How to Use the Netbed (Emulab++)
Network Testbeds

Jay Lepreau Rob Ricci Mac Newbold
University of Utah

SIGCOMM Tutorial

August 19, 2002

So, you’ve built the next great
{distributed system, network
protocol, P2P app, etc.}

But, you need to test and
evaluate it

Netbed Can Help

At its base: machines with accounts (even root)
We configure networks, but control is yours

— Do whatever you want on/to nodes

— Even install a new OS!
All the amenities of home

— Console access

— Power control

Incorporates other experimental environments
— Wide-area nodes, simulated nodes

— Use what makes the most sense for your experiment
Simple stuff is simple; hard stuff (anything) is
possible

So, Show Me!

Let’s set up an experiment:
http://www.netbed.org/

Why?

* “We evaluated our system on five nodes.”

-job talk from university with 300-node cluster

* “We evaluated our Web proxy design with 10
clients on 100Mbit ethernet.”

+ “Simulation results indicate ...”

* “Memory and CPU demands on the individual
nodes were not measured, but we believe will be
modest.”

* “You have to know the right people to get access to
the cluster.”

* “The cluster is hard to use.”

* “We obtained guest accounts through 13 friends
around the world to carry out our Internet
measurements.”

Common Misconceptions

* Unfamiliar environment

— No, you typically get standard hardware and software
« Like a simulation, it must “run on its own”

— No, you ask for just the features you want
» Lots of NS expertise required

— No, there’s a Java GUI for experiment configuration

— No, configuration can be done with a subset of NS and
cut-and-paste

« “Just a cluster”
— No, configures network to emulate custom topologies
« “Just emulation”
— No, support for real wide-area nodes & simulated nodes

6

What’s a Node? What’s a
Router? (misconceptions)

« Physical hardware:
— PC (local or remote)
— (StrongARM box: in past)
— (IXP1200, a specialized network processor: soon)
— (Wireless: future)
* Virtual node:
— Router (network emulation)
— “Middlebox” (distributed system)
— End host
— A piece of a distributed node

What is Netbed / Emulab?

+ A time- and space-shared platform for research,
development, and education in distributed
systems and networks

» A large software system

* Machines with configurable connectivity

« Emulab is the primary emulation portion of
Netbed
— www.emulab.net (Utah, 168 nodes, public)
— uky.emulab.net (Kentucky, 48 nodes)
— Georgia Tech (~50 nodes, soon)

What is it (cont’d):
Emulation Portion

+ A configurable and controllable network
emulator in a room

— Utah Emulab today: 168 nodes, 1646 cables, 4
big switches

— virtualizable topology, links, node software
» Bare hardware with lots of tools

* A controllable virtual world for distributed
systems and networks

What is it? (cont’d)

* ... a base for physically distributed network
testbeds and virtual (overlay) networks

» A way to get access to nodes all over the
world

* An instrument for experimental CS research

Universally available to any remote
experimenter

» Simple to use

Utah Netbed Site

Kentucky Netbed Site

Distributed (Wide-Area) Nodes

Node Types In Utah Emulab
Today

« pc600 (40)
— 600MHz processor
— 256 MB RAM
— 13 GB IDE disks

- pc850 (128)
— 850MHz processor
-512 MB RAM
—40 GB IDE disks

Getting Started

* Visit the website at www.netbed.org
» Apply to start or join a project

— Creates a new user account
» Create an experiment

— Topology/configuration specified with
* a Java GUI, or
« an ns file

» Start using your experiment!

masterhost.

Web/DB/SNMP
Switch Mgmt

On With How to Use It

www.netbed.org (emulab.net)

* Most work can be done through our web
interface

- Beginning/ending experiments
- Applying for/approving access
- Controlling nodes

» Searchable documentation

» Secure access using https

A “Project”

» Central administrative entity
« Started by a faculty member or senior
student
— Submitted through web interface
— User account gets created for experiment leader
» Approval of project users delegated to
leader
— Saves on administrative overhead
— Project leader responsible for users' behaviour
* Project gets its own disk space

An “Experiment”

» Central operational entity

* Represents network configuration,
including

— Network links

— Node configuration

— May include traffic generations, event stream
— May simply be some allocated machines!
Created with an ns file or a simple GUI
Started through web interface

Mail sent when setup is complete

The Netbed Documentation

« At http://www.netbed.org/doc.php3
» Searchable with WebGlimpse

» Also useful

—NS-2 documentation
* www.isi.edu/nsnam/ns/ns-documentation.html

—TCL books, manuals, etc.

