
1

1

How to Use the Netbed (Emulab++)
Network Testbeds

Jay Lepreau Rob Ricci Mac Newbold
University of Utah

SIGCOMM Tutorial

August 19, 2002

2

So, you�ve built the next great
{distributed system, network

protocol, P2P app, etc.}

But, you need to test and
evaluate it

3

Netbed Can Help
� At its base: machines with accounts (even root)
� We configure networks, but control is yours

� Do whatever you want on/to nodes
� Even install a new OS!

� All the amenities of home
� Console access
� Power control

� Incorporates other experimental environments
� Wide-area nodes, simulated nodes
� Use what makes the most sense for your experiment

� Simple stuff is simple; hard stuff (anything) is
possible

4

So, Show Me!

Let�s set up an experiment:
http://www.netbed.org/

5

Why?
� �We evaluated our system on five nodes.�

-job talk from university with 300-node cluster
� �We evaluated our Web proxy design with 10

clients on 100Mbit ethernet.�
� �Simulation results indicate ...�
� �Memory and CPU demands on the individual

nodes were not measured, but we believe will be
modest.�

� �You have to know the right people to get access to
the cluster.�

� �The cluster is hard to use.�
� �We obtained guest accounts through 13 friends

around the world to carry out our Internet
measurements.�

6

Common Misconceptions
� Unfamiliar environment

� No, you typically get standard hardware and software
� Like a simulation, it must �run on its own�

� No, you ask for just the features you want
� Lots of NS expertise required

� No, there�s a Java GUI for experiment configuration
� No, configuration can be done with a subset of NS and

cut-and-paste
� �Just a cluster�

� No, configures network to emulate custom topologies
� �Just emulation�

� No, support for real wide-area nodes & simulated nodes

2

7

What�s a Node? What�s a
Router? (misconceptions)

� Physical hardware:
� PC (local or remote)
� (StrongARM box: in past)
� (IXP1200, a specialized network processor: soon)
� (Wireless: future)

� Virtual node:
� Router (network emulation)
� �Middlebox� (distributed system)
� End host
� A piece of a distributed node

8

What is Netbed / Emulab?

� A time- and space-shared platform for research,
development, and education in distributed
systems and networks

� A large software system
� Machines with configurable connectivity
� Emulab is the primary emulation portion of

Netbed
� www.emulab.net (Utah, 168 nodes, public)
� uky.emulab.net (Kentucky, 48 nodes)
� Georgia Tech (~50 nodes, soon)
� �.

9

What is it (cont�d):
Emulation Portion

� A configurable and controllable network
emulator in a room
� Utah Emulab today: 168 nodes, 1646 cables, 4

big switches
� virtualizable topology, links, node software

� Bare hardware with lots of tools
� A controllable virtual world for distributed

systems and networks

10

What is it? (cont�d)

� � a base for physically distributed network
testbeds and virtual (overlay) networks

� A way to get access to nodes all over the
world

� An instrument for experimental CS research
� Universally available to any remote

experimenter
� Simple to use

Utah Netbed Site

12

Kentucky Netbed Site

3

13

Distributed (Wide-Area) Nodes

14

15

Node Types In Utah Emulab
Today

� pc600 (40)
� 600MHz processor
� 256 MB RAM
� 13 GB IDE disks

� pc850 (128)
� 850MHz processor
� 512 MB RAM
� 40 GB IDE disks

16

On With How to Use It

17

Getting Started

� Visit the website at www.netbed.org
� Apply to start or join a project

� Creates a new user account
� Create an experiment

� Topology/configuration specified with
� a Java GUI, or
� an ns file

� Start using your experiment!

18

www.netbed.org (emulab.net)

� Most work can be done through our web
interface
� Beginning/ending experiments
� Applying for/approving access
� Controlling nodes

� Searchable documentation
� Secure access using https

4

19

A �Project�

� Central administrative entity
� Started by a faculty member or senior

student
� Submitted through web interface
� User account gets created for experiment leader

� Approval of project users delegated to
leader
� Saves on administrative overhead
� Project leader responsible for users' behaviour

� Project gets its own disk space
20

An �Experiment�
� Central operational entity
� Represents network configuration,

including
� Network links
� Node configuration
� May include traffic generations, event stream
� May simply be some allocated machines!

� Created with an ns file or a simple GUI
� Started through web interface
� Mail sent when setup is complete

21

The Netbed Documentation

� At http://www.netbed.org/doc.php3
� Searchable with WebGlimpse
� Also useful

� NS-2 documentation
� www.isi.edu/nsnam/ns/ns-documentation.html

� TCL books, manuals, etc.

