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1 Introduction

We report the design and a premilinary implementation of a distributed time-travel system for the
Emulab Network Testbed [22]. Time-travel is the ability to move backward and forward in time within
the logged execution, reproducing it deterministically or non-deterministically an arbitrary number of
times. Our goal is to provide the ability to time-travel and debug execution across different nodes, as
Emulab experiments are usually distributed. We achieve this goal with logging and replay of the complete
operating system along with user-level processes. To this end, we run the operating system over the Xen
virtual machine monitor [3]. To improve the scalability and efficiency of the system, and to achieve state
mutations during time-travel, we employ the techniques of cooperative logging and relaxed consistency
(non-deterministic) during replay, respectively.

The report is laid out as follows. Section 2 talks about the related work in this field. Section 3
introduces the basic techniques in logging and replay, namely, deterministic logging, non-deterministic
logging and cooperative logging. The subsequent three sections elaborates on these techniques. Section
7 has a detailed discussion on checkpointing and its use in time-travel. Section 8 lists some issues we
have identified in implementing debugging capability over our time-travel system. Section 9 presents a
preliminary implemenation of our system, where we have made some simplifying assumptions, and the
evaluation results from the implementation are in section 10. We conclude with a discussion on the
lessons learnt and future work in section 11.

2 Related work

Last year, the ability to log and replay a complete operating system execution was demonstrated by Chen
et. al [12]. Chen’s work was based on previous results in the area of fault-tolerant computing, where
deterministic replay was used to reproduce exact the execution of the primary machine on the backup
copies [5].

Chen et. al extended their initial work by developing a light-weight deterministic logging and check-
pointing engine: ReVirt. In contrast to fault-tolerant solutions, where only the last checkpoint was needed
to start replaying crashed execution, ReVirt was designed to support efficient navigation (time-traveling)
between the chain of checkpoints in order to efficiently replay execution from any desired checkpoint.

Another important aspect dicussed by Chen is cooperative replay [1]. Cooperative logging is a tech-
nique where several communicating computers trust each other to rollback and replay execution together.
This avoids logging messages sent by cooperated computers and relys on the fact that communicating

*Sections 9, 10 and 11 are the new additions since the proposal.



computers will resend the ”same” messages during the replay. Chen’s results were based on techniques
used by message-logging recovery protocols surveyed and developed by Elnozahy et. al [3].

Chronous [21] uses time-traveling disk to locate critical changes in system configuration resulting in
system misbehaviour. Chronous doesn’t log complete system state, rather concentrates only on persistent
changes committed to a disk. Xen Pervasive Debugger [11] currently supports only sequential debugging
of the guest operating systemes running on a single Xen host, however authors promised to extend it
with support of both time-traveling and multi-host debugging.

3 Introduction to logging and replay

3.1 Deterministic logging

Deterministic replay assumes the ability to recreate exact execution of the original run. Naturally
that requires logging of all non-deterministic events (e.g. interrupts from external devices, memory
mapped I/0, input from I/O ports etc.). Moreover, deterministic replay relies on the ordinary instruction
assumption [5]. An instruction is ordinary if its result is determined by the initial system state and
sequence of instructions that precede its execution on a processor. We hope that Intel CPUs provide
ordinary instruction property, however some non-deterministic TLB placements or some other internal
non-documented state of the CPU can potentially violate this property.

Note that Chen et. al used UMLinux [7] in their work, which is capable to provide full hardware emu-
lation for the guest kernel. In our work we use Xen, which runs paravirtualized guests and uses frontend
device drivers in guest domains. Frontend device drivers are no more than thin proxies communicating
with the actual drivers run in device driver domains. Therefore, we will not allow to debug unmodified
device drivers and paravirtualized parts of the guest kernel. We foresee the possibility of extending our
approach by using processors with full virtualization support in hardware, however we do not discuss it
in this proposal.

3.2 Non-deterministic logging

In order to reduce the overhead of deterministic logging we will investigate the possibility of relaxing log
consistency and replay execution non-deterministically.

