
Runtime Aspect Weaving Through
Metaprogramming

Jason Baker and Wilson C. Hsieh

UUCS-01-013

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

Abstract

We describe an extension to the Java language, Handi-Wrap, that supports weaving aspects
into code at runtime. Aspects in Handi-Wrap take the form of method wrappers, which
allow aspect code to be inserted around method bodies like advice in AspectJ. Handi-
Wrap offers several advantages over static aspect languages such as AspectJ. First, aspects
can be woven into binary libraries. Second, a wrapper in Handi-Wrap is a first-class Java
value, which allows users to exploit Java mechanisms to define and weave wrappers. For
example, wrappers can be passed explicit constructor arguments, and wrapper objects can
be composed. Finally, methods in all Java classes, including anonymous classes, can be
wrapped. A prototype of Handi-Wrap is implemented in a compile-time metaprogramming
system for Java, called Maya; we briefly describe how Maya’s features support Handi-
Wrap.



A revised version of this paper was published in Proceedings of the 1th International Conference on Aspect Oriented Software
Development (AOSD 2002), Enschede, nl, April 2002. Please read and cite the published AOSD 2002 paper in preference to this

report.

Runtime Aspect Weaving Through Metaprogramming

Jason Baker and Wilson Hsieh
University of Utah

Abstract

We describe an extension to the Java language, Handi-Wrap, that supports weaving aspects into code
at runtime. Aspects in Handi-Wrap take the form of method wrappers, which allow aspect code to be
inserted around method bodies like advice in AspectJ. Handi-Wrap offers several advantages over static
aspect languages such as AspectJ. First, aspects can be woven into binary libraries. Second, a wrapper
in Handi-Wrap is a first-class Java value, which allows users to exploit Java mechanisms to define and
weave wrappers. For example, wrappers can be passed explicit constructor arguments, and wrapper
objects can be composed. Finally, methods in all Java classes, including anonymous classes, can be
wrapped. A prototype of Handi-Wrap is implemented in a compile-time metaprogramming system for
Java, called Maya; we briefly describe how Maya’s features support Handi-Wrap.

1 Introduction

In aspect-oriented programming, weaving advice into a method amounts to redefining the method as the
composition of its body with advice. However, current aspect languages do not allow advice itself to be
defined compositionally. For example, in AspectJ [22] aspect definitions may only be reused through inher-
itance. We present an extension to Java, called Handi-Wrap, that allows all of Java’s code reuse techniques,
including object composition and parameterized constructors, to be used with method advice.

Object composition is a particularly important reuse technique in languages that use a fixed single-
inheritance hierarchy, such as Java. Unlike languages that support mixins [13, 20], Java does not allow
classes to be built from several class and mixin definitions. Instead, a single class must be specialized with
new functionality. Object composition allows classes to be reused by linking instances together at runtime,
and is valuable for building aspects as well as classes.

In Handi-Wrap, method wrappers are first-class values. Wrappers can be explicitly constructed with
new, and like classes, wrappers can be defined within class declarations or method bodies. Weaving is
accomplished through wrap statements. Handi-Wrap integrates method advice into the component imple-
mentation language more tightly than languages such as AspectJ. Although this integration allows aspect
code to be cleanly separated from other code, it does not require separation. In fact, Handi-Wrap’s tight
integration with Java allows more kinds of weaving to be expressed. Wrappers can be woven into classes
with lexically scoped names since weaving statements can appear in any scope. Wrappers can also be woven
into methods of anonymous classes through a new declaration modifier.

Because wrappers are first-class Java objects, aspect weaving is in general a dynamic process: a wrapper
cannot be woven into a method before the wrapper is constructed. In addition to explicit wrapper construc-
tors, dynamic aspect weaving provides other benefits. First, a method need not be recompiled when a
wrapper is woven into it. Allowing weaving on binaries eases separate development. In addition, it short-
ens the compile/edit/debug cycle when development aspects such as tracing and contract enforcement are
used. Finally, development aspects can be woven into a running program, using an interpreter such as
BeanShell [18] or Kawa [5].

Normally, Handi-Wrap requires that wrappers have exactly the same signatures as the methods that they
wrap. Since an aspect system that restricts reuse of advice to methods with identical signatures would not

1



be especially useful, Handi-Wrap supports increased polymorphism at the expense of static type checking.
Handi-Wrap allows wrappers to be defined on arbitrary argument and return types. Additionally, wrappers
may be polymorphic over the number of arguments they take.

Handi-Wrap is implemented in Maya [2] as an extension to the Maya programming language. Maya is
a compile-time metaprogramming system for Java that allows users to define language extensions. While
aspect systems have been implemented with meta-object protocols [9, 17], and similar systems have been
implemented in AspectJ [12], to the best of our knowledge Handi-Wrap is the first aspect system imple-
mented through compile-time metaprogramming.

In summary, Handi-Wrap makes several contributions to aspect-oriented language design:

• Wrapper code may be reused through both inheritance and object composition.

• Wrappers can take explicit constructor parameters, and inner wrappers can take implicit parameters
from their lexical environment.

• Methods in anonymous classes can be wrapped.

• Aspect and component code may be compiled separately.

The rest of this paper is organized as follows. Section 2 introduces Handi-Wrap features through a series
of examples. Section 3 provides an overview of Handi-Wrap’s current implementation. Section 4 evaluates
the cost of Handi-Wrap’s flexibility. Section 5 describes related work. Finally, Section 6 summaries our
conclusions.