22

Experiment Creation Mail

� Virtual Node Information
� Physical Node Mapping
� LAN/Link Info
� Delay Node Info
� Log of experiment creation

23

VLANs and Delay Nodes

� Isolation done with Virtual LANs (VLANs) on
our switches

� Traffic shaping done with transparent
bridges
� Invisible to nodes
� Regular nodes running FreeBSD
� dummynet used for traffic shaping
� Listens for events related to its links

24

VLANs and Delay Nodes - Diagram

5

25

Introduction to
Using Your Experiment

26

Nodes

� Logging into nodes
� ssh access

� Add public keys via our web interface
� Fully-qualified names

� Shared NFS home directory
� Root access via sudo
� Testbed-specific configuration in
/etc/testbed

� You�re free to do whatever you want to
them � disks get reloaded afterwards

27

Web

� Web control of running experiments
� View experiment report
� Swap in/out
� View NS file and visualization

� Node control
� Set OS
� Add RPMs, tarballs, startup scripts, etc.
� Reboot node
� Access to node serial console

28

users.emulab.net

� Commands available on users.emulab.net
� node_reboot -reboot/power cycle
� os_load - recover scrogged disks
� portstats - see switch port counters

� �console� - serial console access
� Disk space:

� /users � small stuff
� /proj � bigger stuff (shared among members of

the project)

29

Serial Consoles

� Link on node page
� Requires some setup

� Download tiptunnel (Windows, Linux,
FreeBSD binaries available)

� Install wherever convenient
� Associate file type with downloaded binary

� All output logged on users.emulab.net
– /var/log/tiplogs/<physid>.run

30

NS Specifics

6

31

Audience Familiarity With NS

� Use it all the time?
� Use it a little?
� Have used TCL, but not NS?

� NS scripts are written in TCL
� Never used either?

32

Boilerplate

� Statements required in every Netbed NS file
• set $ns [new Simulator]

� Creates a new NS �simulator object�
• source tb_compat.tcl

� Load testbed-specific commands
� Stub version provided for running in NS

• $ns run

� In NS, runs the simulation

33

Nodes � Netbed-Specific Commands

• tb-set-node-os nodeA FBSD-STD

� Set OS. Currently supported:
• FBSD-STD

• RHL-STD

• <your own>

• tb-set-hardware nodeA pc600

� Pick specific PC type: pc600/pc850
– pcvron/pcvwa

34

Links

• $ns duplex-link $nodeA $nodeB 100Mb 0ms DropTail

� Set bandwidth and/or latency
� Queuing types: DropTail, RED, GRED

� Naming links:
–set link0 [$ns duplex-link ...]

� Always name your links
• tb-set-link-loss $link0 0.05

� Ratio of lost packets: 1.0 means drop all
packets

35

LANs

• $ns make-lan "$nodeA $nodeB $nodeC" 100Mb 0ms

� Naming works the same as with links
� Setting packet loss on a LAN

–tb-set-lan-loss $lan0 0.01

� Setting different characteristics for a single
node:
– tb-set-node-lan-delay $lan0 $nodeA 40ms

– tb-set-node-lan-bandwidth $lan0 $nodeA 20Mb

� Unlike links, no queuing discipline
36

Routing

� Types of routing
� Manual - You specify
� Static - Computed by testbed software
� Session � Dynamic (OSPF), using gated

• $ns rtproto Static

� Set routing type
• $client add-route $server $router

� Adds routes when using Manual routing

7

37

LAN Example

38

LAN Example NS File

set ns [new Simulator]
source tb_compat.tcl

$ns rtproto Static

set server [$ns node]
set router [$ns node]
set client1 [$ns node]
set client2 [$ns node]

set serverLink [$ns duplex-link $router $server 1.5Mb 30ms DropTail
tb-set-link-loss $serverLink 0.01

set clientLAN [$ns make-lan "$client1 $client2 $router" 100Mb 0ms]

$ns run

39

Traffic Generation

� Standard NS
� 3 Parts

� Agent: TCP/UDP socket
� Gets attached to a node

� Application
� Generates traffic, attached to an agent

� Sink
� Connected to the agent, just discards traffic

� Has to be started with an event
40

Traffic Generation (cont�d)
set tcp0 [new Agent/TCP]
$ns attach-agent $nodeA $tcp0

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 1200
$cbr0 set rate_ 100Mb
$cbr0 attach-agent $tcp0

set null0 [new Agent/Null]
$ns attach-agent $nodeB $null0

$ns connect $tcp0 $null0

$ns at 1 "$cbr0 start"

41

Program Objects

set prog0 [new Program $ns]
$prog0 set node $nodeA
$prog0 set command “/users/ricci/dostuff args"

$ns at 10 "$prog0 start"
$ns at 20 "$prog0 stop"
$ns at 30 "$prog0 start"

42

Constants

� Makes it easy to change operating
systems
– set OS FBSD45-STD

– tb-set-node-os nodeA $OS

– tb-set-node-os nodeB $OS

� Makes it easy to set node types
� � to set bandwidth
� � to set latency
� � etc.

