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ABSTRACT
Design patterns are a valuable mechanism for emphasizing struc-
ture, capturing design expertise, and facilitating restructuring of
software systems. Patterns are typically applied in the context of
an object-oriented language and are implemented so that the pat-
tern participants correspond to object instances that are created and
connected at run-time. This paper describes a complementary re-
alization of design patterns, in which the pattern participants are
statically instantiated and connected components.

Our approach separates the static parts of the software design
from the dynamic parts of the system behavior. This separation
makes the software design more amenable to analysis, enabling
more effective and domain specific detection of system design er-
rors, prediction of run-time behavior, and more effective optimiza-
tion. This technique is applicable to imperative, functional, and
object-oriented languages: we have extended C, Scheme, and Java
with our component model. In this paper, we illustrate this ap-
proach in the context of the OSKit, a collection of operating system
components written in C.

1. INTRODUCTION
Design patterns allow people to understand computer software in
terms of stylized relationships between program entities: a pat-
tern identifies the roles of the participating entities, the responsi-
bilities of each participant, and the reasons for the connections be-
tween them. Patterns are valuable during the initial development
of a system because they help software architects outline and plan
the static and dynamic structure of software before the structure is
implemented. Documented patterns are useful for subsequent sys-
tem maintenance and evolution because they help maintainers un-
derstand the software implementation in terms of well-understood,
abstract structuring concepts and goals.

The conventional approach to realizing patterns [12] primarily
uses classes and objects to implement participants and uses inher-
itance and object references to implement relationships between
participants. The parts of patterns defined using classes and in-
heritance are static and therefore easier to understand and analyze.
However, they are less flexible because their role in patterns and in
the whole system is hardwired into their implementation. In con-
trast, parts of patterns that are defined using objects and references
are more dynamic, and therefore more flexible but harder to under-
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stand and analyze.
This paper describes a complementary approach to realizing pat-

terns based on separating the static parts of a pattern from the dy-
namic parts. The static participants and relationships in a pattern
are realized by component instances and component interconnec-
tions that are set at compile- or link-time, while the dynamic partic-
ipants continue to be realized by objects and object references. Ex-
pressing static pattern relationships as component interconnections
provides more flexibility than the conventional approach while re-
taining much of the ease of understanding and analysis.

To illustrate the tradeoffs between these approaches, consider
writing a network stack consisting of aTCP layer, anIP layer, an
Ethernet layer, etc. The usual implementation strategy, used in
mainstream operating systems, is for the implementation of each
layer to directly refer to the layer above and below it except in cases
where the demand for diversity is well-understood (e.g., to support
different network interface cards). This approach commits to a par-
ticular network stack when the layers are being written, making it
hard to change decisions later (e.g., adding low-level packet filter-
ing in order to drop denial-of-service packets as early as possible).

An alternative implementation strategy is to implement the lay-
ers using theDecorator1 pattern with objects: each layer is imple-
mented by an object that invokes methods in objects directly above
and below it. The objects implementing each layer provide exactly
the same interface (e.g., methods for making and breaking connec-
tions, and for sending and receiving packets on connections) allow-
ing the designer to build a large variety of network stacks. In fact,
network stacks can be reconfigured at run-time, but that is more
flexibility than most users require.

Our design and implementation approach offers a middle ground.
Having identified the decorator pattern and having decided that the
network stack may need to be reconfigured, but not at run-time,
each decorator would be implemented as a component that imports
an interface for sending and receiving packets and exports the same
interface. The choice of network stack is then statically expressed
by connecting different sets of components together. The basis of
our approach is to permit system configuration and realization of
design patterns atcompile-and link-time (i.e., before software is
deployed) rather than atinit- andrun-time(i.e., after it is deployed).

By matching the expected need for reconfiguration against the
degree of abstraction, we achieve the following. (1) We are able to
build a range of different network stacks meeting both our current
and anticipated needs. (2) Network stacks are configured using
a separate language that hides the implementation details of each
component. This makes it possible for the system to be reconfig-

1Unless otherwise noted, the names of specific patterns refer to
those presented in Gamma et al.’sDesign Patternscatalog [12].
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ured at the component level. (3) We can statically detect config-
uration errors such as connecting a layer that expectsIP packets
to a layer that provides Ethernet packets. Such mistakes are most
commonly made by non-domain experts but even domain experts
can lose track of all the different architectural invariants in a com-
plex system if the system is reconfigured enough times. (For ex-
ample, Linux kernel developers plan to use the CML2 constraint
language [22] to prevent inconsistent kernel configurations from
being built.) (4) The system is sufficiently constrained that it can
be optimized effectively. Cornell’s Ensemble project [16] shows
how far one can go when statically optimizing stacks of network
layers: they were able to double the performance of a 4-layer net-
work stack.

In the network stack example, the benefits come at some cost in
flexibility: we have eliminated the ability to reconfigure the net-
work stack at run-time. Our design strategy helps the programmer
identify such trade-offs and consider how they affect the implemen-
tation.

Our contributions are as follows:
• We describe an approach to realizing patterns that clearly sep-

arates the static parts of the design from the dynamic parts, making
the system more amenable to optimization and to analyses that de-
tect errors or predict run-time behavior (Section 3).
• We define a systematic method for applying our approach to

existing patterns (Section 3.1).
• We show that our approach is applicable to three major pro-

gramming language paradigms that support the unit component
model: imperative languages, exemplified by C [23]; functional
languages, exemplified by Scheme [10]; and object-oriented lan-
guages, exemplified by Java [18] (Sections2 and3). We demon-
strate our approach with two examples from the OSKit [11], a col-
lection of operating system components written in C (Sections3.2
and3.3).
• We evaluate the approach by applying it to each pattern de-

scribed by Gamma et al. [12] (Section 3.4) and by analyzing its
costs and benefits (Section 4).

In summary, although the benefits of separating system architec-
ture from component implementations are well-known, the distinc-
tive features of this paper are: we show a general approach that can
be applied to many patterns and in multiple language paradigms;
we consider the static-dynamic decision in the context of design
patterns; and we thoroughly evaluate when to apply and when not
to apply our approach.

