github-api

Version 6.2

eu90h

August 11, 2015

(require github-api) package: github-api
github-api is a wrapper for easily making requests to the GitHub api.

While this document contains usage examples, the functional tests found in the
functional_tests directory of the |github repository provide a good source of usage examples
and patterns.

https://github.com/eu90h/racket-github-api

1 Authentication & Initialization

Before you begin making requests to the GitHub api, you must create an identity.

(struct github-identity (type data)
#:extra-constructor-name make-github-identity)
type : symbol?
data : 1list?

This struct holds your GitHub identity.

type must be one of the following symbols: 'password 'personal-access-token
'oauth

'password authentication simply uses your GitHub username and password.

'personal-access-token authentication allows you to send your GitHub username and
a personal access token (created on your GitHub settings page.)

'oauth uses an OAuth token for authorization.
For more information, see the github api documentation
The data field is a list whose contents are determined by user authentication method.

For 'password or 'personal-token types, your data will be of the form (1ist user-
name password-or-token), where both username & password-or-token are strings.

For 'oauth, the data will simply be (1ist oauth-token), where oauth-token is a
string.

(github-api id
[#:endpoint endpoint
#:user-agent user-agent]) — github-api-req/c
id : github-identity?
endpoint : string? = "api.github.com"
user-agent : string? = "racket-github-api-@eu90h"

Once you’ve created an identity, apply it to this procedure to receive a function for making
api requests.

The optional #:endpoint keyword sets the root endpoint for making api requests. If you
have a GitHub enterprise account, you may wish to change the endpoint. See this| for more
information on root-endpoints.

If you change the user-agent string, be aware that GitHub has certain rules explicated here

https://developer.github.com/v3/auth/#basic-authentication
https://developer.github.com/v3/#root-endpoint
https://developer.github.com/v3/#user-agent-required

(struct github-response (code data)
#:extra-constructor-name make-github-response)
code : number?
data : jsexpr?

This is the data structure returned as the result of making a GitHub API request. The code
field holds the HTTP status code and data holds the content of the response.

(github-api-req/c (-> string?
[#:method string?
#:data string?
#:media-type string?]
github-response?))

This is a contract for the procedures returned by the function github-api. These functions
are called with an api request and return a github-response struct.

Typically, one would not use this procedure directly but rather pass it along to another func-
tion.

The #:method keyword specifies what HTTP verb to use (I.e. "GET", "POST", "PATCH",
etc.)

The #: data keyword specifies any information to send along with the request. This is almost
always a JSON string.

Finally, #:media-type specifies the format in which you wish to receive data. Practically
every github-* procedure has an optional keyword # :media-type that allows you to spec-
ify a media-type for a request.

For more information on media types see the GitHub api documentation.

https://developer.github.com/v3/media/

2 A Note on Identity Security

According to the GitHub documentation, personal access tokens are equivalent to your pass-
word. Never give it out (and don’t accidently commit your identity!)

Read more about your options for authentication here

https://developer.github.com/v3/#authentication

3 Example

(define personal-token "fs52knf535djbfk2je43b2436")

(define username "alice")

(define id (github-identity 'personal-token (list username personal-
token)))

(define github (github-api id))
(github "/users/plt/repos")

Here we make a request to get the repositories created by the user plt.

4 Working with JSON Data

When making requests to the GitHub API, it is common to receive data encoded in the JSON
format. This quick section introduces Racket’s JSON handling facilities.

Racket provides a library for working with JSON data, aptly called json.
This is used by the Racket github-api library to encode data before returning it.

Essentially, JSON expressions are represented as hashes. The JSON object
{ "name": "billy bob"}
becomes the hash
(define jsexpr (make-hash (list (cons 'name "billy bob"))))
To get the value associated with the key 'name, use hash-ref like so:
(hash-ref jsexpr 'name)

which should return "billy bob"

To learn more about working with hashes see the Racket guide and the Racket reference|on
hash-tables.

http://docs.racket-lang.org/guide/hash-tables.html
http://docs.racket-lang.org/reference/hashtables.html

S Gist API

The Gist API will return up to 1 megabyte of content from a requested gist.

To see if a file was truncated, check whether or not the key truncated is "true".

