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Abstract
Network emulation is valuable largely because of its abil-
ity to study applications running on real hosts and “some-
what real” networks. However, conservatively allocating a
physical host or network link for each corresponding virtual
entity is costly and limits scale. We present a system that
can faithfully emulate, on relatively low-end PCs, virtual
topologies over an order of magnitude larger than the phys-
ical hardware, when running typical classes of distributed
applications that have modest resource requirements. The
new Emulab virtualizes hosts, routers, and networks, while
retaining near-total application transparency, good perfor-
mance fidelity, responsiveness suitable for interactive use,
high system throughput, and efficient use of resources. Our
key design techniques are to use the minimum degree of vir-
tualization that provides transparency to applications, to ex-
ploit the hierarchy found in real computer networks, to per-
form optimistic automated resource allocation, and to use
feedback to adaptively allocate resources. The entire sys-
tem is highly automated, making it easy to use even when
scaling to thousands of virtual nodes. This paper describes
the system’s motivation, design, and preliminary evaluation.

1 Introduction
Network experimentation environments that emulate some
aspects of the environment—network testbeds—play an im-
portant role in the design and validation of distributed sys-
tems and networking protocols. In contrast to simulated en-
vironments, testbeds like Emulab [27] and PlanetLab [18]
provide more realistic testing grounds for developing and
experimenting with software. Emulated environments im-
plement virtual network configurations atop real hardware:
this means that experimenters can use real operating sys-
tems and other software, run their applications unmodified,
and obtain actual (not simulated) performance measures.

Largely sponsored by NSF grants ANI-0082493, ANI-0205702, and
CNS-0335296, and hardware grants from Cisco Systems.
Contact: testbed@flux.utah.edu.
URL: http://www.cs.utah.edu/flux/papers/virt-ftn2004-02-base.html

A primary challenge for future emulation environments is
scale. Because emulated environments are supported by ac-
tual hardware, an emulated system that is “larger” than the
underlying physical system requires the careful allocation
and multiplexing of a testbed’s physical resources. To avoid
experimental artifacts, the original Emulab used strictly con-
servative resource allocation. It mapped virtual network
nodes and links one-to-one onto dedicated PCs and switched
Ethernet links. We have four motivations for relaxing this
constraint, allowing controlled multiplexing of virtual onto
physical resources. First, some applications such as peer-
to-peer systems or dynamic IP routing algorithms require
large topologies or nodes of high degree for evaluation, yet
are not resource-hungry. Second, much research and educa-
tional use simply does not need perfect performance fidelity,
or does not need it on every run. Third, such multiplexing
provides more efficient use of shared hardware resources;
for example, virtual links rarely use their maximum band-
width and so waste the underlying physical link. Fourth, it
makes small-scale emulation clusters much more useful.

In this paper we present new techniques that allow net-
work emulation environments to virtualize resources such as
hosts, routers, and networks in ways that preserve high per-
formance, high fidelity, and near-total transparency to appli-
cations. One of our primary motivation is scale: i.e., to sup-
port larger and more complex emulated environments, and
also to allow a single testbed to emulate more such environ-
ments at the same time. Our techniques allow a testbed to
better utilize its physical resources, and allow a testbed to
emulate kinds of resources that it may not have (e.g., hosts
with very large numbers of network interfaces). One goal
of our techniques is to preserve the performance fidelity of
emulated resources, but our approach can also be used in
cases where users do not require high fidelity, e.g., during
early software development, in education, or in many kinds
of reliability studies. Our techniques provide benefits to
both testbed operators, who can provide better services with
fewer hardware resources, and users, who have improved
access to testbeds and their expanded services.



Our motivating goal is that the overall system scales well
with increasing size of virtual topologies. Scalability is not
only about speed and size, but also concerns reliability and
ease-of-use. Our primary dimensions are: i) “swapin” per-
formance: the time to reliably instantiate an experiment,
which affects system throughput and Emulab’s interactive
usage model; ii) monitoring, control, and visualization of
testbed experiments, both by the user and the system; iii)
resource use—the number of physical machines and links
required for a particular virtual topology; iv) the user’s time
spent in customizing instrumentation and management in-
frastructure.

However, no matter how scalable the system, we require
two constraints to be met. One is that the emulation system
be, as much as possible, transparent to applications. Even
if they deal with the network or OS environment in an id-
iosyncratic manner, we should not require them to be mod-
ified, recompiled, relinked, or even run with magic environ-
ment variables. Second, we must provide good (not perfect)
performance fidelity, so that experimenters can trust their
results.

To meet these goals, we multiplex virtual entities onto the
physical infrastructure, using four key design techniques:
• Using the minimum degree of virtualization that will

provide sufficient transparency to applications. In our case,
this means that the majority of the OS and network mech-
anisms used by virtual entities are identical to the native
mechanisms.
• Exploiting hierarchy, both in real computer networks

(which the user’s virtual topology represents) and in the
physical realization of those networks. Our resource allo-
cator relies on implicit hierarchy in the virtual topology to
reduce its search space, and our IP address assigner infers
hierarchy in order to provide realistic IP addresses. Our
testbed control system exploits the hierarchy between vir-
tual nodes and their physical hosts; for example, by exten-
sive proxying, caching, and acting on many virtual entities
simultaneously.
• Optimistic automated resource allocation. The system

or the user makes a “best guess” at the resources required,
which are fed into a powerful resource assigner that uses
combinatorial optimization.
• Use of feedback to adaptively allocate resources. Both

in training runs and during normal use, system-level and op-
tional application-specific metrics are monitored. The met-
rics are used to detect overload or (sometimes) underload
conditions, and to guide resource re-allocation, if required.
Emulab can automatically execute this adaptive process by
leveraging its high degree of automation.

This paper makes the following contributions: (1) It de-
scribes levels of virtualization that are appropriate for this
domain, and discusses some of the design tradeoffs. (2) It
shows how to solve the NP-hard resource assignment prob-
lem for networks of thousands of entities, and describes how
to support flexible specification of arbitrary resources. (3) It

presents a new feedback-directed technique to support vir-
tualization and scaling. (4) It describes a new algorithm for
assigning realistic IP addresses. (5) It provides a prelimi-
nary experimental evaluation of various aspects of the sys-
tem. (6) The system it describes provides a useful new fa-
cility, and, with the exception of auto-adaptation, is proven
in public production use.

The rest of this paper is organized as follows. Section 2
provides background on Emulab and its use. Section 3 de-
scribes our node and network virtualization mechanisms, as
well as our algorithm to assign IP addresses hierarchically.
Section 4 covers automated resource assignment, and Sec-
tion 5 outlines how we exploit hierarchy after resources are
allocated. Sections 6 describes our feedback-directed adap-
tation and presents experimental results. Section 7 describes
related work, and we then discuss limitations of our system,
future work, and conclude.

2 Testbed Context
The Emulab software is the management system for a
network-rich PC cluster that provides a space- and time-
shared public facility for studying networked and distributed
systems. One of Emulab’s goals is to transparently integrate
a variety of different experimental environments. Histori-
cally, Emulab has supported three such environments: em-
ulation, simulation, and live-Internet experimentation. This
paper focuses on our work to expand it into a fourth envi-
ronment, virtualized emulation.

An “experiment” is Emulab’s central operational entity.
An experimenter first submits a network topology specified
in an extended ns syntax. This virtual topology can in-
clude links and LANs, with associated characteristics such
as bandwidth, latency, and packet loss. Limiting and shap-
ing the traffic on a link, if requested, is done by interpos-
ing “delay nodes” between the endpoints of the link, or by
performing traffic shaping on the nodes themselves. Spec-
ifications for hardware and software resources can also be
included for nodes in the virtual topology.

