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ABSTRACT

Discrete-event network simulation is widely used to rapidésign, evaluate, and
validate new networking ideas as well as study the behavigxisting ones. It is
characterized by complete control, absolute repeatalahid ease of use while often
sacrificing detail and realism to increase execution efiimyeand the scale of models.
Network emulation allows the study of applications runnamgeal hosts and “somewhat
real” networks. A key difference between the two approadhéisat in the former, the
notion of time is virtual and is independent of real time, vdaes the latter must execute in
real time. Typically, emulated resources are also disteidbin nature. Thus, emulation
gains realism while naturally foregoing complete repeditgphistorically, emulation
was also tedious to control and manage.

Integrated Experimentsvhere we spatially combine real elements with simulated
elements to model different portions of a network topologyhe same experimental
run, enable new validation techniques and larger expetsridan obtainable by using
real elements alone.

In this thesis, we present a system in which we employ mellpbsely coordinated
simulator instances running on distributed PCs in reaktimmodel the simulated por-
tion of a network topology. Our key design techniques areetdgom optimistic auto-
mated resource allocation, and to use feedback to adapéltetate simulated resources
in order for the simulators to run in real-time. Multiple sitator configurations specific
to a resource assignment are automatically generated fi@xperimenter configuration
which is agnostic to the details of the physical realizatidhe entire system is highly

automated and is available for production use in Emulab.
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CHAPTER 1

INTRODUCTION

There are three experimental techniques used in the desdjwvalidation of new
and existing networking ideas: simulation, emulation anel hetwork testing. All three
techniques have unique benefits and tradeoffs comparecctoather. However, they
need not be viewed as competing techniques. Using all tkee tlechniques in a process
continuum helps validate ideas better than using any oinmigae alone.

Network simulation provides an absolutely repeatable antrolled environment
for network experimentation. It is easy to configure andvedl@ protocol designer to
build at a suitable level of abstraction making simulaticapid prototype-and-evaluate
environment. Such a rapid process allows discarding of nieaayalternatives before
attempting a full implementation. Ease of use also allowsldoge parameter-space
exploration. Discrete-event simulation, where the sirtiohastate changes only at dis-
crete points in time, is the most commonly used network erpartation technique.
ns[7, 11] is a widely used discrete-event packet-level nekvgamulator known for the
richness of transport, network and multicast protocoldfebumanagement, QoS and
packet scheduling algorithms as well as for models to perfaiireless and satellite
network experimentation. The accuracy of simulations igetelent on the level of
abstraction of the models. Models that incorporate a higghesl of detail reduce both
execution efficiency and scalability of the simulation. Aqperimenter is forced to make
a tradeoff between accuracy and efficiency without any aystie means of validating
the choice of abstraction [23]

Network emulation [5, 48, 41, 42, 55, 18] is a hybrid appro#wt combines real
elements of a deployed networked application, such as estd hnd protocol implemen-

tations, with synthetic, simulated, or abstracted elesenich as the network links, inter-
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mediate nodes and background traffic. Which elements arandavhich are partially or
fully simulated will often differ, depending on the expegnter’s needs and the available
resources. For example, as more components run real coogsdire networks, one
gains increasing realism at the potential cost of scaletraband unpredictability. A
fundamental difference between simulation and emulasdhat while the former runs
in virtual simulated time, the latter must run in real timenddher important difference
is that it is impossible to have an absolutely repeatableranfievents in an emulation
due to its real-time nature and typically, a distributeddeesources. Note that the mere
presence of real elements does not necessitate emulatiwrex&mple, NCTUns [58]
and umlsim [6] are simulators that use only real elementsvéver, these real elements
execute in virtual time bringing the advantages of real enpgntations and simulation
together. What makes emulation a useful experimental tqabns that realism is gained
by foregoing complete repeatability. Emulation providegavironment that is closer to
real environments than simulation. However, emulationesenractable as an evaluation
environment than the real world, such as the Internet.

Live networks such as the Internet provide realistic nekwannditions. However,
they lack repeatability and the ability to monitor or cohtrndermediate routers and links
in the network. Despite these drawbacks, researchers neged experiments over live
networks to make their ideas completely credible.

We define integrated network experimentatiorspatially combining real elements
with simulated elements in one or more instances of an egigimulation engine to
model different portions of a network topology in the sampezkmental run. An in-
tegrated experiment leverages the advantages of usingmeasimulated elements to
enable a) validation of experimental simulation modelsregiaeal traffic b) exposing
experimental real traffic to congestion-reactive crosSi¢rderived from a rich variety
of existing, validated simulation models, c¢) scaling t@&rtopologies by multiplexing
simulated elements on physical resources than would béy®®sth just real elements.
A related form of network experimentation is to integratpenmental techniquetem-
porally, as researchers experiment iteratively on the same inpadiding comparison

and validation. This is one of the key design goals of EmulEfte advantages of the
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latter are discussed elsewhere [60]. This thesis is contineliscussing issues in the
former.

In order to simulate workloads that cannot be simulated ai-tiene in a single
simulator instance, we use multiple simulator instances distributed set of PCs. Note
that an integrated network experiment where all simulatesources of an experiment
are modeled in a single simulator instance is different elével of repeatability from
an experiment where multiple simulator instances are usedadel different portions
of the overall topology. Although the former guaranteed titaevent is dispatched out
of order, the latter has no such guarantees due to the fumdahrmature of real-time
distributed systems. Thus, integrated experiments as weihgplemented it may have
global “causality errors,” naturally foregoing absoluepeatability offered by “pure”
simulations.

This thesis discusses many of the issues in integrated regxperimentation and
presents work that solves some of them in the process of esalylintegrating simulated
resources viasé in Emulab? In this thesis, we characterize the limits on performance
and accuracy fonse We design, implement, and evaluate an adaptive algorithm t
partition simulation models across a cluster to enable therrack real-time while
minimizing resource use. We present the routing challergjesd in integrated network
experimentation, discuss their relationship to other wh simulation (e.g., virtual
machines), design and implement a solution. We discusssies associated with event
management in integrated experimentation. As a resuleoitirk in this thesis, a user of
Emulab is able to include simulated resources in integrexperiments in a consistent,
highly automated manner without being concerned about fingisical realization.

The following is a list of contributions of this thesis.

e Elucidate several tricky semantic and technical issuesyder to support mul-
tiplexed virtual resources such as simulated resource€andab’s virtual-node

support.

