
1

Emulab Federation
Preliminary Design

Robert Ricci

with Jay Lepreau, Leigh Stoller, Mike Hibler

University of Utah

USC/ISI Federation Workshop
December 11, 2006

“Many Masters” Model

• No global master

• Emulabs make peering agreements

• “Home” testbed for

– Users

– Projects

– Experiments

Identifying Users

• Users identified by UUID (X.667)
rather than login name
– Implementation begun

• Login names may be unique per
project

• Web login now done with email
address
– Already done on Utah Emulab

• We may do this for projects too

Starting an Experiment

• User submits NS file to one testbed
– This will be the experiment “master”

– Does this have to be project or user master?
Hope not, but that poses unsolved challenges.

• Master testbed does most setup work

• Each remote testbed boots its part, then
reports in

• Experiment controlled through the master
testbed

Approving Remote Experiments

• Experiments come with “certifications”

– Really: Signatures

• Each Emulab has a list of certification
authorities it trusts

• Experiment accepted if signed by an

appropriate authority

– In the future, more complex policies

• Allows for a large set of acceptance
policies

Some Possible Certifiers

• Testbed-wide
– “Allow all experiments started at

DETER”

• Project-wide
– “Allow all experiments in project tbres

from Utah’s Emulab”

• Experimenter
– “Allow Steve Schwab to run

experiments”



2

More Possible Certifiers

• Vetting committee

– “Allow experiments that have been
OKed by the DETER board”

• Other criteria

– “Allow projects that Rob has verified as
being classes”

Federation API

• Done with XML-RPC

• Generally, exchange “virtual to
physical” mappings

– Send reserved table, not virt_nodes

– Send vlans table, not virt_lans

• Precedents in elab-in-elab support

Dealing With Version Skew

• General model

– Node boot managed by local testbed

– Everything else managed by master

• Leaves a somewhat narrow waist
between virtual and physical

– Hope: This is less susceptible to skew

• Version every interface

– Allows testbeds to innovate

Proxied Services

• tmcd (virtual nodes)

• Event system (PlanetLab portal)

• Console (capture)

• VLAN creation (elab-in-elab)

• Power cycling (elab-in-elab)

• Frisbee done by pre-staging disk
image, then running locally

New Policy Knobs Necessary

• Prefer local users to remote

• Limit resource use by remote users

• Policies based on “threat level”

• These may also apply to single
Emulabs

• Add more policy knobs as we go

Pre-emptive Model

• Allow high priority experiments to
force swapout of lower-priority
experiments

• assign has some features to help

• Stateful swapout will make this more
painless



3

“Library” Model

• You “check out” lease nodes for
some period of time

• You can renew as long as no one has
asked for those nodes

• Probably coupled with a reservation
system

Control Network

• Maintain: All nodes in an experiment
can directly communicate

• Impediments:

– Unroutable control networks

– Duplicated private IP addresses

• Solution: Tunnel

• Nodes get an extra control net IP
alias

Filesystem

• First stage: NFS mounted from
project master (TCP)

• Ideal: Use a real distributed
filesystem

• But, we have to make sure all clients
can mount it, or we can proxy them

• Possibly add special support for
single writer, multi reader data

Local Administrators

• Can see remote experiments they
are hosting

• Can force swapout of these
experiments

• Can still easily find out about who is
responsible for an experiment

Resource Assignment – Phase I

• Experiment master runs assign

• Each federated testbed needs
physical topologies of others

• Loosely consistent reservation state
– We already support optimistic allocation

• assign should scale for a while
– Scales with number of pclasses

– Utah: 66

– Six testbeds (1120 nodes): 133

New assign Features

• “Typing” for cross-emulab links

• Support for links with non-zero
latency

• Generalize switch notion to handle
VPN boxes

• Fuzzy latency/bw allocation

• New XML file format (some simplified
version of rspec)



4

Resource Assignment – Phase II

• Distribute assign

• Possibilities:

– Master partitions topology

– Each Emulab “bids” on resources

• Probably iterative

– Assign scarce resources first

• Possibly simplify virtual topologies
(assign_wrapper)