2. THE UNIT MODEL
Our approach to realizing patterns is most readily expressed in
terms ofunits [9, 10], a component definition and linking model
in the spirit of the Modula-3 [13] and Mesa [20] module systems.
The unit model emphasizes the notion of components as reusable
architectural elements with well-defined interfaces and dependen-
cies. It fits well with the definitions of “component” in the litera-
ture [24, p. 34] but differs from other component models that em-
phasize concerns such as separate compilation and dynamic com-
ponent assembly. In the unit model, components are compile- or
link-time parts of an assembly: i.e., software modules, not run-time
objects.

Three separate implementations of the unit model exist:Knit [23]
for C, Jiazzi [18] for Java, andMzScheme[10] for Scheme. The
implementations differ in details both because of technical differ-
ences in the base languages and because of stylistic differences in
the way the base languages are used. For the purposes of this paper,
we focus on the common features of the three implementations.
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Figure 1: Atomic and compound units

2.1 Atomic and Compound Units
An atomic unitcan be thought of as a module with three parts: (1) a
set of imports, which name the dependencies of the unit: i.e., the
definitions that the unit requires; (2) a set ofexports, which name
the definitions that are provided by the unit and made available to
other units; and (3) an implementation, which must include a def-
inition for each export, and which may use any of the imports as
required.

Each import and export is aport with a well-definedinterface.
An interface has a name and serves to group related terms, much
like an interface or abstract class in anOOP language. The three
implementations of the unit model make different choices about
what makes up an interface. In Knit, an interface refers to sets of
related C types, function prototypes, and variable declarations. In
Jiazzi, port interfaces are like Java packages: they describe partial
class hierarchies and the public methods and fields of classes. In
MzScheme, because Scheme uses run-time typing, interfaces are
simply lists of function names.

Definitions that are not exported are inaccessible from outside
the unit. The implementation of a unit is usually stored in a file
separate from the unit definition, allowing code that was not in-
tended for use as a unit to be packaged up as a unit.

Although all implementations of the unit model use a textual lan-
guage to define units, in this paper we use a graphical notation to
avoid inessential details and to emphasize the underlying structure
of our systems. The smaller boxes inFigure 1represent atomic
units. The export interfaces are listed at the top of a unit, the im-
port interfaces are listed at the bottom, and the name of the unit
is shown in the center. Consider the topmost unit, calledDraw. It
has the ability to load, save, and render images, encapsulating the
main parts of a simple image viewing program.Draw exports (i.e.,
implements) one port with interfaceI_Main and imports two ports:
one with interfaceI_Widget and a second with interfaceI_File.

Units are instantiated and interconnected incompound units. Like
atomic units, compound units have a set of imports and a set of ex-
ports that define connection points to other units. The implemen-
tation of a compound unit consists of a set of unit instances and
explicit interconnections between ports on these instances and the
imports and exports of the compound unit. The result of composing
units is a new unit, which is available for further linking.

Figure 1as a whole represents a compound unit composed of
three other units. In this figure, an instance ofDraw is composed
with an instance ofWin32_Widgets and an instance ofWin32_
Files. Within a compound unit, connections are definedexplicitly:
this is necessary when there is more that one way to connect the
units. Although not shown in this example, a system designer may
freely create multiple unit instances from a single unit definition
(e.g., two instances ofDraw).
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2.2 Exploiting Static Configuration
One of the key properties of programming with the unit component
model is that component instantiation and interconnection are per-
formed when the program is built instead of when the program is
executed. This allows implementations of the unit model to make
use of additional resources that may be available at compile- and
link-time: powerful analysis and optimization techniques; in the
case of embedded systems, orders of magnitude more cycles and
memory with which to perform analyses; test cases, test scaffold-
ing, and debugging builds; and finally, freedom from real-world
constraints such as real-time deadlines. All three unit implementa-
tions check the component composition for type errors. Knit, how-
ever, implements additional features that exploit the static nature of
unit compositions.

Constraint checking. Even if every link in a unit composition is
“correct” according to local constraints such as type safety, the sys-
tem as a wholemay be incorrect because it does not meet global
constraints. For example, [23] describes a design constraint used
by operating system designers: “bottom-half code,” executed by
interrupt handlers, must not invoke “top-half code” that executes in
the context of a particular process. The reason is that while top-half
code typically blocks when a resource is temporarily unavailable,
storing its state in the process’s stack, an interrupt handler lacks a
process context and therefore must not block. The problem with
enforcing this constraint is that units containing bottom-half code
(e.g., device drivers) may invoke code from other units that, transi-
tively, invokes a top-half unit. Keeping track of such conditions is
difficult, especially when working with low-level systems code that
is highly interconnected and not strictly layered. To address this
problem, Knit unit definitions can include constraint annotations
that describe the properties of imports and exports. Constraints can
be declared explicitly (e.g., that imported functions are invoked by
bottom-half code) or by description (e.g., that the import properties
are set by the exports). At system build-time, Knit propagates unit
properties in order to ensure that all constraints are satisfied.

Cross-component inlining. When source is available, Knit in-
lines function definitions across component boundaries with the
help of the C compiler. By eliminating most of the overhead as-
sociated with componentization, Knit reduces the need to choose
between a clean design and a fast implementation.

2.3 Using Units Without Language Support
The unit model makes it possible for a software architect to de-
sign a system from components, describe local and global relation-
ships between components, and reuse components both within and
across system designs. These are the features that make it useful
to develop and apply units for expressing design patterns. In par-
ticular, our unit-based approach to realizing patterns relies on these
features of the unit model:
• Programming to interfaces. The only connections between

components are through well-typed interfaces.
• Configurable intercomponent connections.Unit imports de-

scribe the “shapes” but not the providers of required services. A
system architect links unit instances as part of a system definition,
not as part of a component’s base (e.g., C or Java) implementation.
• Static component instantiation and interconnection.Units

are instantiated and linked when the system is built, not when the
system is run.
• Multiple instantiation. A single unit definition can be used to

create multiple unit instances, each of which has a unique identity
at system build-time. Each instance can be linked differently.

It is possible to make use of features of the unit component
model without support from languages such as Knit, Jiazzi, and

MzScheme. However, without support, some benefits of the model
may be lost. For instance, a C++ programmer might use template
classes to describe units: this can provide optimization benefits but
does not help the system designer check constraints of the sort de-
scribed previously. A C programmer might use the C preprocessor
to achieve similar results. In sum, although unit tools can provide
important benefits, people who cannot or decide not to use our unit
description languages can nevertheless take advantage of our gen-
eral approach to realizing design patterns.