Experiment Creation Mail

* Virtual Node Information

* Physical Node Mapping

* LAN/Link Info

* Delay Node Info

* Log of experiment creation

VLANSs and Delay Nodes

* Isolation done with Virtual LANs (VLANSs) on
our switches

« Traffic shaping done with transparent
bridges
— Invisible to nodes
— Regular nodes running FreeBSD
— dummynet used for traffic shaping
— Listens for events related to its links

VLANs and Delay Nodes - Diagram

Virtual 9 Physical 9Hardware

Node Node

A A
pesd pesd T
1
1
5
PN PN !
/Traffic +Traffic\ !
|' Shaper ! " Shaper /— —*

t+ 50ms s
~pezl, Sopezl /

Joued yore g o[qemuresfoad,
SOYONIME JOUISRT

I ZNVIA

Node Node

pelsl pel6l

Introduction to
Using Your Experiment

Nodes

* Logging into nodes
—ssh access
» Add public keys via our web interface
— Fully-qualified names
» Shared NFS home directory
* Root access via sudo
» Testbed-specific configuration in
/etc/testbed

* You're free to do whatever you want to
them — disks get reloaded afterwards

Web

* Web control of running experiments
- View experiment report
- Swap in/out
—View NS file and visualization
* Node control
-Set OS
- Add RPMs, tarballs, startup scripts, etc.
- Reboot node
- Access to node serial console

users.emulab.net

+ Commands available on users.emulab.net
—-node_reboot -reboot/power cycle
—o0s_load - recover scrogged disks
- portstats - see switch port counters

» ‘console’ - serial console access

* Disk space:

—/users — small stuff

— /proj — bigger stuff (shared among members of
the project)

Serial Consoles

* Link on node page

* Requires some setup
— Download tiptunnel (Windows, Linux,
FreeBSD binaries available)

— Install wherever convenient
— Associate file type with downloaded binary

+ All output logged on users.emulab.net
- /var/log/tiplogs/<physid>.run

NS Specifics

Audience Familiarity With NS

* Use it all the time?

* Use it a little?

» Have used TCL, but not NS?
— NS scripts are written in TCL

* Never used either?

Boilerplate

+ Statements required in every Netbed NS file
¢ set $ns [new Simulator]
- Creates a new NS “simulator object”
® source tb compat.tcl
— Load testbed-specific commands
— Stub version provided for running in NS
e $ns run

—In NS, runs the simulation

Nodes — Netbed-Specific Commands

e tb-set-node-os nodeA FBSD-STD
— Set OS. Currently supported:
« FBSD-STD
e RHL-STD
e <your own>
e tb-set-hardware nodeA pc600
— Pick specific PC type: pc600/pc850
- pcvron/pcvwa

Links

e $ns duplex-link $nodeA $nodeB 100Mb Oms DropTail
- Set bandwidth and/or latency
- Queuing types: DropTail, RED, GRED

* Naming links:
-set 1link0 [$ns duplex-link ...]
- Always name your links

e tb-set-link-loss $1ink0 0.05

- Ratio of lost packets: 1.0 means drop all
packets

LANs

e $ns make-lan "$nodeA $nodeB $nodeC" 100Mb Oms
* Naming works the same as with links

» Setting packet loss on a LAN
-tb-set-lan-loss $lan0 0.01

Setting different characteristics for a single
node:

— tb-set-node-lan-delay $lan0 $nodeA 40ms
— tb-set-node-lan-bandwidth $lan0 $nodeA 20Mb

* Unlike links, no queuing discipline

Routing

* Types of routing
—Manual - You specify
— Static - Computed by testbed software
- Session — Dynamic (OSPF), using gated
e $ns rtproto Static
- Set routing type
e sclient add-route $server S$router

— Adds routes when using Manual routing

LAN Example

SErVEr

LAN Example NS File

set ns [new Simulator]
source tb_compat.tcl

$ns rtproto Static

set server [$ns node
set router [$ns node
set clientl [$ns nodel

set client2 [$ns node

set serverLink [$ns duplex-link $router $server 1.5Mb 30ms DropTai
tb-set-link-loss $serverLink 0.01

set clientLAN [$ns make-lan "$clientl $client2 $router" 100Mb Oms]

$ns run

Traffic Generation

» Standard NS

» 3 Parts
— Agent: TCP/UDP socket
* Gets attached to a node
— Application
« Generates traffic, attached to an agent
— Sink
« Connected to the agent, just discards traffic
» Has to be started with an event

Traffic Generation (cont’d)

set tcp0 [new Agent/TCP]
$ns attach-agent $nodeA $tcp0

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 1200

$cbr0 set rate 100Mb

$cbr0 attach-agent $tcp0

set null0 [new Agent/Null]
$ns attach-agent $nodeB $null0

$ns connect $tcp0 $null0

$ns at 1 "$cbr0 start" 40

Program Objects

set prog0 [new Program $ns]
$prog0 set node $nodeA
$prog0 set command “/users/ricci/dostuff args"

$ns at 10 "$prog0 start"
$ns at 20 "$prog0 stop"
$ns at 30 "$prog0 start™"

41

Constants

* Makes it easy to change operating
systems

- set OS FBSD45-STD
- tb-set-node-os nodeA $0S
- tb-set-node-os nodeB $0S

* Makes it easy to set node types
* ... to set bandwidth

* ... to set latency

s ... etc.