2 Dynamic Method Wrapping

This section introduces Handi-Wrap’s syntax and semantics through several examples. These examples
show how Handi-Wrap can be used to guide optimizations such as caching, to implement caching, to track
down bugs, and to weave wrappers into methods of local classes. These examples also demonstrate how ob-
ject composition, explicit constructors, and separate compilation increase the expressive power of wrappers.

Handi-Wrap is defined in terms of two core classes: Procedure and Wrapper. Procedure objects en-
capsulate method and composable wrapper bodies. The class Wrapper is an abstract factory that composes
aspect code with wrappee procedures. The abstract method Wrapper.generate(Method this-
Method, Procedure wrapped) produces a wrapped definition of thisMethod from a method
object and the definition to be wrapped. The weaver calls generate() to compute a woven method
definition. Macros encapsulate the details of the wrapper implementation, but at times it is useful to define
generate() explicitly.

Macros that encapsulate the wrapper interface also implement simple static checks. To safely wrap a
method taking an argument of type T, the wrapper must accept arguments of type T or a supertype. To
safely pass the argument on to the target method, the wrapper must take an argument of type T or a subtype.
Therefore, argument types must be invariant. Return types must be invariant by similar reasoning.

Polymorphic wrappers may be defined using special syntax. A wrapper that takes a parameter of type
Any may be woven into a method that takes any reference or primitive type at the corresponding argument
position. Similarly, a wrapper that returns Any may be woven into methods returning any type, and void
methods. Primitive values of Any variables are boxed, and for the purpose of local type checking, Any
variables are treated as Object. More flexibility could be allowed in a language that supports bounded
polymorphism such as GJ [6]. Using GJ, one could achieve safety through polymorphic type variables, and
specificity by declaring upper bounds.

2



Handi-Wrap also defines a new declaration modifier, rest. A wrapper’s last formal parameter may
be a rest Object[]; this parameter will be bound to an array of the rest of the actual arguments. The
apply operator treats rest variables as lists of arguments. Argument lists may also be stored in fields and
local variables declared with the rest modifier.

2.1 Evaluating Cacheable Methods

Caching is an example of the kinds of concerns that Handi-Wrap can express cleanly. The result of any
side-effect-free method may be cached, but caching is not always beneficial. Advice can be used to find
out where caches are needed, and to implement caching. Separating the memoization of a value from its
computation yields concrete benefits. For instance, caches may be woven into both a high-level method and
a method it calls. Aspect-oriented programming allows one to easily reevaluate the utility of a high-level
cache after a lower-level cache has been added.

One simple caching metric is to count the total number of method invocations, and the number of
invocations with distinct arguments. These counts can be obtained by tracing the method, and filtering
duplicates from the trace.

Suppose we wish to trace a static method called ClassPath.lookup(String) that returns Class-
Path.Resource. We can define a wrapper for lookup as follows:

ClassPath.Resource wrapper lookupTracer(String name) {
System.out.println("lookup(" + name + ") called");
return wrapped.apply(name);

}

The declaration above does not mention ClassPath.lookup and performs no weaving. The wrapper
can be applied to any static method that takes a String and returns a ClassPath.Resource. The
wrapper body is free to examine its arguments, call the wrapped method, and return a value. The wrapper
object is bound to a variable called lookupTracer.

We use the wrap statement to weave lookupTracer into ClassPath.lookup(),
wrap ClassPath.lookup(String) with lookupTracer;

The first argument to wrap is a method signature, and the second is a wrapper expression. After this state-
ment is executed, calls to ClassPath.lookup() are redirected to lookupTracer. In this case, we
could avoid declaring the wrapper variable lookupTracer, and use an anonymous wrapper expression:

wrap ClassPath.lookup(String)
with new ClassPath.Resource wrapper (String name) { /* body of lookupTracer */ };

In addition to the base class Wrapper, which is a fundemental part of the Handi-Wrap language, Handi-
Wrap provides a library of utility wrappers in maya.wrap.Wrappers. One such wrapper implements
generic call tracing using Any and rest arguments:

public static final Any wrapper tracer(rest Object[] args) {
System.err.println("entering " + formatMethod(thisMethod, args));
Any ret = wrapped.apply(args);
System.err.println("leaving " + formatMethod(thisMethod, args)

+ " => " + ret);
return ret;

}

The implicit parameter thisMethod is an object that represents the method being wrapped. When
tracer is woven into an instance method, args[0] contains the receiver, since a method receiver is
always counted as a wrapper argument. The static method Wrappers.formatMethod() uses this-
Method’s access modifiers to decide how to format the argument list. Wrappers such as tracer cannot

3



crashTracer Dumps method invocation information when an exception is thrown.

trapper A development wrapper that unconditionally throws a runtime exception.

stackDumper Prints a stack trace and calls through the wrapped method.

CacheNth A wrapper subclass that memoizes the wrapped method’s results based using the nth argument as a
key. CacheNth wrappers are of little value alone, but are useful when composed with other wrappers.

cache1st A wrapper that memoizes the wrapped method’s results using the sole argument as a key.

cache2nd A wrapper that memoizes the wrapped method’s results using the second of two arguments as a key.

makePerInstance(Wrapper) Takes a wrapper w as argument, and returns a wrapper that applies w on a
per-instance basis.

makeConditionalWrapper(Procedure, Wrapper) Takes a procedure and a wrapper, and returns a
wrapper that calls through makeConditionalWrapper’s second argument when the procedure returns
true, and calls the method directly otherwise.

staticLocker Calls the wrapped method with its declaring class locked.

instanceLocker Calls the wrapped method with its receiving instance locked.

