
Upgrading Transport Protocols using
Untrusted Mobile Code

Parveen Patel†

ppatel@cs.utah.edu

Andrew Whitaker‡

andrew@cs.washington.edu

David Wetherall‡

djw@cs.washington.edu

Jay Lepreau†

lepreau@cs.utah.edu

Tim Stack†

stack@cs.utah.edu

†University of Utah ‡University of Washington

ABSTRACT
In this paper, we presentSTP, a system in which communicat-
ing end hosts use untrusted mobile code to remotely upgrade each
other with the transport protocols that they use to communicate.
New transport protocols are written in a type-safe version of C,
distributed out-of-band, and run in-kernel. Communicating peers
select a transport protocol to use as part of a TCP-like connection
setup handshake that is backwards-compatible with TCP and in-
curs minimum connection setup latency. New transports can be
invoked by unmodified applications. By providing a late binding
of protocols to hosts,STP removes many of the delays and con-
straints that are otherwise commonplace when upgrading the trans-
port protocols deployed on the Internet.STPis simultaneously able
to provide a high level of security and performance. It allows each
host to protect itself from untrusted transport code and to ensure
that this code does not harm other network users by sending sig-
nificantly faster than a compliant TCP. It runs untrusted code with
low enough overhead that new transport protocols can sustain near
gigabit rates on commodity hardware. We believe that these prop-
erties, plus compatibility with existing applications and transports,
complete the features that are needed to makeSTP useful in prac-
tice.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management; D.4.6
[Operating Systems]: Security and Protection; C.2.2 [Network
Protocols]: Protocol architecture

General Terms
Design, Implementation, Deployment

Keywords
Transport Protocols, TCP-friendliness, Untrusted Mobile Code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03,October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

1. INTRODUCTION
Upgrading transport protocols in the global Internet is hard. TCP
extensions [54, 41, 50, 13] and new protocols, such as SCTP [56]
and DCCP [37], generally require both communication endpoints
to be upgraded before they provide the benefit of new and improved
functionality to users. This is presently done by independent oper-
ating system upgrades at individual endpoints. Furthermore, new
protocol options need to be enabled by default before they can be
used by most applications. This process leads to a number of prob-
lems, the most visible of which is the high effort required and the
consequent delay. The lag caused by standardization, implementa-
tion by vendors, and widespread deployment is usually measured in
years. A complicating factor is that operating system vendors, not
third parties, typically must implement upgrades because transport
protocols reside in the kernel.

More insidiously, there is a disincentive problem due to “exter-
nalities.” The benefit of upgrading an individual endpoint depends
on the number of other endpoints that have already been upgraded,
since the new protocol is not effective unless both have it. This
means that early adopters will gain little benefit, with the result
that innovation is further discouraged. The only current recourse to
this problem is the development of “fully backwards-compatible”
upgrades that provide benefit even if only a single end is upgraded.
Unfortunately, the pressure to produce such upgrades may result in
“quick fixes” that are less effective or robust than the alternatives.
For example, both NewReno [20] and SACK [41] protect against
multiple packet drops in a window of data. It is widely accepted
that SACK is the superior solution [18] and was proposed first,
yet NewReno, the fully backwards-compatible scheme, is the most
widely deployed solution today. Moreover, this approach cannot
be made to work for many proposed upgrades, such as Connection
Migration [54]. We are not the first to recognize this general prob-
lem. In 1991 the authors of RFC 1263 [42] made many of these
arguments, motivated by the many TCP extensions being proposed
even then.

Despite these difficulties, upgrades to transport protocols are con-
tinually required. TCP has been changing at a steady pace ever
since it was designed two decades ago [49] and shows no signs of
slowing down; the Internet is very much in flux rather than com-
pleted. This is because the trends for growth and change are driven
by trends in the underlying technology and set of applications, and
so will in all likelihood continue. There is much ongoing research
that anticipates the changes in network protocols that will be nec-
essary with further growth and evolution of the Internet: such re-
search includes work on streaming media applications [37, 27] and
congestion control of aggregates [8, 6].

To address the continual need for change, we present a system
that tackles the compatibility, incentive, and delay problems asso-

ciated with transport protocol evolution. Our approach is to use
untrusted mobile code to allow one host to upgrade, as needed, the
transport protocol code used by its peer [46]. This means that in-
stalling new functionality at one node produces an immediate ben-
efit, reducing both the disincentive to be an early adopter and the
incentive to craft fully backwards-compatible solutions. To reduce
the delay in upgrading even an individual node, we allow users
or applications to provide their preferred transport protocol imple-
mentations to the local node, rather than only permitting operating
system vendors to implement new protocols. The common link be-
tween these two steps is that transport protocol implementations
must be able to function well despite being untrusted by the local
node.

We call our systemSTP, for Self-spreading Transport Protocols.
It uses a TCP-like connection setup as a mechanism for triggering
the out-of-band deployment of new transport protocols. These pro-
tocols can be either classic TCP extensions or any transport pro-
tocol that fits between theSTP interface in the kernel (Section 3)
and the socket interface to applications.STPhas the following key
characteristics:

• It supports a wide variety of unicast transport protocols be-
cause it imposes few constraints on the packet formats used
by endpoints.

• It enables an endpoint to protect its integrity and resources
without trusting either its peer or the authors of transport pro-
tocols.

• It enables the sender to ensure that transport protocols com-
pete reasonably with TCP (an important consideration for
new transports [21]) without trusting them.

• It runs transport protocols while incurring only modest com-
putational cost over standard TCP. This means that new
transports can realize performance improvements.

• It is compatible with TCP connection setup and applications
that use the socket interface. TCP connection setup triggers
protocol deployment, but does not delay setup. These aspects
provide a bootstrap path forSTPdeployment.

Our insight is that the domain of unicast transport protocols af-
fords simplifications that make tractable many of the performance
and safety problems that must be solved to build a useful mobile
code system [46]. Mobile code has long been known as a mecha-
nism to provide a late binding of function to systems [35, 34, 11].
However, it has typically brought its own set of difficulties in terms
of security and efficiency to systems as diverse as Java applets in
Web content [16] and active networks [62], with the result that few
distributed systems in widespread use today depend heavily on mo-
bile code. In our domain, however, TCP connections have stylized
interactions with the rest of the operating system that inherently
limit buffering, code invocation, and sharing across connections.
Each of these restrictions helps to secure the efficient execution of
mobile code. We have further leveraged recently developed tools
and techniques from networking and programming languages. We
use Cyclone [32], a type-safe C-like language, to obtain protec-
tion at a reasonable performance cost as well as easy integration
with rest of the kernel. We define network safety in terms of TCP-
friendliness [48] and check that transports are adhering to it by us-
ing the ECN nonce signaling mechanism [17].

The rest of our paper is organized as follows. In the first part, we
describe the system that we have built. We begin with the problem

we are solving in Section 2, followed by the architecture and de-
sign of our solution in Section 3. In Section 4, we describe some
key points of the implementation of our system in the BSD ker-
nel. In the second part of the paper, Section 5, we concentrate on
an evaluation of the system. We evaluate the effectiveness of our
TCP-friendly rate enforcement mechanisms and show that the per-
formance of transport code in our system is competitive with native,
in-kernel BSD implementations across the range of typical Internet
conditions. In the last part of this paper, we focus on what we have
learned and future directions. We discuss key issues based on our
experience to date in Section 6, contrastSTP with related work in
Section 7, and conclude with future directions in Section 8.

2. MOTIVATION
New transport protocols and changes to the dominant transport pro-
tocol, TCP, often require upgrades to both connection endpoints
before they are effective. This is presently done with indepen-
dent upgrades to standard protocols at individual endpoints. We
have argued this leads to large deployment delays from standardiza-
tion and implementation, discourages innovation and early adopters
who gain little benefit, and encourages the proliferation of “quick
fixes” that may sacrifice robustness or efficiency.

To assess the extent to which these factors matter in practice,
we surveyed TCP extensions and alternative transports that have
been deployed or proposed since congestion control was first intro-
duced in 1988 in TCP Tahoe [29]. We analyzed a total of 27 TCP
extensions and transports and classified them into three categories
according to which endpoints must be upgraded to gain a benefit,
assuming TCP Tahoe as a baseline implementation. The results are
shown in Table 1. We found that 16 of the 27 extensions, which
are listed in Category 1, require upgrades to both endpoints to be
of value. This can lead to adoption times measured in years, as in
the case of TCP Selective Acknowledgments (SACK). SACK was
standardized by the IETF in 1996 [41] and a study in 2000 reported
that 58% of wide-area connections were started by an endpoint ca-
pable of SACK but only 5% of the connections were actually able
to use SACK [22, 44].

For the five extensions listed in Category 2, upgrades to a sin-
gle endpoint do provide benefit. However, we observe that all of
these extensions have the potential to be either more robust or ef-
fective if both endpoints can be upgraded and the new functionality
split freely between the sender and receiver. For example, TCP
NewReno uses a heuristic interpretation of duplicate acknowledg-
ments to avoid timeouts, but it is widely accepted that TCP SACK
(in Category 1) provides better recovery from losses [18]. That is,
we argue these extensions are impacted to some extent by the pres-
sure of backwards-compatibility.1

Finally, the remaining six extensions in Category 3 inherently re-
quire changes to only one endpoint. For example, both the Fast Re-
covery modification to the sender-side TCP [5] and TCP-Nice [59]
are transparent to the receiver. The deployment of such changes is
limited primarily by the difficulty of convincing operating system
vendors to accept the change and then upgrading and configuring
operating system versions, as transport protocols are typically hard-
wired into the kernel.