Loops

set num nodes 20

for {set i 1} {i <= $num pecs} {incr i} {
set pc($i) [$ns nodel
tb-set-node-os $pc($i) FBSD-STD
append lan string "$pc(${i}) "

set lan0 [$ns make-lan "$lan string” 100Mb]

$pc($i) gets converted to “pc-$i” in node
names

43

Large Example

client-2
routers

server
client-5

client-4

receive

Large Example NS File

set ns [new Simulator
source tb_compat.tcl
$ns rtproto Static

set num clients 5
set server_os FBSD-STD
set client_os RHL-STD

set server [$ns node

set routerA [$ns node

set routerB [$ns node

set send [$ns node

set receive [$ns node

for {set i 1} {$i <= $num clients} {incr i} {
set client($i) [$ns nodel
tb-set-node-os $client($i) $client_os
append lan_string "$client(${i}) ™

45

Large Example NS File (cont’d)

tb-set-node-os §server §server_os

set routerLink [$ns duplex-link $routerA $routerB 100Mb Oms DropTaill
set serverLink [$ns duplex-link $routerA $server 100Mb Oms DropTaill

set sendLink [$ns duplex-link $routerB $send 100Mb Oms DropTaill
set receiveLink [$ns duplex-link $routerA $receive 100Mb Oms DropTaill
set clientLAN [$ns make-lan "$lan_string $routerB" 100Mb Oms]

set tcp0 [new Agent/TCP]

$ns attach-agent $send $tcp0

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 1200

$cbr0 set rate 50Mb

$cbr0 attach-agent $tcp0

set null0 [new Agent/Null]
$ns attach-agent $receive $null0

$ns connect $tcp0 $nullo0

$ns at 1 "$cbr0 start” 46

Large Example NS File (cont’d)

set server prog [new Program $ns

$server_prog set node $server

$server_prog set command "/proj/testbed/bin/serverprogram™
$ns at 1 "$server prog start™

$ns run

47

RPMs and Tarfiles

e tb-set-node-rpms $node a.rpm
— Convenient way to install Linux packages
— Installation is forced
— Can specify multiple RPMs on one line

e tb-set-node-tarfiles $node

— Arguments: alternating directory and tarball
paths

— Changes to directory before untarring
— Untars as root (owner in tarfile still applies)

Startup Commands

e tb-set-node-startup $node “command”
— Script should be in home or project directory
— Command is run as experiment creator
« Differences from Program Objects
— Executed every time node boots
— No synchronization
+ Uses
— Tweak node configuration (routing, etc.)
— Run services

49

Setting Node IP Addresses

+ Assigned for you automatically if omitted
— Recommended
— Uses a deterministic algorithm
e tb-set-ip $node IP
— Use only for single-interface nodes
e tb-set-ip-1link $node $link IP
e tb-set-ip-lan $node $lan IP

Existing Tools

» Can use existing topology generators
—Tiers
- GT-ITM
—BRITE

» Anything that exports NS

More Netbed Control

Swapping an Experiment

* Release hardware resources without
ending experiment - OS analogy

+ Experiment information is maintained in
DB

» Can easily swap back in - a few minutes

* We typically have more experiments
swapped out than in, at any point in time.

* Role of node state in determining &
specifying swappability

Swapping an Experiment — Soft
State

Soft state is the part not saved on swapout
It includes

— Contents of nodes’ local disks

— Effects of dynamic events (next slides)

Hard state includes

— Things in your home directory

— Anything given in the NS file

Disk contents can be saved in disk images

Event System - Overview

« Used for distributed control
— Starting/stopping programs
— Controlling traffic
— Changing link characteristics
» Underlying publish/subscribe system
 Static events can be injected by NS scripts
* Dynamic events can be injected by hand
« Users can write their own programs that hook
into the event system

Event System —
Static Events from NS Scripts

Link control

-%$ns at 10 "$1link0 down"

-$ns at 20 "$1ink0 delay 5.5ms"
Traffic control

-$ns at 5.5 "$cbr0 start"
Program control

-%ns at 1 "$prog0 start™

Loops, of course...