Once the testbed software parses the specification and
stores it in the database, it starts the process of “swapin” to
physical resources. Resource allocation is the first step, in
which Emulab attempts to map the virtual topology onto the
PCs and switches with the three-way goal of meeting all re-
source requirements, minimizing use of physical resources,
and running quickly. In our case the physical resources
have a complex physical topology: multiple types of PCs,
with each PC connected via four 100 Mbps Ethernet inter-
faces to switches that are themselves connected with multi-
gigabit links. The testbed software then instantiates the ex-
periment on the selected machines and switches. This can
mean configuring nodes and their operating systems, setting
up VLANs to emulate links, and creating virtual resources
on top of physical ones. Emulab includes a synchronization
service as well as a distributed event system through which
both the testbed software and users can control and monitor
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experiments.
We have 3.5 years of statistics on 700 users, doing 10,000

swapins, allocating 155,000 nodes. An important observa-
tion is that people typically use Emulab interactively. They
swap in an experiment, log in to one or more of their nodes,
and spend hours running evaluations, debugging their sys-
tem, and tweaking parameters, or sometime spend just a few
minutes making a single run. When done for the morning,
day, or run, they swap out their experiment, releasing the
physical resources.

This leads to two points: speed of swapin matters, and
people “reuse” experimental configurations many times.
These points are important drivers of our goals and design.

3 Minimal Effective Virtualization

Multiplexing logical nodes and networks onto the physical
infrastructure is our approach to scaling. Virtualization is
the technique we use to make the multiplexing transparent.
Our fundamental goal for virtual entities is that they behave
as much like their real-life counterparts as possible. In the
testbed context, there are three important dimensions to that
realism: functional equivalence, performance equivalence,
and “control equivalence.” By the last, we mean similar-
ity with respect to control by the testbed management sys-
tem (enabling code reuse) and by the experimenter (enabling
knowledge reuse and scripting code reuse). This paper con-
centrates on the first two dimensions, functional realism,
which we call transparency, and performance realism.

Our design approach is to find the minimum level of vir-
tualization that provides transparency to applications while
maintaining high performance. If a virtualization mecha-
nism is transparent to applications, it will also be transparent
to experimenters’ control scripts and to their preconceived
concepts. We achieve both high performance and trans-
parency by virtualizing using native mechanisms: mecha-
nisms that are close to identical to the base mechanisms.

For virtual nodes, we implement virtualization within the
operating system, extending FreeBSD’s jail abstraction, so
that unmodified applications see a system call interface that
is identical to the base operating system. For virtual links
and LANs, we virtualize the network interface and the rout-
ing tables. That allows us to provide key aspects of emu-
lated networks using native switch-supported mechanisms
such as broadcast and multicast. These mechanisms give
us high—indeed native—performance, while providing near
functional equivalence to applications. In our current virtual
node implementation we give up resource isolation, but we
are saved by our higher-level adaptive approach to resource
allocation and detection of overload.

3.1 Virtual Nodes
Design Alternatives
There are many possible ways to implement some notion of
a “virtual node.” Which strategy is chosen depends upon the

requirements of the environment relative to the following
attributes:

Application transparency: the extent to which name
spaces are isolated. (Can the application run unchanged?)

Application fidelity: the extent to which resources are
isolated. (Does the application get the resources it needs to
function correctly?)

System capacity: the amount of virtualization overhead.
(How many vnodes can we host?)

System flexibility: the level of virtualization (can we run
multiple OSs?) and the degree of portability (can we run on
a wide range of hardware?)

Here, we briefly summarize some of the alternatives for
virtual node implementations.

The big hammer in the virtualization toolbox is the clas-
sic virtual machine monitor (VMM). Classic VMMs like
VMware [25] provide complete virtualization of an archi-
tecture, typically presenting an instance of the underlying
physical hardware. Full virtualization provides the ultimate
in flexibility, allowing arbitrary unmodified operating sys-
tems and their applications to run on the same host concur-
rently. But full virtualization comes at a cost both in perfor-
mance and host resources.

A recent trend, represented by Xen [1], is so-called par-
avirtualization, in which the VMM presents an architec-
ture that is largely the same as the underlying hardware, but
in some cases provides abstractions that are more closely
aligned with OS expectations. Since the architecture is not
a complete virtualization, OSes must be “ported” to run on
the VMM architecture. Once ported, an OS and its appli-
cations typically perform much better than under a classic
VMM. However, there is still considerable cost to running
an application inside its own instance of an OS compared to
running it in a process on a traditional OS.

A third alternative is to make modifications to an exist-
ing operating system to provide limited virtualization fea-
tures for processes. Techniques used here include overrid-
ing library interfaces (ModelNet [24]), intercepting system
calls (UML [2]), or adding features to the OS kernel (BSD
jails [11], Linux vservers [13]). The emphasis is typically
on providing namespace (e.g., filesystem or network) isola-
tion rather than resource isolation since the latter is much
harder and often not needed. Some resource isolation may
be available courtesy of pre-existing mechanisms in the ker-
nel. Here we achieve very low virtualization overhead and
transparency for applications, but require OS modifications
and most likely give up resource isolation.

Finally, in many environments, it is sufficient to just run
multiple copies of an application as multiple processes on a
single machine. This strategy is not in general transparent to
applications. Applications will need to be modified, or con-
figured at run time, to reflect that they are sharing resources
with other instances; e.g., a config file that tells it how much
memory to use, where to get or store its data in the filesys-
tem, what network ports to use, and how to identify itself to
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other programs. There is no virtualization overhead because
the “virtualization” is static, embodied in the configuration
file or program itself. Thus you get the highest performance,
since applications are running “directly on the hardware,” at
the expense of almost any level of isolation.

Emulab Virtual Nodes: the Abstraction

A virtual node is a first class object in Emulab. Abstract
virtual nodes have five key attributes:

1. They are multiplexed onto physical hosts.
2. They have independent namespaces: each has its own

hostname, interfaces, IP addresses, routing table, filesystem,
and process space. Two virtual nodes running on the same
host cannot see each other.

3. Each virtual node can be controlled independently of
the physical node hosting it. Virtual nodes can be individu-
ally booted, rebooted, and halted. Users can login directly
to the virtual nodes using ssh and Emulab’s event system
can directly control a virtual node. Emulab state-machine-
driven “node lifecycle” control and monitoring system treats
each virtual node independently.

4. There is strong communication isolation between vir-
tual nodes on a physical host: they can communicate only
through the network. There is weaker isolation from the
host, so it can bootstrap and proxy services for its virtual
nodes.

5. Virtual nodes support controllable, shaped links and
LANs to other nodes, both virtual and physical.

Emulab Virtual Nodes: the Reality

Application transparency is important in the Emulab envi-
ronment, requiring at least namespace isolation be present.
On the other hand, we anticipated that the initial network
applications run inside virtual nodes would have modest
CPU and memory requirements, making resource isolation–
except for the network, which we already handle– less im-
portant. Moreover, since physical nodes are dedicated to
experiments, hosting only vnodes for that experiment, we
do provide inter-experiment resource isolation. Finally, we
hoped to achieve at least a ten fold multiplexing factor on
relatively low-end PCs (600 MHz, 256 MB memory) ne-
cessitating a lightweight virtualization mechanism. Con-
sidering these requirements, a process-level virtualization
seemed the best match. Given our BSD heritage and exper-
tise, we opted to design and implement our virtual nodes by
extending FreeBSD jails.