8

43

Loops
set num_nodes 20

for {set i 1} {i <= $num_pcs} {incr i} {
set pc($i) [$ns node]
tb-set-node-os $pc($i) FBSD-STD
append lan_string "$pc(${i}) "

}

set lan0 [$ns make-lan "$lan_string” 100Mb]

$pc($i) gets converted to �pc-$i� in node
names

44

Large Example

45

Large Example NS File

set ns [new Simulator]
source tb_compat.tcl
$ns rtproto Static

set num_clients 5
set server_os FBSD-STD
set client_os RHL-STD

set server [$ns node]
set routerA [$ns node]
set routerB [$ns node]
set send [$ns node]
set receive [$ns node]
for {set i 1} {$i <= $num_clients} {incr i} {

set client($i) [$ns node]
tb-set-node-os $client($i) $client_os
append lan_string "$client(${i}) “

}
46

Large Example NS File (cont�d)

tb-set-node-os $server $server_os

set routerLink [$ns duplex-link $routerA $routerB 100Mb 0ms DropTail]
set serverLink [$ns duplex-link $routerA $server 100Mb 0ms DropTail]
set sendLink [$ns duplex-link $routerB $send 100Mb 0ms DropTail]
set receiveLink [$ns duplex-link $routerA $receive 100Mb 0ms DropTail]
set clientLAN [$ns make-lan "$lan_string $routerB" 100Mb 0ms]

set tcp0 [new Agent/TCP]
$ns attach-agent $send $tcp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 1200
$cbr0 set rate_ 50Mb
$cbr0 attach-agent $tcp0

set null0 [new Agent/Null]
$ns attach-agent $receive $null0
$ns connect $tcp0 $null0

$ns at 1 "$cbr0 start”

47

Large Example NS File (cont�d)

set server_prog [new Program $ns]
$server_prog set node $server
$server_prog set command "/proj/testbed/bin/serverprogram“
$ns at 1 "$server_prog start“

$ns run

48

RPMs and Tarfiles

• tb-set-node-rpms $node a.rpm

� Convenient way to install Linux packages
� Installation is forced
� Can specify multiple RPMs on one line

• tb-set-node-tarfiles $node

� Arguments: alternating directory and tarball
paths

� Changes to directory before untarring
� Untars as root (owner in tarfile still applies)

9

49

Startup Commands

• tb-set-node-startup $node “command”

� Script should be in home or project directory
� Command is run as experiment creator

� Differences from Program Objects
� Executed every time node boots
� No synchronization

� Uses
� Tweak node configuration (routing, etc.)
� Run services

50

Setting Node IP Addresses

� Assigned for you automatically if omitted
� Recommended
� Uses a deterministic algorithm

• tb-set-ip $node IP

� Use only for single-interface nodes
• tb-set-ip-link $node $link IP

• tb-set-ip-lan $node $lan IP

51

Existing Tools

� Can use existing topology generators
� Tiers
� GT-ITM
� BRITE

� Anything that exports NS

52

More Netbed Control

53

Swapping an Experiment

� Release hardware resources without
ending experiment - OS analogy

� Experiment information is maintained in
DB

� Can easily swap back in - a few minutes
� We typically have more experiments

swapped out than in, at any point in time.
� Role of node state in determining &

specifying swappability
54

Swapping an Experiment � Soft
State

� Soft state is the part not saved on swapout
� It includes

� Contents of nodes� local disks
� Effects of dynamic events (next slides)

� Hard state includes
� Things in your home directory
� Anything given in the NS file

� Disk contents can be saved in disk images

10

55

Event System - Overview

� Used for distributed control
� Starting/stopping programs
� Controlling traffic
� Changing link characteristics

� Underlying publish/subscribe system
� Static events can be injected by NS scripts
� Dynamic events can be injected by hand
� Users can write their own programs that hook

into the event system

56

Event System �
Static Events from NS Scripts

� Link control
–$ns at 10 "$link0 down"

–$ns at 20 "$link0 delay 5.5ms"

� Traffic control
–$ns at 5.5 "$cbr0 start"

� Program control
–$ns at 1 "$prog0 start“

� Loops, of course�

57

Event System �
Dynamic Events

� tevc
� Available on nodes or users.emulab.net
� Arguments

� �-e pid/eid� (Only required if used on users)
� Time (now, +seconds, or [[[[yy]mm]dd]HH]MMss)
� Object
� Event