The above analysis suggests that the majority of transport exten-
sions and new transport protocols stand to benefit from an upgrade

1For the curious, TCP Vegas [14] and TCP Westwood could use
receiver timings to more accurately estimate delay measures [47],
the retransmission ambiguity could be avoided by coding whether
packets were retransmissions, and false sharing due to NAT boxes
could be cleanly detected by the Congestion Manager.

Category Extensions
1. Requireboth
endpoints to
change

1. Connection migration: Migrating live TCP connections [54],2. SACK: Selective acks [41],3. D-SACK: Duplicate
SACK [25],4. FACK: Forward acks [40],5. RFC 1323: TCP extensions for high-speed networks [31],6. TCPSAT: TCP for satel-
lite networks [4],7. ECN: Explicit congestion notification [50],8. ECN nonce: Detects masking of ECN signals by the receiver or
network [17],9. RR-TCP: Robustly handles packet reordering [65],10. WTCP: TCP for wireless WANs [51],11. The Eifel al-
gorithm : Detection of spurious retransmissions [39],12. T/TCP: TCP for transactions [13],13. TFRC: Equation-based TCP-
friendly congestion control [24],14. DCCP: New transport protocol with pluggable congestion control [37],15. SCTP: Transport
protocol support for multi-homing, multiple streams etc., between endpoints [57],16. RAP: Rate adaptive TCP-friendly conges-
tion control [52]

2. Could benefit
moreif both
endpoints could
change

1. NewReno: Approximation of SACK from sender side [20]2. TCP Vegas: A measurement-based adaptive congestion con-
trol [14], 3. TCP Westwood: Congestion control using end-to-end rate estimation [61],4. Karn/Partridge algorithm : Retrans-
mission backoff and avoids spurious RTO estimates due to retransmission ambiguity [36],5. Congestion manager: A generic
congestion control layer [8]

3. Requireonly
one endpoint to
change

1. Header prediction: Common case optimization on input path [30],2. Fast recovery: Faster recovery from losses [55],
3. Syn-cookies: Protection against SYN-attacks [9],4. Limited transmit : Performance enhancement for lossy networks [3],
5. Appropriate byte-counting: Counting bytes instead of segments for congestion control [2],6. TCP nice: TCP for background
transfers [59]

Table 1: Classification of TCP extensions, assuming TCP Tahoe as the baseline version.

process that allows both endpoints to be changed at once. Our goal
with STPis to provide this “two-ended” upgrade in a practical form.
Our approach is to allow developers to freely write transport exten-
sions that require new code at both endpoints and then use mobile
code techniques to remotely upgrade both endpoints as the func-
tionality is needed. A further benefit of this model is to speed “one-
ended” upgrades by removing operating systems vendors from the
path to deployment. We envision the following usage scenarios for
STP:

1. A “high performance” TCP is installed along with a Web
server, and the corresponding code is pushed to receivers that
use the server to provide more rapid downloads.

2. A mobile client installs “TCP connection migration” [54]
and ships code to the servers with which it connects to al-
low itself to move.

3. A network backup application installs “TCP Nice” [59] to
perform background transfers. No remote code shipping is
needed.

The key challenges in providing this rapid deployment model
are to provide flexibility and a platform-independent API without
causing security problems or performance degradation. Transport
protocol code that comes from sources that are not authoritative —
such as the other end of a wide-area connection — should not be
vetted according to a trust model. We must ensure that untrusted
code cannot compromise the integrity of the host system, consume
too many of its resources, or launch remote denial-of-service at-
tacks. Further, standard practice in the networking community is to
require that new transport protocols compete fairly with deployed
versions of TCP to ensure that they will not undermine the stability
of the network [21]. Thus to provide a system that is acceptable
in practice we must provide this form of network safety. At the
same time, we must allow new transport protocols deployed with
STP to be competitive in performance with hard-coded and manu-
ally deployed versions. This is because extensions to TCP are often
undertaken to improve performance, andSTP must introduce little
enough overhead that performance benefits can be realized.

3. ARCHITECTURE AND DESIGN
This section outlines the key architectural components, interfaces,
and algorithms of theSTPframework. We present a general overview

of our system, followed by detailed descriptions and explanations
of special-case optimizations wherever applicable.

3.1 Overview

User−kernel boundary

API

APP1 APP2

Trusted
Compiler

Loader
&

STP
STP

STP

NETWORK LAYER

SOCKETS LAYER

Transport 1

Transport 2

Policy
Manager

STP SANDBOX

Figure 1: Architecture of the STP framework. The STP sandbox sits
below the sockets layer and on top of the network layer. STP provides
an API that transport protocols use to get safe access to the sockets
layer, the network layer, and certain kernel services. The policy man-
ager uses a trusted tool-chain of compilers, linkers, and loaders to load
remote protocol code into the OS kernel.

Figure 1 shows the major architectural components of theSTP

framework. The central component of the framework, called the
STP sandbox, provides a restricted and resource safe environment
for mobile transport protocols. Safety is achieved through the com-
bination of Cyclone [32], which provides type safety, and careful
interposition between the existingsocketandnetwork layersof the
operating system. By leveraging a type safe language, the sand-
box can ensure that mobile code is unable to reference memory or
functions that are not made available to the protocol. These char-
acteristics force the transport protocol to use theSTP API, a set of

functions that provide constrained access to the other layers of the
system. For example, a protocol will not be able to open files be-
cause the sandbox exports no such function and Cyclone prevents
the protocol from linking against random symbols in the kernel.
Furthermore,STP supports safe, asynchronous termination of ex-
tensions that misbehave, for example, by entering an infinite loop.

Outside of the sandbox there are the user-level programs that
make policy decisions, transfer code, and produce trusted kernel
modules. Thepolicy managerdaemon is used to resolve conflicts
encountered when making connections to other nodes. The possi-
ble outcomes of the policy managers’ negotiations are (1) that both
sides agree to use a transport that they already have, or (2) that the
hosts fail to agree and fall back to using TCP. The former case
results in the chosen transport being bound to the endpoints and al-
lowed to proceed. In the latter case, the connection proceeds as a
normal TCP connection while the policy managers are free to use
out-of-band communication to come to an agreement. Protocols
that one side does not possess can then be downloaded, processed
by a trusted tool-chain, and made available for future connections.
In this manner, code loading activity is amortized across many con-
nections in the expected case that there are few kinds of transports
in use, yet many users of the system remain authorized to innovate
and possibly develop one of the few widely used transports.

Finally, applications interact with theSTP sandbox and trans-
port using the existing sockets interface. Applications wishing to
use a particularSTP transport set a socket option to the hash that
uniquely identifies the protocol. Otherwise, the standard functions,
like read and write, behave as one would expect. This allows for an
administrator to use a policy manager to map unmodified, legacy
applications to selectedSTPprotocols.

3.2 STP Components
In the following section, we look at the design rationale for the
three main components of theSTP framework: theSTP sandbox,
the policy manager, and the trusted tool-chain.

3.2.1 The STP Sandbox
The STP sandbox is the central part of theSTP framework. It im-
plements theSTP APIand provides a safe and resource-limited run-
time to STP transports. Applications, the network layer, and the
rest of the kernel communicate with transports through theSTP

API. Of the 127 functions in theAPI, 67 are core functions and
the other 60 form a library of commonly used kernel-programming
support functions. A few sample functions in each major category
are shown in Table 2. We give more details of thisAPI as we discuss
specific mechanisms and algorithms used by theSTPframework.

The API allows transports to register timers, manipulate packet
buffers, and interact with the sockets layer in a safe way. Transports
are allowed to directly read and write packets from the network, in
a manner similar to raw sockets. However, to prevent transports
from snooping on packets intended for other protocols or applica-
tions, incoming network packets are first classified based on their
port numbers and then handed to the appropriate transport code
for processing. Similarly, to prevent transports from sending un-
solicited packets to arbitrary hosts, the fields of the IP header of
outgoing packets are checked. Overall, theSTP API is sufficient to
implement a range of transport protocols, including conventional
TCP.

It is important to prevent untrustedSTP transports from affect-
ing the integrity or the availability of the resources of the local
host. STP achieves host safety through principles of isolation and
resource control similar to those used in language-based operat-
ing systems, such as KaffeOS [7].STP’s implementation of these

The STP APIsubclasses
1. Protocol managementAPI

stp load proto(protosw)
stp unloadproto(protohandle)
2. Sockets layerAPI

stp sowakeup(socket)
stp sbapppend(socket, seg)
stp isdisconnecting(socket)
stp sobind(socket)
3. Connection managementAPI

stp attach(socket) [callback]
stp connect(socket, remote-endpoint, state) [callback]
stp abort(socket) [callback]
stp accept(socket, remote-endpoint, state) [callback]
4. TCP-friendly network accessAPI

stp net send(segment, seqno)
stp net resend(segment, newseqno, oldseqno)
stp ack sum(endseqno, noncesum)
stp nack(seqno)
stp net sendack(segment)
5. Runtime support
stp gettick()
stp segalloc(proto handle)
stp timer reset(protohandle, callout)
stp get rtentry(protohandle, dstip addr)

Table 2: Sample functions from the STP API

principles is greatly simplified, however, due to the constrained
memory allocation and sharing requirements of TCP and similar
protocols. Control flow is transferred to untrusted code via three
types of system events: socket calls, network packet input, and
timers. The CPU and memory usage of all three types of event
handlers is tracked and code that exceeds its resource allocation is
unloaded from the system. Extensions are never allowed to share
memory with other extensions, grab system locks, or disable inter-
rupts. Therefore, asynchronous termination can be safely achieved
by closing the sockets that depend on the extension. This tractable
notion of termination allows us to use traditional runtime tech-
niques to bound memory usage and an inexpensive timer interrupt
to check CPU usage.