3. EXPRESSING PATTERNS WITH UNITS
The essence of a design pattern is the set of participants in the pat-
tern and the relationships that exist between those participants. As
outlined in the introduction, the conventional approaches to de-
scribing and realizing patterns are based on the idioms of object-
oriented programming. At design-time, the participants in the pat-
tern correspond to classes. At run-time, the pattern is realized by
object instances that are created, initialized, and connected by ex-
plicit statements in the program code. This style of implementation
allows for a great deal of run-time flexibility, but in some cases it
can disguise information about the static properties of a system—
information that can be used to check, reason about, or optimize
the overall system.

The key idea of this paper is that it is both possible and fruitful
to separate static knowledge about a pattern application from dy-
namic knowledge. In particular, we believe that static information
should be “lifted out” of the ordinary source code of the system,
and should be represented at the level of unit definitions and con-
nections. The unit model allows a system architect to describe the
static properties of a system in a clear manner, and to separate “con-
figuration concerns” from the base implementations of the system’s
parts.

Consider, for example, an application of theDecoratorpattern:
this pattern allows a designer to add additional responsibilities to
an entity (e.g., component or object) in a way that is transparent to
the clients of that entity. One might applyDecorator to protect a
non-thread-safe singleton component with a mutual exclusion dec-
orator (which acquires a lock on entering a component and releases
the lock on exit) when using the component in a multi-threaded en-
vironment. In an object-oriented setting this pattern would often
be realized by defining three classes: one abstract class to define
the component interface, and two derived classes corresponding to
the concrete component and decorator. At init-time, the program
would create instances of each concrete class and establish the ap-
propriate object connections. While workable, this implementation
of the pattern can disguise valuable information about the static
properties of this system. First, it hides the fact that there will
be only one instance each of the component and decorator. Sec-
ond and more important, it hides the design constraint that the base
component must be accessed only through the decorator: because
the realization of the pattern doesn’t enforce the constraint, future
changes to the program may violate the rule.

To overcome these problems, we would realize theDecorator
pattern at the level of units, as illustrated inFigure 2(a). We create
one unit definition to encapsulate the base component definition; by
instantiating this definition exactly once, we make it clear that there
will be only one instance in the final program. Further, we anno-
tate the unit definition with the constraint that the implementation
is non-thread-safe. We then create a separate unit definition to en-
capsulate our decorator, and include in the definition a specification
that it imports a non-thread-safe interface and exports a thread-safe
one. The resulting structure inFigure 2(a)makes it clear that there
is one instance of each participant and that there is no access to
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Figure 2: Units realizing Decoratorpatterns

the base component except through the decorator. Units make the
static structure of the system clear, and unit compositions can be
checked by tools to enforce design constraints. Of course, unit def-
initions are reusable between systems (and within a single system):
we can include the decorator instances only as needed. If we desire
greater reuse, we can apply theStrategypattern to our decorator to
separate its wrapping and locking aspects as shown inFigure 2(b).
This structure provides greater flexibility while still allowing for
cross-component reasoning and optimization when the strategy is
statically known.

In sum, our approach to realizing patterns promotes the benefits
of static knowledge within patterns by moving such information to
the level of units. The unit model allows us to describe and separate
the static and dynamic properties of a particular pattern application,
thus making it possible for us to exploit the features described in
Section 2.2. In the rest of this section we define a method for ap-
plying our approach, demonstrate the method in detail on a small
example, demonstrate the effect of our method on a large exam-
ple, and consider how the method applies to each of the patterns in
Gamma et al.’sDesign Patternscatalog [12].

3.1 A Method for Expressing Patterns with
Units

In realizing a pattern via units, the software architect’s task is to
identify the parts of the pattern that correspond to static (compile-
time or link-time) knowledge about the pattern and its participants,
to “lift” that knowledge out of the implementation code, and then
to translate that knowledge into parts of unit definitions and con-
nections. This process is necessarily specific to individual uses
of a pattern: each time a pattern is applied, the situation dictates
whether certain parts of the pattern correspond to static or dynamic
knowledge. In our experience, however, we have found that many
patterns are commonly applied in situations that provide significant
amounts of static information, and which therefore allow system
architects to exploit the features of the unit model.

We have found the following general procedure to be useful in
analyzing the application of a pattern and translating that pattern
into unit definitions, instances, and linkages. Because patterns are
ordinarily described in terms of object-oriented structures (classes,
interfaces, and inheritance), we describe our method as a translation
from object-oriented concepts to parts of the unit model.

1. Identify the abstract classes/interfaces.Many pattern de-
scriptions contain one or more participating abstract classes that
serve to define a common interface for a set of derived classes. The
abstract classes therefore serve the same purpose as interfaces in
the unit model; the three implementations of the model all allow
related operations (and types, if needed) to be grouped together
in named interfaces. The exact translation from abstract class to
unit interface depends on whether or not the derived participants
are “static participants” in the application of the pattern at hand, as
described next.

2. Identify the “static” and “dynamic” participants within
the pattern. Within the context of a pattern, it is often the case that
some pattern participants will be realized by a small and statically
known number of instances. For example, in uses of theAbstract
Factory pattern (seeSection 3.2), there will often be exactly one
Concrete Factoryinstance in the final system (within the scope of
the pattern). The number of instances does not need to be exactly
one: what is important is that the number of instances, their con-
crete classes, and the inter-instance references are all known stati-
cally.

We refer to these kinds of participants asstatic participants, and
in the steps below, we realize each of these participants as an indi-
vidual unit instance—essentially, realizing the participant as a part
our static architecture, rather than as a run-time object.

If a pattern participant is not static we refer to it as adynamic
participant. In this case, we will translate the participant as a unit
that will encapsulate the participant class and will be able to pro-
duce instances at run-time.

3. Define the interfaces for static participants.Following the
class hierarchy of the pattern, the software architect defines the in-
terfaces (definitions in a unit specification language) to group the
operations that will be provided by the static participants. The ar-
chitect may choose to create one interface per class (i.e., one in-
terface for the new operations provided at each level of the class
inheritance hierarchy), or may group the operations at a finer gran-
ularity.