� Examples
� tevc now cbr0 start
� tevc �e testbed/foo +30 link0 set delay=50

58

Virtual Types

� Allow you to specify that a set of nodes
should be of the same type, chosen from a
set of possible types

� Make an equivalence class (virtual type)
� Set nodes to be that virtual type

� Instead of a physical type
� Two kinds of virtual types

� Soft � Will allow exceptions if resources are
scarce

� Hard � Swapin will fail if class cannot be satisfied

59

Virtual Types � In Your NS File

• tb-make-soft-vtype vtype {types}

• tb-make-hard-vtype vtype {types}

• tb-set-hardware $node vtype

� Currently, types can be
� pc600
� pc850
� Any widearea types

60

Physically Distributed Nodes

� Netbed provides access to distributed nodes
� Machines from MIT�s �RON testbed� (32 as of this writing)

� Includes Internet2, DSL, and international sites
� Access policy is more restricted

� PlanetLab machines
� Support is evolving

� Supported features
� Account management, ssh key management
� Optional tunnelling (virtual links)
� Traffic generation
� SFS secure distributed filesys

11

61 62

Wide Area Resources
� An experimenter can request

� N random nodes
� N specific nodes
� N, M, �. nodes of certain �last-mile� types:

pcinet2, pcintl, pcdsl, pcinet

� As above, but just a piece of a physical node: a �virtual
node�

� N nodes, and M links between them with particular
characteristics (can specify any of latency, bw, loss
rate).

� In all these cases, Netbed finds the best matching
nodes/links from its DB, updated frequently from
MIT�s realtime data.

63

Requesting Physically Distributed
Nodes

� Specifying specific nodes
–tb-fix-node nodeA ron0

� Specifying general classes
– tb-set-hardware nodeA pcroninet2

� Specifying link characteristics
– $ns duplex-link $nodeA $nodeB 1.5Mb 10ms

64

Widearea Demos

� Simple matching, without tunneling

� More complex matching, with tunneling

65

Using Purely Simulated Nodes

� NSE � The NS emulation facility
� Allows NS to interact with real network
� Packets inside NSE can be converted into

real packets and sent on the network
� Packets on the network can be converted

into NSE packets, travel through the
simulated network, and then return to the
real network

66

Using Simulated Nodes (contd.)

� How to specify simulated nodes in your
NS file

� Create an NSE node (physical machine
running NSE):
– set nsenode [$ns nsenode]

� Make objects in the simulated world:
– $nsenode make-simulated { # Simulated node

set simnode [$ns node]

}

� Anything inside make-simulated is
processed by NSE on $nsenode

12

67

Using Simulated Nodes (contd.)

� Connections between live/simulated
networks are configured automatically
(needs to be specified outside make-
simulated block)

68

Simulation Integration Demo

router0 router1

simsrc

tcpsrc

simsink

tcpsink

Inside RealTime Simulation (NSE)
on a physical node ‘nsenode’

1.5 Mb 40 ms

5 Mb 10 ms 5 Mb 10 ms

5 Mb 10 ms 5 Mb 10 ms

69

Simulation Integration Demo � NS
File

set ns [new Simulator]
source tb_compat.tcl
$ns rtproto Static

Hybrid dumbell topology
set tcpsrc [$ns node]
set tcpsink [$ns node]
set nsenode [$ns nsenode]
$nsenode make-simulated {

set router0 [$ns node]
set router1 [$ns node]
$ns duplex-link $router0 $router1 1.5Mb 40ms DropTail

set simsrc [$ns node]
$ns duplex-link $simsrc $router0 5Mb 10ms DropTail

set simsink [$ns node]
$ns duplex-link $simsink $router1 5Mb 10ms DropTail

}
$ns duplex-link $tcpsrc $router0 5Mb 10ms DropTail
$ns duplex-link $tcpsink $router1 5Mb 10ms DropTail
$ns run 70

NSE Caveats

� Our support is still young
� Can have trouble keeping up with too much

traffic or too many simulated nodes
� Multiple paths between NSE node and real

nodes can be problematic

71

Simulation Integration Demo

72

Batch Experiments

� Batch queue
� Runs whenever enough nodes become

available
� When startup command finishes,

experiment is automatically terminated
� Great for:

� Fitting in large experiments
� Exploring many topologies/parameters
� Having work done for you while you sleep!