Table 1: Utility wrappers, classes, and methods defined by maya.wrap.Wrappers.

explicitly throw checked exceptions, since wrapper declarations cannot contain throws clauses. However,
wrapped.apply() may throw arbitrary exceptions that are immediately propagated to the wrapper’s
caller.

2.2 Composing Caches

Wrappers defines several other generic wrappers, wrapper subtypes, and wrapper-generating methods.
These objects may be composed to implement concerns such as caching in various ways. Some predefined
wrappers are listed in Table 1.

The class CacheNth and methods such as makeConditionalWrapper() and makePerIn-
stance() are of particular interest. CacheNth uses standard Java features, inner classes and explicit
constructors, to associate caches with methods. The definitions of CacheNth and makePerInstance()
are shown in Figures 1 and 2, respectively.

Each time a CacheNth wrapper is woven into a method, generate is called. This method allocates a
new cache and returns a procedure that uses the cache. CacheNth uses an explicit constructor parameter to
select the key argument used in memoization. It also uses an anonymous procedure class to associate code
with state. In more static aspect languages such as AspectJ, such mechanisms are unavailable. Procedure
objects, like methods are called with arguments and return values. The details of the procedure calling
convention are hidden within the apply macro.

A CacheNth wrapper may be composed with other wrappers. For example, a per-instance cache for
the method C.m can be created using

wrap C.m(Object) with makePerInstance(new CacheNth(1));

The wrapper returned by makePerInstance() will apply the argument to the wrapped method each
time a new receiver object is encountered. The wrapper returned by makePerInstance() accepts a
receiver of any type, which is bound to thisReceiver followed by zero or additional arguments stored
in args. Since CacheNth allocates a cache each time it is woven, the result of m will be cached on a
per-instance basis.

4



public static class CacheNth extends Wrapper {
int offset;

public CacheNth(int offset) { this.offset = offset; }

public Procedure generate(final Method thisMethod,
final Procedure wrapped) {

// Store results of thisMethod in its own cache
final HashMap cache = new HashMap();

return new Object procedure(rest Object[] args) {
Object ret = cache.get(args[offset]);
if (ret == null && !cache.containsKey(args[offset]))

{
ret = wrapped.apply(args);
cache.put(args[offset], ret);

}
return ret;

};
}

}

Figure 1: Caching method results based on an arbitrary argument.

public static Wrapper makePerInstance(Wrapper wrapper) {
final Map instanceMap = new WeakHashMap();

// match any receiver type, any return type and any # of args
return new Any wrapper Any(rest Object[] args) {
Procedure proc = (Procedure) instanceMap.get(thisReceiver);
if (proc == null)

{
proc = wrapper.generate(thisMethod, wrapped);
instanceMap.put(thisReceiver, proc);

}
// thisReceiver must be explicitly passed in
return proc.apply(thisReceiver, args);

};
}

Figure 2: Associating a wrapper with each receiver.

5



CacheNth provides flexibility with a runtime cost. All arguments to CacheNth are packed into an
Object[] on entry, and unpacked when the underlying method is called. To avoid this cost, Handi-Wrap
provides specialized wrappers cache1st and cache2nd to handle unary static and instance methods,
respectively.

In addition to the conventional instance advice defined through makePerInstance(), Handi-Wrap
provides a more general mechanism through conditionalWrapper declarations. We can trace calls to
a method n on a specific instance c as follows:

wrap C.n() with new Any conditionalWrapper C()
{ thisReceiver == c } => Wrappers.tracer;

The above statement wraps C.n() with a wrapper that traces its execution when c is the receiving instance.
The conditionalWrapper syntax is a macro that is expanded as follows:

makeConditionalWrapper(
new boolean procedure(final C thisReceiver) {

return thisReceiver == c;
},
Wrappers.tracer);

The ability to advise a specific instance is critical to caching for ClassPath.lookup(). In the
ClassPath definition used by the Maya compiler, lookup() is not actually a static method. Class-
Path is defined in a separate library, and several ClassPath objects can be defined on distinct search
paths. A ClassPath object may be used in a batch compiler. In such a case, caching produces a signif-
icant performance improvement, and it is safe to assume that classes do not change behind the compiler’s
back. However, other clients have different performance and semantic requirements. A ClassPath may
be used by a simple class loader that never looks up the same resource twice, in which case caching would
not be useful. Alternatively, a ClassPath object may be used to load plugins or servlets. In such cases,
the disk contents may change dynamically and lookup results should never be cached.

A compiler can install a cache on calls to lookup() in its own ClassPath as follows:
final ClassPath path = new ClassPath(pathString);
wrap ClassPath.lookupString(String)

with new Any conditionalWrapper ClassPath(String _)
{ thisReceiver == path } => Wrappers.cache2nd;

The above code shows how concerns can be separated vertically between software packages. An application
can customize the behavior of library classes such as ClassPath by defining aspects on its public interface.
Since Handi-Wrap can weave binaries, a library’s behavior can be changed without access to source code.