To get the full contents of the file, make a request to the url referenced by the key raw_url.
For more information on truncation see the |GitHub documentation

For additional information on the Gist API, check here

(github-create-gist api-req
files
[#:description description
#:public public
#:media-type media-type]) — api-resonse/c
api-req : github-api-req/c
files : (listof pair?)
description : string? = ""
public : boolean? = #f
media-type : string? = "application/vnd.github.v3+json"

Creates a gist containing files given as a list of pairs (filename contents). If the gist
was created successfully, a jsexpr? is returned.

The optional keyword description provides a description of the gist. By default it is
empty.

The optional keyword public determines whether or not the gist is public. By default this
is #f£.

(github-edit-gist api-req

gist-id

files

[#:description description

#:media-type media-type]) — api-resonse/c
api-req : github-api-req/c
gist-id : string?
files : (listof pair?)
description : string? =
media-type : string? = "application/vnd.github.v3+json"

nn

Updates a gist. See github-create-gist for more explanation of the arguments.

https://developer.github.com/v3/gists/#truncation
https://developer.github.com/v3/gists/#gists

To delete a file from a gist, for example "filel.txt", add an entry to the files list like
so: (cons "filel.txt" 'delete).

(github-get-gist api-req
gist-id
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
gist-id : string?
media-type : string? = "application/vnd.github.v3+json"

Gets the gist, returning a jsexpr? on success.

(github-list-gist-commits api-req
gist-id
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
gist-id : string?
media-type : string? = "application/vnd.github.v3+json"

(github-star-gist api-req
gist-id
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
gist-id : string?
media-type : string? = "application/vnd.github.v3+json"

(github-unstar-gist api-req
gist-id
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
gist-id : string?
media-type : string? = "application/vnd.github.v3+json"

(github-gist-starred? api-req
gist-id
[#:media-type media-type]) — boolean?
api-req : github-api-req/c
gist-id : string?
media-type : string? = "application/vnd.github.v3+json"

(github-fork-gist api-req
gist-id
[#:media-type media-type]) — github-response?

api-req : github-api-req/c
gist-id : string?
media-type : string? = "application/vnd.github.v3+json"

(github-list-gist-forks api-req
gist-id
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
gist-id : string?
media-type : string? = "application/vnd.github.v3+json"

(github-delete-gist api-req
gist-id
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
gist-id : string?
media-type : string? = "application/vnd.github.v3+json"

(github-get-gist-revision api-req
gist-id
sha
[#:media-type media-typel)
— github-response?
api-req : github-api-req/c
gist-id : string?
sha : string?
media-type : string? = "application/vnd.github.v3+json"

(github-get-user-gists api-req
user
[#:media-type media-typel])
— github-response?
api-req : github-api-req/c
user : string?
media-type : string? = "application/vnd.github.v3+json"

(github-get-my-gists api-req
[#:media-type media-typel)
— github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

(github-get-my-starred-gists api-req
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

(github-get-all-public-gists api-req
[#:media-type media-typel])
— github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

10

6 Gist Examples

(define new-gist-id
(let ([response (github-create-gist github-req
(list (cons "filel.txt" "blah
blah blah")
(cons "file2.txt" "yadda
yadda yadda")))1)
(hash-ref (github-response-data response) 'id)))

(github-edit-gist github-req new-gist-id
(1ist (cons "file2.txt" 'delete)))

(github-star-gist github-req new-gist-id)
(github-gist-starred? github-req new-gist-id)
(github-unstar-gist github-req new-gist-id)
(github-gist-starred? github-req new-gist-id)

(github-fork-gist github-req new-gist-id)
(github-list-gist-forks github-req new-gist-id)

(github-get-user-gists github-req username)

11

7 Events

For more information on the Events API, see the GitHub documentation

(github-list-events api-req
repo-owner
repo
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner . string?
repo : string?
media-type : string? = "application/vnd.github.v3+json"

(github-list-issue-events api-req
repo-owner
repo
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
repo-owner : string?
repo : string?
media-type : string? = "application/vnd.github.v3+json"

(github-list-public-org-events api-req
org
[#:media-type media-typel])
— github-response?
api-req : github-api-req/c
org : string?
media-type : string? = "application/vnd.github.v3+json"

(github-list-user-received-events api-req
user
[#:media-type media-typel)
— github-response?
api-req : github-api-req/c
user : string?
media-type : string? = "application/vnd.github.v3+json"

(github-list-user-received-public-events
api-req

user

[#:media-type media-type])

12

https://developer.github.com/v3/activity/events/

— github-response?

api-req : github-api-req/c

user . string?

media-type : string? = "application/vnd.github.v3+json"

