#lang racket |
|
;; a model of contracts in a call-by-value functional language |
|
(require redex "common.rkt") |
|
;; ----------------------------------------------------------------------------- |
;; syntax |
(define-language Lambda |
(e ::= |
x (lambda (x) e) (e e) |
n (+ e e) |
(if0 e e e) |
(c ⚖ e x x) |
(blame x)) |
(n ::= number) |
(c ::= num? even? odd? pos? (c -> c)) |
(x ::= variable-not-otherwise-mentioned)) |
|
;; ----------------------------------------------------------------------------- |
;; examples |
|
(define a-module (term {(even? -> pos?) ⚖ (lambda (x) (+ x 1)) server client})) |
(define p-good (term [,a-module 2])) |
(define p-bad-server (term [,a-module -2])) |
(define p-bad-client (term [,a-module 1])) |
|
(module+ test |
(test-equal (redex-match? Lambda c (term (even? -> pos?))) #t) |
(test-equal (redex-match? Lambda e p-good) #true) |
(test-equal (redex-match? Lambda e |
(term |
{(even? -> pos?) ⚖ (lambda (x) (+ x 1)) |
server |
client})) #true) |
|
(test-equal (redex-match? Lambda e p-bad-server) #true) |
(test-equal (redex-match? Lambda e p-bad-client) #true)) |
|
;; ----------------------------------------------------------------------------- |
;; the standard reductions |
|
(define-extended-language Lambda-calculus Lambda |
(v ::= n (lambda (x) e)) |
(E ::= hole |
(v ... E e ...) |
(+ v ... E e ...) |
(c ⚖ E x x))) |
|
(module+ test |
(test-->> s-->c #:equiv =α/racket p-good 3) |
(test-->> s-->c #:equiv =α/racket p-bad-client (term (blame client))) |
(test-->> s-->c #:equiv =α/racket p-bad-server (term (blame server)))) |
|
(define s-->c |
(reduction-relation |
Lambda-calculus |
(--> (in-hole E ((lambda (x) e) v)) (in-hole E (subst ([v x]) e)) βv) |
(--> (in-hole E (+ n_1 n_2)) (in-hole E ,(+ (term n_1) (term n_2))) +) |
(--> (in-hole E (if0 0 e_then e_else)) (in-hole E e_then) if0-true) |
(--> (in-hole E (if0 v e_then e_else)) |
(in-hole E e_then) |
(where #false (zero? (term v))) |
if0-false) |
(--> (in-hole E (pos? ⚖ n x_s x_c)) |
(in-hole E ,(c positive? (term n) (term x_s) (term x_c))) |
pos) |
(--> (in-hole E (even? ⚖ n x_s x_c)) |
(in-hole E ,(c even? (term n) (term x_s) (term x_c))) |
even) |
(--> (in-hole E (odd? ⚖ n x_s x_c)) |
(in-hole E ,(c odd? (term n) (term x_s) (term x_c))) |
odd) |
(--> (in-hole E (num? ⚖ n x_s x_c)) |
(in-hole E 0) |
num) |
(--> (in-hole E ((c_1 -> c_2) ⚖ (lambda (x) e) x_s x_c)) |
(in-hole E |
(lambda (x) |
(c_2 ⚖ ((lambda (x) e) (c_1 ⚖ x x_c x_s)) x_s x_c)))) |
(--> (in-hole E (blame x)) |
(blame x) |
(where #false ,(equal? (term hole) (term E))) |
blame))) |
|
(define (c pred? n server client) |
(if (pred? n) n (term (blame ,server)))) |
|
#; |
(module+ test |
(traces -->βv p-bad-client)) |
|
;; ----------------------------------------------------------------------------- |
(module+ test |
(test-results)) |
|
|
|
;;; ------------------------------------------------------------ |
;;; common.rkt starts here |
|
#lang racket |
|
;; basic definitions for the Redex Summer School 2015 |
|
(provide |
;; Language |
Lambda |
|
;; Any -> Boolean |
;; is the given value in the expression language? |
lambda? |
|
;; x (x ...) -> Boolean |
;; (in x (x_1 ...)) determines whether x occurs in x_1 ... |
in |
|
;; Any Any -> Boolean |
;; (=α/racket e_1 e_2) determines whether e_1 is α-equivalent to e_2 |
;; e_1, e_2 are in Lambda or extensions of Lambda that |
;; do not introduce binding constructs beyond lambda |
=α/racket |
|
;; ((Lambda x) ...) Lambda -> Lambda |
;; (subs ((e_1 x_1) ...) e) substitures e_1 for x_1 ... in e |
;; e_1, ... e are in Lambda or extensions of Lambda that |
;; do not introduce binding constructs beyond lambda |
subst) |
|
;; ----------------------------------------------------------------------------- |
(require redex) |
|
(define-language Lambda |
(e ::= |
x |
(lambda (x_!_ ...) e) |
(e e ...)) |
(x ::= variable-not-otherwise-mentioned)) |
|
(define lambda? (redex-match? Lambda e)) |
|
(module+ test |
(define e1 (term y)) |
(define e2 (term (lambda (y) y))) |
(define e3 (term (lambda (x y) y))) |
(define e4 (term (,e2 e3))) |
|
(test-equal (lambda? e1) #true) |
(test-equal (lambda? e2) #true) |
(test-equal (lambda? e3) #true) |
(test-equal (lambda? e4) #true) |
|
(define eb1 (term (lambda (x x) y))) |
(define eb2 (term (lambda (x y) 3))) |
|