We will try to explore the assumption that some use model of our time-travelling architecture can
tolerate certain degree of non-determinism. We understand that it’s rarely the case when the goal of
the investigation is debugging. However, it’s highly probable that some statistical characteristics of
distributed systems can be successfully explored without use of deterministic time-travelling.

As a solution lying in between the mentioned extremes, we suggest deterministic surrounding. In
other words, if the user wants to debug a crash encountered during the non-deterministic logging, we
will replay execution from an earlier point, log deterministically, and hope that the error appears in this
execution. If so, user will be able to debug the error by replaying last part of execution deterministically.

3.3 Cooperative logging

Cooperative logging assumes that several nodes will cooperate to recreate previous execution together.
In case of a networked environment, nodes rely on the fact that other participants will resend messages.

Cooperative replay seems to be especially attractive for closed or almost closed Emulab environment.
Most of the log information will be recreated by participants.



A reasonable extension to the above approach lies in combining both cooperative and non-cooperative
logging. Thus we will do cooperative logging between nodes which we trust and log everything coming
from external (non-cooperative) world.

4 Deterministic Logging

4.1 Sources of non-determinism

To be able to deterministically recreate original execution we have to first define sources of non-determinism,
log them and replay. We discuss below the typical processor events and classify them as deterministic,
those that do not require any assistance to be recreated, and non-deterministic, those that have to be
logged and replayed.

Moreover, it’s also useful to further classify deterministic events as synchronous and asynchronous.
Asynchronous events (e.g. disk reads) consist of two parts: request and response. Usually time of
response is not deterministic and has to be logged like any other non-deterministic event.

4.1.1 Deterministic and non-deterministic events

Internal CPU exceptions (interrupts 0-31).

We attribute the 32 exceptions defined by the Intel architecture to deterministic events. Exceptions
pass control to the hypervisor, and although it can deliver them asynchronously, guest will be frozen and
observe exceptions as synchronous.

Nevertheless, there are processor exceptions that require at least some clarification about their deter-
minism:

e Page faults

Page fault exceptions can occur either due to the internal guest memory management or due to
the external paging of the guest memory performed by hypervisor. In both cases page faults are
deterministic. If guest swapped out own pages, it will do that deterministically again in subsequent
replays. If on the other hand guest’s address space was managed by the virtual machine monitor,
hypervisor will handle page fault transparently without violating replay.

Note, however that popular ballooning technique [20] tries to manage guest memory relying at
the same time on the assistance from the guest. Therefore, ballooning has to be replayed during
subsequent executions as any other external interaction with the guest. Obviously that makes little
sense. Thus, we will prohibit ballooning of logged guests.

e Debug exceptions (exceptions 1 and 3)

Debug exceptions can be used either by guest or by the hypervisor. Therefore, hypervisor always
checks who placed breakpoint and if it was placed by the hypervisor it will not be delivered to the
guest, and therefore will not disturb replay.

Exceptions from external devices

Exceptions from external devices are usually known as IRQs. They are the major source of non-
determinism in our architecture. Therefore, we have to log and replay them carefully.

Some of the IRQs are handled directly in the Xen microkernel, some require assistance from the device
driver domains. In a later section we will discuss how logging of these events is implemented.



e Timer IRQ

Timer events are handled in the Xen microkernel.

e Console

Console interrupts are delivered to the device driver domain (most of the time it’s one privileged
domain called domain0).

e Disk drives

Interrupts from disk drives are handled in driver domains.

e Network cards

Network interrupts are delivered to the driver domain.

e APIC TRQs

Inter-processor interrupts (IPIs) are used in case of an SMP guest. They are handled directly in
the hypervisor. We will not consider the SMP guest in our discussion.

Since we are targeting server environment in this work, we will concentrate on the devices enumerated
above and omit discussion of other devices: graphic cards, CD-ROM drives, pointing devices, floppy
drives, USB devices, etc.

Xen hypercalls

Xen hypercalls use interrupt xx, and are also deterministic. But hypercalls that see external state
(for example, read time of the day hypercall) should be logged and should return the same value during
replay.

4.1.2 Paravirtualized events

Note that paravirtualization allows us to avoid handling many complex events considered in other works,
for example in [12].