Handi-Wrap’s support for caching exploits many dynamic Java features. First, caches are associated with
methods through inner class closures. Second, wrapper behavior is controlled through explicit constructor
parameters. Finally, wrapper objects are composed to define a variety of caching policies: one cache per
method, one cache per instance, and one instance being cached. Although these specific policies can be
implemented in a static aspect language, Handi-Wrap’s code-reuse mechanisms provide added flexibility.
For example, per-instance advice is implemented as a composable wrapper rather than a new language
feature.

2.3 Controlling Debug Output

Although tracing method invocations is an important debugging tool, sometimes it is still necessary to
resort to println. Dynamic aspect weaving can be used to selectively enable debug logging to filter out
unimportant output.

6



One of the trickiest bits of code in mayac, the compiler for Maya, is the pattern parser. It subjects both
templates that generate AST nodes and macro argument lists to a second level of parsing. Sequences of
ordinary syntax tree nodes are translated to trees of objects called RightSymbols:

class PatternParser {
RightSymbol parse(Object lhs, Environment env) { ... }
...

}
class TemplateParser extends PatternParser { ... }
class ArgumentParser extends PatternParser { ... }

An implementation of the Maya compiler might define several boolean variables to control different types
of debug logging. For instance, Debug.traceParse would enable logging of every move the LALR(1)
parser makes, and Debug.tracePatternParse would enable logging of every move made by the
pattern parser.

A detailed trace of parsing activity is critical to track down a bug in pattern parsing. For instance, the
compiler may fail on a particular template expression that generates a Statement node. To track down
this bug, we must obtain a trace of the template expression’s parse, but sifting through a trace of the entire
compilation unit is painful.

A generic wrapper can be used to limit debug output to the dynamic extent of a particular method as
follows:

Any wrapper traceParsing(rest Object[] args) {
Debug.traceParse = true;
Debug.tracePatternParse = true;
Any ret = wrapped.apply(args);
Debug.tracePatternParse = false;
Debug.traceParse = false;
return ret;

}

The traceParsing wrapper could be defined more carefully to handle recursion and exceptions, but the
above definition suffices for the debugging problem at hand.

Weaving this wrapper into PatternParser.parse() reduces the amount of extraneous debug out-
put, but does not eliminate it entirely. Instead, we can use traceParsing to build a wrapper that enables
logging exactly where it is needed:

wrap PatternParser.parse(Object,Environment)
with new RightSymbol conditionalWrapper

PatternParser(Object lhs, Environment env)
{ thisReceiver instanceof TemplateParser

&& lhs instanceof Type
&& (((Type) lhs).getReflectClass() == Statement.class); }

=> traceParsing;

Wrappers are woven into method definitions, rather than arbitrary <receiver, signature> pairs. There-
fore, the above wrapper must be woven into parse in its declaring class, PatternParser, and it must
explicitly check for the receiver class TemplateParser. While Handi-Wrap’s weaving mechanism is
extremely simple, flexible policies could be built on top of it. For instance, wildcard matching could weave
a wrapper into a method definition and all overriding definitions.

Like other aspect systems, Handi-Wrap can reduce development time by augmenting println and
interactive debuggers with tracing, contract enforcement, and so on. Handi-Wrap has an advantage over
static aspect weaving systems in that aspects can be woven without recompiling the weaving target.

7



class C {
static private boolean once = false;
static public Runnable m() {
class R implements Runnable {

public void run() { ... }
}
if (Debug.traceRuns && !once) {

// Wrapping R effects all instantiations of R, just as
// instanceof matches any instantiation of R. Only trace
// it once.
wrap R.run() with Wrappers.tracer;
once = true;

}
return new R();

}
}

Figure 3: An example of wrapping methods of local classes.

2.4 Wrapping Unmentionable Methods

Handi-Wrap’s tight integration with Java allows strictly more weaving than static aspect languages permit.
Handi-Wrap extends the language of statements and expressions. In comparison, AspectJ only extends the
language of top-level declarations. As a result of Handi-Wrap’s expressiveness, wrappers can be woven into
methods that cannot be named at the top level. In particular, methods in local and anonymous classes can
be wrapped. Figure 3 shows a wrap statement that can only appear inside implementation code. Here the
local class R can only be named within C.m(). Notice that wrap R.run() applies to all instances of
R, regardless of whether they are allocated by current invocation of m. In this respect, wrap matches the
behavior of instanceof and casts, because local classes are merely syntactic sugar.

Handi-Wrap also allows methods in truly anonymous classes to be wrapped:
static public Runnable m() {
return new Runnable() {

public wrapped(Wrappers.tracer) void run() { ... }
};

}

Here, the method declaration modifier wrapped(Wrappers.tracer) signals that the method run()
should be wrapped in a tracer. The expression Wrappers.tracer is evaluated and wrapping is performed
in the top-level class C’s static initializers.

3 Implementing Handi-Wrap in Maya

Handi-Wrap generates standard Java bytecode. If JVM compatibility were not an issue, an implementa-
tion might involve dynamically updating vtables. Given the constraints of the JVM, Handi-Wrap achieves
good performance through the use of carefully chosen data structures, and by open-coding a method’s orig-
inal definition in the same Java-bytecode method that dispatches wrappers. Handi-Wrap’s implementation
decisions are based on the assumption that the vast majority of methods will not be wrapped.