Jails. Jails provide filesystem and network namespace
isolation and some degree of superuser privilege restriction.
A jailed process and all its descendents are restricted to a
unique slice of the filesystem namespace using chroot. This
not only gives each jail a custom, virtual root filesystem but
also insulates them from the filesystem activities of others.
Jails also provide the mechanism for virtualizing and re-
stricting access to the network. When a jail is created, it is
given a virtual hostname and a set of IP addresses that it can

bind to (the base jail implementation allowed a single IP ad-
dress with a jail, we added the ability to specify multiple IP
addresses). These IP addresses are associated with network
interfaces outside of the jail context and cannot be changed
from within the jail. Hence, jails are implicitly limited to
a set of interfaces they may use. We further extended jails
to correctly limit the binding of the INADDR ANY wild-
card address to only those interfaces visible to the jail and
added restricted support for raw sockets. Finally, jails al-
low processes within them to run with diminished root priv-
ilege. With root inside a jail, applications can add, modify
and remove whatever files they want (except for device spe-
cial files), bind to privileged ports, and kill any other jailed
processes. However, jail root cannot perform operations that
affect the global state of the host machine (e.g., reboot).

Virtual disks. Our design of virtual disks made it easy
not only to be efficient in disk use, but to support inter-vnode
disk space isolation. Jails provide little help: even though
each jail has its own subset of the filesystem name space,
that space is likely to be part of a larger filesystem. Jails
themselves do nothing to limit how much disk space can be
used within the hosting filesystem. Disk quotas aren’t useful
either: within the jail’s name space, files are not restricted
to a single uid or even subset of uids; they can be owned by
anyone.

Our design uses BSD vnode disks to create a regular file
with a fixed size and expose it via a disk interface. We
create empty virtual disks by seeking to the end; that al-
locates no actual blocks in the underlying filesystem, so is
space-efficient in the typical case that the virtual disk re-
mains mostly empty. These fixed-size virtual disks contain
a root filesystem for each jail, mounted at the root of each
jail’s name space. Since the virtual disks are contained in
regular files, they are easy and efficient to move or clone.

Control of vnodes. While enhancing the Emulab sys-
tem with node types other than physical cluster nodes, we
worked to preserve uniformity and transparency between the
different node types wherever possible. The result is that the
system is almost always able to treat a node the same, re-
gardless of its type, except at the layers that come in direct
contact with unavoidable differences between node types, or
when we aggregate expensive actions by operating through
the parent physical node.

An example of the transparency is the state machines used
to control nodes of all types. While non-physical nodes have
significant differences from physical nodes, the state ma-
chines used to manage them are almost identical. In addi-
tion, the same machine is used for Emulab vnodes as well as
PlanetLab virtual servers. Reusing—indeed, sharing—such
complex and crucial code contributes to the overall system’s
reliability.

3.2 Virtual Links and LANs
3.2.1 Design Issues
In a general context, virtual links provide a way of multi-
plexing many logical links onto a smaller number of phys-
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Figure 1: A network topology illustrating routing issues due to the multi-
plexing of virtual nodes and links. Large boxes represent physical nodes
and links, while small boxes and lines (with italic labels) represent virtual
nodes and links. Virtual network interfaces (vlinks), virtual LANs (vlans),
and physical links (plinks) have names as shown.

ical links. In this light, virtual links can be used to pro-
vide a higher-degree of connectivity to nodes, whether those
nodes are virtual or physical. In the context of virtual nodes,
our discussion of virtual links includes not only this multi-
plexing capability but also the network namespace isolation
issues and the subtleties of interconnecting virtual nodes
within, and between, physical nodes.

The interesting characteristics of virtual links are:
Level of virtualization. Virtual link implementations

can present either a virtual link layer by providing a virtual
Ethernet device or a virtual IP layer by using multiple IP ad-
dresses per physical interface. The former is more flexible,
allowing traffic other than IP, but such flexibility is often not
needed.

Encapsulation. Virtual links may or may not encapsu-
late their packets. Encapsulation is traditionally used either
to transport non-standard protocols over deployed networks
(e.g., tunneling over IPv4) or to support transparent (to end
node) multiplexing capability (e.g., 802.1Q VLANs). En-
capsulation usually implies a decrease in the MTU size for
the encapsulated protocol which can affect throughput.

Sharing of interfaces. The end point of a virtual link as
seen by a virtual node may be either a shared interface de-
vice or a private one. This may affect whether interface-
centric applications like tcpdump can be used in a virtual
node.

Ability to co-locate virtual nodes. Three factors related
to the implementation of virtual links influence which, if
any, virtual nodes in the same topology or virtual nodes in
different topologies can be co-located on a physical node.
First, if virtual links are implemented using IP aliases on
shared physical interfaces, then there are restrictions on
what addresses can be assigned to the interface. For ex-
ample two nodes in different topologies could not have the
same IP address. Virtual LANs provide another example.
As shown in Figure 1, virtual nodes B1, B2, and C0 are part
of a virtual LAN spanning two physical nodes. As such,
they must have IP addresses in the same subnet. However,
most OSes prohibit assigning addresses in the same subnet
to the same interface. Hence, B1 and B2 could not be co-
located as shown.
Second, even with per-vnode interfaces, it is possible that

two co-located nodes in the same topology might have rout-
ing “short-circuited” by the OS if it recognized that both in-
terfaces refer to the local host. For example, traffic between
A0 and A2 might be delivered directly rather than following
the topology.
Finally, if virtual links use a shared routing table, then two
co-located nodes cannot have different next hop addresses
for the same destination. For example, in the figure, pack-
ets sent from A0 to C0 will pass through host B twice. B0’s
next hop for C needs to be A while B1’s needs to be C. This
is known as the “revisitation” problem [22]. Further, even
with separate routing tables, incoming packets to B need
context to determine which routing table to use. This infor-
mation needs to be conveyed in the packet, either through
encapsulation or “fake” link addresses.

3.2.2 Emulab Virtual Links
Virtual network interfaces. While the BSD jail mecha-
nism does provide some degree of network virtualization
by limiting network access to specific IP addresses, it falls
short of what we need. In particular, though jails have
their own distinct IP addresses, those IP addresses are as-
sociated directly with shared physical interfaces, and thus
have problems with interface-oriented applications such as
tcpdump. Further, when packets leave a physical host they
lose the identity of the virtual node that was the most-recent
hop of the packet, meaning that jails cannot implement node
revisitation. Fake MAC addresses, used by some network
emulators, are also inadequate; space constraints preclude
more detail here.

To solve these problems, we developed a virtual Ethernet
interface device (“veth”). The veth driver is an unusual hy-
brid of a virtual interface device, an encapsulating device
and a bridging device. It allows us to create unbounded
numbers of Ethernet interfaces (virtualization), multiplex
them on physical interfaces or tie them together in a loop-
back fashion (bridging) and have them communicate trans-
parently through our switch fabric (encapsulation). Virtu-
alization gives us per-jail interfaces above the physical in-
terface to which we can apply jail-specific ipfw/dummynet
rules or on which the jail processes can operate. Bridging
allows the correct routing of packets at the link level so that
virtual interfaces only receive the packets that they should.
Encapsulation preserves the virtual link information neces-
sary to implement revisitation when crossing physical links,
without making any assumptions about the switching fabric.

Although there exist virtual ethernet drivers, bridging
code, and encapsulation devices, to our knowledge we are
the first to integrate the three concepts into one.

Virtual routing table. While virtual Ethernet devices are
sufficient to enable construction of virtual Ethernet topolo-
gies, they are not sufficient to support arbitrary IP topolo-
gies. This is due to shared IP infrastructure, in particular,
the routing table. In BSD routing tables, it is only possible
to have one entry per destination. But with a physical node
hosting multiple jails representing different virtual nodes at
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different points in the topology, we need to be able to sup-
port multiple routes to (next hops for) a single destination.
We have adopted and extended the work of Scandariato and
Risso [20] which implements multiple IP routing tables to
support multiple VPN end points on a physical node. Rout-
ing tables are identified by a small integer routing table ID.
We use these IDs as the glue that bind together jails, virtual
interfaces and routing tables.

