
Mixing COP and OOP

Sean McDirmid, Matthew Flatt, Wilson C. Hsieh
School of Computing

University of Utah

fmcdirmid,mflatt,wilsong@cs.utah.edu

We describe and justify thirteen technical properties that a compo-
nent system must possess to work with object-oriented program-
ming languages (such as Java, C++, or C#). Our components are
designed for large-scale, modular construction of programs with
static checking of program compositions.

Jiazzi, our enhancement of Java, implements the technical proper-
ties that we describe. We use Jiazzi components in our examples,
but only to make the discussion more concrete. Readers interested
in the details of the Jiazzi component system should refer to our
technical paper in OOPSLA ’01 [8].

P1. Language support: Components should be described with
a specific language construct.

P2. Core language integration: Components should contain,
import and export instances of constructs in the core lan-
guage.

As object-oriented software systems increase in size and complex-
ity, components are becoming central to the design process, and
they deserve language support. Otherwise, the lack of an explicit
language construct for components places a substantial burden on
programmers who implement components, and it obscures the pro-
grammer’s intent to the compiler and other programmers.

Furthermore, components should be integrated with the core lan-
guage, as opposed to working around the language with various
compositional design patterns [6]. In class-based languages, the
primary core language construct is the class, and large-scale ele-
ments of reuse are class libraries and frameworks.

Jiazzi’sunits [5] are explicit language constructs that describe com-
ponents. There are two types of units:atoms, which are built from
Java classes, andcompounds, which are built from other units. Both
atoms and compounds import and export Java classes.

P3. Coarse-grained connections: Connections between imports
and exports should be able to connect many classes at once.

Connections between components should be coarse-grained, be-
cause components represent large-scale software entities. Compo-
nents should import, export, and connect together groups of classes,

since management of individual imported and exported classes does
not scale with larger designs.

In Jiazzi, groups of classes are imported together, exported together,
and connected together when units are linked; we call these groups
of classespackages to emphasize their similarity to packages in
standard Java.

P4. Hierarchical composition: A component should be com-
posable into a larger, encapsulated component.

P5. Component instantiation: A component should be instanti-
ated for each use.

P6. External linking: A component’s external class dependen-
cies should be resolved by the user of the component.

Composition of components to form larger,compound components
enables the incremental construction of software. Outside a com-
pound component, information about the components that were
used in its construction should not be visible.

Component instantiation duplicates the structure of a component
into a component instance. The instance then undergoes linking
within a compound component. Thus, the distinction between “com-
ponent” and “component instance” is similar to the distinction be-
tween “class” and “object.” In particular, component instantiation
allows a component to be used in multiple, independent contexts.

To support external linking, component interfaces should specify
the shape of imports, but not the specific source of the imports.
Specific connections among component instances should only be
specified within a compound component. Avoiding hard-coded
class dependencies among components makes the components as
flexible as possible for client programmers [4].

Figure 1 provides a concrete example of unit composition. The
atomui exports packageui out, which is a user interface (UI)
library containing classesWidget, Button, andWindow. The
atomapplet imports a package of UI library classes using the
packageui in and exports an applet with the classProgram us-
ing the packageapp out. The compoundlinkui links ui and
applet together by creating the unit instancesu anda, respec-
tively. Using unit instancesu anda, the exported packageui out
from ui is connected to the imported packageui in in applet.



linkui

u : ui

ui
_o

ut

Widget

Window

Button

a : applet

ui
_i

n

Widget

Window

Button

ap
p_

ou
t

Program

ui
_o

ut

Widget

Window

Button

ap
p_

ou
t

Program

Figure 1: A graphical illustration of a compound linkui that
composes two atoms ui and applet; methods are not shown.

P7. Separate compilation: Components should be compiled and
type checked separately.

P8. Signatures separated from implementation: A component’s
class imports and exports should be defined in terms of sig-
natures that are separate from class implementations.

Separate compilation enables development of large programs and
deployment of components in binary form. The primary require-
ment of separate compilation is separate type checking [2]. Sepa-
rate type checking, in turn, requires the use of signatures for classes,
as opposed to the actual class implementations, when checking
connections made between component imports and exports.

In Jiazzi, the signatures of classes in a unit’s imported and exported
packages are described using package signatures. A package signa-
ture can be used in multiple unit descriptions, which enhances the
scalability of the Jiazzi component language. To support proper ab-
straction over signatures, package signatures have package param-
eters, which parameterize references to classes within the package
signature.

Figure 2 shows example package signatures and units that use them.
The package signature ui s describes a UI library. The package
signature applet s describes an applet. The units ui, applet,
and linkui from Figure 1 use these package signatures to de-
scribe their imported and exported packages. A package parameter
called ui p parameterizes both package signatures, and is bound
to the appropriate UI library that is imported or exported into the
unit.

Mixin Constructions
P9. Implicit hiding: A component should accept imported classes

that supply more members (e.g., methods) than the compo-
nent’s import signature specifies; the extra members should
not be visible inside the component.

P10. Import subclassing: A component should be allowed to de-
fine a subclass of an imported class.

