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Abstract— The ability of active networks technology to allow
customized router computation critically depends on having
resource control techniques that prevent buggy, malicious, or
greedy code from affecting the integrity or availability of node
resources. It is hard to choose between static and dynamic
checking for resource control. Dynamic checking has the ad-
vantage of basing its decisions on precise real-time information
about what the extension is doing but causes runtime overhead
and asynchronous termination. Static checking, on the other
hand, has the advantage of avoiding asynchronous termination
and runtime overhead, but is overly conservative. This paper
presents a hybrid solution: static checking is used to reject
extremely resource-greedy code from the kernel fast path, while
dynamic checking is used to enforce overall resource control. This
hybrid solution reduces runtime overhead and avoids the problem
of asynchronous termination by delaying extension termination
until times when no extension code is running, i.e., between
processing of packets.

This paper also presents the design and initial implementation
of the key parts of a hybrid resource control technique, called
RBClick. RBClick is an extension of the Click modular router,
customized for active networking in Janos, an active network
operating system. RBClick uses a modified version of Cyclone, a
type-safe version of C, to allow users to download new router
extensions directly into the Janos kernel. Our measurements
of forwarding rates indicate that hybrid resource control can
improve the performance of router extensions by up to a factor
of two.

I. INTRODUCTION

Active network technology allows users of a network to
customize the computation performed at routers using mobile
code. A data packet in an active network carries the mobile
code or information that allows demultiplexing to the mobile
code that should process the packet. This flexibility of select-
ing packet processing code comes with risks. User-supplied
code can be buggy or malicious, and by consuming excessive
resources can harm the active router, other active services on
the router, or the network itself. Therefore, it is important to
limit the resources available to active code.

This paper addresses the issue of resource control of active
extensions in discrete or control-plane active networking [1].
Active extensions are loaded into the active router via a
separate control channel and then invoked by examining the
headers of data packets. More specifically, we are interested
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in developing an architecture that allows a rich set of active
extensions to be installed in the kernel of an active node
operating system. For example, an extension implementing
application-level gateway functionality could be installed into
the kernel to process packets at high speed, if the protection
and resource control challenges were met.

Most existing systems take one of two approaches to control
the resources consumed by active code: sandboxing or static
analysis.

In sandboxing, active code is run in a resource-limited envi-
ronment and runtime checks are performed to monitor its re-
source usage. On detection of misbehavior, misbehaving active
code is asynchronously terminated. Asynchronous termination
can affect the integrity of data structures shared by multiple
extensions. More importantly, such termination requires what
is effectively a user-kernel boundary (implemented with or
without the hardware MMU) to protect the integrity of any data
structures shared between untrusted code and trusted “kernel”
code [2]. The checks required to implement such a boundary
have significant cost, as shown in this paper and elsewhere [3].

Static analysis, on the other hand, avoids runtime checks and
asynchronous termination by statically verifying that active
code does not consume excessive resources. However, static
analysis is often conservative and overestimates applications’
resource requirements. Difficulty in modeling complex fea-
tures of modern computers, such as multiple-issue, pipelining,
and caching, also add to the degree of pessimism. In our
measurements, ignoring the effects of caching alone can cause
analysis of x86 assembly code to be pessimistic by up to a
factor of 20.

Therefore, it is hard to choose between the two; sandboxing
incurs runtime overhead and causes asynchronous termination,
while static analysis is very conservative.

This paper proposes hybrid resource control, a resource
control mechanism that uses a combination of static analysis
and runtime accounting. Static analysis techniques are used to
statically predict resource upper bounds of active code. These
resource bounds are then used to control admission to the
lightly protected kernel execution environment, guarantee ter-
mination, and reduce the overhead from runtime checks. At the
same time, precise runtime accounting is used to overcome the
restrictions due to the pessimism of static analysis and admit
more extensions than otherwise allowed. The resource control
technique is termed “hybrid” because of the combination of
dynamic and static methods.



We have developed a prototype of the key parts of hybrid
resource control in an environment for active extensions, called
RBClick, “Resource Bounded Click.” RBClick is an extension
of the Click modular router [4], implemented in Janos, an ac-
tive network operating system [5] that was originally designed
to achieve resource control only through sandboxing. Active
extensions in RBClick are Click graphs involving both trusted
and untrusted elements. Trusted elements are taken from a
base version of Click, while untrusted elements are written in
a resource-bounded variant of Cyclone [6], a type-safe version
of C, called RBCyclone. RBClick estimates resource bounds on
active extensions; acceptable extensions are then loaded into
the Janos kernel.