Because each instance of a static participant will be implemented
by a unique unit instance in the realization of the pattern, the iden-
tity of each instance is part of the static system architecture and
need not be represented by an object at run-time. Therefore, in the
translation from class to unit interface, the methods that constitute
the interface to a static participant can be translated as ordinary
functions (or as class static methods, in the case of Jiazzi), and
data members can be translated as ordinary variables (static mem-
bers). Further, any method arguments that represent references to
static participants can be dropped from the translated function sig-
nature: these arguments will be replaced by imports to the unit
instances (i.e., explicit, unit-level connections between the static
participants).

4. Define the interfaces for dynamic participants.Following
the class hierarchy of the pattern, the designer now creates the in-
terfaces for the dynamic participants. As described for the previous
step, the designer may choose to create one or several interface def-
initions per class.

Unlike the static case, each instance of a dynamic participant
must be represented by a run-time object (or other entity in a non-
OOPlanguage). This means that in translating the participant class
to unit interfaces, the designer must include the definition of the
type of the run-time objects, as the implementation language re-
quires. With Jiazzi, this is straightforward: Jiazzi unit interfaces
contain Java class definitions. In Knit, the interface would include
a C type name along with a set of functions, each of which takes
an instance of that type as an argument (i.e., the “self” parameter).
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MzScheme is the simplest: because Scheme uses run-time typing,
the unit interface does not need to include the type of the dynamic
pattern participants at all.2

Although the interfaces for a dynamic participant must include
the class of the participant objects, the unit model allows the de-
signer to avoid hard-coding class inheritance knowledge into the
interfaces. By writing our units so that they import the superclasses
of each exported class, we can implement our dynamic participant
classes in a manner corresponding tomixins[7,18]. In other words,
we can represent the static inheritance relationships between pat-
tern participants not in the definitions of our units or in the unit
interfaces, but in the connections between units.

5. Create a unit definition for each concrete (static or dy-
namic) participant. With the interfaces now defined, the designer
can write the definitions of the units for each participant. The unit
definition for a dynamic participant encapsulates theclassof the
dynamic instances; normally, in the context of a single pattern,
these kinds of units will be instantiated once. The unit definition
for a static participant, on the other hand, encapsulates a singlein-
stanceof the participant. The unit definition for a static participant
may be instantiated as many times as needed, each time with a pos-
sibly different set of imports, to create all of the needed static par-
ticipant instances. In either case, the exports of a unit correspond
to the services that the participant provides. The imports of a unit
correspond to the connections described in the pattern; the imports
of each unit instance will be connected to the exports of other unit
instances that represent the other (static and dynamic) participants.

6. Within a compound unit definition, instantiate and con-
nect the participant units. Within a compound unit, the designer
describes the pattern as a whole. The implementation of the com-
pound unit specifies how the participant units are to be instantiated
and connected to one another. The connections between units fol-
low naturally from the structure of the pattern and its application in
the current context. In addition, one must import services that are
required by the encapsulated participants.

The above considers just one pattern applied before any code is
written. In practice, participants have roles in multiple patterns and
patterns are applied during code evolution. These considerations
necessitate changes such as omitting the enclosing compound unit,
moving some participants outside the compound unit, or choosing
to treat a static participant as dynamic to avoid extensive changes
to the implementations of the participants. The system designer
may want to make additional changes, such as aggregating groups
of interfaces into single interfaces, to reduce the complexity of the
unit descriptions.

3.2 Example: Managing Block Devices
We illustrate our approach in the context of a concrete system. The
OSKit [11] is a collection of components for building operating
systems and standalone systems. The components are written in
C and include code taken from the Mach research operating sys-
tem, from FreeBSD, from NetBSD, and from Linux. The OSKit
consists of over 230,000 lines of code, much of which is being in-
dependently maintained by the developers of the “donor” systems.
Although the OSKit is written in C, some parts are distinctly object-
oriented: a lightweight subset of Microsoft’sCOM is used in a num-
ber of places. The OSKit has been used to build large systems like
operating system kernels and file servers, to implement advanced

2If the pattern structure relies on implementation inheritance, dy-
namic method dispatch, or other essentiallyOOPfeatures, these ca-
pabilities must be emulated when translating the pattern to Knit or
MzScheme units. In our experience, this is sometimes tedious but
generally not too difficult.

languages directly on the hardware, and for smaller projects like
embedded systems and bootloaders.

As an initial example, consider the problem of managing block
I/O device drivers, which provide low-level access to block-oriented
storage media such as disks and tapes. An operating system is gen-
erally configured at build-time to include one device driver for each
kind of supported block device: e.g.,IDE bus,SCSIbus, and floppy
disk drive. At run-time, the operating system queries each driver
for information (e.g., the type and capabilities of the driver): the
driver discovers the physical devices that it manages, and at the re-
quest of the OS, creates run-time objects to represent each of these
devices. To make it easy to configure OSKit-based systems with
different sets of block device drivers, we apply theAbstract Fac-
tory pattern as illustrated inFigure 3. In OOP terms, we define a
common abstract class (BlockDevice) to be supported by all block
devices, and we define abstract classes (BlkIO andDriverInfo) for
the products that each driver may produce. The actual drivers and
products map to concrete classes as shown.

Having identified the pattern at hand, we can now apply the steps
of our method to translate the pattern structure into appropriate unit
definitions. First (step 1) we identify the abstract classes: clearly,
these areBlockDevice, BlkIO, andDriverInfo. Next (step 2): be-
cause each device driver can manage multiple physical devices, we
need at most one instance of each driver in any system we might
build. (We need zero or one, depending on whether or not we
choose to support a particular kind of device.) Thus, each of our
concrete factories is a static participant. In contrast, since we do
not know the number of physical devices that will be present at
run-time, each concrete product class is a dynamic participant.

We now define the interfaces for our static participants (step 3).
The interface to each concrete factory class is defined by the ab-
stract BlockDevice class: we therefore define a corresponding
I BlockDevice interface. As described inSection 3.1, we translate
the BlockDevice methods into ordinary C functions, because we
do not need to represent our static participants as run-time objects.

In defining the interfaces for our dynamic participants (step 4),
we need to translate the participant’s methods in a way that allows
us to identify instances at run-time. Because we are using Knit, we
translate theBlkIO andDriverInfo classes into unit port interfaces
that include C types for the products. In addition, each product
method becomes a C function that takes a run-time instance.