Handi-Wrap is implemented as a group of cooperating macros written in Maya. Maya is an extension
of Java that allows users to write their own syntax extensions, which are called Mayans. Mayans can
reinterpret or extend Maya syntax by expanding it to other Maya syntax: they operate on abstract syntax
trees, and their expansion is triggered during parsing as semantic actions. Maya’s expressiveness comes

8



from treating grammar productions as generic functions, and Mayans as multi-methods on those generic
functions. Mayans may override the translation of builtin productions, and may add new productions to
Maya’s LALR(1) grammar.

Handi-Wrap’s implementation performs a variety of tasks for which Maya is particularly well suited.
First, code to enable wrapping is woven into each class declaration in the component program. The prologue
woven into each method is generated programmatically, based on the method’s signature. Second, macros
encapsulate an efficient procedure-calling convention borrowed from the Kawa [5] Scheme to Java bytecode
compiler. Third, Handi-Wrap adds a variety of syntactic forms to Java. This is possible since Maya allows
its grammar to be extended in arbitrary ways.

While much of Handi-Wrap is implemented through syntax extensions, two important features are not:
Handi-Wrap generates code to call a wrapped method’s original definition from wrappers dynamically,
and code to enable wrapping of precompiled libraries is implemented using a binary rewriter based on the
Bytecode Engineering Library [11]. Without the bytecode rewriter, wrappers could only be dynamically
woven into methods compiled by Handi-Wrap.

Czarnecki and Eisenecker [10] describe two basic ways to implement aspects. First, source code trans-
formation can be used to statically weave aspects into component code, as in AspectJ. Second, dynamic re-
flection mechanisms can be used to weave code at runtime. Handi-Wrap takes a middle approach: compile-
time reflection (and in some cases bytecode rewriting) is used to insert minimal hooks that allow dynamic
wrapping.

3.1 Wrapping

Handi-Wrap builds wrapped method definitions from wrappee procedures through the method Wrap-
per.generate(). The two challenges in implementing wrappers are replacing an original method def-
inition with a wrapper procedure and generating a wrappee procedure corresponding to an original method
definition. The first challenge is met by weaving hooks into component code, and the second challenge is
met using dynamic code generation.

To support wrapping, Handi-Wrap adds a static field to each class and a prologue to each method body.
The field proc$ holds an array of wrapper procedures. This array is like a vtable except that it includes
static methods and excludes inherited methods. All proc$ entries are initially null. Handi-Wrap inserts
a prologue around each method mi; this prologue checks whether the method has been wrapped by com-
paring proc$[i] with null. If a wrapper is defined, mi calls through proc$[i], boxing arguments and
unboxing the return value as needed. Otherwise, the original method definition is executed.

Handi-Wrap uses the Kawa Scheme system’s calling convention, which is more efficient than stan-
dard Java interfaces such as Method.invoke(). Although Handi-Wrap supports procedures that take
a variable number of arguments, the allocation of argument arrays can be avoided in many cases. Also,
Handi-Wrap avoids dynamically allocating boxed representations of small integers through the flyweight
pattern.

To wrap a method mi, we set proc$[i] to the procedure returned by generate(). If other wrap-
pers have already been woven into mi, the second argument to generate() is the previous value of
proc$[i]. Otherwise, a bottom procedure object must be constructed for the method’s original definition.

Handi-Wrap makes a method’s original definition available by copying it into a new method that can
be called from a bottom procedure. Handi-Wrap generates a bottom procedure definition dynamically the
first time a method is wrapped. The generated code avoids the overhead of invoking methods through the
Java reflection API. One could instead statically generate a Procedure subclass for each method in the
component code, but this would make distributed binaries inordinately large.

9



Policy AspectJ Handi-Wrap
Custom Cache2nd CacheNth(1)

No advice 4.243 4.309 4.309 4.309
Shared cache 0.765 0.760 0.760 0.815
Per-target cache 0.812 0.772 0.874 0.898
Specific target cache 0.761 0.760 0.871 0.889
Optimize nulls 0.747

Table 2: Seconds spent executing the cache benchmark without directory existence cache.

3.2 Type Checking

Handi-Wrap implements static type checking as a thin veneer over a dynamically typed design. In practice,
the wrap statement provides most of the benefits of static type checking. Without wrap, weaving would
involve a series of tedious and error-prone calls to the Java reflection API in which methods and types are
encoded as strings. Nonetheless, one could imagine extending Handi-Wrap to perform more thorough static
checks.

The wrap statement statically ensures that there is a method to wrap. The wrap statement also checks
that wrappers are woven into methods with compatible signatures. Often, these checks are performed stati-
cally, based on the concrete type of the wrapper, but in some cases these checks must be deferred to runtime.
For instance, static information is not available when a method returns an anonymous wrapper instance.
Wrappers can also be defined by subclassing Wrapper, in which case Handi-Wrap does not see their types.
In such cases, the JVM enforces dynamic type safety.

Wrapper declarations may not contain throw clauses. This restriction prevents wrappers from explicitly
throwing checked exceptions, but does not limit the set of methods that may be wrapped. Since bottom
procedures are generated dynamically at the bytecode level, they are subject to Java Virtual Machine type-
checking rules, rather than the slightly more restrictive Java language rules. Specifically, bottom procedures
can and do ignore the declared exceptions thrown by procedures they call, since the JVM does not constrain
the exceptions that a method may throw.