Event System —
Dynamic Events

* teve
— Available on nodes or users.emulab.net
— Arguments
« “-e pid/eid” (Only required if used on users)
« Time (now, +seconds, or [[[[yy]mm]dd]HH]MMss)
« Object
« Event
* Examples
—tevc now cbr0 start
—tevc —e testbed/foo +30 link0 set delay=50

Virtual Types

+ Allow you to specify that a set of nodes
should be of the same type, chosen from a
set of possible types

» Make an equivalence class (virtual type)

Set nodes to be that virtual type

— Instead of a physical type

» Two kinds of virtual types

— Soft — Will allow exceptions if resources are
scarce

— Hard — Swapin will fail if class cannot be satisfiedm

Virtual Types — In Your NS File

e tb-make-soft-vtype vtype {types}
e tb-make-hard-vtype vtype {types}
e tb-set-hardware $node vtype
 Currently, types can be

— pc600

— pc850
— Any widearea types

Physically Distributed Nodes

* Netbed provides access to distributed nodes
— Machines from MIT’s “RON testbed” (32 as of this writing)
* Includes Internet2, DSL, and international sites
* Access policy is more restricted
— PlanetLab machines
« Support is evolving
» Supported features
— Account management, ssh key management
— Optional tunnelling (virtual links)
— Traffic generation

— SFS secure distributed filesys
60

masterhost

‘Web/DB/SNMP
Switch Mgmt

Power Cntl

{ "Programmable patch panel”

Wide Area Resources

* An experimenter can request

— N random nodes

— N specific nodes

— N, M, nodes of certain “last-mile” types:

pcinet2, pcintl, pecdsl, pcinet

— As above, but just a piece of a physical node: a “virtual
node”

— N nodes, and M links between them with particular
characteristics (can specify any of latency, bw, loss
rate).

« In all these cases, Netbed finds the best matching
nodes/links from its DB, updated frequently from

MIT’s realtime data.

Requesting Physically Distributed
Nodes

» Specifying specific nodes
-tb-fix-node nodeA ron0
» Specifying general classes

- tb-set-hardware nodeA pcroninet2

» Specifying link characteristics
— $ns duplex-link $nodeA $nodeB 1.5Mb 10ms

Widearea Demos

» Simple matching, without tunneling

» More complex matching, with tunneling

Using Purely Simulated Nodes

NSE - The NS emulation facility

» Allows NS to interact with real network

» Packets inside NSE can be converted into
real packets and sent on the network

* Packets on the network can be converted

into NSE packets, travel through the

simulated network, and then return to the

real network

Using Simulated Nodes (contd.)

* How to specify simulated nodes in your
NS file

* Create an NSE node (physical machine
running NSE):
— set nsenode [$ns nsenode]

» Make objects in the simulated world:
— $nsenode make-simulated { # Simulated node

set simnode [$ns nodel
}

* Anything inside make-simulated is

processed by NSE on $nsenode

Using Simulated Nodes (contd.)

» Connections between live/simulated
networks are configured automatically
(needs to be specified outside make-
simulated block)

Simulation Integration Demo

- - o

- ~
,”Inside RealTime Simulation (NSE)\\\

s on a physical node ‘nsenode’

Simulation Integration Demo — NS
File

set ns [new Simulator]
source tb_compat.tcl
$ns rtproto Static

Hybrid dumbell topology
set tcpsrc [$ns nodel
set tcpsink [$ns nodel
set nsenode [$ns nsenode]
$nsenode make-simulated {
set router0 [$ns node]
set routerl [$ns node]
$ns duplex-link $router0 $routerl 1.5Mb 40ms DropTail

set simsrc [$ns nodel]
$ns duplex-link $simsrc $router0 5Mb 10ms DropTail
set simsink [$ns node]
$ns duplex-link $simsink $routerl 5Mb 10ms DropTail
gns duplex-link $tcpsrc $router0 5Mb 10ms DropTail
$ns duplex-link $tcpsink $routerl 5Mb 10ms DropTail
$ns run

NSE Caveats

* Our support is still young
» Can have trouble keeping up with too much
traffic or too many simulated nodes

* Multiple paths between NSE node and real
nodes can be problematic

-

Simulation Integration Demo

Batch Experiments

» Batch queue
* Runs whenever enough nodes become

available

When startup command finishes,
experiment is automatically terminated

Great for:

- Fitting in large experiments

- Exploring many topologies/parameters

- Having work done for you while you sleep!