Memory safety is achieved by using Cyclone, which has a num-
ber of features that make it easier and more efficient to interface
with traditional C-based kernels than other safe languages, such as
Java or OCaml. First, it has the same calling conventions as C, so C
code can directly call into Cyclone code and vice versa. Second, it
has the same data layout for basic types and structs, which makes it
possible to share data structures between C and Cyclone code with-
out having to copy them. Third, Cyclone supports region-based
memory management [26], which can be used to achieve memory
safety without the overhead and unpredictability of garbage collec-
tion. Fourth, Cyclone has a lightweight runtime that is easy to port
into kernels, where runtime library support is generally limited. Fi-
nally, Cyclone is syntactically similar to C, which simplifies the
translation from existing C code and reduces the likelihood of in-
advertent errors. For example, it took us only about one man week
to port the FreeBSD implementation of TCP NewReno.

3.2.2 User-Level Policy Manager
STPdefers transport admission control and code downloading to a
user-level daemon, called the policy manager. The policy manager
derives its policies from two sources: those set by a system admin-

istrator or user and policies based on the history of a protocol. If a
protocol is known to have behaved badly in the past, it is rejected
by the policy manager. Once the manager has decided to download
a protocol, it is free to select the form (binary or source) and origin
of the code. After the code has been received, the policy manager
is responsible for determining which restrictions to enforce on the
protocol. For example, a transport that is distributed in binary form
and signed by a trusted OS vendor could be loaded and executed
without any restrictions.

In our current design, a simple policy for foreign code is used:
untrusted remote code is accepted unless an application explicitly
disables it. This simple policy works in practice because an un-
trusted transport cannot harm the local host, other hosts on the net-
work, or the network as a whole. At worst, the transport may un-
derperform, in which case the user may flag it as buggy to prevent it
from running again. In the longer term, the design of good policies
is likely to be an important consideration in controlling the deploy-
ment and usage of upgrades. However, we require experience to
define those policies, and have deferred the issue in the belief that
good policies can evolve as the system matures.

3.2.3 Trusted Tool-Chain
Untrusted protocol code is transferred in Cyclone source code form.
However, merely writing code in a type-safe language does not
make it safe for inclusion in an OS kernel. For example, unre-
stricted Cyclone code can access arbitrary C code and data, incur
stack overruns, or cause a division-by-zero error.STPuses a trusted
compiler that prevents transport code from including or accessing
arbitrary C code and inserts runtime checks to prevent the code
from crashing. The generated protocol module is then loaded into
the kernel by a trusted loader.

3.3 STP Protocols and Algorithms
3.3.1 Transport Negotiation and Loading
Two important goals of theSTPsignaling and code loading design
are to maintain backwards compatibility with TCP and to allow
transports to use new header formats. Although several other de-
signs are possible, in our current designSTP achieves these goals
by distinguishing between two classes of transports: those that use
a TCP-compliant header (XTCP) and those that do not (NTCP).
For the NTCP class,STP requires that the transport headers carry
the source and destination port numbers in the first four bytes (as
in TCP) and use the following byte to indicate whether a packet is
for the STP layer or for the transport. The fixed location of port
numbers is used for secure demultiplexing of packets to the cor-
rect transport. The extra byte required in NTCP headers makes
our connection setup protocol resilient to the loss of ACK packets,
as described later in this section. Other than these,STP places no
restrictions on the format of transport protocol headers. In the fol-
lowing, we discuss the details of our code loading protocol for the
XTCP class of transports. It works similarly for the NTCP class
but uses a modified header format.

STPaccomplishes remote distribution of code with minimal over-
head, and full backwards compatibility with TCP, by interposing
on normal TCP connection setup. When an application issues a
connect system call, theSTP layer starts a TCP-like three-way
handshake with the remote end. It piggybacks transport negotia-
tion options on the connection establishment packets, as discussed
below. If both endpoints agree on an already loadedSTPtransport,
the STP layer binds that protocol to the connection and passes the
connection state to it. The connection then proceeds normally us-
ing the negotiated protocol. If a connection cannot be immediately
established using the desired protocol, it falls back to the default

The STPoption Semantic meaning
STP-USE,<proto> Use a particular STP protocol
STP-OK,<proto> Agreed to use a particular protocol
STP-SENDME,<proto> Send a particular protocol using the

policy manager
STP-NO Not allowed to use protocol requested

in previous STP-USE

Table 3: STP connection setup options.

TCP implementations on both nodes.

S
A

, U
S

E
 S

T
P

−
A

B

B

A

A

DATA TRANSFER

DATA
TRANSFER

3

2

1

SHIPPING
CODE

+ LOAD
TIME

S
Y

N

COMPILE

Timeline

C
on

ne
ct

io
ns

S
Y

N A
C

K
, O

K

A
C

K
, P

U
S

H

S
A

, U
S

E
 S

T
P

−
A

Figure 2: An example scenario. In connection 1, server A requests use
of high-performance transport protocol (STP-A), causing client B to
ask for the code. At application level in connection 2, server A sends it
to client B. In a later, unrelated connection 3, A and B use STP-A.

In the following discussion, assume that initiating host A and
listening host B want to open a connection with each other. Node
A prefers protocol STP-A while node B prefers protocol STP-B.
Table 3 summarizes theSTP protocol negotiation options and Fig-
ure 2 illustrates a transport negotiation scenario.

At node A, STP prepares a TCP SYN connection setup packet
in response to theconnect request from the sockets layer. It
attaches a special STP-USE option containing the code hash for
STP-A and sends it to B. TheSTP sandbox at node B attempts to
map it to a loaded protocol. Four different scenarios can take place
on B:

1. STP-A is allowed and the protocol is already loaded.
2. STP-A is allowed but the protocol is not yet available for use.
3. STP-A is not allowed.
4. Node B wants to use STP-B instead.
In each scenario, B sends a TCP SYN-ACK packet to A but it

attaches a different STP option from Table 3 in response to A’s re-
quest. B creates compressed state for this connection and stores it in
a cache. (Caching responses to SYN packets and thereby deferring
socket creation is a standard mechanism used by most operating
systems to counter SYN-flood attacks.) In scenario 1,STP sends
the STP-OK option. From then on the connection proceeds nor-
mally using STP-A. In scenario 2,STPattaches the STP-SENDME
option, requesting node A to push the code for STP-A to node B.
In scenario 3,STPattaches the STP-NO option, indicating a refusal
to use STP-A. In scenario 4,STP attaches the STP-USE option
containing the hash of protocol STP-B, requesting node A to use
STP-B.

On receipt of a SYN-ACK packet, node A decides which proto-

col to use based on the STP option received and sends back an ap-
propriate STP-OK option in the ACK packet. In scenario 1, STP-A
is used. In scenario 2, it informs the policy manager to send the
code for STP-A to B and decides to use the default protocol for
this connection. In scenario 3, the default protocol is used. In sce-
nario 4, it asks the policy manager, and if STP-B is allowed and al-
ready loaded, it is used, else the default protocol is used. The ACK
packet containing the selected protocol information completes the
three-way handshake. TheSTP layer then attaches the negotiated
transport to the connection and passes the connection state to it.
The transport may then exchange more connection options with its
peer before being ready for data transfer. For the XTCP class of
extensions, this step may be unnecessary because theSTPlayer has
already negotiated the standard TCP options, such as window size,
window scale, initial sequence numbers, and so on.

One issue with the above connection setup protocol is the loss
of the final ACK packet from A to B. The acknowledgment pack-
ets are not assigned sequence numbers and their loss is not tracked.
Therefore, after sending the final ACK packet, node A assumes that
the negotiation is complete and it attaches the negotiated transport
to the connection. The negotiated transport can then start sending
data using its own packet format. For the XTCP class of transports,
theSTPlayer at node B will read the TCP header and the cumulative
acknowledgment contained therein. It can then complete the three-
way handshake and start the negotiated protocol. For the NTCP
class of transports, theSTP layer uses the extra byte to infer a re-
sponse to the SYN-ACK packet. If theSTPlayer receives a packet
with this byte set to a non-zero value, it starts the negotiated proto-
col and passes the packet to it. If the byte is zero, thenSTPassumes
that the other end has agreed to use the default protocol.

3.3.2 TCP-Friendly Rate Limiting
Network resource control is cooperatively implemented by end-
points in the current Internet. Endpoints interpret packet loss as
signaling congestion and reduce their sending rate accordingly so
that flows compete for a fair share of the resources instead of over-
loading the link. New transport protocols, deployed withSTP or
otherwise, should limit themselves similarly [21]. However, in our
context, we cannot trust the transport and soSTP must enforce an
upper limit itself. Currently, this upper limit is the same as TCP’s,
whose behavior is modeled by the TCP rate equation [43], shown
as Equation 1.