In our work guests use only paravirtualized device drivers. In other words guest device drivers com-
municate only with the device driver domains by means of Xen IPC. Therefore, a paravirtualized non-
privileged guest will never legally perform any of the following events: in/out instructions, memory-
mapped 1/0, device DMA.

4.2 Xen integration

In this section we discuss how logging mechanisms can be implemented in Xen virtual machine monitor.
Xen [10] is a small microkernel providing simple exception handling, scheduling, memory management
and IPC mechanisms. Device drivers, IP stack, file systems reside in guest virtual machines. Usually
only one privileged virtual machine hosts all device drivers. Other virtual machines have only frontend
device drivers, which communicate by means of Xen IPC with device driver domains in order to place
requests to devices and receive responses. Requests from the guests are scheduled by the backend device
driver to be sent further to the physical device driver.



4.2.1 Logging

In the previous section we noted that in order to reproduce exact execution we have to log and replay
all non-deterministic events. By identifying these events we came to the conclusion that only IRQs from
external devices are non-deterministic and have to be logged.

In the Xen architecture, non-deterministic hardware events are either processed directly by the Xen
microkernel or delivered to the device driver domains. Backend drivers communicate with the frontend
drivers to deliver information to the guests. Therefore, a paravirtualized guest never actually sees IRQs
from disk or network devices. All events are delivered to the guest by means of two forms of Xen IPC:
event channels and shared memory rings.

An attractive approach to logging implementation would be to log all communication at the level of
event channels. Unfortunately, such an approach introduces unacceptable overhead. In order to deliver
a small network packet Xen microkernel uses page sharing and therefore passes the whole memory page
between the device driver domain and the guest. A blind logging of the whole page can easily deplete
log space.

In order to avoid logging unnecessary information we need to be aware of the semantics of communi-
cation (i.e. what exactly was sent on the page). The perfect place to extract this information would be
a thin layer below backend drivers in the device driver domain. At that level we can mediate the guest
communication, and extract required information from the shared page by using the same structures,
which are used by the backend driver.

At the same time in order to replay event deterministically, we not only need the data, but also the
state of the guest at the time of event delivery. This state is accessible only from the Xen microkernel.
Therefore we split our log operation in two stages:

e Log data: during this stage, logging operates in the device driver domain and logs the actual data
which has to be delivered to the quest.

e Log guest state: during this stage logging operates in the Xen microkernel and saves the state of
the guest at the time of event delivery. Note, that in order to pass data to the actual log we do an
upcall from the Xen microkernel to the device driver domain.

Events which do not require interaction of the device driver domain are logged directly from the Xen
microkernel. In order to log backend driver information we are planning to implement driver aware
logging components. Currently they will log only console, network and disk I/0.

To remove disk writes from the critical path we separate operations of logging and flushing the log to
persistent storage. We implement logging mechanism as a kernel thread which will accumulate log data
and flush it to persistent storage periodically.

4.3 Deterministic replay

Deterministic replay of the event requires stopping the execution of the running guest exactly at the
time, where event occurred during the original run and injecting the event to the guest. To stop the
guest in the desired place of execution we use hardware branch counters provided by conventional Intel
processors. Intel processor can count the number of branches encountered during execution and raise
exception when the counter overflows. To employ this fact we log the number of branches between events
during the original run. Upon replay we set the branch counter to overflow before the block of code
where we have to inject the event. After that we place software breakpoint and proceed execution up to
the desired instruction pointer position.



Note however that, while employing the above approach we have to be careful about the following
complications:

e We have to carefully maintain branch counters upon VM switches and hypervisor exceptions.

e Some Intel models can deliver branch counter overflow exceptions within the average delay of 5
cycles. Therefore, we have to overflow the branch counter earlier and step through the code after
that.

e Intel TA-32 architecture allows interrupt string copy operation. Therefore, we have to log ecx
register value.

We have also carefully consider and investigate all possible violations of Ordinary Instruction Assump-
tion [5]. Some examples deserving consideration are: possible non-deterministic TLB replacement policy,
effects of the MSR and MRR registers on the CPU behaviour, effects of hyper-threading, or coprocessor
interactions.