Creating Batch Experiment From
the Command Line

+ Often easier than submitting the same web
form many times

¢ batchexp On users

* Main arguments:
—“-p project”
—“-e experiment’

—nsfile

Custom Disk Images

* When to use a custom disk image
— Custom kernels
— Extensive OS changes
— Your own custom OS
* Loading time
- 88 seconds for a single partition - 150MB
compressed

Using a Custom Disk Image

* Creating - web form
- Small web form to fill out (‘OSIDs and
ImagelDs’) link
- Image gets created automatically
- [Demo]
» Specifying in NS file
- Automatically loaded for you
- tb-set-node-os nodeA FBSD45-MINE

Debugging Experiments

+ Some common error messages

—“Failed to map to reality”
* Typically: not enough free nodes
* Recommended approach:
— Verify against “# of free PCs”
— Make request less specific (pcxxx -> pc)
— Try again later
— Use batch system

—“pcXXX appears to be dead”
* Where to find log files
— /proj/<proj>/exp/<expt>/log/...

Recovering From Disasters

» Can always do a good old reboot
— First, we try a graceful reboot
— Then, we try our custom ‘ping of death’ (ipod)
— If all else fails, power cycle
* If the network is down
— Get in on the serial console
« If all else fails
— Reload the disk (os_load on users)

masterhost

Web/DB/SNMP
Switch Mgmt

Power Cntl

{ "Programmable patch panel”

Control vs. Experimental Nets —
Differing Purposes

+ Control

— NFS (homedir), DNS, node monitoring

— Routable to outside world (you log in via it)
— Not completely isolated today
Experimental

— Isolated — no interference from other
experiments

— Configured in the topology you requested
— ‘Clean’ — no stray traffic

Control vs. Experimental Nets —
How To Tell Them Apart

* IP addresses
— Control net has ‘real’ IPs
— Experimental net has 192.168.*.* or 10.*.*.*

* /etc/testbed/control_interface
— Prints name (ie. ‘ethQ’ or ‘fxp4’) to stdout

« If you were expecting delays, bandwidth
limits, etc., but don’t get them, you may be
using the control net by accident

Control vs. Experimental Nets -
Naming

» Outside of the nodes
— Only control net is nameable/reachable
» On the nodes

— Unqualified names (eg. nodea) refer to directly-
connected experimental interfaces
— Can refer to any experimental interface as
‘<node>-<1link>’ (nodeA-1inkO0,
nodeB-clientLAN)
— Qualified names (eg. nodeA .myexp .myproj)
refer to control net

Under the Hood

Barrier-like Synchronization

 Simple barrier synchronization provided by
tmcd: the “ready count”

* Nodes can report ready

Poll for how many other nodes, out of the
total number, are ready
— Make sure to delay a few seconds

Simple text-based protocol; simple scripting
interface

3

Netbed Servers

* Hardware: Netbed Servers

* boss.emulab.net
— Secure server, no direct access for users
—Hosts the web server and database
— Controls everything

* {users,fs,ops}.emulab.net
—Accounts and home dirs for everyone
—NFS server for boss, nodes
—Access to node consoles

Software and Experiments

» Software base:

- Web site is PHP, Database is MySQL, NS parser
is TCL, back end is mostly perl and C

* Four main steps to running an experiment
— Pre-run: parse NS file, store in DB

- Swap-in: map expt. to phys. nodes, set up state
in DB, reboot nodes, configure nodes

- Swap-out: Clean up nodes, release them
- End: Clean out data for experiment
« Experiment may swap in/out many times

Selected Hard Problems

* Resource mapping

— NP-hard problem (simulated annealing)

— Minimize inter-switch bandwidth

— Make efficient use of node features
Experiment swap-in

— Automate many system administration tasks

— Must deal with hardware failures at any time

— Many automatic conveniences for ease-of-use
Disk reloading

— Multicast disk loader: Frisbee (think "flying disks")
— Loads 50 nodes simultaneously in 100 seconds

86

Node Boot Process

Obtains IP through DHCP

NIC boots custom PXE program

* Queries boss for which OS to boot
— Can boot from disk or network

Boots into selected OS

Contacts tmcd for configuration

— Accounts, IPs, software to install, delay
configuration, traffic generation, etc.

How Has Netbed Been Used?

Armada (Dartmouth)

— Parameter-space exploration

— Hundreds of batch experiments

WanSpread (Johns Hopkins)

— Emulated the CAIRN testbed

— Tried variations with delays doubled and halved
SANDS (TASC)

— Large topologies, custom disk images
Spinglass (Cornell)

— Fault tolerant group communication

What Is It Not Good For?