T =
s

R ∗
√

2 ∗ p
3

+ (t RTO ∗ 3 ∗
√

3 ∗ p
8
∗ p ∗ (1 + 32 ∗ p2))

(1)

This equation gives an upper bound on TCP’s sending rateT in
bytes/sec, in terms of mean packet sizes, loss event ratep, round-
trip time R, and retransmission timeoutt RTO. (Note that for
determiningp, all packets lost in a single RTT are encompassed
by a single loss event.) Previous research efforts [64, 43, 27] have
demonstrated, in both simulation and real-world implementation,
that the sending rate derived from this equation competes fairly
with normal TCP. Therefore, this equation forms a promising start-
ing point, though it is conceivable that it could be replaced as we
gain more experience with the system.

A key difficulty is that the equation depends on parameters, such
as packet loss rate, which must be derived without trusting the local
transport protocol or the remote host. To accomplish this, the trans-
port suppliesSTP with sequence numbers and acknowledgments
that are checked using the recently proposed ECN nonce mecha-
nism [17, 50]. Round-trip times come from the process of sending
packets and receiving the corresponding acknowledgments. Packet

loss data is either supplied by the protocol (and checked bySTP) or
inferred bySTP when transmissions are not acknowledged after a
certain amount of time. The verification process relies on a random
one-bit nonce that must be given by the sender when informing
the STP layer of an acknowledgment, as is described next. The
checking mechanism is probabilistic, but has been shown to work
reasonably for limiting transport performance even against an ad-
versary [17]. Note that our checking mechanism does not require
the deployment of ECN at routers. ECN nonces are primarily used
as proof of acknowledgment; congestion signaling, if available, is
an added benefit to the transports.

The ECN nonce mechanism works as follows. A transport proto-
col assigns a unique sequence number to each outgoing data packet
before sending it using thestp netsend function in Table 2. The
STPruntime then places the random one-bit nonce, unknown to the
sender, in the IP header of the outgoing packet in a standard lo-
cation. STP also maintains a history of unacknowledged sequence
numbers along with their nonces. These nonces will be lost if the
packet itself is lost in the network or if an ECN-capable router sig-
nals congestion by marking the packet. Otherwise, the nonces will
reach the receiver who is then expected to echo them back when
acknowledging packets. Rather than echoing nonces for individ-
ual packets, which would not be resilient to packet loss, the re-
ceiver sends the running sum of nonces along with an acknowl-
edgment. Acknowledgments and their nonce sums are then pre-
sented to the sender’sSTP layer as proof that the packets reached
their destination without being dropped; packet losses are inferred
when the received nonce sum does not match what was sent. If a
loss is detected by the sender, a proactive transport will report a
negative-acknowledgment to theSTP layer and resend the packet
using stp netresend . Timely reporting of losses to theSTP

layer results in a rate limit that closely matches the current network
conditions. Otherwise,STP will infer the loss after a long delay,
thereby inducing a lag in the limit predicted by the equation and
the actual network state. Finally, the round-trip time, packet loss,
and other data derived during this process are fed back through the
equation to determine when the next transmission will be allowed.

3.4 Flexibility and Limitations of STP
Clearly, theSTPframework cannot support all types of existing and
future transport protocols. The following are the key flexibilities
and constraints ofSTP:

1. Packet Format. STPdemultiplexes incoming network pack-
ets to the correct transport protocol by first classifying them
based on their port numbers. This implies thatSTP needs to
understand the transport protocol header to look up the port
numbers. This is not a problem in practice because most
known transport protocols (including TCP, UDP, DCCP, and
SCTP) carry the source and destination port numbers in the
first four bytes of the transport protocol header.

STPimposes no further constraints on the format of the pack-
ets or headers. Transports are free to carry the sequence num-
bers, acknowledgments, and the rest of the header in any for-
mat they like. The rate control mechanism is independent
of the sequence number formats that are carried in packets.
The freedom to exchange new information in new formats
(in packet headers) and to ship protocol code to process that
information are two features that arbitrary new protocols re-
quire.

2. Packet Loss Signals Congestion.STPchecks that transports
compete reasonably with TCP. This, in turn, means that loss

must be treated as equivalent to congestion. Transport pro-
tocols for high loss-rate wireless networks, such as Wireless
Transport Control Protocol (WTCP) [51], do not treat losses
as congestion and hence cannot be accommodated in our cur-
rent design.

The above limitation could be overcome by trusting the re-
ceiver’s end and carrying an extraSTP header in packets.2

The receiver sideSTP layer could distinguish between con-
gestion marks and losses, and report the correct congestion
event rate to the sender. A similar receiver-side algorithm is
also used by TFRC [27] to calculate the parameters of Equa-
tion 1. However, in our context, this design has security im-
plications and it imposes extra network overhead—theSTP

header will carry redundant information already present in
most transport headers.

3. TCP-Friendliness.STPuses the TCP response equation [24]
to limit the sending rate of untrusted transports. A poten-
tial concern is whether this equation will be able to accom-
modate newer transport protocols. For example, HighSpeed
TCP (HSTCP) [23] and FAST TCP [33] are recent transport
protocol proposals designed to be more aggressive than TCP-
friendly transports under very high speed (e.g., 10Gbps) and
low loss rate (less than10−3) network environments. For
example, HSTCP switches to a high speed TCP response
function when the congestion window size exceeds a certain
threshold. BecauseSTP already measures the required pa-
rameters, it appears that it can easily adopt such a response
function, and thereby support these high speed transports.

4. IMPLEMENTATION
We have implemented a prototype of theSTP framework in the
FreeBSD kernel version 4.7. Most of the framework, including the
coreSTP API, is implemented in C. Cyclone wrappers export the
API to untrusted transports. The current implementation consists
of approximately 6000 lines of C code and 1000 lines of Cyclone
code.

Transport extensions implement a set of functions similar to those
implemented by native BSD transports like TCP and UDP. New
protocols have control over input and output processing, and can
register software timers. However, extensions are not trusted to im-
plement proper socket creation or teardown, nor are they trusted
with routing decisions or with demultiplexing incoming packets to
the correct protocol.

4.1 TCP-Friendly Rate Limiting
STPimplements network rate control as defined by Equation 1. Ta-
ble 4 describes the state transitions for a new socket. When a con-
nection starts up, no data has been exchanged, and the system has
no estimate for the round-trip time. During thisINIT stage the pro-
tocol is limited to sending 4 packets per second, which corresponds
to the initial congestion window on BSD. Once acknowledgments
begin to arrive, the protocol enters theSLOWSTARTphase and can
send twice as many packets each RTT. Once the first loss is en-
countered, the socket entersSTEADYSTATE, and its throughput is
governed by the throughput equation. Figure 3 outlines this pro-
cess in pseudocode.

Once inSTEADYSTATEstate, the connection is subjected to three
types of checks. The first check is performed at each packet send

2The extraSTP header is required so that theSTP layer does not
need to rely on transports and understand their header formats for
piggybacking its data on packets.

Socket State Semantic Meaning
INIT Socket has started sending packets but there

haven’t been enough acknowledgments to
measure RTT.

SLOWSTART Socket hasn’t taken a loss; is allowed to dou-
ble sending rate each RTT.

STEADYSTATE Socket has taken a loss; sending rate governed
by throughput equation.

Table 4: STP socket states.

to ensure that a protocol does not increase its sending rate by more
than a constant factor (currently set to 1.3, based on our experi-
ence) times the rate calculated by Equation 1. The rate calculation
is shown in Figure 3. A value of greater than one for the constant
factor ensures that the rate limit is not too restrictive at the gran-
ularity of each packet. A second check that ensures that our rate
enforcement is not too liberal at a coarse granularity is performed
every eight RTT intervals. This check forces a protocol’s average
sending rate to comply with the rate control equation. If a pro-
tocol’s average sending rate consistently violates the rate control
limit, the protocol is terminated. A third check is used to ensure
that congestion information is retired for idle connections. If a pro-
tocol has been idle for four RTTs, its sending rate is cut in half,
eventually forcing the connection back into slow-start.

loss = loss_rate();
if (loss == 0) {

/* The connection is in slow-start */
rate = 2 * prev_acks;

} else {
/* The connection is in steady-state */
rate = 1.3 * equation1(loss, rtt, rto);

}
rate = max(rate, SLOWSTART_WINDOW);

Figure 3: Calculation of allowed send rate. STP performs this calcula-
tion once every RTT. prev acks is the number of packets acknowl-
edged in the previous RTT. Functionloss rate calculates loss event
rate, and function equation1 applies Equation 1 to its parameters.

4.2 Host Safety
STPsandboxes untrusted protocols to prevent misuse of system re-
sources. Sandboxing relies on the ability to terminate a protocol
to regain control. For the domain of transport protocols, termina-
tion is simplified by the fact that transports do not share data with
other transports. Therefore, terminating a transport does not re-
sult in any missing references and only affects the connections that
are using the transport. InSTP, normal termination of a protocol
is performed by calling a protocol-specific cleanup routine for all
its connections. The protocol is allowed up to two maximum seg-
ment lifetimes (MSL), typically set to two seconds, to cleanly tear
down a connection, after which all resources held by a protocol are
reclaimed and it is unloaded.

4.2.1 Memory Control
STP limits the use of memory resources by performing runtime
checks on every allocation made by untrusted code. Each call to
the memory allocator routines includes a reference to the protocol
that is charged for the allocation. If a protocol’s memory allocation

exceeds the allowed limit, the protocol is denied any more memory
and is flagged as violating the memory limit. If the number of such
unsuccessful requests exceeds a limit, the protocol is stopped and
unloaded.