3.2.3 Realistic IP Address Assignment
In an Emulab experiment, users have the option of either as-
signing IP addresses themselves or letting Emulab choose
IP addresses automatically. Most experimenters choose the
latter, as manual assignment can be tedious and error-prone.
Some topologies derived from the real Internet include IP
addresses. However, most topology generators are intended
for use with simulation and therefore do not include them.
Additionally, requiring users to always designate IP ad-
dresses would violate our goal of generality and would pre-
clude the use of new experimental generators.

Our objective in assigning IP addresses is to lay them out
in a realistic fashion. In the Internet, ISPs are typically as-
signed blocks of IP addresses. These ISPs then delegate
subnets within these blocks to smaller ISPs and customers.
IP addresses assigned in a manner approximating this have
three key strengths: (1) The IP addresses are intuitive to ex-
perimenters when they need to find out how packets move
through their topology. (2) The size of routing tables can be
greatly reduced using standard CIDR routing. (3) Realistic
IP addresses cause realistic behavior from dynamic routing
protocols such as OSPF and BGP.

To assign addresses in blocks like the internet, we must to
take into account whatever hierarchical properties the input
topology has. To infer this hierarchy, we search for groups
of nodes in the topology graph that are strongly-connected,
with a relatively small number of connections to the rest of
the graph. Hierarchy inference is a problem in many do-
mains. Our overall strategy for solving this problem is to re-
cursively divide the graph into sub-partitions. Others [10, 7]
use a similar strategy to perform database map queries.

IP address assignment is done using the following steps:
1. Invert the graph. Take each LAN as a vertex and each

host as a hyper-edge in the new graph. For the purposes
of this algorithm, a link is considered a special case of a
LAN, with only two members. This is necessary because
while a host can be multi-homed, a LAN can belong to only
one subnet. The graph inversion process is described more
formally in [29].

2. Partition the graph. Number each partition, allocating
the minimum number of bits required to represent the num-
ber of partitions.

3. Recursively partition by repeating step two on each
partition, continuing until we reach a partition of size one,
or exhaust the available bit space.

4. Associate a subnet with each partition. Number each
LAN within each partition and each node within each LAN.

5. Combine the numbers from our repeated application of
step two with the two numbers from step four to give each
interface a unique IP address.

Currently, the algorithm used to divide the graph is a
heuristic for the NP-complete graph-partition problem. This
graph partitioning algorithm, which is used in step two, must
be given the number of partitions to create. If there are more
or less than the ideal number of partitions, the quality of the
partitioning is poor. A poor partitioning leads to unrealis-
tic IP address assignment. On the other hand, the partitioner
we use, METIS [15], is fast, running in sub-second times for
most partitionings. We search for a partition size that min-
imizes the average number of border routers in each parti-
tion.

The keystone of the search is the scoring algorithm. A
border in this context is a cut edge. Therefore the cost of
the borders is the aggregate weight of the cut edges. How-
ever, the number of cut edges is not enough. In most cir-
cumstances, there will be more cut edges as the number of
partitions increases. This means that it is not very useful to
simply count up the aggregate weight cut, because this will
bias the scoring towards small numbers of partitions. In-
stead, it is useful to find the average border size (cut weight)
per partition. c is the aggregate cut-edge weight, p is the
number of partitions, and the score S = c

p
.

We are in the process of evaluating an alternative to the
above search; the use of ratio-cuts. The use of ratio cuts is
useful in the field of VLSI design [26] and we are adapting
it for networking. A ratio cut is a cut which minimizes the
ratio score on a particular graph. The ratio score of a cut
depends upon the weight which is cut and the sizes of the
partitions. If c is the aggregate cut-edge weight of a bipar-
titioning, and |A| and |B| are the number of vertices in the
associated two sub-partitions, the ratio score R = c

|A|·|B| .

Though the ratio cut problem is in NP, several methods
exist to give approximations [26, 17] in linear time. These
heuristics are a promising approach to better partitioning.

It is a nontrivial task to quantitatively evaluate how realis-
tic an IP address assignment is. However, the reason that IP
addresses are assigned by block is to facilitate CIDR rout-
ing. This means that assignments can be evaluated by the
improvement they gain when using CIDR routing.

We found real world topologies mapped by Rocketfuel
[31] and since Rocketfuel retains the IP addresses in the
topologies it maps, we used the actual assignment as our
benchmark. We also compare against a naive IP address as-
signer which chooses the addresses arbitrarily.

The mechanism for comparison is a route optimizer. The
optimizer searches the graph and aggregates routes into a
subnet whenever those routes are in the same subnet and
have the same first hop.

Table 1 shows that the current algorithm is much bet-
ter than arbitrary assignment, but there is still room for im-
provement. Finding the ratio-cut is where that improvement
will likely be found.
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Topology Real Emulab Random

VSNL (India) 219 304 403
EBONE (Europe) 10841 12532 20096
Exodus (US) 21113 19722 26140
Tiscali (Europe) 8810 15450 19863

Table 1: Aggregate number of routes after optimization

4 Automated Resource Assignment
Emulab automatically maps an experimenter’s requested
virtual topology onto the available physical resources. It
decides which virtual nodes to place onto which physical
nodes in such a way as to avoid overloading hosts and links.
This problem has been shown to be NP-hard [19]. The
virtual and physical resources to be mapped include hosts,
routers, switches, and the links that connect them. Exper-
imenter requests, such as nodes with special hardware or
software, must be satisfied, and bottleneck links and other
scarce resources in the physical topology should be con-
served when physical resources are shared, as they are in
Emulab; in contrast, related systems such as ModelNet [24],
do not space-share testbeds.

Emulab finds an approximate solution to the network
testbed mapping problem by taking a combinatorial op-
timization approach. It uses a complex solver called
assign [19] that is built around a simulated annealing
core. We found, however, that Emulab’s existing assign
was not sufficient for mapping virtual node experiments.

First, we needed new flexibility in specifying how virtual
nodes are to be multiplexed (“packed”) onto physical nodes.
To get efficient use of resources, we found it necessary to
add fine-grained resource descriptions. Also, assign tra-
ditionally does conservative resource allocation; that is, it
assigns nodes and links with the assumption that they will
always fully utilize resources. While this makes sense for
artifact-free emulation, it is contrary to our goal of using
feedback to provide large-scale emulation.

Second, assign had scaling problems due to the fact
that virtualization allows for topologies an order of magni-
tude larger than one-to-one emulation. Since it must be run
every time an experiment is swapped in or re-mapped as part
of auto-adaptation, runtimes in the tens of minutes were in-
terfering with the usability of the system and making auto-
adaptation too cumbersome. To combat this, we exploit the
natural structure of the virtual topologies given to assign.

4.1 Flexible Resource Specification
assign must use some criteria to determine how densely
it can pack virtual nodes onto physical nodes. assign
already had the ability to use a coarse-grained packing,
in which each physical node has a specified number of
’slots’, and each virtual node is assumed to occupy a sin-
gle slot. It became clear that this would not be suffi-
ciently fine-grained for many applications, including our
auto-adaptation scheme, because different virtual nodes will

have different roles in the experiment, and thus different re-
source consumption.

So, we added more packing schemes to assign. In
one, virtual nodes can fill more than one slot; experimenters
can use this when they have an intuitive knowledge, for ex-
ample, that servers in their topology will require more re-
sources than clients. Another packing scheme models mul-
tiple independent resources such as CPU cycles and mem-
ory, and can be used when the experimenter has estimated
or measured values for the resource needs of the virtual
nodes. This scheme is extensible. It can be applied to any
other resource that can be represented numerically, such as
as interrupt load or disk bandwidth. It can even be used for
higher-level metrics, such as sustainable event rate for dis-
creet event simulators such as ns.