Packet-level expts. across many nodes
— Clock synchronization good, but not perfect
— Non-determinism in the real world
Experiments that require real routers

— All nodes are PCs

 But, we can use a few different queuing strategies
< And, you can reprogram them all you want

Experiments that require gigabit links

— None yet, but we hope to add some
Experiments that need 1000s of links/nodes
— ModelNet, coming soon, will help

Netbed In Education

Has been used by classes at remote institutions
— MIT (Balakrishnan, Andersen)

— Kentucky (Griffioen)

— Harvey Mudd (Kuenning)

Group model, to give TAs control over student
experiments

Safe to give students root access

In OS classes, students can replace kernels,
etc.

For networking classes, students can run on an
emulated network

Guest Segment:
Experiences with Emulab
in Education

Jim Griffioen
University of Kentucky

OS/Network Projects

» Possible Approaches
— Simulation/Software Emulation
* ns, cnet, jns, jnetsim, netsim, opnet, nachos, csim, ...
— Overlay Techniques
» Xbone, multicast-based emulation, ...

— Dedicated Facilities (networks and machines)
« Requires significant $, space, tolerant sys-admins, scheduled
used/reconfig

» Other Issues
— Applications and realistic traffic generators
— Policies/mechanisms for sharing/access
— Monitoring/Tracing/Debugging
— Learning curve and long-term utility of acquired training
— Assistance/Grading/Documentation 9

Why Emulab?

shared resource — don't have to have your own dedicated facility ($$$)
sharing policies/mechanism already developed

no sys admin (or wars with sys admins)

arbitrary topologies

reasonable learning curve

well-known environments, real traffic, real applications
real protocols

good supplemental texts exist (i.e., good documentation)
students will directly use the experience gained
instructor access

Standard debugging, tracing, traffic analyzer tools
Language independence

OS independence

Types of Projects

+ What layers can students work at?
— User-level applications and services (easy)
— OS modifications
* Module-based approach (relatively easy)
* Modifying built-in components (can probably find a better way)
+ Types of projects
— Routing (ok but can mess up access to the machine)
— Distributed systems/services (work well)
— Dynamic network characteristic (doable but take effort)

— Apps that require special I/O like audio, cameras, etc (have done
but suggest avoiding these)

— Apps that run over X (worked fine for us — YMMV)

Suggestions

Simplify the learning curve
— Provide preconfigured scripts, routing, etc as much as possible — students
rarely have sys admin experience
— Time spent teaching the Unix administration steps required by the project will
be well spent (e.g., modifying the routing table)
— Students are easily confused about things like home directory vs /proj
directory, what is lost when swapping an experiment, node names and their
scope, programs to run on users/ops, reboot vs power cycle, use of sudo,
the importance of the control net interface, group access and sharing
— TCL vs GUI (which is best depends on the student's background and ability)
Emphasize responsible usage

— Students forget they are tying up real ($$) machines

— Comparing topologies is nice, but limit number and size of topologies
Demonstrate debugging/tracing tools

— Today’s students are clueless
Think about grading up front

— Interactive grading sessions

— Tarball with batch experiments

— Students code for a well-defined emulab grading environment

Don't forget the local environment
— Necessary for code development and initial testing
— Show students how to sync local environment with emulab

Questions and Feedback

* Audience questions
« What features would make Netbed more
useful?

— Most of our features are driven by user
demand

Contributing to the Distributed
Netbed

* What we provide
— CD-ROM, maybe a disk sometimes
— Working OS installation
— Database state
* What you provide
— Machine
— Switch port
— IP address
« Caveats
— Security may be a concern
— May consume bandwidth occasionally

Building Your Own

» Our software is portable to other sites
— Kentucky has built their own
— Georgia Tech is working on another
* Lots of tradeoffs between price and usability
— Degree of nodes
— Level of control (serial consoles, power control)
— Big switches vs. stacks of small switches
— Rack mount vs. desktop cases

« Hardware recommendations on our website

Ongoing and Future Work

 Integrating Duke’s “ModelNet”
« Wide area, PlanetLab
« Federation

— heterogeneous sites
— resource allocation

« Wireless nodes, mobile nodes
+ Hierarchical nodes (multiplex, VM)
« Pre-emptive swapout, rollback, “single-step”
« IXP1200 nodes, tools, code fragments
— Routers, high-capacity shapers
¢ Scheduling system
« Packet capture, logging, visualization tools
« Microsoft OSs, high speed links, more nodes...

Conclusions

» Easy to use, while giving experimenters lots
of control

« Suitable for distributed systems, network,
and OS research and education

» Powerful NS/Tcl input language

* Integrates emulation, simulation, and wide-
area experimentation

« Sign up for a project at www.netbed.org!