Next (step 5) we create the unit definitions for each of our con-
crete participants. This is a straightforward mapping from the pat-
tern structure: the exports of each unit are determined by the pro-
vided interfaces (i.e., the participants’ classes), and the imports are
determined by the connections in the pattern structure.

Finally, we create a compound unit in which we instantiate the
units that we need, and connect those instances according to the
pattern (step 6). For example, to create a system with justIDE

support, we would define the unit instances and links shown in
Figure 4. The unit definitions that we created in steps1–5 are
reusable for many systems, but the structure of the final unit compo-
sition instep 6is often specific to a particular system configuration.

Our method describes the process of creating appropriate unit
definitions, but it does not address the problem of unit implementa-
tion: i.e., the source code. We have found, however, that appropri-
ate implementation is often straightforward. In the example above,
the OSKit units are implemented by existing OS device drivers with
little or no modification. Most changes, if needed at all, can be im-
plemented byAdapterunits that wrap the existing code. Further,
the device-specific code can be isolated in the units that define our
products. This means that we can write one unit definition for our
factory instead of one each forIDE, SCSI, andFloppy. Each in-
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Figure 3: Using theAbstract Factorypattern to manage block devices in OSKit-based systems
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Figure 4: Result of applying our method toFigure 3

stance of this factory imports the units that define a related family
of products. Knit’s constraint system can be used to statically en-
sure that the system designer does not accidentally connect a mis-
matched set of products.

3.3 Example: OSKit Filesystems
Having illustrated the method in detail in the previous section, we
now show the result of applying the method to a more complex
example. Figure 5shows one possible configuration of a filesys-
tem in the OSKit. The primary parts of the system are:Main,
an application that reads and writes files;FS Namespace, which
implements filepaths (like/usr/bin/latex) on top of the more
primitive file and directory abstraction;Ext2FS, a filesystem from
the Linux kernel distribution; andLinux IDE, a Linux device driver
for IDE disks. The other units in the system connect these primary
parts according to theAbstract Factory, Adapter, Decorator, Strat-
egy, Command, andSingletonpatterns. All participants in these
patterns are currently implemented as described with one excep-
tion (Command) described below.

Abstract Factory. Figure 5contains two abstract factories: the
Linux IDE and OSEnv/x86 units. (In both cases, only the en-
closing compound unit is shown.) The OSKit defines an interface
(called the “OS Environment Interface”) for all components to use
when manipulating interrupts, setting timers, allocating memory,
and so on. This interface abstracts the more obtrusive details of
the underlying platform. InFigure 5, this interface is implemented
by OSEnv/x86 for the Intel x86 hardware but we could have cho-
senOSEnv/StrongARM for the StrongARM architecture orOS-
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Linux IDE
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Figure 5: A possible configuration of an OSKit filesystem

Env/Linux to run as a user-mode Linux program. (The latter choice
would necessitate a different choice of device driver.) It is appro-
priate to fix on a particular platform at this stage because moving
to another would require the system to be rebuilt.
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Adapter. The hybrid nature of the OSKit gives rise to many
adapters. TheOSEnv→Linux adapter implements Linux internal
interfaces in terms of the OSKit-standardI OSEnv, allowing us to
include Linux-derived units in the system. TheLinuxFS→FS and
Linux→BlkDev adapters implement standard OSKit interfaces for
filesystems and block devices using the internal Linux interfaces
for these things. Being able to use Linux-derived units is extremely
useful for OSKit systems: instead of writing and maintaining new
filesystems and device drivers, the OSKit exploits the hard work
of the Linux community. The OSKit uses this approach to provide
30 Ethernet drivers, 23SCSIdrivers, and 11 filesystems.

An interesting part of theLinuxFS→FS and Linux→BlkDev
adapters is that they have both static and dynamic aspects. The
static aspect adapts the static interfaces of the participants: those
used for initialization, finalization, and mounting a filesystem on
a disk partition. The dynamic aspect adapts the interfaces of dy-
namic participants, wrapping Linux block device objects as OSKit
block device objects, Linux filesystem objects as OSKit filesys-
tem objects, and Linux file and directory objects as their OSKit
equivalents. This illustrates how our approach complements the
conventional approach: our units make it apparent which decisions
are static (e.g., the decision to use Linux components with OSKit
components) and which are dynamic (e.g., how many files will be
opened, which files will be opened).

Decorator. If this is a multi-threaded system, we must take care
to acquire and release locks when accessing the filesystem and de-
vice driver objects. The decoratorsLock Filesys andLock Block-
Device acquire locks when entering the decorated objects and re-
lease locks when leaving.

It would be a serious error to omit one of these lock decora-
tors (leading to race conditions) or to insert it in the wrong place
(leading to deadlock), so we use the constraint system to check that
they are placed correctly. This may seem like overkill in such a
simple configuration, but the reader will appreciate that this is just
one of many rules that must be enforced and that we have omitted
many units that would appear in a complete system. The complete
system—including units for bootstrapping, console I/O, memory
allocation, threads and locks, etc.—consists of over 100 unit in-
stances.

Strategy. Disk drivers can optimize disk operations by coalesc-
ing reads and writes on adjacent blocks and can optimize disk seeks
by reordering read and write requests. The series of actual requests
issued to the disk is determined by a strategy unit. InFigure 5,
we have selected theSimple Disk Strategy unit (which queues
requests in the order they are issued) but we could have chosen a
strategy that coalesces disk operations or reorders requests using an
elevator algorithm. (The elevator strategy is not yet implemented.)

Command. TheSimple Disk Strategy unit manipulates a list
of outstanding requests, and these requests are parts of aCommand
pattern. The participants in this pattern are currently integrated
within the implementation of theSimple Disk Strategy unit, but
could be separated as shown inFigure 5into a separate unitEn-
code BlockOp which provides a separate function for each kind
of request (e.g., read or write). This unit would construct request
objects and pass them toSimple Disk Strategy, which would pro-
cess the requests.