13

73

Creating Batch Experiment From
the Command Line

� Often easier than submitting the same web
form many times

• batchexp on users
� Main arguments:

� �-p project�
� �-e experiment�
� nsfile

74

Custom Disk Images

� When to use a custom disk image
� Custom kernels
� Extensive OS changes
� Your own custom OS

� Loading time
� 88 seconds for a single partition - 150MB

compressed

75

Using a Custom Disk Image

� Creating - web form
� Small web form to fill out (�OSIDs and

ImageIDs�) link
� Image gets created automatically
� [Demo]

� Specifying in NS file
� Automatically loaded for you
– tb-set-node-os nodeA FBSD45-MINE

76

Debugging Experiments

� Some common error messages
� �Failed to map to reality�

� Typically: not enough free nodes
� Recommended approach:

� Verify against �# of free PCs�
� Make request less specific (pcxxx -> pc)
� Try again later
� Use batch system

� �pcXXX appears to be dead�
� Where to find log files

� /proj/<proj>/exp/<expt>/log/�

77

Recovering From Disasters

� Can always do a good old reboot
� First, we try a graceful reboot
� Then, we try our custom �ping of death� (ipod)
� If all else fails, power cycle

� If the network is down
� Get in on the serial console

� If all else fails
� Reload the disk (os_load on users)

78

14

79

Control vs. Experimental Nets �
Differing Purposes

� Control
� NFS (homedir), DNS, node monitoring
� Routable to outside world (you log in via it)
� Not completely isolated today

� Experimental
� Isolated � no interference from other

experiments
� Configured in the topology you requested
� �Clean� � no stray traffic

80

Control vs. Experimental Nets �
How To Tell Them Apart

� IP addresses
� Control net has �real� IPs
� Experimental net has 192.168.*.* or 10.*.*.*

� /etc/testbed/control_interface
� Prints name (ie. �eth0� or �fxp4�) to stdout

� If you were expecting delays, bandwidth
limits, etc., but don�t get them, you may be
using the control net by accident

81

Control vs. Experimental Nets -
Naming

� Outside of the nodes
� Only control net is nameable/reachable

� On the nodes
� Unqualified names (eg. nodeA) refer to directly-

connected experimental interfaces
� Can refer to any experimental interface as

�<node>-<link>� (nodeA-link0,
nodeB-clientLAN)

� Qualified names (eg. nodeA.myexp.myproj)
refer to control net

82

Barrier-like Synchronization

� Simple barrier synchronization provided by
tmcd: the �ready count�

� Nodes can report ready
� Poll for how many other nodes, out of the

total number, are ready
� Make sure to delay a few seconds

� Simple text-based protocol; simple scripting
interface

83

Under the Hood

84

Netbed Servers

� Hardware: Netbed Servers
� boss.emulab.net

� Secure server, no direct access for users
� Hosts the web server and database
� Controls everything

� {users,fs,ops}.emulab.net
� Accounts and home dirs for everyone
� NFS server for boss, nodes
� Access to node consoles

15

85

Software and Experiments

� Software base:
� Web site is PHP, Database is MySQL, NS parser

is TCL, back end is mostly perl and C
� Four main steps to running an experiment

� Pre-run: parse NS file, store in DB
� Swap-in: map expt. to phys. nodes, set up state

in DB, reboot nodes, configure nodes
� Swap-out: Clean up nodes, release them
� End: Clean out data for experiment

� Experiment may swap in/out many times
86

Selected Hard Problems

� Resource mapping
� NP-hard problem (simulated annealing)
� Minimize inter-switch bandwidth
� Make efficient use of node features

� Experiment swap-in
� Automate many system administration tasks
� Must deal with hardware failures at any time
� Many automatic conveniences for ease-of-use

� Disk reloading
� Multicast disk loader: Frisbee (think "flying disks")
� Loads 50 nodes simultaneously in 100 seconds

87

Node Boot Process

� Obtains IP through DHCP
� NIC boots custom PXE program
� Queries boss for which OS to boot

� Can boot from disk or network
� Boots into selected OS
� Contacts tmcd for configuration

� Accounts, IPs, software to install, delay
configuration, traffic generation, etc.

88

How Has Netbed Been Used?

� Armada (Dartmouth)
� Parameter-space exploration
� Hundreds of batch experiments

� WanSpread (Johns Hopkins)
� Emulated the CAIRN testbed
� Tried variations with delays doubled and halved

� SANDS (TASC)
� Large topologies, custom disk images

� Spinglass (Cornell)
� Fault tolerant group communication

89

What Is It Not Good For?

