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1 Overview

The nanopass framework provides a tool for writing compilers composed of several simple passes that operate
over well-defined intermediate languages. The goal of this organization is both to simplify the understanding
of each pass, because it is responsible for a single task, and to simplify the addition of new passes anywhere
in the compiler.

1.1 Examples

The most complete, public example of the nanopass framework in use is in the tests/compiler.ss file.
This is the start of a compiler implementation for a simplified subset of Scheme, used in a course on compiler
implementation.

2 Defining Languages

The nanopass framework operates over a set of compiler-writer defined languages. A language definition for
a simple variant of the Scheme programming language might look like:

(define-language L0
(terminals

(variable (x ))
(primitive (pr))
(datum (d))
(constant (c)))

(Expr (e body)
x
pr
c
(quote d)
(begin e∗ . . . e)
(if e0 e1 )
(if e0 e1 e2 )
(lambda (x∗ . . . ) body∗ . . . body)
(let ([x∗ e∗] . . . ) body∗ . . . body)
(letrec ([x∗ e∗] . . . ) body∗ . . . body)
(e0 e1 . . . )))
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The L0 language consists of a set of terminals (listed in in the terminals form) and a signle non-terminal
Expr. The terminals of this language are variable, primitive, datum, and constant. Listed with each terminal
is one or more meta-variable that can be used to indicate the terminal in a non-terminal expression. In this
case variable can be represented by x , primitive can be represented by pr , datum can be represented by d , and
constant can be represented by c. The nanopass framework expects the compiler writer to supply a predicate
that corresponds to each terminal. The name of the predicate is derived from the name of the terminal, by
adding a ? character. For the L0 language we will need to provide variable?, primitive?, datum?, and constant?
predicates. We might decided to represent variables as symbols, select a small list of primitives, represent
datum as any Scheme value, and limit constants to those things that have a syntax that does not require a
quote:

(define variable?
(lambda (x )

(symbol? x )))

(define primitive?
(lambda (x )

(memq x ’(+ − ∗ / cons car cdr pair? vector make-vector vector-length
vector-ref vector-set! vector? string make-string
string-length string-ref string-set! string? void))))

(define datum?
(lambda (x )
#t))

(define constant?
(lambda (x )

(or (number? x )
(char? x )
(string? x ))))

The L0 language also defines one non-terminal Expr. Non-terminals start with a name (Expr) followed by a
list of meta-variables ((e body)) and a set of productions. Each production follows one of three forms. It is
either a stand alone meta-variable (in this case x , pr , or c), an S-expression that starts with a literal (in this
case (quote d), (begin e∗ . . . e), (if e0 e1 ), etc.), or an S-expression that does not start with a literal (in
this case (e0 e1 . . . ). In addition to the numeric or start (∗) suffix used in the example, a question mark
(? ) or carot (ˆ) can also be used. The suffixes can also be used in combination. The suffixes do not contain
any semantic value and are used simply to allow the meta-variable to be used more then once (as in the (if
e0 e1 e2 ) form).

2.1 Extending Languages

Now that we have the L0 language we can imagine specifying a language with only the two-armed if, i.e., (if
e0 e1 e2 ), only quoted constants, and lambda, let, and letrec bodies that contain only a single expression.
One option is to simply define a whole new langauge from scratch that contains all the elements of the old
language, with just the changes we want. This will work fine, but we might want to simply define what
changes. The nanopass framework provides a syntax to allow a language to be defined as an extension to an
already defined language:

(define-language L1
(extends L0)
(terminals
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(− (constant (c))))
(Expr (e body)

(− c
(if e0 e1 )
(lambda (x∗ . . . ) body∗ . . . body)
(let ([x∗ e∗] . . . ) body∗ . . . body)
(letrec ([x∗ e∗] . . . ) body∗ . . . body))

(+ (lambda (x∗ . . . ) body)
(let ([x∗ e∗] . . . ) body)
(letrec ([x∗ e∗] . . . ) body))))

The newly defined language uses the extends form to indicate that L1 is an extension of the existing language
L0. The extends form changes how the terminal and non-terminal forms are processed. These forms are
now expected to contain a set of − forms indicating productions or terminals that should be removed or +
forms indicating productions or terminals that should be added. It is also possible to add new non-terminals,
by simply including a new non-terminal form with a single + form that adds all of the productions for the
new non-terminal.