Static checking could be improved by introducing wrapper and procedure signatures to the language.
For instance, the type of wrappers applicable to Object.hashCode() and System.identityHash-
Code() could be written as wrapper<Object -> int>. However, a polymorphic type system would
be needed to capture the behavior of methods such as makePerInstance() and makeCondition-
alWrapper().

4 Performance

Tests were run on a dual 350Mhz Pentium II machine with 256MB of memory. Tests were run using JDK-
1.3.1 using native threads and the Hotspot client compiler under Debian Linux with a version 2.2.12 kernel.
In both the Handi-Wrap and AspectJ tests, the ClassPath library was compiled with JDK-1.3.1’s javac.
For Handi-Wrap tests, the compiled library was retrofitted with the required hooks, and the test framework
was compiled with mayac. For AspectJ tests, the test framework was compiled with javac.

We measured the wall-time taken to perform a series of 7797 calls to ClassPath.lookup() ob-
tained by tracing a mayac run. Of these calls, 1058 had distinct arguments and 104 returned non-null.
Each of the 104 successful calls was made with a distinct argument, since successful calls add types to a
namespace.

Table 2 shows the number of seconds spent executing the ClassPath benchmark in several configura-

10



Policy AspectJ Handi-Wrap
Custom Cache2nd CacheNth(1)

No advice 0.944 0.965 0.965 0.965
Shared cache 0.252 0.253 0.253 0.316
Per-target cache 0.307 0.258 0.369 0.401
Specific target cache 0.254 0.251 0.367 0.382
Optimize nulls 0.236

Table 3: Seconds spent executing the cache benchmark with directory existence cache

tions: The first line shows base measurements with no wrapping. Subsequent lines give the result of adding
various caches around ClassPath.lookup(): one cache shared between all instances; a cache for each
instance defined using AspectJ’s pertarget, a hand-coded wrapper, and Handi-Wrap’s makePerIn-
stance(); and a cache on one particular instance defined using AspectJ’s if join point designator, a
hand-coded wrapper, and Handi-Wrap’s makeConditionalWrapper(). An optimized wrapper that
avoids storing null values into hash tables was also tested. The columns depict several implementation
strategies: a static implementation in AspectJ, a hand-coded wrapper, wrappers derived from cache2nd,
and wrappers derived from CacheNth.

In this example, Handi-Wrap imposes an acceptable overhead: Weaving cache2nd around a single
instance of ClassPath is roughly 15% slower than weaving AspectJ advice.

AspectJ’s static nature provides JVMs with more chances for optimization. For instance, AspectJ weaves
calls to private methods into code where Handi-Wrap weaves virtual function calls. However, Sun’s dynamic
compiler does not benefit from these inlining hints: a shared cache2nd wrapper is no less efficient than
unconditional advice in AspectJ.

Handi-Wrap’s support for a variable number of arguments imposes a considerable cost. A shared
CacheNth wrapper runs roughly 60ms slower than a cache2nd wrapper, or about 7.5 µs per call. Much
of this time is spent packing CacheNth’s arguments into an array, cloning the array for calls to the wrapped
method, and unpacking arguments from the cloned array.

AspectJ caches take a 50ms performance hit moving from a shared cache to per-target caches. This
makes sense, since per-target caching involves operations on a second hash table. Similarly cache2nd
takes a 115ms hit. This can be attributed to both additional hashing and operations on argument arrays.

When an AspectJ cache is woven into a specific target, the second hash table disappears, along with the
overhead it imposes. However, cache2nd does not get appreciably faster. This difference is due to the
implementation of makeConditionalWrapper(). The guard around AspectJ’s advice copies this
into a local variable and compares it against a field, while the guard around cache2nd applies a boolean
procedure to its argument array that performs the same comparison. Before we compare the lookup()
receiver against the cacheable instance, it is copied into an array, the array is cloned, and the receiver is
copied out of the clone. This sort of code presents a challenge to any optimizing compiler.

Handi-Wrap’s overhead can also be measured in the presence of other optimizations. For example,
ClassPath provides its own caching mechanism. A ClassPath object can be defined so that each
directory on the path memoizes nonexistent subdirectories. This cache captures redundancy between distinct
lookup arguments. For example, we could avoid a system call looking up ./java/lang/String.
class if we learned that ./java/lang does not exist when looking up Object.

The result of the caching benchmark with directory caching enabled is shown in Table 3. Handi-Wrap’s
absolute overhead remains the same: cache2nd on a specific instance is roughly 110ms slower than the
equivalent advice. However, the relative cost has increased: Handi-Wrap is now 44% slower than AspectJ,
and this overhead represents 31% of the time spent searching the class path. However, this overhead can be

11



Benchmark Original Retrofitted % cost

200 check 0.395 0.399 1.013%
227 mtrt 14.837 17.691 19.24%
202 jess 15.426 17.601 14.10%
201 compress 50.655 61.131 20.68%
209 db 49.213 48.471 -1.508%
222 mpegaudio 32.294 34.152 5.753%
228 jack 18.605 19.893 6.922%
213 javac 36.875 41.396 12.26%

Table 4: Seconds spent in SpecJVM benchmarks, with and without Handi-Wrap prologues.

eliminated through hand-inlining, as shown in the custom column. Further improvement is possible if one
avoids storing null values in HashMaps.