This paper evaluates the usefulness of RBClick along two
dimensions: programming flexibility and performance. To as-
sess the former, we present an analysis of a Click release and
find that acceptably flexible versions of all of its elements
could be written with the resource bounding restrictions of
RBCyclone. To estimate the performance improvement from
reducing the overhead of runtime checks, we compare RBClick
to resource sandboxing of unmodified Click. We found that in
Janos, RBClick extensions can benefit by up to a factor of two
in IP forwarding rate by using hybrid resource control instead
of the sandboxing techniques currently being used.

The contributions of this paper are:

• A proposal for hybrid resource control (Section III).
• An initial design and implementation of a hybrid resource

control technique in RBClick, an extension of the Click
modular router (Section IV).

• A preliminary evaluation of RBClick (Section V).

II. RELATED WORK

Our work is most closely related to the PLAN [7] and
SNAP [8] languages from the SwitchWare project at the
University of Pennsylvania. Both PLAN and its successor
SNAP are domain-specific languages designed to bound the
resource consumption of active code. The resource bounding
restrictions we impose in RBCyclone are similar to those in
PLAN (Section IV-C). However, their work differs from ours
in the following ways.

First, the SwitchWare project focused only on designing
a resource-bounded language but did not explore how con-
servative the statically computed bounds can be and how
to cope with that pessimism. Our work complements theirs,
focusing on combining conservative static estimates with dy-
namic checks to build a low-overhead execution environment.
Second, we focus on the domain of fast-path active extensions
that are deployed using the control channel, while PLAN and
SNAP are both designed to be deployed directly in data packets.
Third, we use a familiar C-like programming language, Cy-
clone [6], and impose restrictions that are necessary to bound
resource consumption, while PLAN and SNAP are completely
new domain-specific languages. Fourth, we examine a flexible
set of existing networking components to show, by example,
that the restrictions we impose in RBCyclone are not overly

constraining (Section V). It is not entirely clear whether PLAN

could easily support all of these examples.
Another set of closely related efforts are the Open Kernel

Environment (OKE) [9] and the “OKE Corral” [10]. The OKE

is a safe execution environment in the Linux kernel, designed
to run untrusted user extensions written in Cyclone. The OKE

Corral is an active network environment based on the OKE and,
like RBClick, draws heavily from the Click modular router.
However, the resource control techniques in OKE are purely
dynamic and rely on asynchronous termination to enforce
resource limits. In contrast, our goals for the hybrid technique
have been to avoid asynchronous termination, taking advantage
of statically-predicted resource bounds augmented by dynamic
checks.

Proof Carrying Code (PCC) is a novel technique in which
untrusted code carries an efficiently checkable proof of its re-
source boundedness. PCC can be quite effective in minimizing
the overhead of runtime checks [11]. However, currently, PCC
is practical only for small programs.

Our implementation was done in the context of Janos, an
active network node operating system [5] that currently sup-
ports only Java-based active applications written for the ANTS2
and Bees environments [12]. Java-based active applications in
Janos are much slower compared to the fast-path in the kernel.
RBClick adds safe fast-path active networking to Janos.

Similar to RBClick in Janos, many other active network-
ing systems provide extensibility close to the in-kernel fast-
path [10], [13], [14]. A common differentiator between these
and our work is that all of these systems use purely dynamic
techniques for resource control.

Finally, in recent CPU-modeling work [15] the authors
present techniques for controlling and predicting CPU use of
active code in networks of heterogeneous nodes. Their tech-
niques for predicting CPU usage could be used in conjunction
with hybrid resource control. However, their resource control
techniques require precise resource bounds to allocate re-
sources, while hybrid resource control only needs approximate
estimates of resource upper bounds to admit code.

III. HYBRID RESOURCE CONTROL

In this section, we present hybrid resource control, a re-
source control technique for active node operating systems that
uses a combination of static analysis and runtime resource ac-
counting to efficiently control the resources consumed by best-
effort active extensions. By best-effort we refer to extensions
that do not require any QoS guarantees.

Hybrid resource control uses static analysis to infer conser-
vative static upper bounds on resource requirements of active
extensions. These resource upper bounds are used to control
admission to the loosely protected, high-speed extension ex-
ecution environment in the kernel. Static upper bounds on
the CPU time ensure that only extensions that are guaranteed
to terminate in a reasonable amount of time are admitted.
This guarantee helps to reduce runtime checks and avoid
undesirable forced termination of active extensions.