'nsemulation facility [18] permits simulated packets to lestve simulator for the “real” network, and
vice versa. Refer to section 1.1.2 for an overview.

2Refer to section 1.1.1 for an overview.



e Add support for multiple routing tables in the OS, which sswne of the above
issues. Develop and implement solutions to solve some ektlssues to support

simulated resources.

e Develop methods to automatically adapt the packing of satedl resources onto
simulators running on physical PCs so that they are abledp ke with real-time.

We refer to this as “auto-adaptation.”

e Add primitives tonseto support multiple loosely coordinated instanceasdéthat
each model different portions of the simulation topologytia same experiment.
By loose coordination, we mean the delivery of user-spetgienulation events
that typically change traffic flows, such as starting or stoglows, over a com-

mon time-base.

e Integrate simulated resources seamlessly into an expet@mnenvironment that
allows experimenters to spatially combine real and sinedla¢sources in the same

experiment.

¢ Validate and analyze the performance integrated expetanen

We define here some of the terms we use in the rest of the thAsmode is a
physical PC node in Emulab. A virtual topology is one that@megimenter specifies and
is independent of its physical realization in the experitabenvironment. Unfortunately,
two definitions exist for the term vnode. odeis a nhode in the virtual topology which
could be of different types such a PC vnode, simulated vnodertual machine” vnode.
The term vnode is also sometimes used by itself to mean ai&limachine” vnode. In
this thesis, however, we restrict ourselves to the first definunless otherwise stated.
Similarly, vlinks andplinks are virtual links in the virtual topology and physical links

respectively.



1.1 Background

1.1.1 Emulab

Emulab is a general system for network experimentationgdesd to provide con-
sistent access to all three experimental techniques latede. As such, its architec-
ture separates the front-end presented to experimentarstfre internal workings of
Emulab, which is also separated from the back-end mecharisah instantiate experi-
ments. In this section, we give a brief overview of that aeatture, shown in Figure 1.1.
Emulab functions like an operating system for experimentdistributed systems and
networking—it provides interfaces and tools to turn banelare into something much
more effective to use. Emulab strives to preserve, howé&waw,’ access to the hardware
for users who require it.

Similar to an operating system process, an “experiment’nsilab’s central op-
erational entity—it encapsulates an experiment run by a uses directly generated
from a front-end representation and then represented biabakse. Emulab instantiates
the experiment onto available hardware, performing thicdif tasks of choosing the
appropriate resources and configuring nodes and links. Al&maxperiment may last
from a dozen minutes to many weeks, giving researchers tirmeake multiple runs,

change their software and parameters, or do long-term daite@igng.

User Interface ) ) ) ) )
Accounts and Database | Cluster | Wide-Area | Multiplexed | Simulation | IXP | PlanetLab) Wireless
Expt. Config./Control Link Management
Back-ends
Node Management
Users TeStped Run-Time Clearing Node State Resource Allocation
Admins Control
Web Interface GUI . Node Monitoring/Control Experiment Scheduling
Command-line NS Scripts D'sEt(/'gﬁ%Ed
XML-RPC System Node Self-Configuration Experiment Configuration
Database (MySQL) Access Control Account Management
(Integrated in all aspects of the Emulab system)

Figure 1.1 Emulab system architecture



To specify an experiment, users uploadnascript. Its use provides a powerful and
familiar specification language; in addition, Emulab alsat@ires a “point-and-click”
GUI that allows experimenters to draw their desired expenttopology, generating an
appropriatens script for them. The main primitives in an experiment speatfon are
nodes and links. When specifying nodes, experimentersezgurest specific hardware,
operating systems, and other parameters. Network linksmehyde characteristics such
as delay, bandwidth, and packet loss. Events can be alschedided to change link
characteristics, bring down links or nodes, and start and s@ffic generators. The
distributed event system is based on the Elvin [17] puldishscribe system.

After being read by Emulab’s custom parser, the experinygtification is uploaded
to a database. The experiment state stored in the databfasthes used in all parts of
Emulab including experiment instantiation (also callegdp in”). Experiment instantia-
tion begins with resource assignment. Finding hardwarenttaaches an experimenter’s
desired topology is an NP-hard problem. To find matches tretenefficient use of
resources, without overloading bottlenecks such as @wgish links, Emulab imple-
ments a custom solver discussed in detail in [44]. Differesburces are reserved and
configured using different back-ends. Allocated physieaburces such as PCs boot
up and self-configure by contacting Emulals&sterhosto download the necessary
customizations. At the end of this process, an experimetgvispped in” and ready
for experimentation.

Emulab’s emulation back-end uses dedicated PCs and phlysicsto realize exper-
iments. Although this conservative allocation introduttesleast experimental artifacts,
the size of any experiment is limited to the number of phyidi&2s and the node degree
to the number of network interfaces on these PCs. This opgias wpportunity to use
“soft” resources such as simulated or “virtual machine’etyglements and multiplex
them on physical PCs, thus scaling experiment size. For pbamseveral simulated
nodes and moderate speed simulated links can fit on a phy&@aSimilarly several

moderate speed virtual links can be multiplexed on a higtedphysical link.



1.1.2 Nse

The simulation back-end in Emulab that is described in tis¢ oéthe thesis takes
advantage of thas emulation facility (callechsg [18] permitting simulated packets to
leave the simulator for the “real” network, and vice versee supports two modes:
opaque emulation modendprotocol emulation modeMode selection is merely based
on nsés runtime configuration. These modes are not mutually esteduand can be
combined in a single run. lapaque emulation modéve packets from the network are
treated as opaque packets that may be dropped, delayedemredor duplicated in the
simulated network and then perhaps reinjected into thear&tvbuch packets typically
interact with packets natively generated in the simulatorduter queues.Protocol
emulation modeés where a simulator protocol implementation is commuimgatvith
its real-world counterpart. To assist this mode, softwdrarfsducers” convert packet
formats from simulator to real-world and vice versa. In tthissis, we use only the
opaque emulation mode. The reason for this is tisas predominantly composed of
abstracted protocol elements that are incapable of conuating with real protocol
elements without large-scale modifications. Howevexjn itself does not pose any
restrictions in building a detailed protocol model thatuiyf compliant with the specifi-
cation as much as a real world implementation. The basicatiperofnseis illustrated
in Figure 1.2.

Opague emulation mode by itself is widely useful in the kihdeal-simulated traffic
interaction in simulated router queues that it enablese @it even in opaque emulation
mode, some protocol fields, such as packet length and TTltakes into account when
it is introduced into the simulation.