To prevent transport code from making illegal memory accesses,
all memory belongs to one of two top-level memory regions [26]:
a kernel region and a per-transport region. The transport code is
not allowed to store references to kernel memory in per-transport
memory. Therefore, a transport cannot create dangling pointers and
use them to read arbitrary kernel memory or trigger faults.

We plan to adapt the next version of the OKE Cyclone com-
piler [12] to implement compiler support for these regions. We
are currently using version 0.4 of the Cyclone compiler, which is
not compatible with version 0.1.2 on which the current OKE Cy-
clone compiler is based. The OKE compiler also addresses two
limitations of the current Cyclone compiler, preventing stack over-
flow and numeric traps by performing static analysis and inserting
minimal runtime checks. We believe that these changes will only
slightly affect the performance numbers presented in this paper.

4.2.2 CPU Controls
STP implements CPU controls by using a modified timer interrupt
handler. At entry points into the untrusted transport, a flag is set and
the current timestamp is recorded. The flag is unset at exit from the
protocol code and the difference between the current time and the
timestamp is charged to the transport. If a transport’s CPU usage
exceeds the allowed limit, an exception is raised, and a trusted han-
dler invokes a cleanup routine to stop and unload the protocol. In
the event of such a CPU violation, the transport is not allowed to
cleanly shutdown all its connections. In the future, we may explore
techniques to statically limit the runtime of transport code, similar
to our hybrid resource control work [45].

5. EVALUATION
In this section, we present an evaluation ofSTP. First, we de-
scribe the transports we developed and argue thatSTP is expres-
sive enough to support a wide range of extensions. Second, we
demonstrate thatSTPtransports compete reasonably with TCP and
do not overload the network. Third, we show that protocol code is
small enough and loads quickly enough that our decision to ship
complete protocols is practical. Next, we show that it imposes low
computational overhead. Finally, we show that the performance of
STP extensions is competitive with native transport protocols over
a range of network conditions.

Experiments were conducted on Netbed’s Emulab [63] cluster
network testbed facility. For all except gigabit experiments, we
used 850MHz Intel Pentium IIIs with 512 MB of SDRAM and five
Intel EtherExpress Pro/100+ PCI Ethernet cards. For the tests in-
volving gigabit network interfaces, in order to avoid PCI bottle-
necks, we used 1.8 GHz Intel Xeons with Intel Pro/1000 cards on
a 64-bit, 66 MHz PCI bus.

5.1 Transports
To evaluate our system, we surveyed a large number of TCP exten-
sions, including several in detail, ported two transport protocols to
STP, and developed a third. The three that we fully implemented
are TCP NewReno, TCP SACK, and UDP Flood. In both its C
and Cyclone forms, UDP Flood is about 1000 lines of code, while
each TCP version is approximately 10000 lines. These counts give
some indication of the required implementation effort. Working
with Cyclone was not difficult: it took only six person-days, split
between two people, to convert the firstSTPversion of TCP to Cy-

clone. One of the programmers had never worked with Cyclone
or TCP before, and the six days included at least one day’s effort
enhancing and fixing the underlyingSTP layer. We find this effort
surprisingly modest, and it indicates that this approach is practical
from the software engineering point of view.

5.1.1 UDP Flood
UDP Flood is a UDP-like unreliable transport that sends data as
fast asSTPwill allow. UDP Flood differs from UDP in that it sends
back acknowledgments for received data. Without this change, the
policer would assume every packet is lost, and UDP would be un-
able to send any traffic. Because UDP Flood has no congestion
control of its own, it shows howSTPcan be used to construct TCP-
friendly transports.

5.1.2 TCP NewReno
We first ported the standard TCP implementation in FreeBSD 4.7,
TCP NewReno [20], to the C and Cyclone versions of theSTPAPI.
NewReno is widely deployed in the Internet; in their 2001 sur-
vey [44] Padhye et al. found it to be the most prevalent variant of
TCP congestion control. NewReno differs from the classic TCP
congestion control algorithm in that it uses partial acknowledg-
ments to avoid retransmit timeouts. The onlySTP-specific change
to the standard behavior was to disable “delayed ACKs” so that
round-trip times could be inferred correctly. Supporting “delayed
ACKs” would require that theSTP layer on the sender side trust
timestamp values in the acknowledgment that indicate the length
of the delay. This conflicts with one main design goal ofSTP: the
sender side should not be required to trust the receiver side. To
level the field in the performance measurements, “delayed ACKs”
were also disabled in the standard version. Because of its superior
performance, NewReno represents a good test of the flexibility of
theSTPrate control mechanism.

5.1.3 TCP Selective Acknowledgments
We modified the FreeBSD implementation of TCP NewReno to
support TCP selective acknowledgments (SACK) [41] and then
ported it to the C and Cyclone versions of theSTP API. SACK is a
variant of TCP that improves performance when multiple packets
from a single window of data are lost. In classic TCP, the sender can
only learn about a single lost packet per round-trip time. This lim-
its the ability of the sender to quickly recover from multiple losses
within a single round-trip. In TCP SACK, the receiver informs
the sender of which segments were received so that the sender can
make intelligent decisions about retransmissions. The implementa-
tion of SACK highlights the flexibility provided by theSTPframe-
work in choosing packet formats and options: the sender and re-
ceiver can use any header format they want as long as they carry
the nonces required bySTP.

5.2 Expressiveness
To evaluate the expressiveness of theSTP API, we examinedSTP’s
support for the new transport protocols and proposed TCP exten-
sions listed in categories 1 and 2 in Table 1. We analyzed whether
each protocol could perform effectively if written to theSTP API.
The results of our analysis are presented in Table 5. Most of the
extensions, 18 out of 21, can be effectively supported.

All the extensions can be easily programmed using theSTP

API. However, as noted in Section 3,STP does not support
the semantics of non-TCP-friendly protocols. Therefore, current
STP does not support TCP Westwood [61] and TCP for wireless
WANs (WTCP) [51]. DCCP is a new unreliable transport protocol
that lets applications choose from a set of congestion control algo-

Extension Support
Connection migration [54] ✔
SACK [41] ✔
D-SACK [25] ✔
FACK [40] ✔
RFC 1323[31] ✔
TCPSAT [4] ✔
ECN [50] ✔
ECN nonce[17] ✔
RR-TCP [65] ✔
WTCP [51] ❙

The Eifel algorithm [39] ✔
T/TCP [13] ✔
TFRC [24] ✔
DCCP [37] ✔ / ❙

SCTP [57] ✔
RAP [52] ✔

NewReno[20] ✔
TCP Vegas[14] ✔
TCP Westwood[61] ❙

Karn/Partridge algorithm [36] ✔
Congestion manager[8] ✔

Table 5: STP support chart for TCP extensions in categories 1 and 2
from Table 1. WTCP and TCP Westwood are not TCP-friendly; con-
nection migration and SCTP require a special API to securely change
remote endpoint addresses; DCCP may potentially run a congestion
control profile more aggressive than standard TCP; T/TCP, TFRC,
DCCP, and SCTP require changes to socket-based applications.

rithms. TheSTP API will support only TCP-friendly instances of
DCCP.

5.3 Network Safety
The role of theSTPnetwork policer is to enforce that all transports
obey TCP-friendly congestion control. To evaluate the policer, we
used an application that sends as fast as possible using the UDP
Flood transport. Because UDP Flood uses no congestion control,
its throughput represents a worse-case upper bound for bursty traf-
fic. We used Dummynet [53] to emulate wide-area links across a
range of conditions.

Figure 4 shows the average throughput of UDP Flood flows
across a range of RTTs and packet drop rates. The link capacity
was set to 10 Mbps, and each data point represents the average of
about 180 one second samples. We compared each UDP Flood flow
to a standard NewReno TCP flow running in identical conditions.
Each flow was run by itself. The results show thatSTP restricts
UDP Flood’s bandwidth consumption to a level modestly above
TCP. The throughput difference averages 18%, with a maximum
value of 36%. The UDP results exhibited an average coefficient of
variation of 13% at .2% loss and 20% at 1% loss. UDP’s variation
did not depend on RTT, and was smaller than the corresponding
TCP variation.

Next, we evaluated theSTP rate-limiter using real background
traffic in place of artificial drops. We configured three normal
FreeBSD (notSTP) TCP flows to compete for a WAN-like shared
link of 10 Mbps capacity and 50 ms RTT. Figure 5 shows the
throughput attained by a fourth flow, which was either a UDP Flood
flow, anSTP-based TCP flow, or a baseline TCP flow using native
FreeBSD. Each of these experiments was conducted separately.

The performance of the TCP flow inSTP is indistinguishable

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

Round-trip time (ms)

M
b
/
se
c

UDP-flood, .2% loss

TCP, .2% loss
UDP-flood, 1% loss

TCP, 1% loss

Figure 4: UDP Flood versus NewReno TCP: the STP policer restricts
a UDP flow’s throughput to within 36% of TCP’s on a 10 Mbps link.

Source Binary Bytes Source Lines
Element Bytes C Cyclone C Cyclone

Kernel 964,780
TCP 86,670 22,959 30,680 10,388 10,396

TCP SACK 94,829 23,617 33,317 11,200 11,507
UDP FLOOD 10,215 3,629 6,659 1,066 1,054

Table 6: Mobile code size. This table shows the gzip-compressed size of
the Cyclone sources, FreeBSD kernel, and kernel modules for the three
transports in both languages. Also shown are the source line counts for
the C and Cyclone versions of the transports.

from the native FreeBSD flow. This indicates that our policer does
not unduly punish TCP-friendly flows. The UDP Flood application
is limited to approximately its fair bandwidth share over the life-
time of the trial. However, UDP exhibits substantially more short-
term variation in throughput. The coefficient of variation for UDP
is 60%, compared to only 10% for the two TCP trials.