However, static resource analysis is conservative in nature.
Therefore, completely relying on static upper bounds for
admission can be very constraining, i.e., the system will reject
extensions that would actually consume resource within the
acceptable limits. Therefore, hybrid resource control admits
some over-limit extensions but performs low-overhead run-
time resource accounting to enforce acceptable behavior. The
system admits extensions whose resource bounds fall within
a predetermined constant factor of the acceptable limits and
lets them run without interruptions. However, the system
performs resource accounting at appropriate times to ensure
that extensions are behaving correctly. If an extension is found
to be consistently violating the acceptable limits, it is unloaded
the next time it is found idle. Note that with hybrid resource
control the system does not need to perform asynchronous
termination of extensions. All extensions are guaranteed to
terminate, so a misbehaving extension will eventually finish
processing and get unloaded.

A. Benefits of the hybrid approach

Hybrid resource control as described above offers the fol-
lowing benefits in the context of active networking:

No asynchronous termination: Asynchronous termination
of extension code that shares state with other extensions is
undesirable because of increased risk in corruption of state. As
discussed above, hybrid resource control never terminates an
extension asynchronously but waits for it to finish execution,
i.e., processing of a single packet or event.

Reduced runtime overhead: Resource bounds on active
extension code provide hints about the runtime behavior of an
extension. These hints can be used to reduce the overhead of
runtime monitoring. For example, the termination guarantee
can be used to reduce the number of checks performed at
the interface between the active code and the kernel. In
RBClick, we use this guarantee to eliminate function calls
to poll the network interfaces at system call entry points
(further discussed in section V). This guarantee is also used to
eliminate the locking overhead of shared system data structures
when calls are made from user-to-kernel or kernel-to-user.

Flexibility: The flexibility of the hybrid technique depends
on the tightness of resource bounds: rejection rate of legitimate
code increases with the amount of pessimism in estimation of
resource bounds. However, this can be partly overcome by
inserting poll points in the extension code at the appropriate
places and dividing the extension code into pieces that indi-
vidually never violate the acceptable resource limits. At these
poll points the system reads the clock, and if the extension is
taking too long to execute, it polls the network interfaces and
stores packets in internal queues to avoid packet drops.

Figure 1 shows the code that executes at each poll point.
Conceptually, the poll points can be inserted anywhere in the
code, for example, between two basic-blocks or at function
entry/exit points. In the average case, the processing overhead
of a poll point is very low. In our experiments on a P III
850 MHz machine, this overhead is less than 100 nsec. The
poll points let us trade off constraints due to pessimism of

new_timestamp
if

=
(new_timestamp − then

endif
old_timestamp = new_timestamp

poll_timestamp()

      poll_interfaces()

;

;
threshold)>old_timestamp

;

Fig. 1

CODE EXECUTED AT A POLL POINT.

resource estimates with the overhead of runtime checks. Note
that the above type of flexibility is only useful in polling-mode
systems and not in interrupt-based systems.

DoS prevention: Hybrid resource control can be used to
reduce the risk of denial-of-service (DoS) attacks on active
nodes because a buggy, malicious or particularly badly written
active extension implementation can be rejected at an early
stage. In the absence of static checking, malicious code needs
to be loaded and executed at least once before it is finally
rejected, thus increasing the risk of DoS. For example, an
active node may admit extension code only if executing it
will never cause packet drop at its input queue.

Path Selection: Static checking provides early information
for the user introducing an active extension to select a success-
ful deployment path through the network. The deployment path
determine which route the packets using a particular extension
should take through the network. In the absence of static
checks, the user introducing an active extension is forced to
select a deployment path only by trial and error.

B. Limitations of the hybrid approach

There are two limitations often associated with techniques
based on static analysis: Conservatism of static analysis and
reduced programming flexibility. In the following, we discuss
how these limitations are not a bottleneck for applicability of
hybrid resource control to active extensions.

Conservatism of static analysis: We believe that a mod-
erate amount of conservatism in static analysis (from our
experience, up to a factor of 40 for CPU and up to a factor
of 10 for memory and network bandwidth resources); is not
a serious concern for the applicability of hybrid resource
control for many interesting classes of extensions. This is true
because of two reasons. First, hybrid resource control uses
statically predicted resource bounds only to make admission
decisions and guarantee graceful exit. The actual scheduling
of resources is done based on precise runtime accounting.
Therefore, admitting an extension based on statically predicted
bounds does not always affect the scheduling efficiency of the
system. Second, many active extensions fall into the category
of soft real-time applications. Therefore, in practice, it is
possible to optimistically raise the acceptable upper bound on
recurring resources such as CPU and network bandwidth. The
penalty for doing so is not high. In the worst-case scenario,
a router may drop packets at its interfaces, which is not an
unexpected behavior for best-effort services. In the case of
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fixed resources, such as memory, the upper bound should be
tighter. Our experience with Click router shows that this is
true.