Implicit hiding allows for more flexible composition by not re-
quiring exact matches when connecting to a component’s imports.

file: ./ui s.sig

signature ui s<ui p> f
class Widget extends Object
f void paint(); g
class Button extends ui p.Widget
f void setLabel(String); g
class Window extends ui p.Widget
f void add(ui p.Widget); void show(); g
g
file: ./applet s.sig

signature applet s<ui p> f
class Program extends ui p.Window
f void run(); g
g
file: ./applet.unit

atom applet f
import ui in : ui s<ui in>;
export app out : applet s<ui in>;
g
file: ./ui.unit

atom ui f
export ui out : ui s<ui out>;
g
file: ./linkui.unit

compound linkui f
export ui out : ui s<ui out>,

app out : applet s<ui out>;
g f
local u : ui, a : applet;
link u@ui out to a@ui in, u@ui out to ui out,

a@app out to app out;
g

Figure 2: Package signature ui s and applet s, and the textual
representation of atoms applet and ui and compound linkui
from Figure 1.

Import subclassing, which implies inheritance across component
boundaries, is necessary for grouping classes and class extensions
into components. In particular, combining implicit hiding with im-
port subclassing enables the composition of class-extending com-
ponents; e.g., mixins [1].

Figure 3 illustrates how mixins work in Jiazzi using an example
compound open.fixed that composes three atoms: open.-
init that provides a basic UI library, and open.font and open.-
color which respectively add font and color features to a UI li-
brary using mixin constructions. In the illustration, we track only
the construction of the class Widget, and we do not show all im-
ports and connections.

In the compound open.fixed, the package ui out exported
from an instance of open.font is connected to the package ui -
in imported into an instance of open.color. The method set-
Font, provided by the export of Widget in open.font, is not
visible in open.color. An important feature of implicit hiding
is that it is local to the inside of a component. In particular, because
ui out.Widget subclasses ui in.Widget, the export of Wid-
get from the instance of open.color does contain setFont.
Therefore, Widget can be exported from the compound with both
setFont and setColor methods.



open.fixed

i : open.init

ui
_f

ix
ed Widget

void setFont(int)
void setColor(int)

void paint()

f : open.font

Widget
void paint()ui

_i
n

Widget
void setFont(int)

ui
_o

ut

Widget
void paint()ui

_i
n

c : open.color

Widget
void setFont(int)

void paint()ui
_i

n

Widget
void setColor(int)

ui
_o

ut

Figure 3: A graphical illustration of a compound that uses a mixin
construction; inheritance relationships are directed arrows pointing
to subclasses; methods visible in export/import signatures are listed
in classes; gray methods are not visible.

Supporting mixin constructions creates the possibility of unresolv-
able ambiguous methods, known as method collisions. For exam-
ple, linking two instances of open.font together should lead to
an error, since the unit instances add the same method. To detect
method collisions in the presence of separate type checking (Prop-
erty P7), a method’s scope must be defined with respect to com-
ponent boundaries. Methods that are not visible in the same com-
ponent scope are not ambiguous, and therefore should not cause
method collisions.

Figure 4 shows an example where unit composition depends on
method scope to avoid method collisions. The atom mix.cowboy
exports a class Cowboy with methods duel and draw , as in “draw
your guns.” The compound cowboy.icon imports a class Icon
with method paint and draw , as in “draw an icon.” Linking
mix.cowboy directly in cowboy.icon is not possible; the draw
methods in Icon and Cowboy are distinct so cannot exist in the
same class in the same scope. To ensure the draw methods do not
appear in the same scope, the compound hide.draw hides the
draw method in Icon on import and the draw method in Cow-
boy on export.

P11. Explicit hiding: A component should be allowed to export
class implementations that supply more members (e.g., meth-
ods) than the component’s export signature specifies; the ex-
tra members should not be visible outside the component.

P12. Export subclassing: A component should be allowed to im-
port a subclass of an exported class.

P13. Cyclic component linking: Component linking should re-
solve mutually recursive dependencies among components.

Explicit hiding enhances component reuse, because irrelevant meth-
ods and fields can be hidden by wrapping a component. Export
subclassing combined with explicit hiding enables the formation of
“upside-down” mixins, which behave the same as normal mixins,

cowboy.icon
Icon

void paint()
void draw()ic

on
_i

n

Cowboy
void duel()

cw
_o

ut

h : hide.draw

Icon
void paint()
void draw()ic

on
_i

n

m : mix.cowboy

Icon
void paint()

ic
on

_i
n Cowboy

void duel()
void draw()cw

_o
ut

Cowboy
void duel()

void draw()

cw
_o

ut

Figure 4: A graphical illustration of a composition where method
scope is used to avoid method collisions; gray methods are not vis-
ible.

just from a different perspective. We explain how such upside-
down mixins are useful in the following section.

Cyclic component linking enables natural component organizations,
because mutually recursive “has a” relationships are especially com-
mon at the class level, and can naturally span component bound-
aries. “Upside-down” mixins necessarily require cyclic component
linking.