� Packet-level expts. across many nodes
� Clock synchronization good, but not perfect
� Non-determinism in the real world

� Experiments that require real routers
� All nodes are PCs

� But, we can use a few different queuing strategies
� And, you can reprogram them all you want

� Experiments that require gigabit links
� None yet, but we hope to add some

� Experiments that need 1000s of links/nodes
� ModelNet, coming soon, will help

90

Netbed In Education

� Has been used by classes at remote institutions
� MIT (Balakrishnan, Andersen)
� Kentucky (Griffioen)
� Harvey Mudd (Kuenning)

� Group model, to give TAs control over student
experiments

� Safe to give students root access
� In OS classes, students can replace kernels,

etc.
� For networking classes, students can run on an

emulated network

16

91

Guest Segment:
Experiences with Emulab

in Education

Jim Griffioen
University of Kentucky

92

OS/Network Projects

� Possible Approaches
� Simulation/Software Emulation

� ns, cnet, jns, jnetsim, netsim, opnet, nachos, csim, �
� Overlay Techniques

� Xbone, multicast-based emulation, �
� Dedicated Facilities (networks and machines)

� Requires significant $, space, tolerant sys-admins, scheduled
used/reconfig

� Other Issues
� Applications and realistic traffic generators
� Policies/mechanisms for sharing/access
� Monitoring/Tracing/Debugging
� Learning curve and long-term utility of acquired training
� Assistance/Grading/Documentation

93

Why Emulab?

� shared resource � don�t have to have your own dedicated facility ($$$)
� sharing policies/mechanism already developed
� no sys admin (or wars with sys admins)
� arbitrary topologies
� reasonable learning curve
� well-known environments, real traffic, real applications
� real protocols
� good supplemental texts exist (i.e., good documentation)
� students will directly use the experience gained
� instructor access
� Standard debugging, tracing, traffic analyzer tools
� Language independence
� OS independence

94

Types of Projects

� What layers can students work at?
� User-level applications and services (easy)
� OS modifications

� Module-based approach (relatively easy)
� Modifying built-in components (can probably find a better way)

� Types of projects
� Routing (ok but can mess up access to the machine)
� Distributed systems/services (work well)
� Dynamic network characteristic (doable but take effort)
� Apps that require special I/O like audio, cameras, etc (have done

but suggest avoiding these)
� Apps that run over X (worked fine for us � YMMV)

95

Suggestions
� Simplify the learning curve

� Provide preconfigured scripts, routing, etc as much as possible � students
rarely have sys admin experience

� Time spent teaching the Unix administration steps required by the project will
be well spent (e.g., modifying the routing table)

� Students are easily confused about things like home directory vs /proj
directory, what is lost when swapping an experiment, node names and their
scope, programs to run on users/ops, reboot vs power cycle, use of sudo,
the importance of the control net interface, group access and sharing

� TCL vs GUI (which is best depends on the student�s background and ability)
� Emphasize responsible usage

� Students forget they are tying up real ($$) machines
� Comparing topologies is nice, but limit number and size of topologies

� Demonstrate debugging/tracing tools
� Today�s students are clueless

� Think about grading up front
� Interactive grading sessions
� Tarball with batch experiments
� Students code for a well-defined emulab grading environment

� Don�t forget the local environment
� Necessary for code development and initial testing
� Show students how to sync local environment with emulab

96

Questions and Feedback

� Audience questions
� What features would make Netbed more

useful?
� Most of our features are driven by user

demand

17

97

Contributing to the Distributed
Netbed

� What we provide
� CD-ROM, maybe a disk sometimes
� Working OS installation
� Database state

� What you provide
� Machine
� Switch port
� IP address

� Caveats
� Security may be a concern
� May consume bandwidth occasionally

98

Building Your Own

� Our software is portable to other sites
� Kentucky has built their own
� Georgia Tech is working on another

� Lots of tradeoffs between price and usability
� Degree of nodes
� Level of control (serial consoles, power control)
� Big switches vs. stacks of small switches
� Rack mount vs. desktop cases

� Hardware recommendations on our website

99

Ongoing and Future Work
� Integrating Duke�s �ModelNet�
� Wide area, PlanetLab
� Federation

� heterogeneous sites
� resource allocation

� Wireless nodes, mobile nodes
� Hierarchical nodes (multiplex, VM)
� Pre-emptive swapout, rollback, �single-step�
� IXP1200 nodes, tools, code fragments

� Routers, high-capacity shapers
� Scheduling system
� Packet capture, logging, visualization tools
� Microsoft OSs, high speed links, more nodes�

100

Conclusions

� Easy to use, while giving experimenters lots
of control

� Suitable for distributed systems, network,
and OS research and education

� Powerful NS/Tcl input language
� Integrates emulation, simulation, and wide-

area experimentation
� Sign up for a project at www.netbed.org!