(github-list-user-events api-req
user
[#:media-type media-typel])
— github-response?
api-req : github-api-req/c
user : string?
media-type : string? = "application/vnd.github.v3+json"

(github-list-user-public-events api-req
user
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
user : string?
media-type : string? = "application/vnd.github.v3+json"

13

8 Feeds

For more information about feeds, go here

(github-list-feeds api-req
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

(github-list-notifications api-req
[#:media-type media-typel])
— github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

14

https://developer.github.com/v3/activity/feeds/

9 Issues

For more information about the Issues API, click here

Furthermore, the Issues API uses custom media types. See [this section

(github-list-all-issues api-req
[#:media-type media-typel)
— github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

(github-list-my-issues api-req
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

(github-list-org-issues api-req
organization
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
organization : string?
media-type : string? = "application/vnd.github.v3+json"

(github-list-issues api-req
repo-owner
repo-name
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
media-type : string? = "application/vnd.github.v3+json"

(github-create-issue api-req
repo-owner
repo-name
title
[#:body body
#:assignee assignee
#:milestone milestone
#:labels label
#:media-type media-type])

15

https://developer.github.com/v3/issues/
https://developer.github.com/v3/issues/#custom-media-types

— github-response?

api-req : github-api-req/c

repo-owner : string?

repo-name : string?

title : string?

body : string? = ""

assignee : string? = ""

milestone : string? = ""

label : (listof string?) = null

media-type : string? = "application/vnd.github.v3+json"

(github-edit-issue api-req
repo-owner
repo-name
:title title
:body body
:assignee assignee
:milestone milestone
:labels label
:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
title : string? = ""
body : string? =
assignee : string? =
milestone : string? = ""
label : (listof string?) = null
media-type : string? = "application/vnd.github.v3+json"

—
H H OH O H H

(github-get-issue api-req
repo-owner
repo-name
issue-number
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
issue-number : (or/c number? string?)
media-type : string? = "application/vnd.github.v3+json"

(github-list-issue-comments api-req
repo-owner
repo-name
issue-number
[#:media-type media-typel)

16

— github-response?

api-req : github-api-req/c

repo-owner : string?

repo-name : string?

issue-number : (or/c number? string?)

media-type : string? = "application/vnd.github.v3+json"

(github-list-comments api-req
repo-owner
repo-name
[#:media-type media-typel)
— github-response?
api-req : github-api-req/c
repo-owner . string?
repo-name : string?
media-type : string? = "application/vnd.github.v3+json

(github-get-comment api-req
repo-owner
repo-name
comment-id
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
comment-id : (or/c number? string?)
media-type : string? = "application/vnd.github.v3+json"

(github-create-comment api-req
repo-owner
repo-name
issue-number
comment-body
[#:media-type media-typel)
— github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name . string?
issue-number : (or/c number? string?)
comment-body : string?
media-type : string? = "application/vnd.github.v3+json"

17

(github-edit-comment api-req
repo-owner
repo-name
comment-id
comment-body
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
comment-id : (or/c number? string?)
comment-body : string?
media-type : string? = "application/vnd.github.v3+json"

(github-delete-comment api-req
repo-owner
repo-name
comment-id
[#:media-type media-typel])
— github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
comment-id : (or/c number? string?)
media-type : string? = "application/vnd.github.v3+json"

18

10 Issue Examples

(github-create-issue github-req
"eu90h"
"racket-github-api"
"testing-issues-api"
#:body "this is a test of the issues api"
#:assignee "eu90h"
#:labels (1list "woo!" "test"))

19

11 Repositories

(github-list-assignees api-req
repo-owner
repo-name
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
media-type : string? = "application/vnd.github.v3+json"

(github-check-assignee api-req
repo-owner
repo-name
user
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
user : string?
media-type : string? = "application/vnd.github.v3+json"

20

12 Git Data

Click here/for more information on the Git Data API.
(github-get-blob api-req
repo-owner
repo-name
sha
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
sha : string?
media-type : string? = "application/vnd.github.v3+json"

(github-create-blob api-req
repo-owner
repo-name
content
[encoding
#:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
content : string?
encoding : string? = "utf-8"
media-type : string? = "application/vnd.github.v3+json"

(github-get-commit api-req
repo-owner
repo-name
sha
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo-name : string?
sha : string?
media-type : string? = "application/vnd.github.v3+json"