The resource-modeling scheme is particularly useful for
feedback-based auto-adaptation. The values fed in for CPU
and memory consumption of a virtual node, for example,
can simply be obtained by taking measurements of a run-
ning application. The maximum or steady-state usage can
then be used as input to the mapping process. The coarse-
grained and resource-based packing criteria can be used in
any combination.

In addition to packing nodes, virtual links must be packed
onto physical links. Though the two are conceptually simi-
lar, there are a different set of issues to address for link pack-
ing Some of these issues exist for one-to-one emulation, but
there are also some new challenges that come with virtual
emulation.

Link mapping issues that one-to-one and virtual emu-
lation have in common. First, physical nodes in a Emulab-
based testbed have multiple interfaces onto which the vir-
tual links must be packed. Second, the topology of the ex-
perimental network is typically large enough that it is com-
prised of multiple switches. These switches are connected
with links that become a bottleneck, so the mapping must be
careful to avoid over-using them.

Link mapping challenges that arise with virtual emu-
lation. First, when mapping virtual-node experiments, links
between two virtual nodes that are mapped to the same phys-
ical node become “intra-node” links that are carried over the
node’s “loopback” interface. Although the bandwidth on a
loopback interface is high, there are practical limits on it, so
assign must take this finite resource into account.

Second, one of the guiding principles of assign has
historically been conservative resource allocation; when as-
signing links, it ensures that the full bandwidth specified for
the link will always be available. This is at odds with our
goal of providing best-efforts, large scale emulation. For
example, an experimenter may have a topology containing
a cluster of nodes connected in a LAN. Though the native
speed of this LAN is 100Mpbs, the nodes in this LAN may
never transmit data at the full line rate. Thus, if assign
were to allocate the full 100Mbps for the LAN, much of
that bandwidth would be wasted. To make more efficient
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resource utilization possible, we have added a mechanism
so that estimated or measured bandwidths can be passed to
assign. As with node resources, this bandwidth can be
measured as part of auto-adaptation.

Finally, assign currently makes the assumption that
links are symmetric; that is, that they use the same band-
width in both directions. Clearly, there are large classes
of applications for which this assumption is false. In
most client-server applications, for example, servers trans-
mit much more data than they receive. Requiring the band-
width to be specified as a single number causes some of the
bandwidth into the server to be wasted, since it will never
be used. Since this clearly results in less efficient resource
use, we are extending assign to support asymmetric band-
width specifications.

4.2 Improving assign’s Scaling
4.2.1 Searching the Solution Space

Our first attempts at tackling scaling issues were aimed at
improving the way in which assign searches through the
solution space. assign reduces its search space by finding
groups of homogeneous physical nodes and combining them
into equivalence classes. This strategy breaks down with a
high degree of multiplexing, however, because a physical
node that has been partially filled is no longer equivalent to
an empty node. We have addressed this by making these
equivalence classes dynamic as assign runs. The result is
that assign can avoid large portions of the solution space
which are equivalent do not need to be searched.

Another improvement to the search strategy came from
the observation that, in a good solution, two nodes that are
adjacent in the virtual topology will have a high probability
of being placed on the same physical node. So, we modified
the function assign uses to select a new mapping to try
for a virtual node. In our modified version, rather than se-
lecting a random physical node, we, with some probability,
select a physical node that one of the virtual node’s neigh-
bors has already been assigned to. This improvement made
a dramatic difference in solution quality, leading to much
tighter packing and exhibiting much better behavior in clus-
tering connected nodes together.

4.2.2 Coarsening the Virtual Graph

Though these changes to the search strategy improved
assign’s runtime and solution quality, the runtime was
still much too long to be acceptable for our purposes. Our
strategy for making this problem more tractable is to exploit
topological features of the virtual topology.

We expect that most large virtual topologies will be based
on the structure of the Internet; these may come from ac-
tual Internet “maps” from tools like Rocketfuel [21] or from
topology generators designed to create Internet-like net-
works, such as GT-ITM [31] and inet [28]. The key realiza-
tion is that such networks tend to have subgraphs of well-
connected nodes, such as ISPs, ASes, and enterprises. In

addition, we expect that many topologies will have LANs
that represent clusters, groups of workstations, etc.

We exploit the structure of the input topology by apply-
ing a coarsening pre-pass to the virtual graph before run-
ning assign. This reduces the solution space that assign
must search, reducing its runtime. The goal of this pre-pass
is to find sets of virtual nodes that, in a good mapping, will
likely be placed on a single physical node. A new virtual
graph is then generated, with each of these sets combined
into a single node. These “conglomerates” retain all proper-
ties of their constituent nodes; for example, the CPU needs
of each constituent are summed together to produce the CPU
required for the conglomerate.

We have implemented two coarsening algorithms. The
first stems from the realization that many topologies contain
LANs representing groups of clients or farms of servers. An
optimal mapping will almost always place as many mem-
bers of these leaf LANs onto a single physical node as pos-
sible. So, we find leaf LANs, and combine all members who
are only members of that LAN single virtual node.

The second algorithm uses a graph partitioner,
METIS [15], to partition up the virtual graph. We choose
a number of partitions such that the average partition will
fit on the “smallest” available physical node. We then turn
each partition returned by the partitioner into a virtual node.
The quality of the partitions returned by the partitioner
are dependent on the extent to which separable clusters of
nodes are present in the graph. Since we are focusing on
Internet-like topologies with some inherent hierarchy, we
expect good results from this method.

The coarsening algorithms (particularly METIS) do not
know the intricacies of the mapping problem, such as con-
straints on node types, resource usage, and link bandwidths.
This is one reason they are able to run much faster than
assign itself. This leaves us with the problem that they
may return sets of nodes to cluster that cannot be mapped
onto any physical resources; for example, they may require
too much CPU power or have more bandwidth than a sin-
gle node can handle. Once the coarsening algorithm has re-
turned sets of nodes, we use a multidimensional bin-packing
approximation algorithm to pack these into the minimum
number of mappable virtual nodes.

There are many ways in which these coarsening algo-
rithms can make clustering decisions that result in sub-
optimal mapping. However, in our domain obtaining a so-
lution in reasonable time is more important than obtaining a
near-optimal solution. The mappings obtained by assign
will always be valid, but it is possible that some topologies
are coarsened in such a way the mapping does not make the
most efficient use of resources. The biggest potential prob-
lem is fragmentation, in which the coarsening pass makes
conglomerates whose sizes do not pack well into the phys-
ical nodes. We take measures to try to avoid this circum-
stance, by carefully choosing our target conglomerate size.
In practice, the worst fragmentation we have seen caused
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Figure 2: Median runtime of assign with and without a coarsening pre-
pass.

only a 13% increase in physical resources used.
To evaluate our new resource mapper as well as to under-

stand the effects of the coarsening pre-pass, we compared
runs of assign with and without the pre-pass. These runs
mapped transit-stub topologies generated by GT-ITM [31]
onto Emulab’s physical topology. Each test was run ten
times. In all cases, the runtime of the pre-pass itself was
negligible compared to the runtime of assign.

Figure 2 shows the median runtimes for these tests on a
1.5 GHz Pentium IV. We can see that the time savings are
significant as we scale up the number of virtual nodes, going
from a factor of 14 at 100 nodes to a factor of 28 at 1000
nodes. The absolute result is also good: it takes just 200
seconds to map 1000 nodes.

This speedup, of course, does not come without a cost.
Figure 3 shows the decrease in solution quality, in terms of
the quality of link mappings. Intra-node links connect two
virtual nodes mapped to the same physical node; they do
not use up shared switch resources, so having a large num-
ber of them is an indicator of a good mapping. Inter-switch
links, on the other hand, are an indicator of a poor map-
ping, because they consume the shared resource of inter-
switch links. Though the pre-pass does cause assign to
find somewhat worse mappings, the differences are tolera-
ble, and the speedup is a clear win. In over 70% of the test
cases, the number of intra-node links found when using the
pre-pass was within 10% of the number found by assign
by itself. The worst run was within 16%.