Note that the DoS prevention mechanism discussed above
is more useful when the resource bounds are tighter. One
way to overcome this limitation is to simply over-provision
the resources. More interestingly, runtime measurements com-
bined with statistical analysis techniques can be used to
estimate tighter resource bounds with probabilistic guarantees,
as in [16], [17]. However, their solutions are not directly
applicable in our case because of the untrusted nature of active
code; predicting a typical work-load for active code is difficult
and the active code may also attack the runtime measurement
system. We are currently exploring these techniques to build
an effective guard against DoS attacks.

Reduced programming flexibility: The halting problem
precludes us from performing a complete static analysis on all
programs written in a general-purpose programming language.
Therefore, to get definite results in a finite amount of time,
static analysis techniques often use constrained programming
models. For example, SNAP does not allow backward jumps
or looping constructs [8]. We believe that to achieve resource
boundedness, a general-purpose programming language need
not be overly constrained. For example, the restrictions we
impose in RBCyclone in section IV-C, are not too constraining
for many interesting classes of active extensions. To support
this argument, we manually studied all the elements of a
particular version of Click [4] and found that all elements can
be statically bounded in their resource usage. More details of
this study are discussed in section V.

IV. RESOURCE BOUNDED CLICK - RBCLICK

In this section, we present the design of RBClick, an active
network environment for best-effort active extensions, which
implements hybrid resource control. To discuss RBClick in
terms of established terminology, we borrow active networking
terminology from the NodeOS specification [18] and use Click
terminology as defined in [4].

A. Background

RBClick is designed to be implemented in Janos, an active
network operating system that implements the NodeOS and EE
layers of an active node [5]. Figure 2 shows a block diagram of
the software layers in Janos and their correspondence with the
DARPA active network node architecture [18]. Janos supports
Java-based active applications on top of the Bees execution
environment which runs on top of the resource controlling
JVM, called JanosVM. Together, Bees and JanosVM form the
EE layer of an active node and run on top of Moab, the
NodeOS in Janos. Moab is an active node operating system
based on the OSKit [19] that implements the active networks
community standard NodeOS API specification [18].

Bees-based active applications on Janos forward packets
at least four times slower than the fast-path forwarding in
Moab [12]. Clearly, Bees environment is not suited for active
extensions that want to add custom processing to the fast-path.
RBClick is meant to bridge this gap and support high-speed
active extensions directly in the Moab kernel.

B. Overview

RBClick is an extension of the Click modular router [4], cus-
tomized to support untrusted active extensions on a NodeOS.
An active extension for RBClick is a graph (or configura-
tion) of packet processing elements, specified in the Click
language [4], along with the code for some “new” elements.
However, RBClick ensures that all extension configurations are
resource bounded, as explained later in section IV-D. RBClick
leverages on a significant collection of router extensions
available as part of the standard Click distribution. The use of
unmodified Click elements as a “trusted base” gives RBClick
an opportunity to evolve with Click.

Although the collection of trusted elements in RBClick is
sufficient to build a number of interesting extensions, many
or even most users will need to download their own code
elements to extend the available functionality. RBClick allows
untrusted users to download Click-like code elements written
in a restricted and type-safe language, RBCyclone, a resource
bounded variant of Cyclone [6]. Cyclone is a type-safe version
of C and provides control over data representation and memory
management. User-supplied untrusted RBCyclone elements can
interact normally with trusted Click elements in a single graph.

RBClick limits the resources consumed by active exten-
sions using hybrid resource control. Hybrid resource control
technique safeguards the NodeOS kernel against rogue code
by admitting only “safe” extensions. RBClick performs code
analysis on extension configurations, and any untrusted el-
ements included in them, and admits only those extensions
whose resource upper bounds fall under acceptable resource
thresholds on the node. In addition to techniques for automatic
static analysis of untrusted elements, we have done manual
analysis of trusted Click elements and found those elements
to be bounded in their resource usage.