Combining cyclic component linking with mixin constructions cre-
ates the possibility that inheritance cycles could be introduced into
the class hierarchy. To detect inheritance cycles in the presence
of separate type checking (Property P7), the actual subclassing re-
lationship for two classes should always be locally obvious when
they are visible in the same component scope. Thus, components
must not be allowed to hide subclass relationships when the classes
involved are visible.

Open Class Pattern
Mixins and “upside-down” mixins can be combined in the open
class pattern, which is used to support the addition of features
to classes without editing their source code or breaking existing
class variant relationships. Such functionality is already provided
by languages that support open classes [3]. With the open class
pattern, we can replace the use of many design patterns [6] used
to implement modular feature addition, such as abstract factories
and bridges, with a combination of external linking and Java’s in-
language constructs for subclassing and instantiation.

Figure 5 illustrates how the open class pattern works using an ex-
ample in Jiazzi of an atom open.color, which was partially de-
scribed in Figure 3, that adds the color feature to a UI library. The
unit imports the previous implementation of the classes in the pack-
age ui in. These classes are subclassed by exported classes in the
package ui out, forming normal mixins. The key to the open
class pattern is that the unit must also import the fixed UI library,
whose classes subclass classes in ui out, which uses upside-down
mixins.



open.color

ui
_i

n Widget
void paint()

Button
void setLabel(String)

Widget
void setColor(int)

int getColor()
Button

ui
_o

ut

Widget Button

ui
_f

ix
ed

Figure 5: A graphical illustration of the subclassing relationships
and methods of Widget and Button local to an atom open.-
color that adds the feature of color to a UI library; gray methods
are explicitly hidden.

Using the open class pattern ensures that the class Button is al-
ways a subclass of Widget, no matter how many feature-adding
mixins are applied to Widget. In this illustration, the method
getColor in class ui out.Widget is not visible outside of open.-
color because it is explicitly hidden. An important feature of
upside-down mixins is that the subclassing relationship is visible,
so inherited methods that are not visible outside a component can
be visible inside the component. In particular, due to ui fixed.-
Widget’s upside-down mixin relationship with ui out.Widget,
and ui out.Button’s normal mixin relationship with ui fixed.-
Widget, the method getColor is visible in both widgets and but-
tons.

Figure 6 illustrates how the open class pattern is used in an end-to-
end construction using the compound open.fixed, which was
partially described in Figure 3. The atom open.init provides
the initial implementation of a UI library. The atom open.font
is implemented like open.color to add the font feature to a UI
library. The compound open.fixed links these units together
into a single UI library with both the color and font features. The
need for cyclic linking is apparent when we must “fi x” the UI li-
brary’s features by linking the exported package ui out from unit
instance c back to imports in the other unit instances.

Discussion
Seco and Caires [9] define a properties for components that differs
significantly from ours. They argue that classes and inheritance,
while usable in component implementations, should not be used
across component boundaries. We believe that although inheritance
is semantically fragile, it is well understood and easier to use than
alternatives such as object aggregation. Our full OOPSLA paper [8]
contains a more complete discussion of related work.

One necessary property missing from our list is online linking (i.e.,
dynamic linking), where components should be composable under
program control after program execution has begun. The properties
on our list do not interfere with online linking; some properties,
such as external linking and separate compilation, facilitate online
linking. Part of our future work is to provide support for online
linking in Jiazzi.

open.fixedi : open.init
ui_fixed

f : open.fontui_in

ui_fixed ui_out

c : open.colorui_in

ui_fixed ui_out

ui_fixedui_out

Figure 6: A graphical illustration of a compound that combines
the atoms open.init, open.font, and open.color into a
complete UI library with the features of both color and font; classes
are not shown.

We have presented thirteen properties that are necessary in a com-
ponent system to adequately support COP in OOP languages. These
properties enable expressive component compositions. When com-
bined, they also create challenges that must be overcome. For ex-
ample, support for mixin constructions and cyclic linking supports
the clean functional decomposition of features in programs, but
also creates problems of method collisions and inheritance cycles.
However, as we show in our work with Jiazzi, these challenges can
be overcome.

REFERENCES
[1] G. Bracha and W. Cook. Mixin-based inheritance. In Proc. of

OOPSLA, pages 303–311, Oct. 1990.

[2] L. Cardelli. Program fragments, linking and modularization. In Proc.
of POPL, pages 266–277, Jan. 1997.

[3] C. Clifton, G. Leavens, C. Chambers, and T. Millstein. MultiJava:
Modular open classes and symmetric multiple dispatch for Java. In
Proc. of OOPSLA, pages 130–146, Oct. 2000.

[4] R. Findler and M. Flatt. Modular object-oriented programming with
units and mixins. In Proc. of ICFP, pages 98–104, Sept. 1998.

[5] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In
Proc. of PLDI, pages 236–248, May 1998.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[7] S. Liang and G. Bracha. Dynamic class loading in the Java Virtual
Machine. In Proc. of OOPSLA, Oct. 1998.

[8] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age components for
old-fashioned Java. In To Appear in the Proc. of OOPSLA, Oct. 2001.

[9] J. Seco and L. Caires. A basic model of typed components. In Proc. of
ECOOP, pages 108–128, June 2000.