5 Non-Deterministic Logging

Most probably, a naive approach to a non-determinisic logging should not assume any logging at all
except required by consistent distributed checkpoint protocol.

However, it’s natural to extend the non-deterministic logging with delivery of external events. We
believe that for many time-travelling experiments it will be sufficient to replay external events in approx-
imately the same time, when they arrived during the original run. Note, that we assume that time of
event delivery should be a virtual machine time.

In order to maintain some reasonably consistent state among distributed modes, we will rely on the
physical clock synchronization, and resume execution on different nodes at approximately the same time.

Note, that we also suggest to use deterministic surrounding as was suggested in Section 3.2 and switch
from the non-deterministic logging to the deterministic in case we need to debug program crashes.

6 Cooperative logging

Similarly to the non-cooperative logging, non-cooperating logging can be performed either deterministi-
cally or non-deterministically.

6.1 Cooperative logging in the deterministic case

In the deterministic case we rely on the fact that all participants during replay will deterministically
resend all messages and cooperatively recreate distributed execution. However, even if a node receive
messages from the original run, which are resend by cooperative parties, it still requires precise time of
the message delivery in order to replay execution deterministically.

Combining the two ideas above, we introduce pseudo log entries. Pseudo entry stores only the state of
the guest upon message delivery and the digest of the message needed to verify message integrity. The
actual content of the message will be recreated upon message arrival. Note, that the guest can be frozen
waiting for arrival of the message from a remote participant.

Note also, that we should consider the following reliability issue: generally we cannot assume reliabile
message channels. Therefore messages can be lost. In that case we have to detect the loss, and undertake



some steps to resolve the situation. Our current approach is to rollback the execution by one checkpoint
and replay in the hope that the message will not be lost during the second run.

Note, that pseudo entries are used not only for network I/O but also for any other asynchronous
events. For example, disk, which is usually considered to be totally deterministic, is only cooperative in
our model. Thus, we have to add a pseudo entry to the log describing the state of the guest at the point
when it received reply from the disk.

6.2 Cooperative logging in the non-deterministic case

In the non-deterministic case, cooperative logging can be reduced to the problem of guest synchronisation
at the point of starting replay. In that case, we don’t log anything except external events.

We propose to synchronize guests in a very simple fashion: synchronize the clock of the physical
machines, agree on the time of replay allowing a large enough delay to let all guests to prepare, and start
replaying at the scheduled time.

7 Checkpointing

Logging and replaying by themselves are capable of recreating the state of the guest at any point of
execution history. Unfortunately, recreation of the state by only logging can be very inefficient [12].
Therefore, logging is most often combined with periodic checkpointing.

7.1 Distributed Checkpointing

Co-ordinated distributed checkpointing is the process of saving a consistent global state of the distributed
system on-the-fly, with co-ordination from the individual nodes. A global state or checkpoint of a
distributed system constitutes the states of the individual nodes and those of the communication channels.
A consistent global state is one in which, if a node reflects a message receipt, then the state of the
corresponding sender reflects sending of the message [6]. There has been vast prior research in the
various techniques of taking distributed checkpoints [23, 13].

To meet the global consistency requirement, the co-ordinated checkpointing protocol should prevent
nodes from receiving messages that could make the checkpoint inconsistent. Such messages constitute
the channel state of the checkpoint. Depending on the mechanism used for identifying these messages
[23], the checkpointing protocols can be broadly classified under two categories: control-message-based
and time-based.

Control-message-based protocols rely on explicit control messages (markers) or piggybacked infor-
mation to trigger checkpoint or identify messages received from senders in earliar checkpoint intervals.
Some control-message-based protocols have restrictions on the nature of the communication channel.
Some protocols assume a FIFO message delivery [0, 19, 18], while others assume causal message ordering
[2, 1]. These protocols do not suit our design goals, since we try to avoid assumptions about message
delivery guaranties. Further, we restrict ourselves to non-blocking checkpointing protocols, which do not
block communications while the checkpointing protocol executes [8].