We have done an initial implementation of RBClick in
Moab. Currently, RBClick instantiates each RBClick extension
configuration in a special “lightweight” NodeOS domain [18].
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All RBClick extension domains are managed using the hybrid
resource control technique. Note that RBClick only implements
support for the data path of active extensions, the control path
is supported via the Bees EE, as shown in figure 3.

In the following sections, we describe the key components
involved in implementing hybrid resource control technique in
RBClick: RBCyclone and code analysis of RBClick extension
configurations.

C. Resource Bounded Cyclone - RBCyclone

Using active extensions technology with RBClick, users
should be able to supply their own elements and extend
the functionality available on a node. However, user-supplied
elements cannot be trusted and must be executed in a memory
and resource-safe environment. In this section, we discuss how
we ensure memory and type safety, and resource boundedness
of untrusted elements using RBCyclone.

Although virtual memory techniques can ensure complete
memory safety from untrusted code, they seem too heavy-
weight for use with active extensions. In addition, they do
nothing to solve the control flow problems raised by untrusted
code, such as asynchronous termination. Therefore, we de-
cided to use relatively lightweight language-based technology.

Interfacing Click to a high-level type-safe language, such
as, Java, OCaml, Scheme etc. seems to involve prohibitive
performance costs. Overheads of interpretation, marshaling,
and garbage collection are the dominating costs [20]. There-
fore, we decided to use a type-safe but C-like language,
Cyclone [6]. The type-safety of Cyclone guarantees memory
protection and its compatibility with C/C++ makes it easier
and efficient to interface with Click. To ensure safety and
resource boundedness of untrusted code, RBCyclone imposes
the following additional restrictions on Cyclone.

1) Namespace Control: RBCyclone elements have access
to only two external namespaces: RBClick NS and CYC NS.
Untrusted elements cannot directly allocate or otherwise mod-
ify the size of a Click packet. Instead, RBClick NS provides
restricted means to perform such operations. RBClick NS also
includes wrapper functions used by Click elements to make
calls into RBCyclone elements, for example, to push or pull
packets and invoke timer handlers. These wrapper functions
handle any exceptions that leak through from RBCyclone
code. The CYC NS namespace provides a restricted standard

Cyclone library, a Cyclone equivalent of the standard C-
library. However, certain unsafe system calls which can be
used to violate resource bounds, such as, signal, malloc, new
and exit have been overridden to just return error messages.

2) Restricted Programming Constructs: To limit the CPU
cycles executed by untrusted code, we remove the following
constructs from Cyclone: goto, while, normal for loops, re-
cursion, and function pointers. The only iteration construct
available in RBCyclone is a specialized for construct with the
following syntax:

for (CONST) (... ; ... ; ...)
{ /* Body of the for loop */ }
/* CONST is a compile time constant */

The above type of for loop is executed at most CONST
number of times. CONST can be a symbolic constant whose
value is substituted at the deployment node. Values from node-
specific symbolic constants such as, PACKET LEN MAX,
MTU, and DATA LEN MAX are maintained by the trusted
RBCyclone compiler.

3) Memory Management: Cyclone uses region-based mem-
ory management to avoid dangling pointers and memory
leaks [21]. In region-based memory management, each object
lives in one region and, with the exception of the heap region
which may be garbage collected, all objects in a region are
deallocated simultaneously. In Cyclone, there are three kinds
of regions: a heap region that lives forever, stack regions that
correspond to local declarations, and dynamic regions that
have lexically scoped lifetimes but permit unlimited allocation
in them.

In RBCyclone, there is no explicit heap region. Instead,
based on our survey of networking code, we have defined the
following four fixed regions in RBCyclone: ‘A, ‘B, ‘C, and
‘D. These regions have nested lifetimes: ‘A < ‘B < ‘C < ‘D,
such that a reference in a region with larger lifetime cannot
point to data in a region with smaller lifetime. For example,
a reference allocated in ‘B cannot point to data in ‘A. The
rationale for these regions is discussed below.

Region for per-packet memory (‘A) – This region has
lifetime equal to the duration of processing a single packet.
This memory region is available to all the elements of a
domain while it does packet processing. Hence this region can
be used to share transient state among code elements. In Click
such state is shared by allocating extra fields in the packet but
RBClick does not allow untrusted code to modify the structure
of a packet. Because of its smallest lifetime, none of the other
three regions can hold references pointing into this region.

