out.

Although our model of expansion does not incorporate renam-
ing as a core concept, if we make assumptions similar to Adams
(including omitting the quote form), then a renaming property
seems useful and within reach. For a given set of scopes and a
point during expansion (exclusive of macro invocations), the sym-
bol can be swapped in every identifier that has a superset of the
given set of scopes; such a swap matches the programmer’s intu-
ition that any variable can be consistently renamed within a binding
region, which corresponds to a set of scopes. Hygienic expansion
then means that the ����� of the continued expansion after swap-
ping is α-equivalent to what it would be without swapping. An

individual transformer could be classified as hygienic based on all
introduced identifiers having a fresh scope, so that they cannot bind
any non-introduced identifiers; the fresh scope ensures an analog to
Adams’s equivariance with respect to binders.

Note that swapping x with y for the scope set {adef , bintro1}
would not produce an equivalent program for the expansion in
section 3.5, because it would convert an ambiguous reference
x{adef , bintro1, cintro2} to an unambiguous y{adef , bintro1, cintro2}. This
failure should not suggest that the pattern-matching macros in that
example are non-hygienic in themselves, but that the (implicit)
definition-context macro is potentially non-hygienic. That is, a
macro in a definition context can introduce an identifier that is
captured at the macro-use site, since the definition and use sites can
be the same. That potential for non-hygienic expansion appears to
be one of the trade-offs of providing a context that allows a mixture
of mutually recursive macro and variable definitions.

If macro bindings are constrained to letrec-syntax, and
if macro implementations are constrained use syntax-case,
free-identifier=?, and syntax->datum (not bound-
identifier=? or datum->syntax), then we expect that all
expansion steps will be provably hygienic and all macro transform-
ers will be provably hygienic by the definitions sketched above.

8. Other Related Work
While our work shares certain goals with techniques for represent-
ing resolved bindings, such as de Bruijn indices, higher-order ab-
stract syntax (Pfenning and Elliott 1988), and nominal sets (Pitts
2013), those techniques seem to be missing a dimension that is
needed to incrementally resolve bindings as introduced and manip-
ulated by macros. Adams (2015) demonstrates how pairs of con-
ventional identifiers provide enough of an extra dimension for hy-
gienic macro expansion, but supporting datum->syntax would
require the further extension of reifying operations on identifiers
(in the sense of marks and renamings). Scope sets provides the ad-
ditional needed dimension in a simpler way.

Scope graphs (Neron et al. 2015) abstract over a program’s syn-
tax to represent the structure needed to resolve binding relationships—
including support for constructs, such as modules and class bodies,
that create static scopes different than nested lexical scopes. Bind-
ing resolution with macro expansion seems more dynamic, in that
a program and its binding structure evolve during expansion, so
that up-front scope graphs are not clearly applicable. Scope sets,
meanwhile, do not explicitly represent import relationships, relying
on macros that implement modular constructs to create scopes and
bindings that reflect the import structure. Further work on scope
graphs and scope sets seems needed to reveal the connections.

Stansifer and Wand (2014) build on the direction of Her-
man (2008) with Romeo, which supports program manipulations
that respect scope by requiring that every transformer’s type ex-
poses its effect on binding. The resulting language is more general
than Herman’s macros, but transformers are more constrained than
hygienic macros in Scheme and Racket.

9. Conclusion
Hygienic macro expansion is a successful, decades-old technology
in Racket and the broader Scheme community. Hygienic macros
have also found a place in some other languages, but the difficulties
of specifying hygiene, understanding macro scope, and implement-
ing a macro expander have surely been an obstacle to the broader
adoption and use of hygienic macros. Those obstacles, in turn, sug-
gest that our models of macro expansion have not yet hit the mark.
Scope sets are an attempt to move the search for a model of macro
expansion to a substantially different space, and initial results with
Racket and JavaScript show that this new space is promising.
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