Other than the ability for simulator packets to cross int® téal network and vice
versa,nseis indistinguishable frooms Even though we only useseto implement

integrated experiments, the temais sometimes interchangeably used in this thesis.
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CHAPTER 2

ISSUES

In this chapter, we elucidate several semantic and techissaes that need to be
addressed in order to support multiplexed virtual resaisteh as simulated resources
and “virtual machine” type resources in an integrated exrpant. We only discuss sim-
ulation performance, model validity and fidelity issues véas we implement solutions

for the other issues.

2.1 Naming and Addressing Issues
Multiplexing virtual nodes onto physical nodes, and conmgrthese with simulated
and emulated nodes, raises some interesting challengesasfiect to naming, address-

ing, and routing between nodes.

2.1.1 Node Naming

One of the strengths of Emulab, which we build on, is virzedi naming for all
nodes. Within an experiment, all nodes share a common naoesjhe hostnames by
which they refer to themselves and other nodes are the Vinaraes assigned by the
experimenter, rather than the physical name of the hardihasehappen to be instanti-
ated on. This is critical for transparency in two ways. Firstrees experimenters from
having to change their experiment depending on which haielWavas instantiated on.
Second, it allows portions of the experiment to be moved betwdifferent simulation

and emulation mechanisms, without having to change thefelse experiment.

2.1.2 Node Addressing
Subtle differences in addressing semantics between simubnd emulation presents

several problems when our goals are to achieve both tragrsipiategration and equiv-
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alence. The facility the testbed uses for allowing simuldtaffic to interact with real
traffic, nse[18], was designed as a simulator that is run on a single machWhen two
or more instances afseare distributed across physical machines to simulate ressin
the same experiment, the node addresses used by thensezrk not unique across these
instances. Routing packets between these instances waudabt be possible without
global addresses. IP addresses within Emulab are unique éx@eriment Therefore,
we use IP addresses for global routing of simulator packtssupport this, we have
extended packet forwarding imseto use IP addresses.

nseassigns a single address to eaxdde In real operating systems, however, IP
addresses are assigned to eaelwork interface To support seamless integration of
simulated nodes in integrated experiments, we have extiemskto add IP addresses to
every link (i.e., interface) on a node. The source addrepsciets originating from that
node is marked with one of its addresses.

Operating systems typically do not require that packetgeaon an interface with the
destination IP address equal to the IP address of the interfiehus, all the IP addresses
of such a multihomed host refer to the same node. This repietdee “weak end system
model” [53, 9], in which network layer addresses refer toesdather than interfaces.
Emulab’s support for static routing did not originally reub all IP addresses of a node.
In Emulab we have extended the routing to use the same shypatédor all IP addresses
of a multihomed host. This sometimes causes nonintuitiveesoas well as unused links
in the case of redundant paths. However, route paths arestemsegardless of which IP
address of a node is used by an application, and thus helgpsrpeerepeatability across
experimental invocations. This has its downsides, for gxani studying the effect of
controllable multihoming on end to end performance. In saaase an experimenter

could turn off static routing, instead using manual routindemulab’s dynamic routing.

2.2 Routing
Multiplexing virtual or simulated nodes and links on physical nodes amiaIposes
an acute problem in the correct routing of packets. Packetsld be routed according

to the virtual topology and its routing dynamics over the gibgl topology. This appears
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straightforward, but there are several challenges. In ¢n@amder of this section, we
discuss these problems, referring to Figure 2.1 to illtstitze examples.

First, relying on a single routing table provided by the hasysical node operating
system, and shared by all virtual nodes, is insufficient. tMld routing tables, one per
virtual node, is an elegant solution to address the issue.

Second, incoming packets on a physical node require thexbaot the virtual link
on which they arrived so that route lookups can be directatléaorrect routing table,
the table that corresponds to the virtual node on the entpébithe virtual link. For
example, a packet from source A0 to CO should follow the p&th-B0—A1—B1—CO.
This translates to physical hopsA—A—B—C. On physical node B, the physical
next hop will be either A or C depending on whether the packetexd on virtual link
vlink0-BO or vlink2-B1. Therefore, if a packet arrived onnk0-BO, the route lookup
should be directed to BO’s copy of the routing table and ifrived on vlink2-B1, to B1’s
routing table. Touch et al. identify this issue and term @visitation” [53], although in
their context, a packet leaves a physical node before rietyon a different virtual link.
In our system, multiple routing tables as well as the condéxt virtual link are needed

even when all the nodes and links of a virtual topology aredtben one physical host.

(=] o — o
T 7 T 9
HostA g g Host B ¢ ¢ HostC
g & g 8
vlink0—A0 vlink0-BO o
AO BO viend™>> 1CO
AL | TR0 | -
Vink1 722 — viink-= wlond7BL -2 vlink5-CO
Al ar vinkz-B1 1B -7 UinkE—C1
- /b‘/%rb
r o™
A2[ Vi Az _ Vinka-B2 B2 @ . Cl
plink0 plink1

Figure 2.1 A network topology illustrating routing issues due to thaltiplexing of
simulated nodes and links. Large boxes represent physicEsand links, while small
boxes and lines (witltalicized label3 represent simulated nodes and links. Virtual net-
work interfaces ¢links), virtual LANs (vlans), physical interfacesiface), and physical
links (plinks) have names as shown.



12

Third, depending on the mapping, packets will have sourckdastination virtual
nodes on the same physical node. Under such circumstan&snddifications are
required to ensure that packets are not short circuitedmitte protocol stack instead
of routed according to the virtual topology. For examplesider a packet from source
A0 to A2. Since these two virtual nodes are on the same pHysicke, many OSes short
circuit the packet.

Fourth, virtual nodes on a LAN that are mapped to differentsatal nodes and span
multiple physical links/interfaces on one or more physivadles are an issue. A LAN
requires that the IP addresses of its members be in the sasubifetwork. Attaching
two IP addresses in the same subnetwork on two differentarktimterfaces is disal-
lowed by most OSes. Overcoming this problem requires cenasliide OS modifications.
For example, virtual nodes B1, B2 and CO are on a virtual LAN.a@ad B2, however,
are mapped to the same physical node B. If vlan4-B1 and VvBihdre the two virtual
interfaces that are part of the virtual LAN, most OSes do Hotethe attachment of IP
addresses in the same subnet, which is necessary in thjooabese interfaces. Emulab
solves all these issues.