5 Exploit Physical Hierarchy
In addition to the previously described routing and map-
ping problems, a number of more general but severe “sys-
tem” scaling issues arose, which prevented us from reaching
large size until we addressed them. Some are system-wide
issues that are the byproducts of the order of magnitude in-
crease in the potential size of an experiment. Others are
per-node issues that are the result of increasing the resource
consumption on a node. In both cases, we devise solutions
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Figure 3: Number of intra-node and inter-switch links found by assign.
Larger numbers of intra-node links are better, and smaller numbers of inter-
switch links are better.

that exploit the physical structure and realities of the physi-
cal testbed infrastructure.

Most system-wide problems have to do with accessing
centralized services and the use of unreliable protocols, pri-
marily during initial experiment setup. The system-wide
scaling problems encountered here are essentially the same
issues faced when increasing the number of physical ma-
chines in the testbed. For example, sharing a single NFS
filesystem does not scale well. We are constantly address-
ing these types of issues as we expand into larger virtual
node experiments. Ultimately, virtual node growth will con-
tinue to outpace physical resource growth by 1–2 orders of
magnitude. However, by leveraging the close relationship
between virtual nodes and their host we significantly reduce
the burden on the central infrastructure as highlighted by the
following examples.

Nodes in Emulab retrieve their configuration information
at boot time from a central server. The most straightfor-
ward way to boot virtual nodes is to have them individu-
ally perform this self-configuration. However, some infor-
mation about the virtual nodes is required by the host in or-
der to bootstrap them. So, we are able to save substantial
server load by having the physical host download the com-
plete configuration for each of its virtual nodes, and then
populate a cache of this information inside the virtual nodes.
Additionally, setup information that is the same for all vir-
tual hosts can often be replicated more efficiently, possibly
even as the side-effect of another operation. For example,
customization of password and group files is actually done
on the physical host and is propagated to virtual nodes as a
consequence of cloning a root filesystem.

Another type of proxying is used in the Emulab event sys-
tem. This system is used to schedule and then distribute
events to agents on nodes, enabling dynamic control over
aspects of an experiment such as modifying link parame-
ters and starting and stopping traffic generators and other
programs. Traditionally, each event agent on a node holds
an open TCP connection to the event server. To reduce the
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connection load, virtual nodes instead connect to a proxy
running on the physical host. This proxy holds a single con-
nection to the central event server, listen for and forwarding
events for all of its virtual nodes.

To reduce the load on the NFS server, instead of having
each virtual node mount it directly, the physical host per-
forms the mount, and then re-exports the shared filesystem
to each virtual node.

One of the most compute-intensive parts of instantiating
an experiment is calculating routing tables for all of the
nodes. Though Emulab supports dynamic routing through
the use of a routing daemon such as gated or zebra, most
experimenters prefer the consistency and stability offered by
computing routing tables off-line before the experiment be-
gins. Typical algorithms for doing this, however, have run-
times ranging from O(V 2 · lg(V ) + V · E) (Dijkstra’s al-
gorithm with a Fibonacci heap) to O(V 3) (Dijkstra’s algo-
rithm with a linear-array priority queue), with respect to the
number of vertices (nodes) and edges (links) in the topology
graph. To solve this problem, we parallelize route computa-
tion across all of the physical nodes in the experiment, with
each physical node being responsible for the routing tables
of the virtual nodes it hosts. We distribute one copy of the
topology to each physical host, and run Dijkstra’s algorithm
sourced from each virtual node hosted on that physical node.
Thus the route calculation time becomes O(V 2 ·n), where n

is the number of virtual nodes hosted on each physical node.
In practice, with the size of virtual topologies that are fea-
sible to run on Emulab and the level of virtual-to-physical
multiplexing possible, this time never exceeds a few sec-
onds.

The original Emulab system could not reliably instantiate
an experiment larger than about 100 nodes. Our improve-
ments in Emulab allow experiments of up to at least two
thousand nodes to be reliably instantiated. A fundamental
limitation on speed of instantiation is that vnode construc-
tion is not parallelizable within a single uniprocessor host.
However, vnode on distinct physical nodes can be setup in
parallel. To demonstrate the degree to which this parallelism
can be successfully exploited, we performed a simple test in
which an experiment consisting of a single LAN was repeat-
edly instantiated, each time adding one physical node host-
ing 10 vnodes to the LAN. In the base case of one physical
node with 10 vnodes in the LAN, setup, including topology
mapping, node configuration and startup, required 194 sec-
onds. At 80 vnodes on 8 physical nodes, it took 290 sec-
onds, a 50% increase in time for an 800% increase in size.

6 Feedback-Directed Resource Allocation
Maximum scalability is achieved when Emulab’s physical
nodes and networks can be divided as finely as possible,
each physical resource providing support to as many em-
ulated and/or simulated entities as possible. However, for
these emulated and simulated environments to be worth-
while to most Emulab users, they must be accurate recre-

ations of devices in the real world. Meeting our scalability
goal and our realism constraint at the same time means mak-
ing virtual nodes that are “just real enough” from the point
of view of software systems under test.

Finding the proper balance between scalability and fi-
delity is not easy: the ideal tradeoff that is “just real enough”
is inherently specific to the software being tested. Therefore,
to find the appropriate resource mappings for a user’s exper-
iment, our technique is to automatically search for a map-
ping that minimizes physical resource use while preserving
fidelity according to application-independent (provided by
the system) and/or application-dependent (provided by the
user) feedback.

A user of the testbed has two options for adapting their ex-
periment: a manual, single-stage “training” run that requires
little effort by the user; and a multi-stage automatic experi-
ment adapter that requires additional effort. The first option
does not require the experiment to be fully automated, and
is thus suitable for an interactive style of experimentation.
Users can simply log in to their nodes, run their programs,
and, when they have determined that the experiment is in a
representative state, click a button to record a profile. This
profile is then used in subsequent runs to drive the resource
mapping. Of course, the simplistic manual approach will
not work for large topologies, so we offer the second option
and require the user to follow these steps:

Our feedback-driven adaptation technique automatically
finds virtual-to-physical mappings that provide the user’s re-
quired level of emulation fidelity while allowing Emulab to
make maximally efficient use of its resources. There is a
risk, however, that the mappings set up by the adapter will
fail to provide sufficient fidelity to the user’s software during
production runs, e.g., because the user modifies the software
or is driving it in a different way. Emulab relies on run-time
feedback to detect such cases and signal the user about pos-
sible problems with his or her experiment.

6.1 Auto-Adaptation
Ensuring application fidelity when multiplexing virtual
nodes can be achieved quickly and accurately through mon-
itoring of the application’s steady state resource usage and
feeding this data back into assign. Utilizing application
independent metrics, like CPU and memory usage, we can
automatically adapt the packing of virtual resources on to
physical hosts. This is done in a way that minimizes phys-
ical resource use while leaving sufficient headroom for the
vhost’s steady state resource consumption. Any available
application-specific metrics can then be used to refine the
mapping to account for lack of precision in the low level
data.

We gather a number of resource use statistics to feed back
to the adaptation mechanism. These include CPU use, inter-
rupt load, disk activity, network traffic rates, and memory
consumption. CPU and memory information are also gath-
ered at vnode granularity, which is how we are able to deter-
mine the resource demand for individual vnodes. The other
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global statistics allow us to ensure that the system as a whole
is not overloaded.