The control-message-based protocols incur a lot of communication overhead for checkpoint co-ordination.
If we could assume a synchronized global clock, checkpoint co-ordination can be done efficiently [3]. All
nodes can decide to take their local checkpoints at a fixed point in (global) time (’t’). All messages
with timestamps smaller than ’t’ and received after a node after took its local checkpoint constitute the
state of the channel. It would probably be tough to checkpoint all the guests before time ’'t’ and also
ensure that the checkpointed guests do not send any messages before 't’ (so that they don’t violate the



constraint that messages before ’t” belong to the older checkpoint interval), without blocking the guest
operation. Thus, we don’t plan to go along this path.

We propose to explore the applicability of the control-message-based protocols by Li et al [15] and
Elnozahy [9], that use checkpoint indices piggybacked with messages and have no channel restrictions.
When a node receives a message with a higher index than its local checkpoint index, guest checkpointing
is triggered. Note that checkpointing will not be triggered on a node that is not communicating with
other nodes. To ensure progress of the protocol, we might have to insert control messages with checkpoint
indices. Since these should not reach the guest, our logging module would have to filter them off.

In these protocols, we need to tag a sequence number along with all the messages that are sent. Note
that this tagging increases the packet size and could affect the packet fragmentation compared to the
real run!

Also note that messages constituting the channel state of the checkpoint will not be resent if we replay
execution from that checkpoint. So, we would have to log these messages along with their contents
irrespective of the type of logging employed (Ofcourse, in the case of non-co-operative logging, incoming
message contents are always stored).

7.2 Checkpointing a single guest

Checkpointing a guest involves saving the current content of the guest’s memory and disk. In addition
to this, we should log the contents of incoming messages from guests in previous checkpoint intervals.
These messages in addition to the memory and disk contents constitute the checkpoint state on a guest.

Naturally, saving the entire memory or disk contents at each checkpoint is neither time nor space
efficient. So, we try to store only minimal data required to identify state at a checkpoint.

7.2.1 Disk Checkpointing

Checkpointing a guest’s disk entails the ability to regenerate a view of the entire disk as it were at the
time of a checkpoint. There are two common approaches. The first approach is to do Copy-on-Write
of blocks changed during a checkpoint interval and track mappings of guest disk blocks to their actual
physical location for every checkpoint. The second approach is to track the changes in a redo/undo log,
so that reconstructing the state at a checkpoint will involve traversing the undo (or redo) logs to move
backward (or forward) in time. Doing time travel between checkpoints could be an expensive operation
in the latter approach. Whereas, the first approach has the CoW runtime penalty.

Chen et al [12] use an optimized redo/undo log based approach, by avoiding copy of data blocks
into redo/undo logs and instead creating a new block on first write after checkpoint and tracking the
guest-host disk block mappings in the undo/redo logs. This approach still incurs the penalty of having
to traverse the undo/redo logs to reconstruct the disk state during time travel.

We believe that the first approach, that is typically used by existing versioning storage systems [ 16, 14],
would avoid this log traversal. And to avoid the CoW penalty, we will explore implementing (or adding
to existing systems) the Create-on-First-Write functionality (that Chen et al use) in versioning systems.

Given that a Xen guest’s disk can either be a disk partition or a file (in domain-0), we have the choice
between disk block-level [141] and fileystem-level [16] versioning systems. It needs to be seen how the
relative performance of the two approaches is. Although, in theory, file-level approach seems more of an
overhead.



7.2.2 Memory Checkpointing

Support for efficient memory checkpointing is more complicated than disk. In general we plan to follow
the approach adopted by Chen et al, where each checkpoint has redo and undo logs containing those pages
modified in the previous and subsequent checkpoint intervals respectively. Similar to disk checkpointing,
Chen et al’s approach suffers from the log traversal overhead (especially when time travelling to distant
checkpoints).

We propose storing the changed pages in versioning storage, similar to disk checkpointing. In addition
to this we also propose to use undo/redo logs which would contain pointers to disk locations storing
the pages (rather than complete page contents). We can use the redo/undo logs to identify the specific
pages to be loaded to time travel to a checkpoint. This way we hope to get the best of both worlds-
Time-travel to near checkpoints will use redo/undo logs followed by paging-in of specific pages. Time-
travel to distant checkpoints, instead of traversing the logs, will load the checkpoint’s memory snapshot
into memory in totality. It is only our intuition that loading the entire memory would be more efficient
than a long log traversal, but we would have to find out if it really holds true.