Finally, as the topology is scaled using multiplexing, thabgl and per-vnode routing
table size increases. A simple all pairs shortest path idtgorfor N nodes results in
O(N?) routes withN routes per virtual node. We discuss our solution to thisisgal

problem in this paper currently under submission [25].

2.3 Model Validity and Fidelity
Integrated experiments are typically constructed with et®that represent the cor-
responding real world phenomenon for reasons of scaleiegftig and availability of the
real-world phenomenon for experimentation. Models arestronted at different levels
of abstraction or detail with respect to the real-world pireenon they represent. For
example, it may be easy to include a full implementation ofaqxol in an experiment
rather than using an abstract model. On the other hand, #sieeto model network

links or nodes than include those real components. In owéevierage the benefits

IEspecially when automated experimental environments asi@mulab are unavailable
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of integrated experimentation, such as scaling by repiaportions of a real topology
with a simulated one, it is necessary to ensure the fidelitthefmodels with respect
to the real-world components they replace. For exampléacemy a real low-error-rate
wired-network-link with a simulated one having a simple ralof delay, bandwidth and
statistical errors will continue to provide expected ré&surhe same is difficult to ensure
in wireless networks [23]. Even if a model is faithful to a lr@arld implementation,
both the model and the implementation may not be valid witipeet to the real-world
phenomenon they represent. For example, a TCP dynamicsireepé [60] on Emu-
lab that compared different flavors of TCP between FreeBSplamentations ands
models uncovered a subtle bug in the FreeBSD implementafibis experiment was
based on aas-simulation comparison of different TCP flavors performgdHall and
Floyd [19].

2.3.1 Shared Implementation

Several simulators [10, 38, 58, 6] provide interfaces farst implementation be-
tween pure simulation, emulation and live experimentati®@uch mechanisms have
many advantages: fidelity of the model across experimeatainiques, increased real-
ism and rapid progress from concept to production due toatemtuin development time.
However, it is important to have abstraction as a technigwalidating networking ideas.
This is because shared implementations require subdtamtiare detail that makes it
difficult to quickly prototype and validate new ideas. Fudlgtailed implementations
also make it difficult to attribute observed experimentaiutes to specific parts of the
implementation and also increases the chances of introguntigs.

nsdoes not export a POSIX or POSIX-like API for shared impletagons. There-
fore, it requires a large-scale software reengineeringyietib port real implementations
tons

Because of issues in abstraction and fidelity of modelsd& an experimenter per-
forming integrated experimentation to know the differennbetween real resources and
simulated resources. We discuss such differences belowebatkey resources such as

nodes, links, LANs and protocols in Emulab amsk
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2.3.2 Nodes

Emulab supports node types such as simulated nodes, PC, noidiesrea PCs,
virtual PCs using a modified version of FreeBSD’s jail [30pramitive form of virtual
machine. Simulated and jail nodes are lightweight virtuade abstractions that allow
multiplexing on PCs and scale experiments beyond the lilmR@s. A single PC in
Emulab could be used as a router, a delay node, an end-nosa dioat for multiplexing
simulated or jail nodes.

nsdoes not model node delays common in real PCs: packet copyeread across
PCI buses and memory and buffering in the hardware intedddée the OS is busy
performing other useful work. It is also not common to modgbredictable hardware

interrupts in network simulation.

2.3.3 Links

Links in Emulab between PC nodes with different bandwidtt dalay character-
istics are realized by interposing a traffic-shaping nodeveen the PC nodes. A real
link that has the above characteristics behaves diffgrdaticausing packet drops at
the network interface of the node on the link-endpoint rathan in the link. Such
interface packet drops can be detected on the nodes and cautg applications to
behave differently between emulated and real links. Intpracthis difference has no
effect on congestion reactive TCP or TCP-friendly trafficm@&ated links inns are
somewhat similar to the traffic-shaped links in Emulab irt thgerface drops are also
not present here. A difference between emulated and siedliaks is in observed value
of delay versus the specified one. Emulated links are rehliseng hardware switched
VLANSs and involves copying overhead that is not present musated links. Switch
effects increase inter node delay by a factor of 1.5 to 2 per{61]. Because these are

constant overheads, compensation could be easily addesimutlation if required.

2.3.4 LANs
LANSs in Emulab are essentially switched VLANSs. Effects saslcollision are very

limited in this environment and can thus scale the numberoofes on a LAN well
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beyond traditional broadcast LAN&s models a broadcast LAN. Because they are not

equivalent, replacing one with the other will affect theulesof experiments.

2.3.5 Protocols

nshas a large number of TCP model variants, many of which nowe neal imple-
mentations that behave and perform similar to their copares in simulation. However,
the simulation TCP models, known as one-way TCP, are abstranodels. They do
not perform initial connection setups and teardowns, dohawmidle sequence number
wraparounds, use nonstandard data types for header fie@ldgytdmplement dynamic
receiver advertised window, etc. [3]. The name “one-way TBRused because data
transfer is allowed only in one direction and only ACKs arewaed in the reverse path
for every connectionnsalso has a TCP variant known as FullTcp which is intended to
model a TCP in complete detail. This model allows two-waydtaneous data transfer
and performs initial connection setup. Although this modetlerived from a Reno
BSD implementation, the port tos was not entirely faithful. It uses a 31-bit signed
integer to represent TCP sequence numbers similar to athene-way TCP variants.
It does not handle sequence number wraparounds and doempieiment dynamic
receiver advertised window. Implementation issues sudhiasnake it impossible to
have a mixture of real and simulated protocol endpoints autHixing the simulated
implementation.

ns uses more accurate timers for TCP than does a real OS impiatioen Inns
every TCP endpoint schedules separate timer events edcla fiite granularity. A real
implementation such as TCP in BSD uses very few timers perdmas thus timeouts
have a coarser granularity. For example, BSD TCP uses a sty tf 0.5 seconds
that sweeps through all active TCP connections to declare-tuts for ones that have
expired in the last 0.5 seconds [39]. Differences such asrles listed above can alter
initial or steady state throughput by a factor of 2-10 [24]
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2.4 Scalable Resource Allocation and Mapping

Network experimentation on real hardware requires a mapfsom the virtual re-
sources an experimenter requests to available physic@alness. This problem arises in
a wide range of experimental environments, from networklatian to distributed sim-
ulation. This mapping, however, is difficult, as it must takaumber of varying virtual
resource constraints into account to “fit” into physicalo@ses that have bandwidth
bottlenecks and finite physical node memory and compute po®Reor mapping can
reduce efficiency and worse, introduce inaccuracies—sacokhgen simulation events
cannot keep up with real-time—into an experiment. We cadl ginoblem the “network
testbed mapping problem” [45]. In general graph theory serimis is equivalent to the
graph embedding or mapping problem with additional consisapecific to this domain.
This problem is NP-hard [45].