Most of Handi-Wrap’s overhead appears to be introduced by argument arrays. Some fairly simple
optimizations can reduce this cost. For instance, the wrapper procedures defined by makeCondition-
alWrapper() and makePerInstance() only use rest arguments to call other procedures. We could
avoid argument arrays entirely by specializing these procedures on arities up to 4.

In summary, Handi-Wrap’s generic wrappers introduce overhead into argument-list processing. This
overhead may be acceptable for unoptimized programs, but hand-inlining can be used when the overhead
grows too great.

We also measured the cost introduced by Handi-Wrap’s method prologues. We ran the SpecJVM98
benchmarks until a minimum execution time was reached. We then retrofitted the benchmark classes with
Handi-Wrap method prologues and repeated the test. The results are shown in Table 4. On average, Handi-
Wrap imposes a 9.8% overhead, but the overhead varies widely with the frequency of method calls. The
multi-threaded raytracer performs poorly since it uses private fields exclusively and includes frequent calls
to field getters. Jess also performs poorly, because builtin functions of the expert shell language are imple-
mented as Java methods, and these methods are typically quite small. Compress suffers because of a few
small methods called within its inner loop.

User intervention may be needed to achieve acceptable performance for certain code. An important first
step is not applying Handi-Wrap to code such as an LZW compressor that implements a single well defined
concern. Performance can also be improved by making particular methods unwrappable. For instance, the
cost of using Handi-Wrap with mtrt drops to 0.5% when prologues are not added to getter methods. Cur-
rently, however, Handi-Wrap does not provide a mechanism for such fine-grained control over wrappability.

5 Related Work

Handi-Wrap owes much to AspectJ [22]. Method wrappers achieve the same effect as AspectJ advice. How-
ever, AspectJ advice can be woven into a rich set of join points rather than merely method bodies. AspectJ
also provides an abstraction called pointcut not present in Handi-Wrap. AspectJ’s join point designators and
pointcuts provides a wide variety of functionality, much of which is also available in Handi-Wrap. First,
designators establish bindings to advice arguments, a role filled by Handi-Wrap’s parameter lists. Second,
designators determine when advice applies. In Handi-Wrap, this decision is made by the wrap statement,
rather than the wrapper definition. A wrap statement applies a wrapper to a particular method, and can
achieve finer-grained control through the use of conditional wrappers. Finally, join point designators may
include wildcards.

Handi-Wrap does not allow join-points to be specified through wildcards. It is unclear how wildcards

12



should work in Handi-Wrap. Should wildcard matching be performed statically or dynamically? Should
wildcards place restrictions on user-defined classloaders? Should wildcards load classes eagerly, as the
current wrap statement does, or lazily?

Handi-Wrap’s approach to advice reuse is more flexible than AspectJ’s abstract pointcuts in several
ways. First, all wrappers are reusable, rather than only those coded in a particular style. Hanenberg and Un-
land [14] describe a systematic but cumbersome technique for achieving reuse in AspectJ. Second, higher-
order wrappers such as makePerInstance() and makeConditionalWrapper() can be defined in
the Handi-Wrap language, rather than provided as primitives. User-defined wrappers can implement features
of join point designators. For instance, cflow’s functionality could be implemented easily and efficiently,
and within is certainly implementable. These operations provide the building blocks for others such as
this and withincode. Finally, higher-order wrappers fill the roles of both pointcut designators and the
aspect instantiation clause pertarget.

Other aspect systems such as SOFA/DCUP [15] and Aspectual Components [16] address the need for
separate compilation in a component context. Although these systems support dynamic aspect weaving, they
do not treat aspects at first-class Java entities; hence, they do not provide the additional reuse mechanisms
found in Handi-Wrap. Both systems do support wildcards, and pointcuts are the primary thrust of Aspectual
Components. Aspectual Components gives each pointcut a type based on “isA” and “hasA” relationships.

Other aspect systems have been implemented through metaprogramming. AOP/ST [4] is implemented
in VisualWorks Smalltalk. AOP/ST dynamically generates branches in the inheritance hierarchy and alters
the classes of objects. In AOP/ST, advice is woven into all direct instances of a particular class, whereas in
Handi-Wrap advice is woven into concrete method definitions directly.

DCOOL [9] implements AspectJ 0.1’s synchronization language in VisualWorks Smalltalk, while Lu-
nau [17] defines a meta-object protocol for Objective-C that supports method wrapping. Interestingly, both
these systems weave advice on a per-instance basis, rather than the per-class basis adopted by more recent
versions of AspectJ and by Handi-Wrap. Both DCOOL and Lunau’s system utilize dynamic reflection,
where Handi-Wrap uses compile-time reflection to insert exactly those hooks needed for dynamic weaving.
Handi-Wrap is similar to Lunau’s system in that both emphasize the importance of composition in aspect
code.

There has been a recent surge of interest in bridging the gap between class and prototype based inheri-
tance systems [7, 19]. Like the dynamic aspect systems described above, these mechanisms allow methods
to be overridden on a particular instance. Handi-Wrap is similar to the compound reference model [19] in
that both allow a Java method’s behavior to be changed at the statement level, rather than through external
aspect declarations.