Per-domain packet cache (‘B) – In RBClick, a packet is
freed as soon as its processing is finished and hence a reference
to it cannot be stored in region ‘C. Region ‘B provides a
fixed size array to cache packets without having to copy them
in region ‘C. Packets can be stored and retrieved using put
and get operations. This region is specifically designed for
efficient storage of packets by packet caching applications,
such as aggregated multicast [22]. This region is allocated at
domain creation time and its size is specified in an extension’s



RBClick configuration.
Region for per-domain memory (‘C) – Region ‘C is used

by a domain to keep state that persists between packets. This
region is allocated when a domain is created and destroyed
only when the domain is terminated. Memory once allocated
in this region, stays allocated for the lifetime of the domain.
Also note that elements can communicate with each other by
allocating persistent state variables in this region, for example,
elements could maintain flow state in this region.

Region for global shared memory (‘D) – This region
is designated for memory that is shared between multiple
domains, for example, routing tables. The memory in this
region can be obtained using special names for memory areas
in this region. We plan to provide a standard filesystem like
interface to access memory in region ‘D.

Implementing these four regions is conceptually simple and
only requires modifications to the type-checking system in
the Cyclone compiler. However, we haven’t yet done these
modifications, and our current RBCyclone pre-processor maps
‘A to a lexically scoped dynamic region and ‘B, ‘C, and ‘D
to the heap region in Cyclone.

D. Static Analysis

Static analysis predicts resource upper bounds on active
code. In RBClick, static analysis of an active extension is done
in two stages: code analysis of individual untrusted elements
and graph analysis of its RBClick extension configuration.
As was noted in [15], the resource usage, especially CPU
time, consumed by a program depends significantly on local
conditions on an active node. Factors like traffic patterns,
execution time of system calls, machine speed, and other node-
specific constants affect the resource bounds. Therefore, in
RBClick static analysis is done either at the deployment node
or at a trusted site that knows the values of node-specific
constants.

1) Code Analysis of an untrusted element: Designing a so-
phisticated code analysis tool to estimate resource bounds was
not one of the initial goals for RBClick. RBClick’s purpose is
demonstrating what advantages can be gained given the values
for resource bounds. However, to show the feasibility of such
a tool, we have designed and implemented a prototype code
analysis tool (CAT) that analyzes untrusted code. Currently,
code analysis works like this:

An RBCyclone preprocessor validates RBCyclone code and
generates valid Cyclone code. This Cyclone code is then
compiled by the Cyclone compiler to generate C code. A loop
annotation tool then analyzes C code to generate annotations
for begin and end points of loops. The loop annotations also
include the value of static upper bound on each loop. This
annotated C code is then compiled into assembly code using
the gcc compiler. The loop annotated assembly code, thus
generated, is used by CAT’s assembly level code analyzer to
predict resource upper bounds on untrusted code.

CAT uses simplistic models to predict resource usage. The
basic idea behind CAT is to traverse all execution paths and

collect instruction statistics along these paths. These instruc-
tion statistics are then used to generate bounds for particular
resources in the following manner.

CPU: CAT classifies all instructions as either memory refer-
ence, function call, or register only operations. All instructions
involving memory references are assigned a fixed cost. The
cost for each reference is derived from a predicted cache hit
rate for untrusted code. Similarly, all instructions that involve
only register operations are assigned a fixed cost. Function call
instructions are assigned a cost equal to the CPU resource
bound of the called function. Function calls are either calls
into untrusted code itself or system calls. For an active node,
a benchmark is used to compute the cost of all system calls. A
benchmark-based method to predict node specific CPU time
for system calls is also used in [15].

Memory: CAT generates an upper bound on the number of
times each Cyclone function calls memory allocation system
calls. Since parameters to these system calls are compile-time
constants, we can easily infer the upper bound on memory
used in all regions by each Cyclone routine. Similarly, a call
graph analysis combined with an analysis of local memory
allocation routines is used to infer an upper bound on stack
space used by an element.

Network: We measure network usage of an element by first
calculating the fanout of an element. That is, for one input
packet how many output packets does an element generate.
Fanout is inferred from the upper bound on the number of
push calls an element makes into its downstream elements.
Fanout number is then combined with the MTU of all the
network interfaces to arrive at a network usage number.

2) Static Analysis of an RBClick extension configuration:
We have also developed a tool to statically analyze RBClick
extension configurations. RBClick configurations cannot have
unbounded loops in them. For example, in Click [4], the IP
forwarding router has unbounded loops in it and hence is not
a valid RBClick extension configuration. However, bounded
loops are allowed. A loop can be bounded by inserting a spe-
cial Loop element at the loop join point. Loop element takes
a constant as its configuration parameter which determines
the maximum number of times a loop is traversed during the
processing of a single packet.