We believe this erratic performance is due to UDP’s interaction
with TCP dynamics. Small timing effects can have a large impact
on TCP performance—for example, pacing has been shown to no-
ticeably degrade TCP throughput [1]. More mature transport pro-
tocols such as TFRC [27] have paid considerable attention to the
averaging intervals for loss-rate information and the inter-packet
spacings to minimize such rate variations. Policing with improved
short-term stability is an important area of future work. Another
area to examine is the apparent discrepancy between UDP Flood’s
average throughput in the two sets of experiments. This difference
may be related to Dummynet’s uniform distribution of loss.

5.4 Code Shipping and Loading
Our current approach treats entire transport protocols as the min-
imal unit of extensibility, and therefore mobility. To evaluate the
practicality of shipping such seemingly large units of code across
networks, we measured the sizes of our Cyclone-basedSTP trans-
port implementations and gathered timings. Source code size is
relevant for systems running a trusted compiler; object code size is
relevant for systems that accept code signed by a trusted provider.
The object code retains external symbol information, which is re-
quired to load it dynamically.

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

M
b
/
se
c

UDP-flood in STP
TCP in STP
TCP in FreeBSD

Figure 5: Throughput with three background TCP flows: The
throughput of a fourth flow competing against three background TCP
flows. All experiments were conducted separately. Each flow ran on a
50 ms RTT link with a 10 Mbps bottleneck.

Table 6 shows that the gzip-compressed source for full TCP
transports are 87–95KB, while the compressed object files are 23–
33KB. In today’s relatively high speed and pervasive networks, and
the background manner in which we do code distribution, these
sizes clearly pose no deployment problem. Indeed, the binaries
are small enough to be practical to deploy over wireless networks
on small devices. For comparison, the corresponding compressed
FreeBSD kernel binary is almost 1 MB in size, meaning that our
largest unit of mobile code, the SACK transport, is less than 3.5%
of the entire kernel. This is more evidence that protocol-level gran-
ularity is reasonable. Numerous protocols can be installed and still
represent only a small portion of the overall system.

We measured how fast our (entirely unoptimized) prototype sys-
tem performs automatic shipping, compiling, and loading of real
protocols. On an 850 MHz Pentium III, over a 2 Mbps link with
100 ms RTT and 0.5% packet loss rate, the end-to-end processing
of an entire NewRenoSTPimplementation in Cyclone source form
takes less than 12 seconds. Upon triggering by an STP-SENDME
option, shipping takes less than a second, compiling takes about 10
seconds, while loading takes less than 0.5 seconds.

5.5 Base Overhead
Each socket requires its ownSTP protocol control block, which
contains 196 bytes of metadata and a scoreboard data structure.
The scoreboard stores 16 bytes of rate control information for each
unacknowledged packet—a relatively modest overhead, given that
full-sized data segments exceed 1400 bytes. Since our current im-
plementation statically allocates a 2048-entry scoreboard, our per-
socket overhead is just over 32 KB, and 100 active sockets would
require less than 3.3 MB of memory.

To assess CPU overhead, we measured the fraction of kernel
CPU consumed by a full-speed flow on a 1000 Mbps link, as
shown in Table 7. We evaluated three versions of TCP: native BSD
NewReno,STPNewReno in C, andSTPNewReno in Cyclone. All
versions achieve roughly equal throughput, 895 Mbps, using 8258
byte Ethernet frames. The Cyclone version requires 24% more
CPU time for the sender and 54% more time for the receiver (the
last column of ratios in the table).

TCP Version FreeBSD STP–C STP–Cyclone
(Ratio to BSD) (Ratio to C, Ratio to BSD)

Gigabit jumbo frames on 1.8 Ghz Xeon
Sender CPU 58.7% 59.2% (1.01) 73.0% (1.23, 1.24)
Receiver CPU 47.5% 61.2% (1.29) 73.0% (1.19, 1.54)

100 Mbps on 850 Mhz P-III
Sender CPU 24.7% 29.0% (1.17) 35.6% (1.23, 1.44)
Receiver CPU 20.1% 21.7% (1.08) 26.5% (1.22, 1.32)

Table 7: Kernel CPU usage and ratio to the CPU usage of faster im-
plementations: for a single flow between a sender and receiver, for
three implementations of TCP. The median of five trials was selected,
with the times only varying by +/- 1%. Times were measured using
FreeBSD’s internal global counters over a 20 second period. The user-
mode CPU usage was negligible in all cases.

TCP Version FreeBSD STP–C STP–Cyclone
cycles cycles (Ratio to BSD) cycles (Ratio to C, Ratio to BSD)

Sender Input 10665 13320 (1.25) 20016 (1.50, 1.88)
Sender Output 3800 4646 (1.22) 6774 (1.46, 1.78)
Rcvr Input 10108 10224 (1.01) 16109 (1.58, 1.59)
Rcvr Output 2096 2103 (1.00) 3907 (1.86, 1.86)

Table 8: Cycles per I/O function and ratios to faster implementations:
for a single 100 Mbps flow between a sender and receiver for three
implementations of NewReno TCP, on an 850 Mhz P-III. The median
of five trials was selected, with the cycle counts only varying by +/- 1%.
Times were measured using the Pentium cycle counter over a 20 second
period. In all cases, the user-mode CPU usage was negligible.

We performed a similar set of CPU measurements over a
100 Mbps link, shown in the lower half of Table 7. As for giga-
bit links, all three flows were able to saturate the link. We found
that the Cyclone sender and receiver take 44% and 32% more CPU
than the FreeBSD TCP implementation. The majority of the over-
head is due to Cyclone processing: 27% for the sender and 24% for
the receiver. Table 8 shows further detail on CPU use, broken down
by input and output functions on both sides of the connection. We
also measured the overhead of the rate-limiter on the sender side
and found it to be modest: only 492 and 650 cycles in the output
and input functions, respectively.

As we see from the numbers, Cyclone costs are significant. A
major portion of the Cyclone costs stem from our functions that
marshal data between the kernel and Cyclone code. Much of this
overhead could be eliminated by inlining C functions in Cyclone
code, but the version of the Cyclone compiler that we used (0.4)
could not successfully inline them. By temporarily turning off Cy-
clone’s range and null pointer checks, we found that they cost only
5% of the total execution time. Overall, Cyclone is a relatively
young compiler, andSTPshould be able to ride future performance
improvements. More detailed examination of the sources of over-
head remains as future work.

5.6 Overall Performance
In this section, we evaluate how the overhead ofSTPaffects the per-
formance of transports under a range of typical wide-area (WAN)
and local-area (LAN) network conditions. We compare the perfor-
mance of two implementations of TCP SACK and TCP NewReno
(TCP): anSTPimplementation and a hard-wired implementation in
the FreeBSD 4.7 kernel.

Link Configuration
WAN 1 WAN 2 WAN 3

M
b/

s

0
2
4
6
8

10
12
14
16
18
20
22
24

WAN Throughput

1.51

3.51

23.8

1.48

3.41

23.8

TCP

Cyclone TCP in STP

Figure 6: WAN performance of NewReno vs. NewReno in STP

Protocol
TCP Cyclone TCP in STP

M
b/

s

0

1

2

SACK Throughput

0.99 0.96

1.31 1.35

without SACK

with SACK

Figure 7: WAN performance of SACK implementations

We measured these transports under three different wide-area
network conditions: a 2 Mbps link with 100 ms round-trip latency
and 0.5% packet loss rate (WAN 1), a 5 Mbps link with 50 ms RTT
and 0.5% packet loss rate (WAN 2), and a 25 Mbps link with 50 ms
RTT and 0% loss rate (WAN 3). The results shown in Figure 6 are
the median of five trial runs. In all three configurations we found
the throughput of theSTP implementation to be roughly the same
as the hard-wired implementation. These results indicate that, at
least on desktop machines with a limited number of simultaneous
connections, the moderate overheads of theSTP rate limiter and
Cyclone will not harm TCP’s throughput in the wide-area Internet.

We performed another set of wide-area experiments to verify that
the performance improvements due to new transport protocols, in
this case SACK, can be realized withSTP. We created an envi-
ronment in which the performance improvements due to SACK are
visible: a 2 Mbps link, 100 ms round-trip time, and 0.5% packet
loss rate with bursts—the router probabilistically drops packets in
bursts of two to four. Figure 7 shows that the SACK inSTPretains
its performance benefits, doing much better than NewReno inSTP,
even slightly exceeding FreeBSD SACK’s performance.

SinceSTP’s computational overhead should be most visible in
high-speed network environments, we measured three different
implementations of NewReno on a 1000 Mbps LAN. We per-
formed these experiments with both large Ethernet frames (8258
byte Jumbo Frames) and regular 1514 byte frames. The results
are shown in Figure 8. With small frames even FreeBSD’s TCP
cannot saturate the link. The overhead of theSTP API, the bulk
of which is the rate limiter, reduces TCP throughput by an addi-

Standard Frames Jumbo Frames

M
b/

s

0

100

200

300

400

500

600

700

800

900

1000

Gb LAN Throughput

860.3
895.3

752.1

894.5

688.5

894.3

TCP

TCP in STP

Cyclone TCP in STP

Figure 8: Gigabit LAN performance of three NewReno implementa-
tions

tional 12%, while Cyclone drops it 8% more, sending data 20%
more slowly than TCP. The use of Jumbo Frames reduces the over-
all load, letting all three TCP implementations achieve essentially
identical throughput, about 895 Mbps. This result demonstrates
that desktop-class machines can achieve high-speed data transfers
in theSTPenvironment.