2.2 The Œform

Œ

The full syntax for define-language is as follows:

(define-language language-name clause . . . )

Where clause is an extension clause, a entry clause, a terminals clause, or a non-terminal clause.

Extension clause. The extension clause indicates that new language is an extension of an existing lan-
guage. The extension clause has the following form:

(extends language-name)

where language-name is the name of an already defined language. Only one extension clause can be specified
in a language definition.

Entry clause. The entry clause specifies which non-terminal is the starting point for this language. This
information is used when generating passes to determine which non-terminal should be expected first by the
pass. This default can be overridden in a pass definition, as described in Section ??. The entry clause has
the following form:

(entry non-terminal-name)

where non-terminal-name corresponds to one of the non-terminals specified in this language (or the language
it extends from). Only one entry clause can be specified in a language definition.

Terminals clause. The terminals clause specifies one or more terminals used by the language. For instance
in the L0 example language, the terminals clause specifies four terminal types variable, primitive, datum,
and constant. The terminals clause has the following form:

In a language that does not extend from a base language, the terminals clause has the following form:

(terminals terminal-clause . . . )
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where terminal-clause has one of the following forms:

(terminal-name (meta-var . . . ))
(=> (terminal-name (meta-var . . . )) prettifier)
(terminal-name (meta-var . . . )) => prettifier

Here,

• terminal-name is the name of the terminal and a corresponding terminal-name? predicate function
exists to determine if a Scheme object is of this type when checking the output of a pass,

• meta-var is the name of a meta-variable used for referring to this terminal type in language and pass
definitions,

• and prettifier is an expression that evaluates to a function of one argument used during when the
language unparser is called in “pretty” mode to produce pretty, S-expression representation.

The final form is syntactic sugar for the form above it. When the prettifier is omitted, no processing will be
done on the terminal when the unparser runs.

When a language derives from a base language, the terminal clause has the following form:

(terminals extended-terminal-clause . . . )

where extended-terminal-clause has one of the following forms:

(+ terminal-clause . . . )
(− terminal-clause . . . )

The + form indicates terminals that should be added to the new language. The − form indicates terminals
that should be removed from the list in the old language when producing the new language. Terminals not
mentioned in a terminals clause will be copied into the new language, unchanged. Note that adding and
removing meta-vars from a terminal currently requires removing the terminal type and re-adding it. This
can be done in the same step with a terminal clause like the following:

(terminals
(− (variable (x )))
(+ (variable (x y))))

Non-terminals clause. The non-terminals clause specifies the valid productions in a language. Each non-
terminal has a name, a set of meta-variables, and a set of productions. When the language is not extended
from a base language the non-terminal clause has the following form:

(non-terminal-name (meta-var . . . )
production-clause
. . . )

where non-terminal-name is an identifier that names the non-terminal, meta-var is the name of a meta-
variable used when referring to this non-terminal in a language and pass definitions, and production-clause
has one of the following forms:

terminal-meta-var
non-terminal-meta-var
production-s-expression
(keyword . production-s-expression)
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Here,

• terminal-meta-var is a terminal meta-variable that is a stand-alone production for this non-terminal,

• non-terminal-meta-var is a non-terminal meta-variable that indicates any form allowed by the specified
non-terminal is also allowed by this non-terminal,

• keyword is an identifier that must be matched exactly when parsing an S-expression representation,
language input pattern, or language output template, and

• production-s-expression is an S-expression that represents a pattern for language, and has the following
form:

meta-variable
(maybe meta-variable)
(production-s-expression ellipsis)
(production-s-expression ellipsis production-s-expression . . . . production-s-expression)
(production-s-expression . production-s-expression)
()

Here,

• meta-variable is any terminal or non-terminal meta-variable, extended with an arbitrary number of
digits, followed by an arbitrary combination of ∗, ? , or ˆ characters, for example, if the meta-variable
is e then e1 , e∗, e? , e4∗? are all valid meta-variable expressions;

• (maybe meta-variable) indicates that an element in the production is either of the type of the meta-
variable or bottom (represented by #f);

• and ellipsis is the literal . . . and indicates a list of the production-s-expression that proceeds it is
expected.