The mapping could be many-to-one, such as multiple vnodeéslarks on a physical
node, one-to-one, such as a router node on a physical PCedpbenany, such as a vlink
of 400Mbps that uses four physical 100Mbps lifi[&5].

When simulated traffic interacts with real traffic, it musegeup with real time. For
large simulations, this makes it necessary to distribwgesiimulation across many nodes.
In order to do this effectively, the mapping must avoid “dgading” any pnode in the
system, and must minimize the links in the simulated topptbgt cross real plinks. By
“overload,” we mean that there are are more simulated reesumapped to a pnode than
the instance of a simulator can simulate in real-time.

“Pure” distributed simulation also requires similar magpiln this case, rather than
keeping up with real time, the primary goal is to speed up {amging simulations
by distributing the computation across multiple machir8stHowever, communication
between the machines can become a bottleneck, so a “googiingapf simulated nodes
onto pnodes is important to overall performance. Althougb its primarily achieved by

minimizing the number of vlinks that cross pnodes, anothetdr that affects perfor-

2Although the latter is not supported currently in Emulab kapper known aassi gn. assi gn was
designed and implemented by other Emulab contributors p@omary role is that of a user of this mapper
to implement integrated experimentation
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mance is the lookahead that can be achieved. Lookaheasd tetée ability to determine
the amount of simulated time that could be safely processaemhé simulator process
without causality errors due to events from a different $atian process. Lookahead is
affected by thalistancebetween simulation processes [21]. Distance provides arlow
bound in the amount of simulated time that must elapse forrpracessed event on
one process to propagate (and possibly affect) anotheegsod herefore, it is not just
important that a good mapping has fewer links crossing stian processes, but also
for them to be lower bandwidth links because they increastanice and thus lookahead,
leading to improvement of efficiency of a distributed sintiga.

A good mapping has the following properties:

e Sparse cuts: The number of vlinks whose incident vnodes apped to different
pnodes should be minimized. At the same time, the numberades and vlinks

mapped to the same pnode should not exceed its emulationittapa

e Low congestion: The number of vlinks that share plinks sticag# minimized
without over-subscribing the plinks. Although some pliskeh as node-to-switch
plinks are dedicated to an experiment, others such aswitehsplinks are shared
between experiments. By minimizing vlinks mapped to shaks, space-

sharing efficiency is increased.

e Low dilation: The physical length (i.e., hops) that corr@sg to mapped vlinks,
also known as dilation, should be kept to a minimum. For eXangvlink that is
mapped to a plink that traverses multiple cascaded switthésss desirable than

one that traverses only one switch.

e Efficient use of resources across experiments: The unugetita of physical
resources that are not shared across experiments must beok&pninium. In
other words, minimize usage of shared resources such asviitieh links and
maximize usage of experiment private resources such aseprayd! switch links

from/to these nodes.
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e Fast Runtimes: A suboptimal solution arrived at quickly isam more valuable
than a near optimal solution that has very long runtimes,(engutes vs. hours).
This aspect becomes important when we map iteratively usimgme information
to perform auto-adaptation of simulated resources. Dud@oNP-hard nature
of the problem, the runtimes are easily exacerbated by rdagpologies made

possible by “soft” resources such as simulated or “virtuathine” resources.

assi gn supports a node type system. Each node in the virtual togotogiven a
type by the experimenter, and each node in the physicalaggdias a set of types that it
is able to satisfy. Each type on a pnode is associated witaekipg factor” (also known
as “co-locate factor”), indicating how many nodes of thaetyt can accommodate. This
enables multiple vnodes to share a pnode, as required lyranéel experimentation as
well as “pure” distributed simulation. For example sif mis the type associated with
simulated nodes, a pnode will support a co-locate factandoles of typesi m However,
if all virtual or simulated nodes are considered to be eqh#, can lead to suboptimal
mapping since typically the pnode resources consumed bgilemare all different. To
achieve better mapping, arbitrary resource descriptiongfodes and pnodes need to be
supported. However, this adds a bin-packing problem tor@ady complicated solution
space. In order to flexibly support soft resources such aslated or “virtual machine”
resources, several new features were added recerdlydogn [25]. We describe these

features below

e Limited intranode bandwidth.

e Resource descriptions.

e Dynamic physical equivalence classes.
e Choice of pnode while mapping.

e Coarsening the virtual graph.

3We discuss how they are used to iteratively map simulatezliress in section 3.4
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2.4.1 Limited Intranode Bandwidth

When multiple vhodes are mapped to a pnode, vlinks are algpedhto the same
pnode. Originally, there was no cost for such vlinks whictkesait possible to poten-
tially map an arbitrarily large number of vlinks. In realitypwever, there is a limit on
the number and total capacity of vlinks that can be supporid idle vlink has no
cost other than memory used up in the simulator. Howevergtlgea computational
cost of processing packets when traffic passes throughsvliaksi gn now supports
an upper limit on the intranode bandwidth and uses it whenpmagpvlinks whose
capacities are allowed to add up to the bandwidth. When mgpgpmulated resources,
we set this capacity to 100Mbps on Emulab hardware, basedeasumements reported

in section 4.1.

2.4.2 Resource Descriptions

Pnodes support arbitrary resource capacity descriptimtsas CPU speed, memory,
measured network emulation capacity, and real-time sitiauna@vent rate. Essentially
this could be any value that represents an arbitrary resocapacity. Capacities for
multiple resources are possible per pnode. Thus, vhodésr@sburce usage values for
multiple resources are counted against the above casaditie possible to use resource
descriptions even if only relative resource usage betwaedes is known. For example,
if vnode A consumes thrice as many resources as vhode B, vhodeen mapped to an

empty pnode would become 75% full.

2.4.3 Dynamic Physical Equivalence Classes
assi gn reduces its search space by finding groups of homogenouggaod com-
bining them into physical equivalence classes. When makipg vnodes on pnodes, a
pnode that is partially filled is not equal to an empty nodeisTi not just in pnode
capacity but also in its physical connectivity to other pe®dince the plinks between
them are also patrtially filledassi gn now computes the physical equivalence classes
dynamically while mapping. Although this helps a littlejgHeature is close to not

having physical equivalence classes at all. This factohésdominant contributor to
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longer runtimes when mapping multiple vnodes on pnodespeoed to an equal-sized
topology with one-to-one mapping. For large topologies,rimtimes can be very long,

into the tens of minutes and even hours.