(github-create-commit api-req
repo-owner
repo-name
message
tree
parents
[#:media-type media-typel)

21

https://developer.github.com/v3/git/

— github-response?

api-req : github-api-req/c

repo-owner : string?

repo-name : string?

message : string?

tree : string?

parents : (listof string?)

media-type : string? = "application/vnd.github.v3+json"

22

13 Organizations

For more on Organizations, go "https://developer.github.com/v3/orgs/" "here"

(github-list-orgs api-req
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

(github-list-all-orgs api-req
[#:media-type media-typel])
— github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

(github-list-user-orgs api-req
user
[#:media-type media-type])
— github-response?
api-req : github-api-req/c
user : string?
media-type : string? = "application/vnd.github.v3+json"

(github-get-org api-req
org
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
org : string?
media-type : string? = "application/vnd.github.v3+json"

(github-list-org-members api-req
org
[#:media-type media-typel)
— github-response?
api-req : github-api-req/c
org : string?
media-type : string? = "application/vnd.github.v3+json"

(github-list-pull-requests api-req

repo-owner

repo

[#:media-type media-typel])
— github-response?

23

api-req : github-api-req/c

repo-owner : string?

repo : string?

media-type : string? = "application/vnd.github.v3+json"

24

14 Users

(github-get-user api-req
user
[#:media-type media-type]) — github-response?

api-req : github-api-req/c

user : string?
media-type : string? = "application/vnd.github.v3+json"

(github-get-authenticated-user api-req
[#:media-type media-typel])

— github-response?
api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

(github-get-all-users api-req
[#:media-type media-typel])

— github-response?

api-req : github-api-req/c
media-type : string? = "application/vnd.github.v3+json"

25

15 Webhooks & Service Hooks

Webhooks are a sort-of user defined callback in the form of a listening webserver that github
sends a message to whenever a certain type of event occurs.

A service hook is a webhook whose type is anything except "web"

To read more, see the GitHub documentation

(github-build-webhook-config api-req
url
[#:content-type content-type
#:secret secret
#:insecure-ssl insecure-ssl])
— github-response?
api-req : github-api-req/c
url : string?

content-type : string? = "form"
secret : string? = ""
insecure-ssl : string? = "0"

(github-hook-repo api-req
repo-owner
repo
type
config
[#:events events
#:active active]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo : string?
type : string?
config : jsexpr?
events : (listof string?) = '("push")
active : boolean? = #t

The type parameter must be the string "web" or a service name defined in this rather incon-
venient JSON file.

Passing any other string results in an error response from the GitHub APIL

Note: The type parameter is referred to in the GitHub documentation (misleadingly, I think)
as the name of the webhook.

26

https://developer.github.com/webhooks/
https://api.github.com/hooks

(github-get-hooks api-req
repo-owner
repo
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo : string?
media-type : string? = "application/vnd.github.v3+json"

(github-get-hook api-req
repo-owner
repo
hook-id
[#:media-type media-type]) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo : string?
hook-id : (or/c string? number?)
media-type : string? = "application/vnd.github.v3+json"

(github-test-push-hook api-req
repo-owner
repo
hook-id) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo : string?
hook-id : (or/c string? number?)

(github-ping-hook api-req
repo-owner
repo
hook-id) — github-response?
api-req : github-api-req/c
repo-owner : string?
repo : string?
hook-id : (or/c string? number?)

(github-delete-hook api-req
repo-owner
repo
hook-id) — github-response?
api-req : github-api-req/c
repo-owner . string?
repo : string?
hook-id : (or/c string? number?)

27

16 Webhooks Example

(define config (github-build-webhook-config "http://example.com"

#:insecure-ssl "O"
#:content-
type "json"))
(define hook (github-hook-repo github-req username my-
repo "web" config))

(define hook-data (github-response-data hook))

(define del-hook (thunk (github-delete-hook github-
req username my-repo (hash-ref hook-data 'id))))

(define delete-response (del-hook))

(if (= 204 (github-response-code delete-response))
(displayln "successfully removed webhook")
(displayln "trouble removing webhook"))

28

	1 Authentication & Initialization
	2 A Note on Identity Security
	3 Example
	4 Working with JSON Data
	5 Gist API
	6 Gist Examples
	7 Events
	8 Feeds
	9 Issues
	10 Issue Examples
	11 Repositories
	12 Git Data
	13 Organizations
	14 Users
	15 Webhooks & Service Hooks
	16 Webhooks Example