Thus, Scheme language forms such as let can be represented as a language production as:

(let ([x∗ e∗] . . . ) body∗ . . . body)

where let is the keyword , x∗ is a meta-variable that indicates a list of variables, e∗ & body∗ are meta-variables
that indicate a list of expressions, and body is a meta-variable that indicates a single expression. Something
similar to the named-let form could also be represented as:

(let (maybe x ) ([x∗ e∗] . . . ) body∗ . . . body)

though this would be slightly different from the normal named let form, in that the non-named form would
then need an explicit #f to indicate no name was specified.

When a language extends from a base language the non-terminal clause has a slightly different form:

(non-terminal-name (meta-var . . . )
extended-production-clause
. . . )

where extended-production-clause has the following form:

(+ production-clause . . . )
(− production-clause . . . )
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The + form indicates non-terminal productions that should be added to the non-terminal in the new language.
The − form indicates non-terminal productions that should be removed from list of productions for this non-
terminal the old language when producing the new language. Productions not mentioned in a non-terminals
clause will be copied into the non-terminal in the new language, unchanged. If a non-terminal has all of its
productions removed in a new language, the non-terminal will be dropped in the new language. Conversely,
new non-terminals can be added by naming the new non-terminal and using the + form to specify the
productions of the new non-terminal.

2.3 Products of Ø

Ø

The define-language form produces three user-visible objects:

• a parser (named parse-language name) that can be used to parse an S-expression into a record-based
representation that is used internally by the nanopass framework;

• an unparser (named unparse-language name) that can be used to unparse a record-based representation
back into an S-expression; and

• a language definition, bound to the specified language-name.

The language definition is used when the language-name is specified as the base of a new language definition
and in the definition of a pass. The language-name can also be used with the language->s-expression to
retrieve a pretty-printed version of the full language definition. This can be helpful when using extended
languages, such as in the case of L1:

(language->s-expression L1)

Will return:

(define-language L1
(terminals

(variable (x ))
(primitive (pr))
(datum (d)))

(Expr (e body)
(letrec ([x∗ e∗] . . . ) body)
(let ([x∗ e∗] . . . ) body)
(lambda (x∗ . . . ) body)
x
pr
(quote d)
(begin e∗ . . . e)
(if e0 e1 e2 )
(e0 e1 . . . )))

3 Defining Passes

Passes are used to specify transformations over languages defined using define-language. Before getting
into the details of defining passes, lets take a look at a simple pass to convert from L0 to L1. This pass will
need to:
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• Remove one armed ifs,

• Quote constants in the language, and

• Make begin an explicit form in the body of the lambda, let, and letrec forms.

We can define a pass called make-explicit to make all of these forms explicit.

(define-pass make-explicit : L0 (ir) -> L1 ()
(definitions)
(Expr : Expr (ir) -> Expr ()

[,x x ]
[,pr pr ]
[,c ‘(quote ,c)]
[(quote ,d) ‘(quote ,d)]
[(begin ,[e∗] . . . ,[e]) ‘(begin ,e∗ . . . ,e)]
[(if ,[e0 ] ,[e1 ]) ‘(if ,e0 ,e1 (void))]
[(if ,[e0 ] ,[e1 ] ,[e2 ]) ‘(if ,e0 ,e1 ,e2 )]
[(lambda (,x∗ . . . ) ,[body∗] . . . ,[body ])
‘(lambda (,x∗ . . . ) (begin ,body∗ . . . ,body))]

[(let ([,x∗ ,[e∗]] . . . ) ,[body∗] . . . ,[body ])
‘(let ([,x∗ ,e∗] . . . ) (begin ,body∗ . . . ,body))]

[(letrec ([,x∗ ,[e∗]] . . . ) ,[body∗] . . . ,[body ])
‘(letrec ([,x∗ ,e∗] . . . ) (begin ,body∗ . . . ,body))]
[(,[e0 ] ,[e1 ] . . . ) ‘(,e0 ,e1 . . . )])

(Expr ir))

The pass definition starts with a name (in this case make-explicit) and a signature. The signature starts with
an input language specifier (in this case L0) along with a list of formals. In this case, we have just one formal
ir the input-language term. The second part of the signature has an output language specifier (in this case
L1) along with a list of extra return values (in this case empty).

Following the name and signature, the pass can define a set of extra definitions (in this case empty), a set
of processors (in this case (Expr : Expr (ir) -> Expr () −−−)), and a body expression (in this case (Expr ir)).
Similar to the pass, a processor starts with a name (in this case Expr) and a signature. The first part of a
signature is a non-terminal specifier (in this case Expr) along with the list of formals (in this case just the ir).
Here the Expr corresponds to the one defined in the input langauge, L0. The output includes a non-terminal
output specifier (in this case Expr as well) and a list of extra return expressions.