101

Afternoon Tutorial

� Get a laptop with wireless support (alone
or pair up)

� It will need to provide:
� Internet access
� Web browser (Netscape/IE/Opera are tested)
� SSH client
� An editor (preferred but optional)

� We provide pre-built accounts on Utah
Netbed

102

Available for universities, labs,
and companies, for research

and teaching, at:

www.netbed.org
www.emulab.net

18

103

Afternoon:
The Lab Session

104

Using Your Guest Account

� Log in at www.emulab.net
� Optional: �Update User Information�

� Change password
� cracklib in use, good passwords only

� Add ssh public key (link at bottom of page)
� Receive mail on users.emulab.net

� Read mail directly
� (or) Make a .forward file to send to another

account

105

Using Your Guest Account (cont�d)

� Log into users.emulab.net via ssh
� Hostname reported as �ops�
� Keep at least one shell on this machine open

� Make sure you can read mail
� There should be one message already in your

inbox
� Make sure you have an editor you�re

comfortable with
� Either on users, or on your laptop

106

Experiments Overview

� Three experiments
� First, get something simple going with our GUI
� Next, make something a little more complex by

editing NS files directly
� Finally, use some advanced features to make a

moderately complex experiment
� Each one will build on the last

� We have a few example/template files on
users in /proj/tutorial/ns/

107

Starting an Experiment � NS Files

� Edit on your local machine
� Use file upload box on experiment creation form

� Or, edit on users
� Place file in your home dir or /proj/tutorial/
� Your home directory is /users/<username>/
� Put full path to NS file in form�s textbox

� To get NS file from netbuild
� Choose �Create Experiment�
� Click �View NS File�

108

Experiment 1 Topology

19

109

Experiment 1
� Make two nodes (Utah and CMU)

� Use NetBuild if your browser supports Java
� Link them together � name the link link0

� Bandwidth 2Mb
� 20ms one-way latency
� 1% packet loss

110

Experiment 1 (cont�d)

� �Begin Experiment� when ready
� Two things to enter:

� Name, description
� Pick any name, just make sure it�s one no one else is

likely to pick
� Wait for experiment creation mail

� Watch realtime experiment creation log
� Explore experiment page on web interface

� Use �More Detail� link in visualization to verify
parameters

111

Experiment 1 (cont�d)

� Log into Utah
� Ping on control and experimental interfaces

•CMU (test network)
•CMU.<expt>.tutorial (control network)

� Swap experiment out
� Swap experiment back in
� Terminate experiment

112

Experiment 2 Topology

113

Experiment 2

� Start with NS file from Experiment 1
� Add two new nodes (Utah1 and Utah2)
� Make a LAN called lan0 containing Utah, Utah1,

and Utah2
� 100 Mb, no latency or packet loss

� Install some software on Utah
– /proj/tutorial/rpms/trafshow.rpm

� Set startup command for Utah1
– /proj/tutorial/bin/simplescript

� Enable static routing
114

Experiment 2 (cont�d)

� Begin experiment
� Log into Utah and run trafshow
� Log into CMU and ping Utah1-lan0 to

confirm routing setup
� Log into users.emulab.net

� Use �console� to view a node�s serial console
� Use �node_reboot� or webpage to reboot it

� Terminate experiment

20

115

Experiment 3 Topology

116

Experiment 3

� Start with the NS file from Experiment 2
� Add two more nodes (CMU1 and CMU2)

� Connect them directly to CMU (full bandwidth, no
delay)

� Set up two constants to set OSes
– RHL-STD for routers
– FBSD-STD for end nodes
� Set Utah and CMU to the router OS, and the

other to the end node OS

117

Experiment 3 (cont�d)

� Create two traffic generators
� One, sending TCP at 100Mb from CMU1 to
Utah1 (call the application cbr0)

� The other, sending UDP at 100Mb from CMU2 to
Utah2 (call the application cbr1)

� Turn the first traffic on and off at 10 second
intervals

� Leave the second traffic off

118

Experiment 3 (cont�d)

� Have Utah1 prepare to run a program with
a program object called prog0
– /proj/tutorial/bin/simpledaemon

� Begin the experiment
� Log into an end node and check the OS
� Log into Utah

� Find its interface to CMU
� (Hint: Use ifconfig and experiment creation mail)

� Run trafshow on that interface to watch TCP
traffic go on and off

119

Experiment 3 (cont�d)

� Log into users
� Start UDP cross traffic

•tevc –e tutorial/<expt> now cbr1 start

� Watch the TCP stream get clobbered with
trafshow

� Start and stop the program object
•tevc –e tutorial/<expt> now prog0 start

� Logs these events to /tmp/simpledaemon.log

� Terminate Experiment
120

Expt Creation Scaling

21

121

Join the federation!
Or just use it.