2.4.4 Choice of Pnode While Mapping
As we noted before, a good mapping is likely to map two vnodatdre adjacent in
the virtual topology, to the same pnode. Instead of selg@inandom pnode to map a
vnode,assi gn, now, with some probability, selects a pnode to which ondeftode’s
neighbors has already been assigned. This dramaticallpirap the quality of solutions,

although not the runtimes on large topologies.

2.4.5 Coarsening the Virtual Graph
Using a multilevel graph partitioner, METIS[31], which umuch faster thaassi gn
primarily because it has no knowledge of the intricacieshef problem, the virtual
topology is “coarsened.” By “coarsening,” we mean that sétenodes are combined
to form a “conglomerate” to form a new virtual graph which len fed toassi gn.
This feature dramatically improves runtimes, again duééoréduction in search space,

making it practical to perform auto-adaptation.

2.5 Automation of Integrated Experiments

Virtualization and mapping are not nearly as useful withewtbomation of the com-
plete experiment life cycle. For example, comparisons betwmanual experimental
setup against an automated one of a six node “dumbbell” égoin Emulab show
an improvement of a factor of 70 in the automated case [60]e @mthe aspects of
automating the mapping of the simulated portion of an irgtgt experiment is that the
specification of the simulated topology must be used to geeenultiple specifications
for each subportion of the topology that gets mapped to raiffephysical nodes. The
structure of the specification language and the relatigriséiween virtualized resources
can have an impact on the ease of doing this. The use of OTLld5$eneral purpose

programming language with loops and conditionals, for gpation in nsand Emulab
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makes the above task difficult compared to a domain specifiguiage that enforces
relationships between resources at the syntactic leveleXample, the domain specific
language (DML) used by the scalable simulation framewo&H$L5]) simulator has a
hierarchical attribute tree notation [14] that would makedsier to generate specifica-
tions of subportions of the full topology. DML is a staticeé-structured notation similar
to XML. Because of the tree-structured nature of DML, a nadl# igs attributes as well
as any resources belonging to the node are syntacticaligahéBhus, a simple parser can
partition such a node and everything associated with ityed@3n the other handysOTcl
can have simulated resources with logically nested relahips scattered anywhere in
the code without explicit syntactic hints, making such iarting more complex.
Emulab uses an OTcl interpreter to parse a user’'s OTcl [58¢ifpation into an
intermediate representation and stores this in a datalt@3e [The parser statically
evaluates the OTcl script and therefore takes loops andtoamals into account. Using
a similar approach, we have developed a custom parser te gassimulated portion
of the integrated experiment specification and generatedbel specifications for each
subportion of the topology mapped to a physical nhode. Thegdesf such a custom
parser is discussed in the section 3.2.3. The implementdéscribed in this section can
be retargeted to generating OTcl subspecifications to map ghstributed simulation
usingpdns albeit with modest changes to our implementation. It is@asse project

that will be done outside of this thesis.

2.6 Performance
In the case of integrated experimentation, the performafi@ simulation is even
more critical than “pure” simulations as it could resultmaccurate results if performed
with a model size that exceeds the capacity of a simulatéameg as opposed to just
taking longer to complete in pure simulations. Mapping istedl to performance be-
cause the quality of mapping is dependent on the ability &vaitterize the performance

of simulation as accurately as possible. An overly optimistapping of simulated

4In our system, a violation is detected under an overload la@@xperiment is retried with a different
mapping or aborted after several retries
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resources could cause one or more simulated partitionsttwask real-time, thus pro-
ducing inaccurate results. On the other hand, an overlyipetE mapping does not
fully exploit physical resources. An additional overheadrmpure simulation is the need
to capture and inject live network packets. Link emulatarshsas dummynet [48] are
therefore implemented in the OS kernel to avoid the pacipying and context-switch
overheads across user-kernel boundaries.

We first present an overview of the performance aspects & punulation. The
execution time of a discrete event simulation is propo#lda the number of events that
need to be processed in a unit of simulation, known as theteag:n Even though the
computation performed by different events is differengraging over large runtimes of
a complex simulation provides an adequate measure of thralbeemputational effort
of a simulator [35]. The event rate is proportional to theef the model and the rate
of traffic flow. In real-time simulations, it is also usefultoeasure the number of events
processed in a unit of runtime. In this thesis, we presenttewith events per runtime
as we mostly experiment with simulations that are shorteBd\vechniques are used to
speed up simulations: increasing the computational powadladle for simulations via
faster CPUs and parallel simulations on multiple procesgtr, 46, 40], improved event
list algorithms and increasing the level of abstractior2pl,35, 22]. The latter technique
reduces the event rate of a comparable model by changingdhalgrity of simulations.
For example, fluid models abstract streams of packets asffwic in which events
correspond to fluid rate changes at traffic sources and nketoyueues. Most of these
techniques trade off accuracy for increased speed. In sasescsuch as large scale
networks, packet-level simulation is likely to outperfofiond simulation due to “ripple
effects” [36].

Improved event list algorithms such as calendar queuehhd a theoretical asymp-
totic running time of O(1) for all operations. The splay t{&éd] is an O(log n) al-
gorithm [29] that is preferred when the number of events i queue is not large.
In practice, it is easy for the running time of the calendaguwpito degrade to linear
time [40]. In our experience, both the calendar queue aral/gpte implementations in

nseperform equally well with the link emulation workloads weveaested.
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A study that compares the performance of a few packet-lewellators, namelyns
JavaSim SSFNet in JavandSSFNet in C++ under a specific type of workload with a
“dumbbell” topology, foundhsto be the fastest simulator [39]. Thussseems to be a
better choice for integrated experimentation than othekgialevel simulators, in both

performance as well as the variety of existing, validatextquol modules.

2.7 Real-time Simulation Issues
We present two real-time simulation issues that can arisefdhe choice of imple-
mentation. The basic pseudo code for the real-time eveertstér innseis presented in

Figure 2.2. The simulator clock is frequently syncrhonizedeal-time.