After the signature, there is a set of clauses. Each clause consists of an input pattern, an optional clause,
and one or more expressions specify one or more return values based on the signature. The input pattern is
derived from the S-expressions specified in the input language. Each variable in the pattern is denoted by
unquote (,). When the unquote is followed by an S-expression (as is the case in of ,[e∗] and ,[e] in (begin ,[e∗]
. . . ,[e])) it indicates a cata-morphism. The cata-morphism performs automatic recursion on the subform
mentioned.

Looking again at the example pass, we might notice that the (definitions) form is empty. When it is empty
there is no need to include it. The body expression (Expr ir) simply calls the processor corresponding to
the entry point of the input language. This can be automatically generated by define-pass, so we can omit
this from the definition as well. Finally, we might notice that several clauses simply match the input pattern
and generate an exactly matching output pattern (modulo the cata-morphisms for nested Expr forms). Since
the input and output languages are defined, the define-pass macro can also automatically generate these
clauses. So let’s try again:

(define-pass make-explicit : L0 (ir) -> L1 ()
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(Expr : Expr (ir) -> Expr ()
[,c ‘(quote ,c)]
[(if ,[e0 ] ,[e1 ]) ‘(if ,e0 ,e1 (void))]
[(lambda (,x∗ . . . ) ,[body∗] . . . ,[body ])
‘(lambda (,x∗ . . . ) (begin ,body∗ . . . ,body))]

[(let ([,x∗ ,[e∗]] . . . ) ,[body∗] . . . ,[body ])
‘(let ([,x∗ ,e∗] . . . ) (begin ,body∗ . . . ,body))]

[(letrec ([,x∗ ,[e∗]] . . . ) ,[body∗] . . . ,[body ])
‘(letrec ([,x∗ ,e∗] . . . ) (begin ,body∗ . . . ,body))]))

This is a much simpler way to write the pass, though both are valid ways of writing the pass.

3.1 The  syntactic form

 

(define-pass name : lang-specifier (fml . . . ) -> lang-specifier (extra-return-val . . . )
definitions-clause
processor . . .
body-expr)

lang-specifier ::= language-name
| (language-name non-terminal-name)
| *

definitions-clause ::= none
| (definitions defn . . . )

procesor ::= (processor-name : non-terminal-spec (fml . . . ) ->

non-terminal-spec (extra-return-val . . . )
definitions-clause
processor-clause . . . )

| (processor-name : * (fml . . . ) ->

non-terminal-spec (extra-return-val . . . )
definitions-clause
expr . . . )

| (processor-name : * (fml . . . ) -> * (return-val . . . )
definitions-clause
body-expr . . . )

| (processor-name : non-terminal-spec (fml . . . ) -> * (return-val . . . )
definitions-clause
body-processor-clause . . . )

processor-clause ::= [pattern expr expr . . . ]
| [pattern guard expr expr . . . ]
| [else expr expr . . . ]

body-processor-clause ::= [pattern body-expr body-expr . . . ]
| [pattern guard body-expr body-expr . . . ]
| [else body-expr body-expr . . . ]

guard ::= (guard expr expr . . . )

Where

• name is the name of the pass,
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• fml is an identifier representing a formal argument,

• language-name is an identifier corresponding to a defined language,

• non-terminal-name is a name in that language,

• extra-return-val and return-val are Scheme expressions,

• expr is a Scheme expression that can contain a quasiquote-expr ,

• defn is a Scheme definition, and

• body-expr is a Scheme expression; where

• quasiquote-expr is a Scheme quasiquote expression that corresponds to a form of the output non-
terminal specified in a processor.

3.2 The !clause

!

The define-pass macro re-binds the Scheme quasiquote to use as a way to construct records in the output
language. Similar to the patterns in a processor clause, the quasiquote expression can be arbitrarily nested
to create language records nested within other language records. When a literal expression, such as a symbol,
number, or boolean expression is one of the parts of a record, it need not be unquoted. Any literal that is not
unquoted is simply put into the record as is. An unquoted expression can contain any arbitrary expression
as long as the output of the expression corresponds to the type expected in the record.