With all configuration loops bounded, an RBClick config-
uration can be represented as a directed graph, where each
<element, port> pair represents a node and each connection
between ports represents an edge. Each edge gets its direction
from the direction of packet flow (push vs. pull) that is
assigned to it. Traversal of this directed graph with knowledge
of static resource upper bounds on each element is used to find
a resource upper bound for an active extension.

As mentioned in the section III, poll points can be used
to release the pressure due to pessimistic resource bounds.
In RBClick, this can be achieved by inserting a special poll
element at appropriate places in a configuration. The poll
element works as a poll point at function entry points in the
packet processing code of an extension. The results from CAT

are used to find the segments of a graph that are absolutely safe



for execution. These segments are then separated by inserting
poll elements between them.

3) Discussion: As discussed earlier in this paper, one
main issue associated with static analysis is the pessimism
in static analysis. Resource upper bounds calculated using
CAT tend to be very pessimistic for CPU resource. In our
experiments, we found pessimism to vary between factors of 5
and 100. This pessimism results from two sources. First, static
analysis often assumes worst-case, which may rarely occur in
practice. Second, it is really hard to do precise static analysis
for complicated modern machines. Features like multilevel
caching, pipelining, and branch prediction make it difficult to
precisely model the runtime behavior of hardware. We believe
that in our system, pessimism up to an order of magnitude
is tolerable but more than a couple of orders of magnitude is
not. Therefore, we are currently researching better methods
of resource estimation, including better methods of static
analysis, runtime measurements, and simulation.

V. EVALUATION

We evaluate our initial implementation of RBClick along
two dimensions: programming flexibility and Performance. By
evaluating RBClick’s flexibility, we show that our implementa-
tion of the hybrid resource control technique is flexible enough
to write many interesting classes of active extensions. While
by evaluating performance improvement due to RBClick, we
confirm that hybrid resource control reduces the overhead due
to purely runtime resource control technique currently used in
Moab.

A. Programming Flexibility

To verify that our programming model in RBClick is suffi-
ciently flexible, we analyzed all 234 code elements in Click1

to determine the fraction of its elements whose resource use
could be statically bounded. Based on their potential resource
use, we categorized the elements into the following seven
categories:

1) E1: Resource usage Constant
2) E2: Resource usage Proportional to the length of the

packet
3) E3: Resource usage Proportional to some protocol

header length, e.g., CheckIPHeader consumes resources
proportional to the IP header length.

4) E4: Resource usage Proportional to the length of the
configuration of an element, e.g., the size of the Static
routing table in LookupIPRoute.

5) E5: Resource usage Proportional to some value in the
configuration of an element, e.g., the Tee element gets
the number of outputs from its configuration.

6) E6: Resource usage Proportional to some field in a
protocol header, e.g., the ICMPError element consumes
resources proportional to the IP hlen header field.

1We studied the Click version current at the time this work began, version
1.2.1, released June 2001. The current version, 1.2.4, released May 2002, has
252 elements.

TABLE I

CLASSIFICATION OF CLICK ELEMENTS

Category Number %age
E1 114 48.72%
E2 33 14.1%
E3 15 6.41%
E4 37 15.80%
E5 4 1.71%
E6 8 3.42%
E7 23 9.83%
Total 234 100%

7) E7: Resource usage Potentially unbounded, e.g., ARP
element searches through a data structure whose length
is determined by the number of packets it has seen in
the last 5 min. Such elements are considered to have
potentially unbounded resource usage.

Clearly, elements in categories E1–E4 are bounded in their
resource usage. Elements in E5 are also bounded because we
can compute the bounds at configuration time. Elements in
category E6 can be made to behave in a bounded manner
if we always precede such elements with a bounds check
element. For example, we created an int8Check element that
can be configured to discard packets in which a particular 8-bit
field exceeds a predefined maximum. Another way to constrain
these elements is to insert checks in the code to make sure that
the value of a required packet field is within certain bounds.

The distribution of 234 Click elements in various categories
is shown in Table I. As seen from the table, about 90% of the
elements were originally resource bounded. There were 23
elements (the E7 category) which could potentially consume
unbounded resources. These 23 elements are potentially re-
source unbounded because they use unbounded data structures,
like linked lists and open hash tables. We could convert these
elements to category E5 by recoding the data structures to
have a configurable maximum number of data items, which
would make all 234 elements statically resource bounded.