Afternoon Tutorial

* Get a laptop with wireless support (alone
or pair up)

* It will need to provide:
— Internet access
— Web browser (Netscape/IE/Opera are tested)
— SSH client
— An editor (preferred but optional)

* We provide pre-built accounts on Utah
Netbed

101

Available for universities, labs,
and companies, for research
and teaching, at:

www.netbed.org
www.emulab.net

102

Afternoon:
The Lab Session

103

Using Your Guest Account

* Log in at www.emulab.net

* Optional: “Update User Information”

— Change password
« cracklib in use, good passwords only

— Add ssh public key (link at bottom of page)
* Receive mail on users.emulab.net
— Read mail directly

— (or) Make a .forward file to send to another
account

Using Your Guest Account (cont’d)

* Log into users.emulab.net via ssh
— Hostname reported as ‘ops’
— Keep at least one shell on this machine open
+ Make sure you can read mail
— There should be one message already in your
inbox
* Make sure you have an editor you're
comfortable with
— Either on users, or on your laptop

105

Experiments Overview

» Three experiments
— First, get something simple going with our GUI

— Next, make something a little more complex by
editing NS files directly

— Finally, use some advanced features to make a
moderately complex experiment

— Each one will build on the last

* We have a few example/template files on
users in /proj/tutorial/ns/

Starting an Experiment — NS Files

+ Edit on your local machine
— Use file upload box on experiment creation form
* Or, editon users

— Place file in your home dir or /proj/tutorial/

—Your home directory is /users/<username>/
— Put full path to NS file in form’s textbox
» To get NS file from netbuild
— Choose “Create Experiment”
— Click “View NS File”

107

Experiment 1 Topology

CHU{pc)
1.3

Utahipc?
1.2

108

Experiment 1

Make two nodes (Utah and CMU)

— Use NetBuild if your browser supports Java
Link them together — name the link link0
— Bandwidth 2Mb

—20ms one-way latency

— 1% packet loss

109

Experiment 1 (cont’d)

» “Begin Experiment” when ready
— Two things to enter:
« Name, description
* Pick any name, just make sure it's one no one else is
likely to pick
— Wait for experiment creation mail
» Watch realtime experiment creation log
» Explore experiment page on web interface

— Use “More Detail” link in visualization to verify
parameters

Experiment 1 (cont’d)

Log into Utah

— Ping on control and experimental interfaces
o CMU (test network)
® CMU.<expt>.tutorial (control network)

Swap experiment out
Swap experiment back in
Terminate experiment

111

Experiment 2 Topology

100M

Utahl{pc}
2.3

20isec
1,000 0ss
@

CchuCpcY
1.3

112

Experiment 2

Start with NS file from Experiment 1

Add two new nodes (Utahl and Utah2)

Make a LAN called 1an0 containing Utah, Utahl,
and Utah2

— 100 Mb, no latency or packet loss

Install some software on Utah

- /proj/tutorial/rpms/trafshow.rpm

Set startup command for Utahl

- /proj/tutorial/bin/simplescript

Enable static routing

113

Experiment 2 (cont’d)

» Begin experiment

* Log into Utah and run trafshow

* Log into cMU and ping Utahl-1an0 to
confirm routing setup

* Log into users.emulab.net
—Use ‘console’ to view a node’s serial console
—Use ‘node_reboot’ or webpage to reboot it

» Terminate experiment

114

Experiment 3 Topology

utah2(pe)
L4

cruz(pe) 2332
13

115

Experiment 3

« Start with the NS file from Experiment 2
» Add two more nodes (CMU1 and cMU2)

— Connect them directly to cMu (full bandwidth, no
delay)
» Set up two constants to set OSes
- RHL-STD for routers
- FBSD-STD for end nodes

— Set Utah and cMU to the router OS, and the
other to the end node OS

Experiment 3 (cont’d)

* Create two traffic generators

— One, sending TCP at 100Mb from cMU1 to
Utahl (call the application cbr0)

— The other, sending UDP at 100Mb from cMu2 to
Utah2 (call the application cbr1)

* Turn the first traffic on and off at 10 second
intervals

» Leave the second traffic off

117

Experiment 3 (cont’d)

* Log into users
— Start UDP cross traffic

e tevc -e tutorial/<expt> now cbrl start

— Watch the TCP stream get clobbered with
trafshow

— Start and stop the program object
etevc -e tutorial/<expt> now prog0 start
* Logs these events to /tmp/simpledaemon.log

» Terminate Experiment

119

Experiment 3 (cont’d)

* Have Utahl prepare to run a program with
a program object called prog0

- /proj/tutorial/bin/simpledaemon
» Begin the experiment
* Log into an end node and check the OS
* Log into Utah
— Find its interface to cMuU
* (Hint: Use ifconfig and experiment creation mail)

— Run trafshow on that interface to watch TCP
traffic go on and off

Expt Creation Scaling

Total tme ——

Waiting for nos

“igure 4: Time to create an experiment without disk loading. Stages shown
120

Where network fantasies become reality:

Join the federation!
Or just use it.

www.netbed.org

121

Who Uses Netbed?