2.7.1 Physical Clock Rate Stability and Skew
The simulator uses some physical clock to track real-timige physical clock rate
stability is more important for our purposes than clocketffsom the true time. Synchro-
nization to real-time was originally performednseby making a Unibpget t i meof day ()

system call and subtracting the time from the initial valtithe same at the beginning of

bool halted = fal se;
doubl e si m cl ock;
while( lhalted ) {

/1 get event with earliest tinmestanp;
next _event = get_next_event();

/'l synchroni ze sinulator-clock to real -tine;
/] Get real tinme relative to start of sinulation
simclock = get_real _tinme_clock();

whi | e( next_event->tinestanp <= simclock ) {
di spat ch(next _event);
}

/] Get real tine relative to start of sinmulation
simclock = get_real _tinme_clock();

/| Check and introduce |ive packets (e.g. from network)
/'l or events (e.g. fromevent system from external
/1 sources if any.
if ( poll_external _event() == true ) {
insert_external _events();
}

Figure 2.2 Pseudo code for thesereal-time event scheduler causing accumalated errors
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the simulation. Since the above synchronization is peréariinequently, the relatively
high cost of a system call- as compared to simple functids-aicreases the overhead
of the scheduler. Most of the newgB6 processors support an accurate CPU cycle
counter or in Pentium processor terminology, known as tie-tamp-counter (TSC)
directly readable in “user-mode.” Most operating systemgqrm a calibration of the
rate of this counter in order to determine CPU speed duriraj time and export this
value to user applications. Reading the TSC hardware coismtdeap and using the
rate above, we get an accurate estimate of the real-timsedapVe have modifieaseto
use this counter when it is available. Although the os@liatability of the CPU clock
is very high, the method of determining the CPU clock ratecat bime by interpolating
the standard clock from the 8254 chip over a small measureimenval of around 50ms
introduces the skew of the 8254 clock. The 8254 clock hasa skaround one second
every 5.55 hours [43]. However, our method above is no lesarate than using the
getti nmeof day() system call since that uses the standard clock from the 82ip4 c
One downside of this method is that it cannot be used on nmattgssors. Each processor
supports a different TSC, usually with different rates. Wheuser process is scheduled
on two different processors in different scheduling inédsy it reads the value of two

different TSCs that are not correlated with one another.

2.7.2 Separation of Simulator Virtual Clock and Real-time
Physical Clock

In the algorithm described in Figure 2.2, all events withegstamps earlier and up to
the current simulator clock are dispatched. Note that thulsitor clock is frequently
updated with real-time relative to start of the experimebDepending on how long it
takes to check for live-packets or dispatch an earlier evesdrly all future events are
dispatched late with respect to real-time, by saméd&he event being dispatched could
introduce future events in the scheduler queue, all redatithe current simulator clock.

The above algorithm seems simple enough. However, we shatttleduces the
accuracy of the simulation due to accumulated errors wighfdHowing example illus-

trated in Figure 2.3 (a). Consider an eventdispatched in the scheduler that results
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in a packet being scheduled for transmission over a link wiias both transmission
delay and propagation delay components being modeled.cahises an event to be
scheduled after the link transmission time from the cursamiulator clock. Similarly,
another event, is scheduled after the sum of the link transmission time angagation
delay.

Figure 2.3 (a) shows the scenario just described whemade, are scheduled relative
to the simulator clock synchronized to real-time. In purawdation running in virtual
time, these events would be scheduled relative & shown in Figure 2.3 (b). Thus,
the algorithm described above causes an erray foir a single packet. Now consider
a packet that traverses many such links. Each time an evantdiresponds to this
packet is dispatched late by somehe simulation error for this packet increases by that
0. Eventually, after crossing many links, simulation errffansa packet will accumulate
and become noticeable. When this happens for every paakag #his path, aggregate
statistics for the flow will be noticeably incorrect. Thusjs important to avoid this
accumulation error in order to keep the simulation accurake error should be within

only a small constant.
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Figure 2.3. Time-line for real-time event dispatch that causes acdated errors
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This issue is addressed by keeping the simulator virtugakcdmd real-time physical
clock separate. The simulator virtual clock is initializedthe timestamp of the event
being dispatched. Only when live packets are introduced ihé simulation is the
simulator virtual clock initialized to the real time phyalcclock. This is required in
order to ensure that causal future events due to live paakeiaserted into the scheduler
relative to the real-time physical clock. An event dispatet avoids accumulated errors
is illustrated in Figure 2.3 (b). We have addressed thisigsusewith straightforward

changes whose pseudo code is given in Figure 2.4.

bool halted = fal se
doubl e simcl ock
doubl e real _tinme_cl ock
while( 'halted ) {

/1 get event with earliest tinestanp
next _event = get_next_event();
/1 synchroni ze sinulator-clock to real -tine;

/] Get real tine relative to start of simulation
real _time_clock = get_real _time_clock();

whi | e( next_event->tinestanp <= real _time_clock ) {
simclock = next_event->tinestanp;
di spat ch(next _event);

}

/'l Get real tinme relative to start of sinulation
real _time_clock = get_real _tinme_clock();

/1 simclock is now synchronized to real tinme so

/'l that external events introduced into the schedul er
/'l queue have future tine relative to real tine as

/'l closely as possible

simclock = real _tine_clock

/| Check and introduce |ive packets (e.g. from network)
/1 or events (e.g. fromevent system) from externa
/'l sources if any.
if ( poll_external _event() == true ) {
insert _external _events();
}

Figure 2.4. Pseudo code for thesereal-time event scheduler without accumulated errors



CHAPTER 3

DESIGN AND IMPLEMENTATION

In this chapter, we first discuss the design changes we hade toahe stockse
in order to support integrated experimentation. In palticihe changes are primarily
related to supporting multiplaseinstances running on a distributed set of PCs in a
coordinated manner simulating different portions of thpesknental topology. We then
discuss how we integrated the simulation back-end with #s¢ of the experimental

environment.

3.1 Distributed Nse

In order to scale to larger simulation topologies that calmecsupported in real-time
by a single instance afiseon Emulab hardware, we map portions of the simulation
topology to different instances afseon multiple PCs in a single experiment. Each
instance ohseprocesses simulator events independently of one anotbenaeal-time.
However, user-specified events must be distributed to thelator instance where the
associated simulator object is mapped. This is discusssekition 3.1.1. When portions
of the topology are mapped to different simulator instanseseral links are cut. In
section 3.1.2, we discuss how we replace such links withigpkcks that we have
designed that cross simulator instances. In sections 8rd3.1.4 we discuss how we

transport simulator packets and globally route them aaradsiple simulator instances.