6. DISCUSSION
Our initial experiences developingSTP and its applications have
helped us to gain an understanding of the strengths of our design
and the difficult issues that remain. We briefly discuss several of
these issues here.

Expressiveness of the STP API:It is important that new, unan-
ticipated transport protocols be compatible with theSTPAPI or our
system will be of limited value. Only time will tell the extent to
which this is true. However, we have been pleasantly surprised by
how many of the extensions we considered could be coded to our
initial API. We believe the reason for this, and a key strength of the
design, is thatSTP minimally constrains the form of information
passed between the communicating endpoints. Many TCP exten-
sions boil down to the need to pass different information between
sender and receiver, e.g., about received packets, or to use the avail-
able information differently, e.g., TCP Vegas. This suggests that
STPhas the potential to support a large class of transport protocols.
There are also some obvious steps that we have not yet taken, such
as a UDP-style socket interface to applications that would support
unreliable transports. Multicast transports may also be possible,
though they seem a large departure from our model unless positive
acknowledgments are used.

Extension Granularity: One issue that remains to be explored
is the granularity of extensions. Our current design provides ex-
tensibility at the granularity of an entire transport implementation.
Although we originally took this route for expedience, in retrospect
it may be the right approach for the much longer term. This coarse-
grained design provides complete flexibility and is practical in most
domains, as the code sizes demonstrate. It clearly has the additional
virtues of simplicity, avoidance of feature interaction, early deploy-
ment, and low barriers to adoption. It does have the downside of
increased disk and memory use, especially over time, as implemen-
tations accumulate. We have considered a number of designs for a
more modular implementation, that would allow incremental and
composable extensions to (at least) TCP. There is much related
work such a design could leverage, e.g., Prolac [38] and the Fox
project [10]. The tradeoffs between these two approaches are sim-

ilar to the tradeoffs in shared library (DLL) deployment. With the
inevitable march of Moore’s law, in recent years the cost that DLLs
bring in complexity has grown to exceed their advantages in disk
and memory savings. This has led vendors such as Microsoft grad-
ually to move away from them. We believe that such may also be
true in ourSTPdomain.

Network Safety: We leveraged recent work on TCP-friendliness
as the basis of our network safety. This has worked well, particu-
larly given the synergy with the ECN Nonce: anSTP sender can
check that a transport protocol is not sending faster than a compli-
ant TCP without trusting any other party, neither the protocol nor
the remoteSTP instance. This seems a strong result. Nonetheless,
we expect further work in this area and consider our rate policer
to be preliminary. That is because the concept of TCP-friendliness
is typically used to compare the performance of specific protocols
with that of TCP in an offline fashion. Ours is the first work that
uses these concepts for online policing of transfer rates at the flow
level as far as we are aware, and adversarial transports are likely to
raise further issues. For example, TFRC, which we adapted, origi-
nally assumed fixed packet sizes and receiver cooperation, both of
which we revisited. Fortunately, TRFC included measures that go
beyond classic TCP-friendliness, including limiting growth to be
no faster than slow-start at all times. Further measures are likely to
be needed. For example, TCP-friendliness governs only long-term
transfer rate and does not by itself limit short term dynamics – the
choice of averaging interval is left as an implementation decision.

Transport Protocols as a Restricted Domain:Our experience
with STP has shown that there are distinct advantages to working
in the restricted domain of TCP-friendly transport protocols, rather
than adding general-purpose extensibility to an OS kernel. The
protocol extensions we considered have access to a fixed, relatively
small set of interfaces. The resources used in this domain, such
as packet buffers and socket endpoints, all have well-defined se-
mantics and can be managed by the system in a straightforward
way. Since protocol extensions are relatively independent of each
other and of the rest of the kernel, they are amenable to a simpler
protection and termination model than are more generic kernel ex-
tensions. Finally, we have a well-defined model for global network
safety, discussed above. In sum, theSTP domain permitted us to
develop a clear model for what it means for a protocol extension
to be well-behaved, and also to enforce conformance to the model
with low runtime overhead.

7. RELATED WORK
STP leverages ideas and techniques from several research areas:
mechanisms for safe code execution, protocol design frameworks,
and extensible systems.

7.1 Safety Mechanisms
STPuses Cyclone [32], a type-safe C-like language. We chose Cy-
clone over other language-based systems like Java and SML be-
cause it provides an attractive combination of type-safety, familiar-
ity, and performance. The use of Cyclone also enabled fine-grained
interactions between the trusted kernel and untrusted transport ex-
tensions. This level of interaction would be difficult to support with
alternative technologies such as hardware-based virtual memory;
software fault isolation (SFI) [60] might be able to achieve such
interaction but to our knowledge that has not been demonstrated in
a general way.

OKE [12] is an extensibility framework for the Linux kernel.
Our work is complementary to theirs as we focus on the restricted
domain of transport protocols where the notion of local and net-

work safety are well defined and much more tractable. We have
adapted some of their local safety techniques for use in our imple-
mentation.

STP’s rate control mechanism is based on TFRC [27], which uses
equation 1 to implement a slowly-responding, yet TCP-friendly
transport protocol. A contribution ofSTP beyond this work is to
enforce TCP-friendly behavior in the presence of adversarial trans-
port layers. We believe this is the first work to propose and imple-
ment a scheme for enforcing network safety.

7.2 Protocol Design Frameworks
The x-kernel [28], Fox project [10], HIPPARCH [15], and Pro-
lac [38] support modular yet high performance protocol implemen-
tation. Our work develops and promotes an API for transport pro-
tocol implementations, but does not decompose them further. We
believe the API to be general and portable to divers operating sys-
tems, but demonstrating that remains to be done. We build on safe
language technology, Cyclone, but in contrast to all the above work,
our emphasis and primary contribution is protecting local and net-
work resources without trusting the code nor the connection peer.

RFC 1263 eloquently makes arguments similar to ours against
restriction to backwards-compatible protocol extensions, advocat-
ing protocol evolution through multiple protocol versions, default-
ing to a common base version. They also argued against from-
scratch development of new protocols. Although they also sug-
gested a “protocol backplane,” our solution radically differs from
what they imagined. Most importantly,STPsupportsuntrusted mo-
bile code and provides a way to distribute and upgrade transport
protocols. Second, RFC 1263 focused on TCP, whereasSTP can
support a wide variety of TCP-friendly unicast transport protocols.

7.3 Extensible Systems
Another body of related work is that of extensible OS services,
such as thePlexusextensible protocol architecture in SPIN [19]
and OKE [12]. Much ofSTP’s approach to host safety relates to this
work. However,STPtackles the relatively new problems of remote
extensibility and guaranteeing TCP-friendly congestion control be-
havior.

Finally, STP is philosophically similar to active networks [58].
Both systems use mobile code to reduce the lag time for introducing
new protocols. The key difference is thatSTPfocuses on transport-
layer extensibility, whereas active networks focuses on the network
layer. We believe many of the security and deployment concerns
that have plagued active network will prove more tractable at the
transport level. However, transport-layer extensibility poses new
challenges: the extensions must be TCP-friendly, and new trans-
ports must integrate seamlessly with unmodified applications.

8. CONCLUSION
Improvements to the transport layer have played a crucial role in
the expansion and evolution of the Internet. Unfortunately, since
many transport extensions require changes to both endpoints, even
simple extensions like SACK require years to reach widespread de-
ployment. In some cases protocol designers have been forced to
accept “dumbed down” extensions that only require upgrades at a
single site and provide less benefit.

We have presentedSTP, a novel system that eliminates deploy-
ment lag for new transport extensions.STP’s approach is to push
untrusted transport extensions onto the network endpoints.STPex-
tensions reside beneath the BSD socket layer, and applications re-
quire no modifications to use extensions. A key challenge is safety
for both host and network resources.STPmeets these challenges by

leveraging recent research in type-safe languages and robust proto-
col design.

STP is a working system, and we have ported several transport
protocols and extensions, including TCP NewReno, SACK, and a
rate-controlled version of UDP. Our evaluation demonstrates that
STP enforces limits on host and network resources, while impos-
ing only modest computational overhead and minimal functionality
constraints on new transports.

Acknowledgements
We thank the anonymous reviewers whose comments helped im-
prove this paper. We are grateful to Mike Hibler, Eric Eide, Rob
Ricci, John Regehr, Kirk Webb, and Ratul Mahajan for their com-
ments and help in evaluation and editing. This work was supported
in part by DARPA grants F30602-99-1-0503, F33615-00-C-1696,
and F30602-00-2-0565, NSF grant ANI-0082493, and a Microsoft
Endowment Fellowship.

9. REFERENCES
[1] A. Aggarwal, S. Savage, and T. Anderson. Understanding the

Performance of TCP Pacing. InProc. of IEEE INFOCOM,
pages 1157–1165, Mar. 2000.

[2] M. Allman. TCP Congestion Control with Appropriate Byte
Counting. RFC 3465, IETF, Feb. 2002.

[3] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP’s
Loss Recovery Using Limited Transmit. RFC 3042, IETF,
Jan. 2001.

[4] M. Allman, D. Glover, and L. Sanchez. Enhancing TCP Over
Satellite Channels using standard Mechanisms. RFC 2488,
IETF, Jan. 1999.