Singleton. In this system, we made a design decision to have
a single device and a single filesystem instance. One could imag-
ine using a device driver implementation that supports just one in-
stance of that device type or a filesystem implementation that sup-
ports just one instance of that filesystem type. But this is not what
Linux components do. Most Linux device drivers and filesystems
are written to support multiple instances of a device or filesys-

tem. To overcome this mismatch, we use theBlkDev Instance
andFS Instance units that each create and manage a single in-
stance of the corresponding dynamic objects. These units are ef-
fectively adapters, making dynamic pattern participants appear as
if they were static.

3.4 Discussion
The previous sections demonstrate our approach to utilizing design
patterns in the context of two example systems. In both examples
we had a mix of static and dynamic participants: the static par-
ticipants were realized by unit instances corresponding to “object
instances” while the remaining dynamic participants were realized
by units that create the pattern participant objects at run-time. In
both examples we were able to lift a great deal of static knowl-
edge to the level of our units, but the exact amount depended on the
patterns and their application to the particular design problems at
hand.

Although the static and dynamic parts of many patterns will vary
from situation to situation in general,in common use, most pat-
tern structures contain many participants and connections that are
in fact static: these parts can be fruitfully lifted out of the partic-
ipants’ source implementations and then managed at the level of
units. To test this claim, we analyzed the structures of all of the
patterns described in Gamma et al.’sDesign Patternscatalog [12].
For each, we considered common uses of the pattern in the domain
of OSKit-based systems (i.e., component-based systems software).
We then applied our method to translate the pattern structures into
appropriate units and unit parts.

Table 1summarizes the results of our study. Each row of the
table shows the translation of the participants within a single pat-
tern, according to their application in the OSKit. Overall, the ta-
ble shows that most participants frequently correspond to static,
design-time information and are therefore realizable within our unit
model as design-time entities. (These are the columns under the
“Design-Time/Static Participants” heading.) Abstract classes map
naturally to unit interfaces. Participants that are singletons within
the context of a pattern map naturally to unit instances that imple-
ment these participants. In some cases, a participant both defines
an interface and represents a concrete instance, as indicated in the
table. For example, in theFacadepattern, theFacadeentity has
both interface and implementation roles. In some cases, the de-
signer may choose to implement a particular participant in more
than one way: for instance, the designer may choose to implement
a Client participant as a unit instance, or as a set of ports that al-
low the client to be connected at a later stage of the overall design.
In other cases, the appropriate implementation of one participant
depends on the characteristics of another: in theDecorator pat-
tern, for example, the appropriate realizations ofDecorator and
Concrete Decoratordiffer according to the “singleton-ness” of the
Concrete Component. Where the common translation or use varies,
we have indicated this with italics, and we list the participant in
multiple categories.

In summary,Table 1shows that our approach to realizing pat-
terns is applicable to many patterns: most have common applica-
tions in which many or all of the participants represent static sys-
tem design knowledge that can be utilized by tools for design rule
checking, code generation, and system optimization. This applies
even when a participant is dynamic and is realized by a unit that
produces objects at run-time. In these cases, we can use our unit
model to define our run-time classes/types in terms of mixins, thus
increasing the potential reuse of our unit definitions and implemen-
tations.
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Design-Time/Static Participants Dynamic Participants
Realized By Unit Realized By Unit(s) Realized By Port(s) Realized By Unit

Interface Impl’ing the Instance(s) On Unit Instances Defining the Class
Pattern (Method Steps1, 3, 4) (Method Steps2, 5) (Method Step5) (Method Steps2, 5)
Abstract Factory Abstract Factory Concrete Factory Client Concrete Product

Abstract Product Client
Builder Builder Concrete Builder Product

Director
Factory Method Product Concrete Creator Concrete Product

Creator
Prototype Prototype Client Client Concrete Prototype
Singleton Singleton

Adapter(class) Target Client Client Adaptee
Adapter

Adapter(object) Target Client Client
Adaptee
Adapter

Bridge Abstraction (intfc.) Abstraction (impl.)
Refined Abstraction (intfc.) Refined Abstraction (impl.)

Implementor Concrete Implementor
Composite Component Client Client Leaf

Composite
Decorator Component Concrete Component Decorator Concrete Component

Concrete Decorator Decorator
Concrete Decorator

Facade Facade (intfc.) Facade (impl.)
subsystem classes

Flyweight Flyweight Flyweight Factory Client Concrete Flyweight
Client Unshared Conc. Flyweight

Proxy Subject Proxy
Real Subject

Chain of Resp. Handler Concrete Handler Client
Client

Command Command Client Client Concrete Command
Invoker
Receiver

Interpreter Abstract Expression Context Client Terminal Expression
Client Nonterminal Expression

Iterator Iterator Concrete Aggregate Concrete Iterator
Aggregate Concrete Aggregate

Mediator Mediator Concrete Mediator
colleague classes

Memento Originator Caretaker Memento
Caretaker

Observer Subject (intfc.) Subject (impl.) Concrete Observer
Observer Concrete Subject

Concrete Observer
State Context (intfc.) Context (impl.)

State Concrete State
Strategy Strategy Concrete Strategy

Context
Template Method Abstract Class

Concrete Class
Visitor Visitor Concrete Visitor Concrete Visitor

Element Object Structure Concrete Element
Object Structure

Table 1: Summary of how the participants within the Design Patternscatalog [12] are commonly realized within the unit model, for
common situations in the design of OSKit-based systems (component-based, C language systems). Participants are classified accord-
ing to their common and primary realizations; certain uses of patterns will dictate different realizations. Where common use varies,
participants are italicized and are listed in all applicable categories. Some participants have both interface and implementation roles
as shown. Participants that map to unit instances usually also require interface definitions to describe their ports.
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4. ANALYSIS
The key feature of our approach is that we express static pattern
relationships in a componentconfigurationlanguage instead of ex-
pressing those relationships in the componentimplementationlan-
guage. In this section, we detail the benefits and costs of this sepa-
ration of concerns.

4.1 Benefits of Our Approach
Our technique for realizing patterns has three main consequences.
First, because static pattern information is located in single place
(our compound units) and because component interconnections are
fully resolved at build-time, it is possible for tools to perform a
more thorough analysis of the software architecture than in the con-
ventional approach to realizing patterns. Second, because the unit
language has a single purpose—to express components, their in-
stantiations, and their interconnections—it is possible to provide
features in the language that make this task easier. Third, because
the task of pattern composition is moved out of the implementa-
tions of the participants, those implementations can be simpler and
are less likely to be hard-wired to function only in fixed pattern
roles. These three consequences lead to benefits in the areas of er-
ror detection, performance, and ease of understanding and reuse,
which we explore in the following sections.