Chen et al’s implementation uses CoW to save pages modified since last checkpoint. Their approach
needs to copy the original page to store it in the undo log of the previous checkpoint. Since we use
versioning storage, we can identify the contents of the page in the previous checkpoint and thus can
avoid this memory copy overhead.

To identify changed pages, we propose to maintain a bit per page that gets set upon a write to the
page. Setting write-protect bit on each page and having the first write access after the checkpoint trap
into the hypervisor, is a straightforward, but inefficient, way.

7.2.3 Co-ordinating disk and memory checkpointing

Similar to checkpointing of multiple guests, disk and memory checkpoints should be co-ordinated. Sup-
pose that there was a disk request in flight when memory and disk got checkpointed. This disk request
should be saved and reissued to the disk upon replay.

We may need to apply distributed snapshotting techniques (in this case, the channel could be assumed
to be FIFO) by considering disk and memory as the two entities in a distributed system. So, disk requests
and responses too would be piggybacked with checkpoint indices.

7.2.4 Checkpoint deletion issues

To save disk space we propose to adopt exponential deletion, wherein we delete successive checkpoints
for distant times in the past, such that the checkpoint intervals exponentially increase with increasing
time in the past.

Further, we propose to maximize space saving by deleting the checkpoint with largest amount of
changes among the consecutive checkpoints.

It is important to note that when log overflow happens and we overwrite a single log entry, we lose
the ability to time travel to any checkpoint prior in time to that log entry. If such a thing happens, we
should garbage collect those ”inaccessible” checkpoints.



8 Debugging

8.1 Local debugging

Local debugging is hardened by the fact that in order to maintain determinism of the replay we have
to operate externally with respect to the debugged operating system. We are not able to rely on any
assistance from the guest. At the same time, we need some knowledge about guest operating system
state to place breakpoints intelligently.

Some authors [12, 11] claim that they can easily debug the guest kernel and that the only complexity
lies in distinguishing user-level processes of the guest. We claim that such an approach is in general
incorrect and that external guest debugging is a nontrivial problem. Complexity of debugging stems
from the fact that both guest kernel and user level processes possess enough inherent dynamism to
prevent straightforward approaches to the analysing guest state needed to place debug breakpoints.
Below we consider some related problems, which can help clarify the situation.

A guest kernel can load and unload modules, therefore any attempt to place breakpoint on the module
requires, in general, analysis of guest kernel structures, which describe guest address space layout and
modules present in memory. We can assume that it’s possible to possess enough information to parse
guest kernel structures to undertake this analysis. Unfortunately, the situation is more complex, since
kernel structures required to undertake this analysis may have been partially swapped out. The next
natural step is to try to parse guest swap file system in order to place breakpoint directly on the swapped
page, or analyse whether the required module is actually in memory. Unfortunately, even this aggressive
assumption doesn’t solve the problem completely. The swapped page can be in the middle of transition
between the swap file system and the memory and reside somewhere in a cumbersome disk I/O buffer
cache layer.

Debugging of user level processes basically faces the same problems. Moreover, they are even more
realistic. In kernel case, one can claim that the kernel rarely loads and unloads modules, or can require
all kernel pages to be present in memory. Obviously, it’s not true for user-level processes, which are
created and swapped often, load shared libraries dynamically.

The most promising approach that we have figured out so far is to rely on guest assistance in plac-
ing breakpoints. Upon placing breakpoint we propose to checkpoint the guest and branch in a non-
deterministic execution. While trying to place breakpoint, the guest operating system will find the
virtual page for us wherever it is — in the memory, I/O cache, or swapped out. We in turn, track
location of the page, rollback to the point of branching and place breakpoint in the same place where
page was found.

8.2 Distributed debugging

Distributed time-travel debugging requires ability to step forward and backward in execution, jump
between nodes, place forward and backward breakpoints.

Note that so far we have not logged the sending of a message. In order to improve navigating backward
in time, especially in order to move backward along with the causal order induced by messages, we can
extend the log with events describing the sending of messages.