Initially, there is no feedback data to work from, so a
bootstrap phase is done to get some clean resource usage
data. Bootstrapping is simply a matter of forcing a one-to-
one mapping by having each vnode reserve an entire pnode.
Once the bootstrap resource data has been collected, the sys-
tem can increase or decrease the reservations until it arrives
at a maximally dense packing factor with vnode resource
use that is consistent with the one-to-one mapping. At this
point, the user will probably want to increase the size of the
topology. The simplest approach would be to use the boot-
strap data for nodes that will remain in the experiment and
perform a bootstrap on the newly added nodes. Alterna-
tively, the user can divide nodes into resource classes (e.g.
Client/Server) which are initialized using data derived from
previous runs.

A second style of adaptation, using the same mechanism,
is to start with a dense mapping of a topology and then ex-
pand it. A dense mapping is achieved by providing no initial
feedback data, allowing assign to map strictly on the ba-
sis of available physical node and link characteristics. In this
configuration, there can be no training run to gather clear
resource usage data. Instead, feedback data are provided
by the application-independent metrics (pushing the exper-
iment away from obvious overload conditions) or with in-
teractive guidance from the user. This form of adaptation is
used with large topologies where there are not enough phys-
ical resources to map it one-to-one.

Using a similar mechanism and a modified version of
nse [5], an Emulab experiment can incorporate purely simu-
lated nodes and networks. As described in a thesis [6], these
simulated entities can now be transparently spread across
physical nodes, just as vnodes are dispersed. Since these
simulated nodes interact with real traffic, the simulator must
keep up with real time. Detecting when virtual time has sig-
nificantly fallen behind real time gives us a way to detect
overload that is more straightforward than with vnodes, al-
though “falling behind” does not turn out to be black and
white. Our infrastructure can adaptively remap simulated
networks similarly to the way it handles virtualized nodes
and links.

6.2 Fidelity Results
In this section we make a preliminary evaluation of the ef-
fect on emulation fidelity of increasing co-location of vir-
tual nodes on physical nodes, using both fine grain measure-
ments and real applications.

Microbenchmarks

To get a lower-level view of fidelity with increasing co-
location, we performed an experiment in which we ran the
pathrate [3] bandwidth-measurement tool between pairs
of nodes co-located on the same physical host. Each pair
of nodes was connected with a T1-speed (1.5Mbps) link.

We measured the bandwidth found by pathrate as we in-
creased the number of node pairs from one to ten. Across all
runs, pathrate measured the correct bandwidth to within
1Kbps, with a standard deviation across runs of pathrate
of 0.004.

Applications
We ran a synthetic peer-to-peer file sharing application
called Kindex, that is modeled after a peer music file shar-
ing network such as KaZaa. Kindex maintains a distributed
peer-to-peer index of file contents among a collection of
peer servers. It also keeps track of replicas of a file among
peers and their proximity, to expedite subsequent downloads
of the same file. In our simplified experiment, we start a se-
ries of 60 clients sequentially. Each of 60 clients uploads
a single file’s information to the global index, and starts
randomly searching for other files, fetching those not pre-
viously fetched into its local disk. Each client generates be-
tween 20 to 40 requests per minute for files, whose popu-
larity follows a Zipf distribution. Each client has sufficient
space to hold all 60 files. Hence after the experiment has
run for a while, all clients end up caching all files, at which
time we stop the experiment.

The network topology consists of six 10Mbps campus
LANs connected to a core 40Mbps LAN of routers with
100ms roundtrip between themselves. Each campus LAN
is connected to a router via a 3Mbps, 20ms RTT link.

We plotted the aggregate bandwidth delivered by the sys-
tem to all its users as a time line. For this, we measured the
total size of files downloaded by all users in every 10 sec-
ond interval. We expect that initially downloads are slow,
but as popular files are cached widely, subsequent down-
loads are more likely to be satisfied from a peer within the
same campus, driving up the aggregate bandwidth due to
the higher speed links. However, due to the fetch-once be-
havior of clients, as more files are downloaded by all users,
download become less frequent, driving down the aggregate
bandwidth.

We ran the experiment in four configurations. First, we
emulated the topology on just physical nodes to establish
a base line. We then repeated the experiment using vir-
tual nodes with co-location factors of 10, 15 and 20 virtual
nodes per physical node. Figure 4 shows the results. The
base line (pack-00) shows the expected behavior, aggregate
bandwidth increasing to a peak and then tapering off. At
a co-location factor of 10, one campus LAN mapped per
physical node, the behavior is indistinguishable for the base
line. However, as we increase the co-location to 15 and 20,
since peers have to supply files over the faster LAN links,
the load on the local disk rises. This is the reason for the re-
duced peak bandwidth and its shift to the right, causing the
curve to be flattened.

In order to demonstrate application transparency, we ran
unmodified gated routing daemons on all nodes in a 416
vnode hierarchical topology on 22 PCs and automatically
generated OSPF configuration scripts. Once we verified the
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connectivity between some leaf nodes across the diameter of
the topology, we caused a link failure in the interior to see
how OSPF would route around the failure. Before the fail-
ure, a route between two leaf nodes was symmetric with 11
hops. We found a 5 second downtime in one direction and 9
seconds in the reverse direction after which alternate 12 hop
paths were established. The forward and reverse paths were
different in one hop. When we removed the link failure, it
took 22 and 28 seconds respectively for the route paths to
be restored. Finally, we rebooted two interior nodes in the
topology. gated restored all the routes in a little over a
minute.

6.3 Adaptation Results
We evaluated our feedback system in two scenarios: a Java-
based web server and clients and the Bittorrent peer-to-peer
file distribution system.

We first ran a Java-based web server on one host with 69
clients continually downloading a 64KB file. The clients
were separated into three different types based on their link
characteristics. Nine clients were evenly spread across three
links on a single router using 2Mb LANs in order to sim-
ulate conventional cable modem clients. Forty clients were
directly connected to a single router using 2Mb multiplexed
links to simulate conventional DSL modems. Finally, 20
clients were directly connected to a single router using 56Kb
multiplexed links, to simulate phone modem clients. The
feedback loop required three iterations to reach an accept-
able application fidelity, the results are shown in Table 2.
The first iteration is a one-to-one mapping that allows the
system to get a clean set of feedback data. The second iter-
ation packed the 74 vnodes onto 7 pnodes and resulted in a
drop in performance because the CPU intensive server node
was co-located with several client nodes. The final itera-
tion amplifies the feedback data by 20%, which is enough to
isolate the server and return the application metrics to their
original one-to-one values, without allocating anymore pn-
odes. It should be noted that the bad mapping found in the

Metric 2Mb 2Mb 56Kb
LAN Link Link

74 vnodes on 74 pnodes
Avg. Transaction Rate 1.19 2.29 0.09
Avg. Response Time (s) 0.84 0.43 10.67

Packed onto 7 pnodes after first iteration
Avg. Transaction Rate 1.10 1.85 0.09
Avg. Response Time (s) 0.91 0.53 10.77
Packed onto 7 pnodes after second iterations
Avg. Transaction Rate 1.19 2.29 0.09
Avg. Response Time (s) 0.84 0.43 10.70

Table 2: Performance of clients continually downloading a 64KB file in
different vnode mappings.

second iteration could have been avoided with higher pre-
cision monitoring. However, in our context a bad initial
remapping is a benefit because it denotes the lower bound on
the number of required nodes and we always wish to mini-
mize the number of physical nodes required for a topology.

To demonstrate scaling a real application to large topolo-
gies that cannot fit in a one-to-one mapping on our existing
infrastructure, we ran the BitTorrent peer-to-peer file dis-
tribution program on a 310 node network packed onto 74
physical nodes. The topology consisted of 300 clients com-
municating over 2Mb LANs or links, a single “seed” node
with a 100Mb link, and nine routers that formed the core. To
bootstrap the mapping we used feedback data from a smaller
topology for the clients, since their resource usage was de-
pendent on the link constraints and not the number of clients
in the system. However, the resource use of the seed node
and routers is tied to the size of the network, so they were
left one-to-one. In total, it took 19 minutes to instantiate the
topology: seven minutes for assign to map the virtual topol-
ogy onto the physical topology and twelve minutes to load
disks onto the machines, reboot, and setup the individual
virtual nodes.