4.1.1 Checking Architectural Constraints
In the conventional approach to realizing design patterns, it can be
difficult to enforce static system design constraints: the rules are
encoded “implicitly” in the implementation, making them difficult
for people to find and for tools to enforce in the face of future sys-
tem evolution. Our approach to realizing patterns has the following
advantages over the conventional method.

The constraint checker detects global, high-level errors.The
constraint checker within the Knit unit compiler can detect “global”
errors that involve many parts of a system, whereas a conventional
language type system is restricted to detecting relatively local er-
rors. Such global constraints often deal with high-level system
composition issues—e.g., ensuring that domain-specific properties
hold across many interconnected components—whereas conven-
tional type systems and tools are restricted to detecting relatively
low-level and general types of errors such as uncaught exceptions [1],
dereferenced null pointers [6], and race conditions [8].

Constraints express domain-specific design rules.As just men-
tioned, a software architect is often interested in detecting domain-
specific errors. For example, recent versions of RTLinux [26] per-
mit normal (user-level) application code to be called from a hard
real-time kernel. Without going into detail, an essential require-
ment of such applications is that they never invoke a system call
while running in real-time mode. We have used Knit’s constraint
system to check this constraint for RTLinux applications: i.e., to
verify, at compile-time, that there are no paths from an applica-
tion’s real-time signal handler into the Linux kernel.

Design errors are separated from implementation errors.In
particular, this reduces the level of expertise required in order to
use (or reuse) a component correctly, inside or outside of a pattern.

The constraint checker need not deal with the base imple-
mentation language. Our constraint checker deals only with the
unit specification language, not with the source code of the compo-
nents. Because the unit language is simple, the constraint checker
is simple and precise. Further, it would be easy to extend with more
powerful and perhaps more pattern-specific reasoning methods in
the future. In contrast, to detect design errors in a conventionally
realized design pattern, a tool would need to deal with all the com-
plexities of the base implementation language: loops, recursion,

exceptions, typecasts, virtual functions, pointers, and so on. Such
a tool is therefore difficult to create—greatly raising the barrier to
developing domain-specific analyses—and is often imprecise.

Many architecture description languages can provide the advan-
tages described above: like our tools, they achieve this by separat-
ing the description of the architecture from the implementation of
the components, and by being domain-specific instead of general-
purpose. Bringing these features to bear on the realization of design
patterns is one of the strengths of our tools and approach.

4.1.2 Performance Optimization
Another strength of our approach is that static pattern knowledge
is readily available for system optimization. The conventional ap-
proach to realizing patterns uses language features that introduce
indirections to achieve greater flexibility. These indirections—prin-
cipally indirect function calls—impose a performance penalty that
can often be avoided in our approach.

Static implementation enables many optimizations. When
component instances are connected statically, indirect function calls
are often turned into direct calls. This affords the compiler the op-
portunity to inline function calls, thus eliminating overhead and ex-
posing additional and often more significant opportunities for op-
timization, especially those that specialize a function for a particu-
lar context. In addition, highly optimizing compilers, or compilers
aided by a source transformation that Knit can perform, are able to
inline functions across module boundaries. In previous work [23],
we used Knit to implement a network router made of very small
components. (Each packet traversed 10–20 components while be-
ing forwarded.) Applying cross-component inlining eliminated the
cost of many function calls but, more significantly, enabled the C
compiler to apply all of its intra-procedural optimizations. The
overall effect of this optimization was to reduce the execution time
of the routing components by 35%.

Static implementation makes performance less sensitive to
code changes.To eliminate virtual function calls, a compiler re-
lies on a global (or near global) analysis of the program being opti-
mized. These analyses are necessarily affected by subtle features of
how the program is expressed: a consequence is that any change to
that program could potentially change the analysis result and there-
fore change whether or not the optimization can be applied. In
a performance-sensitive situation (e.g., in real-time code), loss of
an optimization may affect program correctness. By making static
knowledge explicit, our approach to patterns helps to reduce the
complexity of the resulting system, thus promoting compile-time
analysis and making “global” performance less sensitive to local
code changes.

4.1.3 Ease of Understanding and Code Reuse
In the conventional approach to realizing design patterns, one takes
into account the role of each participant when implementing the
participant—or, if the pattern is applied after implementation, one
modifies the participant to reflect their roles in the pattern. In our
approach, because units do not contain direct references to other
participants, units often need no modification in order to be used in
a particular role in a pattern. Avoiding even small changes to the
participants leads to significant benefits.

The approach is usable when code cannot be changed.The
implementation of a participant may be unchangeable if the code
has multiple users with different needs, if the source code is not
available, or if the code is being actively maintained by a sepa-
rate organization. For instance, the developers of the OSKit cannot
practically afford to change the Linux components that they incor-
porate: they must deal with the code as it is written.
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A participant can be used in multiple patterns. Separating
a participant’s role from its implementation is beneficial when the
implementation can be “reused” to serve in many different roles,
perhaps concurrently in several different patterns. The unit model
allows a programmer to separate a participant’s primary implemen-
tation from any code needed to adapt that implementation to a par-
ticular pattern role: by creating a unit composition, a programmer
can “weave” code at the imports and exports of a participant unit
instance.

Code is not obfuscated with indirections. The conventional
realization of a design pattern often achieves flexibility by intro-
ducing additional levels of indirection that are apparent in the im-
plementations of the participants. This indirection can obscure the
primary purpose of the code. For example, before applying the unit
model to the OSKit, we relied on objects, factories, and registries
to enable reconfiguration. Over time, much OSKit code came to
look like the following:

clientos = registry->lookup(registry, clios_iid);

fsn = clientos->create_fsnamespace(filesys);

file = fsn->lookup_path("/usr/bin/latex");

The code was often further complicated to deal with run-time er-
rors. In any particular system, however, the values ofclientos

andfsn were fixed in the system configuration, and knowable at
compile-time. After applying our approach, such code could often
be simplified to just:

file = lookup_path("/usr/bin/latex");

making it clear that the selection oflookup_path’s implementa-
tion is a static, not dynamic, system property.