Where network fantasies become reality:
www.netbed.org

122

Bonus Slides

123

Who Uses Netbed?
� Researchers

� Distributed systems
� Networking (traditional and �active�)
� Operating systems

� Educators
� Advanced networking class at MIT
� Basic networking class at Univ. Kentucky
� OS class at Harvey Mudd College
� Student projects

� Advanced developers
� [Browse project list on www.netbed.org]

Other Experimental Environments
� Simulation

� Fast prototyping, easy to use, easy to control, but
less realistic

� Live networks
� Realistic, but hard to control, measure, or reproduce

results
� Small static testbeds emulating a network

� Real hardware and software, but hard to configure
and maintain, lack scale

All 3 live on, implying both the continued
importance and inadequacies of each

125

Key Points
� Netbed seamlessly integrates all three: simulation,

emulation, and live networks
� Netbed�s primary goals: ease of use, control, and

realism. Unlike the constituent approaches, meets
all 3 goals simultaneously
� Can mix and match in same experiment

� Netbed brings orders of magnitude improvements
to the emulation approach: our focus today

� This all works today, and most is in full production
mode for external users

Other Experimental Environments
� Simulation

� Fast prototyping, easy to use, easy to control, but
less realistic

� Live networks
� Realistic, but hard to control, measure, or reproduce

results
� Small static testbeds emulating a network

� Real hardware and software, but hard to configure
and maintain, lack scale

All 3 live on, implying both the continued
importance and inadequacies of each

22

127

Key Points
� Netbed seamlessly integrates all three: simulation,

emulation, and live networks
� Netbed�s primary goals: ease of use, control, and

realism. Unlike the constituent approaches, meets
all 3 goals simultaneously
� Can mix and match in same experiment

� Netbed brings orders of magnitude improvements
to the emulation approach: our focus today

� This all works today, and most is in full production
mode for external users

128

Primary Design Principles

� Transparency
� Common specification language: ns
� Common namespaces for nodes, links, agents�

� Virtualization
� of all IP addrs, hosts, hostnames, links, �
� Level of indirection allows

� Control and configuration
� Efficient time sharing (swapping to different physical

resources)
� Scalability via seamless multiplexing

129

Design Principles (cont�d)

� Automation
� Replaces hundreds of steps of manual configuration
� Arbitrary programmatic control through integrated event

system and general-purpose PL for spec (Tcl)
� Efficiency

� Of use of physical resources (space and time-shared)
� Of experimenters� time: interactive style of use

� Policy today: conservative resource allocation

130

Simple NS file
set $ns [new Simulator]
source tb-compat.tcl

set nodeA [$ns node]
set nodeB [$ns node]

$ns duplex-link $nodeA $nodeB 100Mb 0ms DropTail

$ns run

Comments look like this

131

Example Experiment Creation
Mail � Topology

132

Example Experiment Creation
Mail - Overview

User: Robert P Ricci
EID: example
PID: testbed
GID: testbed
Name: An example experiment
Created: 2002-07-31 16:14:05
Expires: 2002-11-28 00:00:00
Started: 2002-07-31 16:19:18
Directory: /proj/testbed/exp/example

23

133

Example Experiment Creation
Mail � Node Info

Virtual Node Info:
ID Type OS Qualified Name
--------------- ------------ --------------- --------------------
server pc server.example.testbed.emulab.net
client2 pc client2.example.testbed.emulab.net
client3 pc client3.example.testbed.emulab.net
client1 pc client1.example.testbed.emulab.net
router pc router.example.testbed.emulab.net

Physical Node Mapping:
ID Type OS Physical
--------------- ------------ --------------- ------------
client1 pc850 RHL71-STD pc154
tbsdelay0 pc850 FBSD45-STD pc158
router pc850 RHL71-STD pc90
client2 pc850 RHL71-STD pc113
client3 pc850 RHL71-STD pc161
server pc850 RHL71-STD pc152

134

Example Experiment Creation
Mail � LAN/link info

Lan/Link Info:
ID Member IP Delay BW (Kbs) Loss
Rate
--------------- --------------- --------------- --------- --------- --------
clientLAN client2:0 192.168.1.3 0.00 100000 0.000
clientLAN client1:0 192.168.1.2 0.00 100000 0.000
clientLAN router:1 192.168.1.5 0.00 100000 0.000
clientLAN client3:0 192.168.1.4 0.00 100000 0.000
link0 router:0 192.168.2.2 30.00 1500 0.010
link0 server:0 192.168.2.3 30.00 1500 0.010

Delay Node Info:
ID Virtual Physical Pipe Numbers
--------------- --------------- --------------- ---------------
link0 tbsdelay0 pc158 100,110