The adaptation mechanism can also accomodate applica-
tions that have throughput constraints as well as timing sen-
sitivity. We tested the Darwin Streaming Server sending a
100Kbps video and audio feed to 20 clients. When packed
densely to 2 physical nodes, the interpacket gap variance is
high, but if we set the estimated bandwidth for the client
links to 100Mb, sparser virtual to physical link mapping re-
sults. This in turn forces virtual nodes to relocate onto other
physical nodes, raising the total number physical nodes to 6
(see Table 3). The oversubscription of network bandwidth
thus clears a path for time sensitive packets.

7 Related Work

The ModelNet network emulator [24] achieves extremely
large scale by foregoing flexibility and optionally abstract-
ing away detail in the interior of a network topology. Edge
hosts run the user’s applications on generic operating sys-
tems, using IP aliasing and a socket interposition library to
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Mapping Video gap (ms) Audio gap (ms)
Min Max Min Max

One to one 0.93 90.99 48.23 210.96
Physical Link Shared 0.04 470.3 0.07 531.27
Physical Link Unshared 0.54 91.99 30.88 232.10

Table 3: Interpacket gap of clients receiving a 100Kbps video and audio
stream in different configurations where the physical link is shared and not
shared. The values are the median of five runs.

give a weak notion of virtual machine, called a VN. The
VNs route their traffic through one or more physical “core”
machines that emulate the link characteristics of the interior
topology. ModelNet has emulated topologies in excess of
10,000 links. However, it cannot emulate arbitrary compu-
tation in the core of a topology, which excludes simple ap-
plications like traceroute as well as more complex services
like user-configurable dynamic routing, unless support for
each feature is hardwired in (as has recently been done for
DSR) [23].

Compated to Emulab, ModelNet is less transparent to ap-
plications and it is harder to provide performance monitor-
ing, because it currently uses only a very weak notion of
virtual machine. For example, it does not virtualize filesys-
tem namespace, VN’s cannot be multihomed, and it pro-
vides no network bandwidth isolation between VNs on the
same physical host. ModelNet and the new Emulab are
clearly complementary—ModelNet is perfect for generic
network interiors, while the new Emulab is strong in other
ways. Therefore, we and the ModelNet team plan to in-
tegrate ModelNet into Emulab, dynamically allocating and
configuring Modelnet “cores” for parts of the topology that
use only generic router functions.

The Virtual Internet architecture [22] is a partially-
implemented model targeted to deploying virtual IP net-
works as overlay networks on the live Internet. The VI work
identified most of the issues with link virtualization at the
IP layer that we encountered at the ethernet level. It focuses
on correct implementation of virtual links when nodes can
simultaneously participate in multiple topologies (concur-
rence), as multiple nodes in a single topology (revisitation)
and when nodes in a virtual topology can themselves act as
base nodes for other topologies (recursion). It does not vir-
tualize other node resources.

Virtual machines have a long history, but we discuss
only a few recent examples that have been used specifically
to implement network emulation environments.

The “vimage” virtual network infrastructure work [14,
30] is similar to our FreeBSD jail-based implementation.
Rather than virtualize pieces of the network stack, the au-
thors virtualize the entire stack and associate an instance
with each jail. While conceptually cleaner, the complete
duplication of all network resources raises some issues with
kernel memory fragmentation. Their implementation pro-
vides some basic control over CPU usage that ours currently
does not. Although their topologies can span multiple phys-
ical machines, and new work is creating a GUI-based con-

figuration tool [8], they do not have the automation support
to control large topologies.

The vBET emulation environment [9] is built around an
enhanced version of UML [2], a Linux virtual machine that
runs as a process on unmodified Linux. UML’s base per-
formance is poor, obtaining 20–50% of base Linux per-
formance on benchmarks involving significant I/O [1]. In
contrast to our approach which uses native network mech-
anisms, vBET simulates hub and router devices, which, for
example, cannot broadcast. vBET does not support topolo-
gies spanning multiple physical machines, so cannot emu-
late large topologies.

PlanetLab [18] is a geographically distributed network
testbed, with machines time-shared among mutually un-
trusting users. PlanetLab uses Linux vservers [13] enhanced
with a custom kernel module that provides enhanced re-
source isolation, including CPU and network bandwidth.
Node virtualization is constrained by the fact that the nodes
are subject to the restrictions of the site at which they reside.
For example, since they cannot assume more than a single
routable IP address is available per node, IP name space is
not virtualized. Currently, it is impossible to reliably au-
tomate configuration of even modest numbers of PlanetLab
vservers if overall setup speed is a requirement [12], appar-
ently due to defects in the central PlanetLab service.

In the longer term the new Xen VMM offers some com-
pelling features to network emulators. Xen provides good
isolation and control of CPU, memory and disk resources,
though network controls are not fully realized. It purports
to host up to 100 simultaneous active virtual machines on
“modern servers,” and supports several popular operating
systems.

Other. ACME, the “Application Control and Monitoring
Environment” [16], provides scalable control and monitor-
ing infrastructure, including distributed sensors and actua-
tors. ACME or its ideas would be an alternate way for Em-
ulab to provide online monitoring of overload conditions,
should greater scalability be required.

Our CPU Broker [4] work has partially inspired our
feedback-based approach, and several principles are simi-
lar. The broker mediates between multiple real-time tasks
and an RTOS; using feedback and policies, it adjusts CPU
allocations accordingly. It connects to its monitored tasks
non-invasively, with user-provided proxies transforming re-
source use data into predictions. The CPU Broker reallo-
cates resources on a fine time scale, while Emulab reallo-
cates at a coarse time scale.

8 Discussion and Conclusion

Our resource allocation and monitoring techniques do not
assure the timeliness of events. In general, assured time-
liness is expensive to provide, requiring real-time schedul-
ing of CPU and links. However, we do provide two ways
to address the issue, with another planned. First, the user’s
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application-specific metrics, if they can be gathered on un-
multiplexed nodes, serve as a safety mechanism to catch ar-
bitrary performance infidelities. Second, the user can spec-
ify an a shorter time period (the default is 1 second) over
which the monitoring daemon will average, as it looks for
overload. Of course, the daemon may then consume excess
resources itself, but since it runs on the user’s own nodes,
the testbed infrastructure is not threatened. Finally, we are
adding a kernel mechanism that will report if any resource
use over very fine time scales, e.g., 1–10msecs, has exeeded
a user-settable threshold. Given this mechanism and typi-
cal Internet latencies, a user can quite confident that timing
effects regarding network I/O have not affected his experi-
ment.

In general, evaluation of packet timeliness and CPU
scheduling effects remain to be done, but by offering the
user application-level metrics directing adaptation, that is
not essential. Exhaustive validation of the link emulation
fidelity needs to be done, similar to the inter-packet ar-
rival and time-variance analysis we do for mixed simu-
lated/emulated resources [6]. Another issues is that our en-
capsulation decreases the MTU by a few bytes, which could
affect some applications. Many switches and NICs support
larger MTU sizes, including ours; we are implementing that.
In general, we could and will add well-known OS resource
isolation mechanisms such as proportional-share scheduling
and resource containers. Finally, our support is limited to
FreeBSD, yet many want Linux or Windows. Clearly, we
could port our work to Linux vservers, but we prefer to ex-
plore the Xen alternative.

In conclusion, we have shown that, by relaxing the con-
straints of conservative resource allocation, we can signifi-
cantly increase the scale of topologies that we can support,
or lower the required physical resources, with minimal loss
of fidelity. In the future we will gathering experience on
how experimenters use the feedback and adaptation system,
and evolve our system accordingly.
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