David et al. [12] implement dynamic advice binding in AspectJ. Handi-Wrap follows a similar archi-
tecture, in which hooks are added to a method at compile time, and wrappers are defined on these hooks at
runtime. However, Handi-Wrap differs in that hooks are applied to all methods, rather than a specific set of
methods defined by a pointcut. Handi-Wrap also uses a more efficient implementation, since there are no
Java reflection calls on the critical path, and method arguments are not always passed in arrays.

While a number of powerful macro systems, compile-time metaprogramming extensions, and preproces-
sor toolkits [1, 3, 21] are available for Java, we believe that Maya is best suited for implementing a language
extension such as Handi-Wrap. First, Handi-Wrap extends Java’s concrete syntax in ways that can’t be
expressed by simple macro systems such as JSE [1] and compile-time MOPs such as OpenJava [21]. Sec-
ond, Handi-Wrap uses static type information that is not available in purely syntactic systems such as JSE
and JTS [3]. Finally, Maya allows overloading of syntax based on arbitrary static types and does not re-
quire the base-level program to explicitly refer to metaprograms. In contrast, OpenJava only allows syntax
overloading based on classes that explicitly instantiate a metaclass.

13



6 Conclusions

Handi-Wrap is an extension to Java that supports dynamic aspect weaving. Wrappers are reusable since
they can be defined locally, and can be defined with explicit constructor parameters. Handi-Wrap’s dy-
namic nature allows wrappers to be defined compositionally. Handi-Wrap also includes a library of generic
wrappers. Some wrappers fill the role of language constructs such as join point designators. Handi-Wrap
achieves efficiency within a standard JVM through carefully chosen data structures and limited use of the
Java reflection API. An implementation of Handi-Wrap is available at http://www.cs.utah.edu/
˜jbaker/maya.

This paper focused on method wrapping in Handi-Wrap. Other features of aspect-oriented languages,
such as introductions and wildcards, are not supported by Handi-Wrap. Maya can support method intro-
ductions through an implementation [2] of the MultiJava language extension [8], which allows externally
defined methods to be introduced into classes.

7 Acknowledgements

We thank Eric Eide, Alastair Reid, and John Regehr for their comments and suggestions. This research
was supported by the Defense Advanced Research Projects Agency and the Air Force Research Labora-
tory under agreement number F33615–00–C–1696 and a National Science Foundation CAREER award,
CCR–9876117. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation hereon.

References

[1] J. Bachrach and K. Playford. The Java syntactic extender (JSE). In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications ’01, 2001.

[2] J. Baker. Macros that play: Migrating from Java to Maya. Master’s thesis, University of Utah, Decem-
ber 2001.

[3] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for implementing domain-specific languages.
In 5th International Conference on Software Reuse, 1998.

[4] K. Böllert. On weaving aspects. In Proceedings of the European Conference on Object-Oriented
Programming ’99 Workshop on Aspect-Oriented Programming, 1999.

[5] P. Bothner. Kawa—compiling dynamic languages to the Java VM. In Proceedings of the USENIX
1998 Technical Conference, FREENIX Track, New Orleans, LA, June 1998. USENIX Association.

[6] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past: Adding
genericity to the Java programming language. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications ’98, Vancouver, October 1998. ACM.

[7] M. Büchi and W. Weck. Generic wrappers. In Proceedings of the European Conference on Object-
Oriented Programming ’00, pages 201–225, 2000.

[8] C. Clifton, G. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular open classes and sym-
metric multiple dispatch for Java. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications ’00, pages 130–146, Minneapolis, MN, Oct. 2000.

14



[9] K. Czarnecki. Dynamic cool. http://www.prakinf.tu-ilmenau.de/˜czarn/aop/
sources.tar.gz.

[10] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques, and Applications,
chapter 8. Addison-Wesley, 1999.

[11] M. Dahm. The byte code engineering library. http://bcel.sourceforge.net.

[12] P.-C. David, T. Ledoux, and N. N. M. Bouraqadi-Saâdani. Two-step weaving with reflection using
AspectJ. In Proceedings of the Conference on Object-Oriented Programming Systems, Languages,
and Applications ’01 Workshop on Advanced Seperation of Concerns in Object-Oriented Systems,
2001.

[13] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 171–183, 1998.

[14] S. Hanenberg and R. Unland. Using and reusing aspects in AspectJ. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Applications ’01 Workshop on Advanced
Seperation of Concerns in Object-Oriented Systems, 2001.

[15] N. D. Hoa. Dynamic aspects in SOFA/DCUP. Technical Report 99/07, Charles University, Prague,
June 1999.

[16] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual components. Technical Report
NU-CCS-99-01, Northeastern University, April 1999.

[17] C. P. Lunau. A reflective architecture for process control applications. In Proceedings of the European
Conference on Object-Oriented Programming ’97, 1997.

[18] P. Niemeyer. Beanshell — lightweight scripting for Java. http://www.beanshell.org/.

[19] K. Ostermann and M. Mezini. Object-oriented composition untangled. In Proceedings of the Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications ’01, 2001.

[20] G. Steele Jr. Common Lisp, the Language. Digital Press, second edition, 1990.

[21] M. Tatsubori, S. Chiba, M. Killijian, and K. Itano. Reflection and Software Engineering, volume 1826
of Lecture Notes in Computer Science, chapter OpenJava: A Class-based Macro System for Java.
Springer Verlag, 2000.

[22] Xerox. The AspectJ programming guide. http://www.aspectj.org/doc/dist/
progguide/.

15