8.3 Automatic crash detection

Time-travel debugging is especially useful for debugging long running applications. Therefore, it is
desirable to provide support for an automatic crash detection. We foresee this support in two forms:
passive and active.
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In passive form, we propose to monitor system activity and if it changes unexpectedly, assume system
misbehavior. For an active monitoring we propose to use a user-provided application, which will check
some system invariant, and if it’s no longer held report a crash.

8.4 Branches in the log

The natural use model of time-travelling assumes that user can modify logged execution and create
branches. Therefore, there are two possible ways to evolve execution along the branch: proceed execution
in the real world immediately after the branch or create the branch and continue replay of the log.
Although the first approach seems to be much more natural, we feel that there is some rationality behind
the second approach as well.

For example, during the non-deterministic replay, replaying the old log after the branch can help to
explore some statistical characteristics of the system and their change with respect to the modification
in execution.

Note, that there are also two ways to change execution at the point of branch: change data in the log
or change the application code.

8.5 Version file system to support branches

From our survey, none of the current disk or filesystem level versioning solutions support branching,
where one can go back to an older version and fork off from there. We plan to explore implementing
branching on top of an existing solution like ext3cow [16] or handle it by managing the versions explicitly.

9 Implementation

We have implemented non-deterministic time-travel with consistent distributed checkpointing. Our im-
plementation has made two simplifying assumptions. First, we assume that the time-travel system
operates in a ”closed world”. This may seem restrictive at first glance, but is actually not so. Emulab,
our target environment, is typically ”closed”, with the nodes in an experiment rarely interacting with
the external world. The only external interaction for the time-travel system is with the Emulab ”control
plane” and our current implementation ignores this. Second, we assume that the communication channel
is non-reliable and thus expect distributed applications to gracefully handle packet losses.

The implication of the first assumption is that our logging and checkpointing modules need not handle
network packets originating from non-time-travelling nodes in any special way. The second assumption
obviates the need for packet logging during consistent checkpointing. For instance, packets from the
previous checkpoint epoch i-1 received during the current checkpoint epoch ¢ need not be logged and
delivered during replay from checkpoint i.

Implementation Overview. Time-travel has been implemented as a loadable Linux kernel mod-
ule in domain0. If the time-travel module is not loaded, Xen’s default functionality is retained. We have
added hooks in Xen’s backend disk and network drivers for implementing logging and checkpointing. In
accordance with our design decision to keep user domains transparent to time-travel, we have made no
time-travel changes to domainU kernel or userland.

Time-Travel Kernel Module. Our time-travel module constitutes a checkpointing thread and a

logging thread per time-travelling user domain on a physical machine. The logging thread periodically
dumps the log buffer to the disk. The log buffer is filled in by the Xen backend disk and network drivers,
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with disk or network packets that are to be logged. As a result of implementing non-deterministic
time-travel and the assumptions mentioned above, the logging functionality, although implemented, is
currently unused.

The checkpointing thread’s only job in life is to invoke memory and disk checkpointing when woken up.
The checkpoint thread is woken up for three different reasons. First, from the backend network driver
when it receives a packet tagged with a checkpoint epoch that is higher than that of the user domain’s
current checkpoint epoch. This achieves consistent checkpointing. Second, from the timer callback, for
periodic checkpointing. Third, upon writing the user domain ID to the procFS entry /proc/tt-checkpoint,
for user applications to initiate checkpointing.

Ethernet Encapsulation. The above discussion on achieving consistent checkpointing requires that
each outgoing network packet be tagged with a checkpoint epoch ID. We do so by ethernet level encap-
sulation. We introduce a new ethernet type and add a time-travel header that contains a checkpoint
epoch ID (Figure 1). This header is added by the backend network driver at the sender. The backend
network driver at the packet receiver strips this header and delivers a proper ethernet packet to the user
domain. As a result the MTU visible to the user domain is reduced by the time-travel header size.

