
SIGCOMM 2003 poster abstract

Scaling Network Emulation with Multiplexed Virtual Resources
Shashi Guruprasad, Leigh Stoller, Mike Hibler, Jay Lepreau

School of Computing, University of Utah
www.flux.utah.edu www.emulab.net

To avoid experimental artifacts, the original Emulab
network emulation system used conservative resource al-
location. It mapped virtual network nodes and links one-
to-one onto dedicated PCs and switched Ethernet links.
We have three motivations for relaxing this constraint, al-
lowing controlled multiplexing of virtual onto physical re-
sources. First, some applications such as p2p systems re-
quire large topologies for evaluation, yet are not resource-
hungry. Second, much research and educational use does
not need perfect performance fidelity, or does not need it
on every run. Third, multiplexing makes small-scale em-
ulation clusters much more useful.

Our first goal is to design mechanisms for virtual nodes
(“vnodes”), links (“vlinks”) and LANs that make them as
similar to their real-life counterparts as possible, while ef-
ficiently using physical resources. Classic VMs such as
VMware are the most similar to real machines, but are rel-
atively inefficient. Unix processes provide a lightweight
vnode, but are least like a PC and would require appli-
cation code to be modified. Other options include User-
mode Linux, Xen VM’s “paravirtualization,” and our de-
sign, which virtualizes a host’s process, network and
filesystem (FS) namespaces without compromising per-
formance. We achieve our second goal, transparency:
in the new Emulab, vnodes are almost indistinguishable
from PCs in terms of specification, access, and API. Ex-
perimenters are able to login to these vnodes and run un-
modified programs.

This system provides a new point on the spectrum be-
tween simulation, in which all resources are virtual, and
emulation, in which all resources are physical. In sup-
porting these multiplexed resources, we take advantage
of Emulab’s strengths, especially resource mapping, node
management, and node configuration. Relieving the ex-
perimenter of these tasks is essential in making large ex-
periments feasible. Integrating automation and virtualized
nodes/links into a single system in which the nodes are
completely programmable, makes Emulab, to our knowl-
edge, the most complete system extant for controlled net-
work experimentation.

The key issues, some still open, are virtual nodes
and links/LANs, routing, performance isolation, mapping,
and scaling. We outline some aspects of these below.

Virtual nodes: BSD jails provide our starting point for
virtualizing nodes, restricting a process and all its descen-
dents to a unique slice of the FS, network, and process

Sponsors: NSF ANI-0082493, ANI-0205702, Cisco, DARPA
F30602-99-1-0503, F33615-00-C-1696. Email: testbed@flux.utah.edu.

namespaces. However, they do not provide everything
necessary for network experimentation. We enhanced the
network aspects of jails in several ways; to a large extent,
we could have instead merged Zec’s cloneable network
stack work. For example, packet forwarding is best per-
formed in the kernel on behalf of vnodes, for performance
reasons. We therefore added independent routing tables to
the kernel, derived from Scandariato’s VPN work. During
packet forwarding, we preserve the context of a vlink on
which a packet arrived so that route lookups are directed
to the correct table.

In order to constrain disk usage, we use per-vnode vir-
tual disks (“vdisks”) rather than different subtrees of the
same FS. We implement this by using the BSDvn disk
driver that lets a regular fixed-size file be exposed via the
disk interface. There is one vdisk per vnode that contains
files specific to that vnode and forms the root of its filesys-
tem tree. Other filesystems are shared and are loopback-
mounted into the jail FS namespace.

Virtual links and LANs: Multiplexing vlinks on phys-
ical links (“plinks”) requires virtual network interfaces.
All existing alternatives have drawbacks. IP-in-IP tunnel-
ing is point-to-point and cannot emulate LANs. 802.1Q
VLAN trunking is limited to 4096 VLANs which con-
strains the scale and number of simultaneous experiments.
Multiple pseudo-MAC addresses per interface is another
approach, but requires interfaces to be in promiscuous
mode and might overload MAC tables in switches, caus-
ing them to act as hubs. Instead, we developed avirtual
ethernet devicewhich is an unusual hybrid of a virtual de-
vice, an encapsulating device, and a bridging device. It
allows us to create large numbers of ethernet interfaces
(virtualization), multiplex them on physical interfaces or
tie them together in a loopback fashion (bridging), and
have them communicate transparently through our switch
fabric (encapsulation). We support different speeds and
latencies using the Dummynet traffic shaper.

Mapping: Vnodes must be partitioned across physical
nodes (“pnodes”) in order to realize the topology; Emulab
performs this mapping automatically using combinatorial
optimization. For non-trivial topologies, it is infeasible to
do this partitioning manually, and simplistic partitioning
can lead to network artifacts or poor use of resources. Em-
ulab’s mapping algorithm allocates link bandwidth con-
servatively, ensuring that plinks are not overused, and also
attempts to use resources efficiently.

Current issues: Performance isolation or monitoring
is required if emulation accuracy is a goal. We con-



trol network bandwidth via Dummynet and disk usage
by vdisks. Currently, the experimenter controls the al-
location of node CPU and memory by specifying an ad
hoc “co-location factor.” Memory has been more limit-
ing than CPU; our observed limit is about 20 vnodes on
a 512MB PIII. Themappingalgorithm is a challenge, as
it can find poor solutions for large virtualized topologies,
and exhibits scaling problems.Scalingis a pervasive chal-
lenge, as the order of magnitude size increase from vn-
odes stresses many parts of the Emulab system. Besides
improving centralized services, we will attack this prob-
lem by relaxing the transparency, to Emulab management
software, of vnodes. Visibility into the underlying pnode
allows many forms of optimization and tuning. Today,
our largest automatically-configured experiment has 520
virtual nodes, which mapped to 44 PCs. It took 28.3 min-
utes to instantiate; the mapping program consumed 48%
of that, on a 1Ghz PIII.

2