[5] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control. RFC 2581, IETF, Apr. 1999.

[6] D. Andersen, D. Bansal, D. Curtis, S. Seshan, and
H. Balakrishnan. System Support for Bandwidth
Management and Content Adaptation in Internet
Applications. InProc. of the Fourth Symposium on
Operating Systems Design and Implementation, pages
213–226, Oct. 2000.

[7] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS:
Isolation, Resource Management, and Sharing in Java. In
Proc. of the Fourth Symposium on Operating Systems Design
and Implementation, pages 333–346, Oct. 2000.

[8] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integrated
Congestion Management Architecture for Internet Hosts. In
Proc. of ACM SIGCOMM, pages 175–187, Sept. 1999.

[9] D. J. Bernstein and E. Schenk. TCP Syn Cookies. 1996,
2002; http://cr.yp.to/syncookies.html.

[10] E. Biagioni. A Structured TCP in Standard ML. InProc. of
ACM SIGCOMM, pages 36–45, Aug. 1994.

[11] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network
Objects.Software–Practice and Experience, 25(S4):87–130,
Dec. 1995. Also available as Digital Systems Research
Center Research Report 115.

[12] H. Bos and B. Samwel. Safe Kernel Programming in the
OKE. In Proc. of the Fifth IEEE Conference on Open
Architectures and Network Programming, June 2002.

[13] R. Braden. T/TCP – TCP Extensions for Transactions
Functional Specification. RFC 1644, IETF, July 1994.

[14] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End
Congestion Avoidance on a Global Internet.IEEE Journal on
Selected Areas in Communication, 13(8):1465–1480, Oct.

1995.
[15] C. Castelluccia, W. Dabbous, and S. O’Malley. Generating

Efficient Protocol Code from an Abstract Specification. In
Proc. of ACM SIGCOMM, pages 60–71, Aug. 1996.

[16] D. Dean, E. W. Felten, and D. S. Wallach. Java security:
from HotJava to Netscape and beyond. InProc. of the IEEE
Symposium on Security and Privacy, pages 190–200, May
1996.

[17] D. Ely, N. Spring, D. Wetherall, S. Savage, and T. Anderson.
Robust Congestion Signaling. InProc. of the 9th IEEE
International Conference on Network Protocols, pages
332–341, Nov. 2001.

[18] K. Fall and S. Floyd. Simulation-based Comparisons of
Tahoe, Reno and SACK TCP.ACM Computer
Communication Review, 26(3):5–21, July 1996.

[19] M. E. Fiuczynski and B. N. Bershad. An Extensible Protocol
Architecture for Application-Specific Networking. InProc.
of the USENIX Annual Technical Conference, pages 55–64,
Jan. 1996.

[20] S. Floyd. The NewReno Modification to TCP’s Fast
Recovery Algorithm. RFC 2582, IETF, Apr. 1999.

[21] S. Floyd. Congestion Control Principles. RFC 2914, IETF,
Sept. 2000.

[22] S. Floyd. Questions about TCP deployment, 2000.
http://www.icir.org/floyd/questions.html.

[23] S. Floyd. HighSpeed TCP for Large Congestion Windows,
July 2003. IETF, Internet Draft.

[24] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based Congestion Control for Unicast
Applications. InProc. of ACM SIGCOMM, pages 43–56,
Aug. 2000.

[25] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An
Extension to the Selective Acknowledgement (SACK)
Option for TCP. RFC 2883, IETF, July 2000.

[26] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based Memory Management in Cyclone.
In ACM Conference on Programming Language Design and
Implementation, June 2002.

[27] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP
Friendly Rate Control (TFRC): Protocol Specification. RFC
3448, IETF, Jan. 2003.

[28] N. C. Hutchinson and L. L. Peterson. Thex-kernel: An
Architecture for Implementing Network Protocols.IEEE
Transactions on Software Engineering, 17(1):64–76, Jan.
1991.

[29] V. Jacobson. Congestion Avoidance and Control. InProc. of
ACM SIGCOMM, pages 314–329, Aug. 1988.

[30] V. Jacobson. 4BSD TCP Header Prediction.ACM Computer
Communication Review, 20(2):13–15, Apr. 1990.

[31] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance. RFC 1323, IETF, May 1992.

[32] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Chene, and
Y. Wang. Cyclone: A Safe Dialect of C. InProc. of USENIX
Annual Technical Conference, June 2002.

[33] C. Jin, D. X. Wei, and S. H. Low. FAST TCP for High-Speed
Long-Distance Networks, June 2003. IETF, Internet Draft.

[34] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K.
Gifford, and M. F. Kaashoek. Rover: A Toolkit for Mobile
Information Access. InProc. of the 15th ACM Symposium on
Operating Systems Principles, pages 156–171, Dec. 1995.

[35] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained

Mobility in the Emerald System.ACM Transactions on
Computer Systems, 6(1):109–133, Feb. 1988.

[36] P. Karn and C. Partridge. Improving Round-Trip Time
Estimates in Reliable Transport Protocols.ACM Transactions
on Computer Systems, 9(4):364–373, Nov. 1991.

[37] E. Kohler, M. Handley, S. Floyd, and J. Padhye. Datagram
Congestion Control Protocol (DCCP), Oct. 2002.
http://www.icir.org/kohler/dccp/.

[38] E. Kohler, F. Kaashoek, and D. Montgomery. A Readable
TCP in the Prolac Protocol Language. InProc. of ACM
SIGCOMM, pages 3–13, Sept. 1999.

[39] R. Ludwig and R. H. Katz. The Eifel Algorithm: Making
TCP Robust Against Spurious Retransmissions.ACM
Computer Communication Review, 30(1):30–36, Jan. 2000.

[40] M. Mathis and J. Mahdavi. Forward Acknowledgement:
Refining TCP Congestion Control. InProc. of ACM
SIGCOMM, pages 281–291, Aug. 1996.

[41] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgement Options. RFC 2018, IETF, Oct.
1996.

[42] S. O’Malley and L. Peterson. TCP Extensions Considered
Harmful. RFC 1263, IETF, Oct. 1991.

[43] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Throughput: A Simple Model and its Empirical
Validation. InProc. of ACM SIGCOMM, pages 303–314,
Sept. 1998.

[44] J. Padhye and S. Floyd. On Inferring TCP Behavior. InProc.
of ACM SIGCOMM, pages 287–298, Aug. 2001.

[45] P. Patel and J. Lepreau. Hybrid Resource Control for Active
Extensions. InProc. of the Sixth IEEE Conference on Open
Architectures and Network Programming, pages 23–31, Apr.
2003.

[46] P. Patel, D. Wetherall, J. Lepreau, and A. Whitaker. TCP
Meets Mobile Code. InProc. of the Ninth Workshop on Hot
Topics in Operating Systems. IEEE Computer Society, May
2003.

[47] V. Paxson. End-to-end Internet Packet Dynamics.IEEE/ACM
Transactions on Networking, 7(3):277–292, June 1999.

[48] Pittsburgh Supercomputing Center. The TCP-Friendly
Website, 2003.
http://www.psc.edu/networking/tcpfriendly.html.

[49] J. Postel. Transmission Control Protocol. RFC 793, IETF,
Sept. 1981.

[50] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168,
IETF, Sept. 2001.

[51] K. Ratnam and I. Matta. WTCP: An Efficient Transmission
Control Protocol for Networks with Wireless Links. InProc.
of the Third IEEE Symposium on Computers and
Communications, pages 74–78, June 1998.

[52] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-End
Rate-Based Congestion Control Mechanism for Realtime
Streams in the Internet. InProc. of IEEE INFOCOM, pages
1337–1345, Mar. 1999.

[53] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols.ACM Computer Communication Review,
27(1), Jan. 1997.

[54] A. C. Snoeren and H. Balakrishnan. An End-to-End
Approach to Host Mobility. InProc. of the Sixth Annual
International Conference on Mobile Computing and
Networking, pages 155–166, Aug. 2000.

[55] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms. RFC 2001,
IETF, Jan. 1997.

[56] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol. RFC
2960, IETF, Oct. 2000.

[57] J. Stone, R. Stewart, and D. Otis. Stream Control
Transmission Protocol (SCTP) Checksum Change. RFC
3309, IETF, Sept. 2002.

[58] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A Survey of Active Network
Research.IEEE Communications Magazine, 35(1):80–86,
Jan. 1997.

[59] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A
Mechanism for Background Transfers. InProc. of the Fifth
Symposium on Operating Systems Design and
Implementation, Dec. 2002.

[60] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient Software-Based Fault Isolation. InProc. of the 14th
ACM Symposium on Operating Systems Principles, pages
203–216, Dec. 1993.

[61] R. Wang, M. Valla, M. Y. Sanadidi, and M. Gerla. Adaptive
Bandwidth Share Estimation in TCP Westwood. InProc. of
IEEE Globecom, Nov. 2002.

[62] D. Wetherall. Active network vision and reality: lessons
from a capsule-based system. InProc. of the 17th ACM
Symposium on Operating System Principles, pages 64–79,
Dec. 1999.

[63] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integrated Experimental Environment for Distributed
Systems and Networks. InProc. of the Fifth Symposium on
Operating Systems Design and Implementation, pages
255–270, Dec. 2002.

[64] J. Widmer. Equation-based Congestion Control, 2000.
Diploma Thesis. University of Mannheim.

[65] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: A
Reordering-Robust TCP with DSACK. TR 006, International
Computer Science Institute, July 2002.