(test-equal (lambda? eb1) #false) |
(test-equal (lambda? eb2) #false)) |
|
;; ----------------------------------------------------------------------------- |
;; (in x x_1 ...) is x a member of (x_1 ...)? |
|
(module+ test |
(test-equal (term (in x (y z x y z))) #true) |
(test-equal (term (in x ())) #false) |
(test-equal (term (in x (y z w))) #false)) |
|
(define-metafunction Lambda |
in : x (x ...) -> boolean |
[(in x (x_1 ... x x_2 ...)) #true] |
[(in x (x_1 ...)) #false]) |
|
;; ----------------------------------------------------------------------------- |
;; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent |
|
(module+ test |
(test-equal (term (=α (lambda (x) x) (lambda (y) y))) #true) |
(test-equal (term (=α (lambda (x) (x 1)) (lambda (y) (y 1)))) #true) |
(test-equal (term (=α (lambda (x) x) (lambda (y) z))) #false)) |
|
(define-metafunction Lambda |
=α : any any -> boolean |
[(=α any_1 any_2) ,(equal? (term (sd any_1)) (term (sd any_2)))]) |
|
;; a Racket definition for use in Racket positions |
(define (=α/racket x y) (term (=α ,x ,y))) |
|
;; (sd e) computes the static distance version of e |
(define-extended-language SD Lambda |
(e ::= .... (K n)) |
(n ::= natural)) |
|
(define SD? (redex-match? SD e)) |
|
(module+ test |
(define sd1 (term (K 1))) |
(define sd2 (term 1)) |
|
(test-equal (SD? sd1) #true)) |
|
(define-metafunction SD |
sd : any -> any |
[(sd any_1) (sd/a any_1 ())]) |
|
(module+ test |
(test-equal (term (sd/a x ())) (term x)) |
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0))) |
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ())) |
(term ((lambda () (K 0 0)) (lambda () (K 0 0))))) |
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ())) |
(term (lambda () ((K 0 0) (lambda () (K 0 0)))))) |
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ())) |
(term (lambda () ((K 0 1) (lambda () (K 1 0))))))) |
|
(define-metafunction SD |
sd/a : any ((x ...) ...) -> any |
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...)) |
;; bound variable |
(K n_rib n_pos) |
(where n_rib ,(length (term ((x_1 ...) ...)))) |
(where n_pos ,(length (term (x_0 ...)))) |
(where #false (in x (x_1 ... ...)))] |
[(sd/a (lambda (x ...) any_1) (any_rest ...)) |
(lambda () (sd/a any_1 ((x ...) any_rest ...)))] |
[(sd/a (any_fun any_arg ...) (any_rib ...)) |
((sd/a any_fun (any_rib ...)) (sd/a any_arg (any_rib ...)) ...)] |
[(sd/a any_1 any) |
;; free variable, constant, etc |
any_1]) |
|
|
;; ----------------------------------------------------------------------------- |
;; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hygienically) |
|
(module+ test |
(test-equal (term (subst ([1 x][2 y]) x)) 1) |
(test-equal (term (subst ([1 x][2 y]) y)) 2) |
(test-equal (term (subst ([1 x][2 y]) z)) (term z)) |
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (x y)))) |
(term (lambda (z w) (1 2)))) |
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (lambda (x) (x y))))) |
(term (lambda (z w) (lambda (x) (x 2)))) |
#:equiv =α/racket) |
(test-equal (term (subst ((2 x)) ((lambda (x) (1 x)) x))) |
(term ((lambda (x) (1 x)) 2)) |
#:equiv =α/racket) |
(test-equal (term (subst (((lambda (x) y) x)) (lambda (y) x))) |
(term (lambda (y1) (lambda (x) y))) |
#:equiv =α/racket)) |
|
(define-metafunction Lambda |
subst : ((any x) ...) any -> any |
[(subst [(any_1 x_1) ... (any_x x) (any_2 x_2) ...] x) any_x] |
[(subst [(any_1 x_1) ... ] x) x] |
[(subst [(any_1 x_1) ... ] (lambda (x ...) any_body)) |
(lambda (x_new ...) |
(subst ((any_1 x_1) ...) |
(subst-raw ((x_new x) ...) any_body))) |
(where (x_new ...) ,(variables-not-in (term (any_body any_1 ...)) (term (x ...)))) ] |
[(subst [(any_1 x_1) ... ] (any ...)) ((subst [(any_1 x_1) ... ] any) ...)] |
[(subst [(any_1 x_1) ... ] any_*) any_*]) |
|
(define-metafunction Lambda |
subst-raw : ((x x) ...) any -> any |
[(subst-raw ((x_n1 x_o1) ... (x_new x) (x_n2 x_o2) ...) x) x_new] |
[(subst-raw ((x_n1 x_o1) ... ) x) x] |
[(subst-raw ((x_n1 x_o1) ... ) (lambda (x ...) any)) |
(lambda (x ...) (subst-raw ((x_n1 x_o1) ... ) any))] |
[(subst-raw [(any_1 x_1) ... ] (any ...)) |
((subst-raw [(any_1 x_1) ... ] any) ...)] |
[(subst-raw [(any_1 x_1) ... ] any_*) any_*]) |
|
;; ----------------------------------------------------------------------------- |
(module+ test |
(test-results)) |
|