New
Ethernet Header Ethernet Time-Travel Header Unmodified Packet
Type:

0x80FF

tt_header {
magic:4;
ckpt_id:2;
orig_ether_type:2;
}:8 bytes

Figure 1: Ethernet Packet Encapsulation

Memory Checkpointing. Currently, we have a naive implementation of memory checkpointing that
leverages on Xen'’s save and resume operations. Save halts the user domain and dumps its memory image
to a file, while resume restarts a user domain from a file representing its memory image. While this was
quite trivial to use, we were impeded by a bug (causing user domain disk I/O to hang upon a resume)
that we eventually fixed.

Disk Checkpointing. We use the Copy-on-Write instant snapshot feature of Linux LVM for disk
checkpointing. The user domain is initially booted off an LVM volume. Disk checkpointing involves
simply taking a snapshot of the original LVM volume.

Replay. Time-travel to a previous checkpoint requires three operations. First, the time-travel mod-
ule is to be disabled because we currently cannot take checkpoints during time-travel runs (which run off
LVM snapshots). This is due to the limitation of Linux LVM that disallows taking snapshot of a snap-
shot. Second, the LVM snapshot corresponding to the checkpoint is chosen. Finally, a resume operation
is done off the memory image corresponding to the chosen checkpoint.
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10 Evaluation

In this section we present some evaluation results of our implementation on a simple setup consisting of
two physical machines running a user domain each (with Linux Fedora Core 4) and connected by a 1 Gb
network. We have verified that active ssh connections and in-progress scp operations between two user
domains are uninterrupted across checkpointing and time-travel to previous checkpoints. We have also
observed that checkpointing (including memory and disk) takes about 2-3 seconds.

Encapsulation Overhead. We compared the scp speed while copying a 1 GB file in three scenar-
ios. First, between two user domains with ethernet encapsulation being done on all network packets.
Second, between two user domains without ethernet encapsulation. Third, between two domain0s, that
do not incur any virtualization overhead. The results are presented in Figure 2. As one would expect, the
scp speed in the domain0 case is much higher. Interestingly, with time, the speed of the non-encapsulated
user domain case becomes worse than the encapsulated user domain case. We do not have a specific
reason for this, but suspect that it may be due to some transient network conditions. Nevertheless, these
results indicate that encapsulation overhead is not appreciably high.
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Figure 2: Encapsulation Overhead

Checkpointing and Replay Overheads. We compared the scp speed between the original and replay
runs for over 8 checkpoint intervals (Figure 3). The results indicate that the speed of the original run
decreases exponentially with increase in number of checkpoints. The reason for such poor performance
lies in the way LVM handles its snapshots. Every new write to the original LVM volume pushes the
previous contents of the volume to all the previous snapshots. This overhead, due to multiple-copy-
on-writes, is the cause for performance degradation in the original run. Beyond the fourth checkpoint
interval, the scp speed of the original run stabilizes. This is probably because earlier snapshots do not
need copy-on-writes.

In contrast, the replay speed is almost constant because all writes during time-travel runs happens on
(single-level) LVM snapshot volumes. In this case, the scp speed is dictated by the write performance
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Figure 3: Checkpointing and Replay Overheads

on snapshot volumes, which seems to be less than half of that on original LVM volume without any
snapshots, i.e. original run speed at checkpoint number 0.

11 Lessons Learnt and Future Work

Our implementation was mightily simplified compared to our proposed design. Nevertheless, we believe
that it has provided useful insights and directions for future work.

Specifically, we have the following observations from our implementation effort:

e Distributed applications (atleast the ones we have evaluated) are highly resilient to packet losses.
This gives us motivation to further pursue relaxed consistency in replay.

e Even with a naive implementation of memory checkpointing, the total checkpointing time is about
2-3 seconds. This gives us reason to believe that an optimized implementation could achieve
checkpointing times almost imperceptible to user domain.

e LVM as a disk checkpoint solution is a bad idea. The write performance, both on original volumes
with few snapshots and on snapshots, in general, is unacceptable.

As future work, we would like to pursue the following:
e Implement deterministic checkpointing.
e Make memory checkpointing more efficient.

e Optimize disk checkpointing. We propose to explore using ideas from the recent reasearch work
on vitualization aware filesystem [17] that claims to handle versioning and branching efficiently.
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