Researchers

— Distributed systems

— Networking (traditional and “active”)

— Operating systems

Educators

— Advanced networking class at MIT

— Basic networking class at Univ. Kentucky
— OS class at Harvey Mudd College

— Student projects

Advanced developers

[Browse project list on www.netbed.org]

123

Bonus Slides

Other Experimental Environments

» Simulation
— Fast prototyping, easy to use, easy to control, but
less realistic
* Live networks
— Realistic, but hard to control, measure, or reproduce
results
+ Small static testbeds emulating a network

— Real hardware and software, but hard to configure
and maintain, lack scale

All 3 live on, implying both the continued
importance and inadequacies of each

Key Points

Netbed seamlessly integrates all three: simulation,
emulation, and live networks

Netbed’s primary goals: ease of use, control, and
realism. Unlike the constituent approaches, meets
all 3 goals simultaneously

— Can mix and match in same experiment

Netbed brings orders of magnitude improvements
to the emulation approach: our focus today

This all works today, and most is in full production
mode for external users

Other Experimental Environments

» Simulation
— Fast prototyping, easy to use, easy to control, but
less realistic
* Live networks
— Realistic, but hard to control, measure, or reproduce
results
» Small static testbeds emulating a network
— Real hardware and software, but hard to configure
and maintain, lack scale

All 3 live on, implying both the continued
importance and inadequacies of each

Key Points

* Netbed seamlessly integrates all three: simulation,
emulation, and live networks

* Netbed’s primary goals: ease of use, control, and
realism. Unlike the constituent approaches, meets
all 3 goals simultaneously
— Can mix and match in same experiment

» Netbed brings orders of magnitude improvements
to the emulation approach: our focus today

+ This all works today, and most is in full production
mode for external users

127

Primary Design Principles

» Transparency

— Common specification language: ns

— Common namespaces for nodes, links, agents...
* Virtualization

—of all IP addrs, hosts, hostnames, links, ...

— Level of indirection allows

+ Control and configuration

« Efficient time sharing (swapping to different physical
resources)

+ Scalability via seamless multiplexing

Design Principles (cont’d)

+ Automation
— Replaces hundreds of steps of manual configuration

— Arbitrary programmatic control through integrated event
system and general-purpose PL for spec (Tcl)

« Efficiency
— Of use of physical resources (space and time-shared)
— Of experimenters’ time: interactive style of use

» Policy today: conservative resource allocation

129

Simple NS file

set $ns [new Simulator]
source tb-compat.tcl

set nodeA [$ns node]
set nodeB [$ns nodel

$ns duplex-link $nodeA $nodeB 100Mb Oms DropTail
$ns run

Comments look like this

Example Experiment Creation
Mail — Topology

client2

clientl clientLAm router SErver

client3

131

Example Experiment Creation
Mail - Overview

User: Robert P Ricci

EID: example

PID: testbed

GID: testbed

Name: An example experiment
Created: 2002-07-31 16:14:05
Expires: 2002-11-28 00:00:00
Started: 2002-07-31 16:19:18

Directory: /proj/testbed/exp/example

132

Example Experiment Creation
Mail — Node Info

Virtual Node Info:

D Type
server pc
client2 pc
client3 pc
clientl pc
router pc

Physical Node Mapping:

D Type
clientl pc8so
tbsdelay0 pc8so
router pe8so
client2 pc8s0
client3 pc8so
server pc8s0

os
RHL71-STD
FBSD45-STD
RHL71-STD
RHL71-STD
RHL71-STD
RHL71-STD

Qualified Name
server.example.testbed.emulab.net
client2.example.testbed.emulab.net
client3.example.testbed.emulab.net
clientl.example.testbed.emulab.net
router.example.testbed.emulab.net

Physical

133

Example Experiment Creation
Mail — LAN/link info

Lan/Link Info:

clientLAN client2:0
clientLAN client!
clientLAN router:1
clientLAN client!
link0 router:0
1ink0 server:0

D Virtual

1ink0 tbsdelay0

192.168.1.
192.168.1.
192.168.1.
192.168.1.
192.168.2.
192.168.2.

Physical

0.00 100000 0.000
0.00 100000 0.000
0.00 100000 0.000
0.00 100000 0.000
30.00 1500 0.010
30.00 1500 0.010

Pipe Numbers

100,110