This study validates our claim that many interesting classes
of active extensions can be coded with the loop restrictions
we impose in RBCyclone (because we could statically predict
the bounds on all loops in Click elements). Also, this study
helped us modify Click elements so that they can be used in
untrusted RBClick configurations.

B. Performance

Before evaluating performance improvement due to the
hybrid technique, it is useful to look at the overheads that
are incurred in Moab due to runtime checks. Note that Moab
is a single-address space operating system, so the system calls
are simple function calls and do not incur any hardware MMU
overhead, such as hardware trap or copying of data. Therefore,
the user-kernel boundary in Moab is a mechanism for resource
control and correctness but not for memory protection.

Most of the overhead of dynamic checks is incurred at
system call entry/exit points. All system calls from extension
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code into Moab perform two main checks: poll all the network
interfaces and mark the user thread non-terminable. These
two operations cost about 2.5 µs with two network interfaces.
Similarly, checks are also performed when returning from the
kernel or making kernel-to-user calls (upcalls) in response to
events.

With hybrid resource control, the above checks are not
performed because the system is assured that calls into
RBClick will eventually return. Some resource accounting is
still performed at RBClick entry and exit points just as in the
purely dynamic scheme.

To estimate the improvement in forwarding rate obtainable
with hybrid resource control, we ran vanilla IP forwarding
code in four different configurations, as shown in figure 4:
IP fast-path in Moab which uses a hardwired implementation
of IP (Moab fast-path); a Click configuration at user-level,
which is Moab’s default resource control technique (Click); an
RBClick configuration running under hybrid resource control
(RBClick); and a similar RBClick configuration with one null
C++ element replaced with an equivalent RBCyclone element
(RBCyclone). The null elements immediately push out the
packets they receive. This last configuration is used to measure
the overhead of boundary-crossing from trusted elements in
C++, to untrusted elements in RBCyclone.

All experiments were performed on the cluster portion of
the Netbed network testbed [23], in a simple three node setup
where an active node running IP routing code interposes
between a sender and a receiver. All three machines were
850MHz Intel Pentium IIIs with 512 MB of SDRAM and
five Intel EtherExpress Pro/100+ PCI Ethernet cards

As we see from figure 5, IP forwarding under the control
of the hybrid resource control technique (RBClick) performs
much better than with purely dynamic resource control (Click).
This improvement is because of the reduced runtime checks
mentioned above. Note that both Click and RBClick do not
include any MMU-imposed overhead. Therefore, the perfor-
mance improvement in RBClick over Click is entirely due to
the reduction in overhead of dynamic resource checks at the
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kernel-RBClick boundary.
Furthermore, the performance difference between RBClick

and RBCyclone configurations is not significant. The
boundary-crossing overhead from a C++ element to an
RBCyclone element and back is less than 0.6 µs on an 850
MHz machine. Note that this overhead includes marshaling
a packet to send it to RBCyclone code and unmarshaling it
after receiving it back. The relatively low overhead of marshal-
ing, unmarshaling, and boundary-crossing suggests Cyclone is
better than higher-level type-safe languages as an extension
language for C++.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have presented hybrid resource control,
a resource control technique for best-effort active extensions,
and its initial implementation in RBClick, an execution envi-
ronment for active extensions. Hybrid resource control uses
conservative static checks to reduce the overhead due to
runtime checks and avoid asynchronous termination of active
extensions. RBClick uses the hybrid technique to control the
resources consumed by untrusted user extensions in the Janos
kernel. Our measurements show that the hybrid technique can
help improve the forwarding rate of active extensions by up
to a factor of two compared to the purely dynamic resource
control technique in Janos.

To facilitate memory protection and enable static analysis
of code, RBClick uses RBCyclone, a resource bounded variant
of Cyclone. We have shown that the restrictions imposed
by RBCyclone still offer a flexible programming model by
examining a version of Click and showing that all its elements
can be written with the restrictions of RBCyclone.

Our focus in this paper has been to show the feasibility and
benefits of the hybrid approach. Our code analysis tool is very
crude as of now and does not calculate tight resource bounds.
In future work, we plan to explore runtime measurements-
based techniques to estimate tighter resource bounds on un-
trusted code, as used in [16], [17]. Tighter resource bounds



can be used to effectively counter DoS attacks while main-
taining a high resource utilization factor. One major issue with
measurements-based techniques is that of predicting a typical
workload for active code. In general, this is impossible to do.
However, by requiring the code provider to also provide a
workload, and then combining statistical analysis with control-
flow analysis, it is possible to predict tight resource upper
bounds with very high probability.
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