When creating a quasiquoted expression, it is important to realize that while the input and output both
look like arbitrary S-expressions, they are not, in fact, arbitrary S-expressions. For instance, if we look at
the S-expression for a let in L1 we see:

(let ([x∗ e∗] . . . ) body)

This will create a record that expects three parts:

• a list of variables (x∗),

• a list of expressions (e∗), and

• an expression (body).

If this were simply an S-expression, we might imagine that we could construct an output record as:

binding*: is ([x0 e0] ... [xn en])

(let ([binding∗ (f −−−)])
‘(let (,binding∗ . . . ) ,body))

However, this will not work because the infrastructure does not know how to destructure the binding∗ into
its parts. Instead it is necessary to destructure the binding∗ list before including it in the quasiquoted
expression:

binding*: is ([x0 e0] ... [xn en])

(let ([binding∗ (f −−−)])
(let ([x∗ (map car binding∗)]

[e∗ (map cadr binding∗)])
‘(let ([,x∗ ,e∗] . . . ) ,body)))
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3.3 Auto-generated clauses

Within a processor a clause can be autogenerated when a matching form exists in the input-language non-
terminal and the output-language non-terminal in a processor. For instance, we could eliminate the x , pr ,
and (quote d) clauses in our example pass because these forms exist in both the Expr non-terminal of the
input lanugage and the Expr non-terminal of the output language. The auto-generated clauses can also
process sub-forms recursively. This is why the (begin ,e∗ . . . ,e), (if ,e0 ,e1 ,e2 ), and (,e0 ,e1 . . . ) clauses
can be eliminated.

The auto-generated clauses can also handle grammars with more then one non-terminal. For each sub-term
in an auto-generated clause, a processor is selected. Processors are selected based on the input non-terminal
and output non-terminal for the given sub-terminal. A processor with a matching input and output non-
terminals is then selected. In addition to the input and output non-terminal any extra arguments required
by the processor must be available, and any additional return values required by the auto-generated clause
must be returned by the processor. If an appropriate processor cannot be located, a new processor will be
auto-generated if possible (this is described in the next section) or an exception will be raised at compile
time.

When an else clause is included in a processor, no clauses will be auto-generated, since it is expected that
the else clause will handle all other cases.

3.4 Auto-generated processors

When a cata-morphism, auto-generated clause, or auto-generated pass body expression needs to process a
sub-term, but no processor exists that can handle it, the nanopass framework might create a new processor.
Processors can only be created when only a single argument in the input language and a single return value
in the output language is expected, and the output-language non-terminal contains productions that match
all of the input-language non-terminal. This means it is possible for the output-language non-terminal to
contain extra forms, but cannot leave out any of the input terms.

An experimental feature This feature is currently implemented in the framework, but it is possible to get
into trouble with this feature. In general, there are two cases where undesired clauses can be auto-generated.

1. A nested pattern in a clause matches all posible clauses, but because the pattern is nested the framework
cannot determine this. In this case, the auto-generated clauses are a drag on the system, but the auto-
generate processor(s) will never be called, and the code generated is effectively unreachable.

2. A cata-morphism or auto-generated clause provides a single input expression and needs a single output
expression, but no processor exists that can satisfy this match. This can lead to a shadow set of
processors being created and potentially undesired results being generated by a pass.

The first item is a solvable problem, though we have not yet invested the development time to fix it. The
second problem is more difficult to solve, and the reason why this feature is still experimental.

3.5 Cata-morphims

Cata-morphisms are defined in patterns as an unquoted S-expression. A cata-morphism has the following
syntax:
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cata-morphism ::= ,[identifier . . . ]
| ,[idenitifer expr . . . -> identifier . . . ]
| ,[func-expr : identifier expr . . . -> identifier . . . ]
| ,[func-expr : -> identifer . . . ]

Where expr is a Scheme expression, func-expr is an expression that results in a function, and identifier is
an identifier that will be bound to the input subexpression when it is on the left of the − and the return
value(s) of the func when it is on the right side.

When the func-expr is not specified, define-pass attempts to find or auto-generate an appropriate processor.
When the func-expr is the name of a processor, the input non-terminal, output non-terminal, and number
of input expressions and return values will be checked to ensure they match.

If the input expressions are omitted the first input will be the sub-expression and additional values will be
taken from the formals for the containing processor by name.
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