4.2 Costs of Our Approach
Our approach to realizing design patterns is not appropriate for all
situations and design problems. The following paragraphs summa-
rize the costs and potential problems of our approach.

Our approach only specifies the static parts of patterns.The
main goal of our approach is to use an external component lan-
guage to specify the static aspects of a system architecture. It is
inappropriate (and often infeasible) to use our approach to specify
fundamentally dynamic elements of software architecture.

Our approach commits code to being static or dynamic.One
can imagine that having carefully used our approach (with its em-
phasis on static participants and relationships) to realize a pattern, a
change of requirements might turn a relationship from static to dy-
namic, requiring that the pattern be re-implemented using the con-
ventional object-oriented approach (with its emphasis on dynamic
participants and relationships). This is a problem: while it is easy
to use a dynamic system in a static situation, it is not so easy to
use a static system in a dynamic way. Therefore, when using our
approach, one should design systems in such a way that expected
changes in the system requirements are unlikely to require chang-
ing the static and dynamic natures of pattern participants—but we
recognize that this is not always possible.

Our approach requires support for the unit component model.
To fully benefit from our approach, one needs language support in
the form of an advanced module or component system and, ideally,
a constraint checking system. This implies several costs: one must
switch to using new tools, learn the component definition and link-
ing language, learn to use the constraint checking language, and
convert existing codebases to use the component language. This
can be a significant undertaking. As described inSection 2, how-
ever, it is possible to use existing tools and techniques to achieve
some (but not all) of the benefits of the unit component model.

Our approach can obscure the differences between patterns.
When one looks at the unit diagrams of participants and relation-
ships, it is clear that sometimes, different patterns look the same
when realized in our approach. However, this observation is also
true of the conventional approach to realizing patterns: many pat-
terns are realized in similar ways but differ significantly in their
purpose.

5. RELATED WORK
Gamma et al.’sDesign Patternsbook [12] triggered a flurry of pa-
pers on implementing patterns in object-oriented languages. Here,
we consider representatives of particular styles of implementation.
Bosch [3] describes a language LayOM for constructing C++ classes
by adding a number of layers to a simple class. By using layers
corresponding to particular patterns, Bosch solves thetraceabil-
ity problem—that it is hard to find and identify patterns in one’s
code—and enables pattern implementations to be reused. How-
ever, because the layers form part of the class description, the role
of each pattern participant is hardwired and the participants cannot
be used in other patterns without being modified. Bosch makes no
mention of static analysis, detecting design errors, or optimization.
Marcos et al. [17] describe an approach that is closer to ours: the
code that implements participants is clearly separated from the code
that defines their roles in patterns. The difference is that their ap-
proach is based on run-time reflection within a metaprogramming
system (CLOS), and so they do not support static analysis or op-
timization. Tatsubori and Chiba [25] describe a similar approach
to that of Marcos et al., except that it uses OpenJava’s compile-
time metaprogramming features. Like Marcos et al., they sepa-
rate roles from participants and, because they use compile-time
metaprogramming, it should be possible to perform static analy-
sis. However, OpenJava does not provide anything like Knit’s unit
constraint system.

Krishnamurthi et al. [15] describe an approach to pattern im-
plementation based on McMicMac, an advanced macro system for
Scheme. Their approach is like that of Tatsubi and Chiba: pat-
terns are expanded statically (enabling optimization) and the appli-
cation of patterns is not separated from the definitions of the partic-
ipants. Unlike OpenJava, McMicMac provides source-correlation
and expansion-tracking facilities that allow errors to be reported in
terms of the code that users wrote instead of its expansion, but there
is no overall framework for detecting global design errors.

Baumgartner et al. [2] discuss the influence of language features
on the implementation of design patterns. Like us, they note that
Gamma et al.’s pattern descriptions [12] would be very different in
a language that directly supports abstract interfaces and a module
mechanism separate from class hierarchies. Baumgartner also lists
a number of other useful features including mixins and multimeth-
ods. MultiJava [5] adds some of these features to Java, enabling
them to cleanly support theVisitor pattern and to describe “open
classes.” Our colleagues’ paper on Jiazzi [18] shows how the open
class pattern can be realized with units. Bruce et al. [4] describe
virtual types and show how they apply to theObserverpattern. All
of these papers describe language features that address problems in
implementing patterns in object-oriented languages, but their focus
is on the technology, not the approach enabled by that technology.

At the other end of the spectrum, there are component program-
ming models, module interconnection languages (MIL s) [21], and
architecture description languages (ADLs) [19]. Our implementa-
tions of the unit model lie at the intersection of these three ap-
proaches. Units are likeCOM or CORBA components except that
units play a more static role in software design; units are likeMIL s
in that each implementation of the unit model supports just one
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kind of unit interconnection; and units are likeADLs in that units
support static reasoning about system design.

Module interconnection languages are perhaps closest in purpose
to the unit model. The best example we know of using aMIL in the
way this paper suggests is FoxNet [14], a network stack that ex-
ploits ML’s powerful module language. However, although FoxNet
clearly uses a number of patterns, there is no explicit statement of
this fact and consequently no discussion of implementing a broad
range of patterns using aMIL .

Architecture description languages provide a similar but higher-
level view of the system architecture toMIL s. This higher-level
view is the key difference.ADLs describe software designs in terms
of architectural features, which may include patterns.ADLs may
also provide implementations of these features: the details of im-
plementation need not concern the user. In contrast, this paper is
all about those implementation issues: we describe a method that
ADL implementors could apply when adding new patterns to the set
provided by theirADL. That said,ADLs provide more expressive
languages for describing design rules, specifying components, and
reasoning about system design than is currently supported by the
unit model. We plan to incorporate more high-levelADL features
into our unit languages in the future.

6. CONCLUSION
Design patterns can be realized in many ways: although they are
often described in object-oriented terms, a pattern need not always
be realized in anOOP language nor always with objects and inter-
connections created at run-time. In this paper we have presented
a complementary realization of design patterns, in which patterns
are statically specified in terms of the unit model of components.
While this approach is not applicable to all software architectures,
it can yield benefits when applied to static systems, and to static as-
pects of dynamic systems. These benefits include verification of ar-
chitectural constraints on component compositions, and increased
opportunities for optimization between components.
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