3.1.1 Distribution of User-specified Events
When a user explicitly specifies future events, such as tmmniinks up or down, it
is easily implemented in pure simulation by adding such ameto the global event list

in the correct position corresponding to the time when idsde be dispatched. We face
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the following challenges when implementing the above withtiple simulator instances

responsible for different simulated resources:

3.1.1.1 Common Notion of Time

Since multiple simulator instances are modeling diffepamtions of the same experi-
mental topology, they must share a common notion of time.r&teeof the flow of time is
roughly taken care of by real-time-simulation modulo cks#lews that may be different
for different PCs. This aspect is discussed in section Zhé. difset of these clocks from
the global common time at any given time should be nearly.ZEnds is needed in order
to dispatch two user-specified same-time-events at the ghobal time if those events
were present in the event lists of two simulator instancdserd are at least two ways
of implementing this, although achieving perfect syncization for same-time events

across distributed simulator instances executing inties-is impossible:

e Use distributedarrier synchronizationo synchronize the start time of each sim-
ulator instance and insert user-specified events in thgighdal event lists. Clock
skews across the simulator instances could result in outdgfr@vent dispatch for

same-time or nearly same-time events across these siminstances.

e Use a centralized event scheduler that maintains the nofi@enper-experiment
time and dispatches user-specified events to the distdbaogtances at their dis-
patch time. There is a latency associated with every evdiveded as well as
a skew between different same-time events. We use this whethmtegrated

experimentation, the details of which are discussed lat#ris section.

3.1.1.2 Map Event to Simulator Instance

An event must be mapped to the correct simulator instancehichnit is to be
dispatched. Unlike pure simulation witls, it is difficult to support execution of arbitrary
OTcl code in user-specified events. Without a binding betvwtke event and a particular
simulated resource, such as an object that has been mappedanicular simulator

instance, there is not enough information on where to dimecévent. In Emulab, an
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eventis associated with objects such as nodes, links difid trigents. After the mapping
(aka resource allocation) phase, we can establish the m@ppiween an event and the
physical host to which the event needs to be delivered. Tteofievents as well as
mapping of simulation objects to physical hosts are stoneBmulab’s database. For
events that affect simulation objects, actual OTcl stritngs affect the object are stored.
As part of the experiment swapin process, a per-experimanttescheduler process is
run on Emulab’snasterhostlt reads the events from the database, queues them up and
delivers them to the physical hosts over the control netw@&sides processing static
events that the experimenter specified in tisdile, the event scheduler also supports
dynamic events. An experimenter can affect simulationaibjdynamically by running
an Emulab provided event generation tool with the correcapaters, which includes
the name of the simulation object, time relative to when thava program runs, the type
of event and event arguments.

We have integratedsewith Emulab’sevent systemEvent delivery in Emulab is
supported via the Elvin [17] publish-subscribe system thgiports a flexible, content-
addressable messaging model. We have modifieddbeal-time scheduler to check for
events sent from the Emulab central event scheduler sitailelnecks for live packets.
The events themselves contain OTcl strings that are ewluiahse which typically act
on simulation objects, such as starting and stopping traffents.

The latency of the delivery of events over Emulab controloek was measured and
reported in a technical report [61]. The latency for a sirgtent is expected to be on
the order of a packet round-trip between thasterhosand the PC runningseover the
control network. When same-time events are dispatched topteuPCs, an additional
skew exists between events dispatched to the first and ldssnd-rom [61], out of 10
PCs receiving same-time events, the smallest latency wasdr20Q:s and the largest
value was around 2ms.

We choose Emulab’s event system over barrier synchrooizdtir delivering user
specified events to be uniform with event delivery mechasiaanoss simulation and em-
ulation objects. The centralized event scheduler at lessthe guarantee of dispatching

events in the order it was specified even though they coulcedato effect in different
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instances ohseout of order. If the order of event dispatch needs to be Btireserved
in integrated experimentation, it is best achieved by kagpvents at least 10ms or more
apart, although there are no guarantees. Notice that wdmtéethod, there is no need to
keep the start times of differenseinstances synchronized. In other words, the absolute
value of the simulator-clocks in differemseinstances are unimportant. In fact, they
could be seconds to tens-of-seconds apart depending oniffevedt PCs running the
simulator instances boot up. The centralized event sceedwdwever, starts processing
user specified events only after all PCs in an experimenteaeyr

Although simulation offers the ability to be perfectly symonized across nodes, thus
having absolute repeatability, it is not possible or nezelysdesirable to achieve perfect
synchrony in integrated experimentation. In fact, modgksynchrony in simulation
that is common in distributed systems is important in ggttealistic results [24]. Thus,
using integrated experimentation, it is possible to exptbe effects of clock drifts on a
simulated protocol under study. By mapping simulated nashesto-one on PCs, com-
plete asynchrony as seen in real-systems is achieved. Atliee end of the spectrum,
if all simulated nodes were mapped to a single PC, the effefctynchrony could be

observed. Hence, our system enables qualitatively newatadin techniques.

3.1.2 Simulated Links Between Nodes in DifferenNse Instances

The Emulab mapper considers nodes as the basic unit of cesassignment. When
two simulated nodes with a duplex link between them are madppdifferent instances
of nserunning on two PCs, we replace such a duplex-link with a newd kif link object
we have developed, known as ahi nk (short for remote link). Arr | i nk is a simplex
link with one endpoint being a node and the other endpoinidan object that encap-
sulates a simulator packet in a live IP packet and sendsiittbegohysical network. The
details of the encapsulation and decapsulation are disdusssection 3.1.3. The idea
of an r | i nk is similar to the one developed for parallel and distributeodng [46]
in that both represent a link whose one endpoint is in a diffesimulator instance.
However, they are different both conceptually as well asmiplementation. Impdns

events are passed around between simulator instancesashategrated experiments
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encapsulate packets and transport them over the physteadike A duplex link between

two simulated nodes mapped to twseinstances is implemented using twd i nks.
Eachr | i nk is instantiated in thaseinstance where the source endpoint node is present
instead of mapping both in the samseinstance. This helps to load balance the link
simulation.

Figure 3.1 has a code snippet that demonstrates how ounsystes anr | i nk to
create a simplex link from nod®0 to a node in anotherseinstance with the IP address
<dst i p>. Notice that we also set an IP addresy c_i p> on the r | i nk using the
set - i p method on the node object. Every link object now supposgsta- i p method
to set IP addresses on every link (i.e., interface), which diacussed in section 2.1.2.
The result of aset - i p method is to add the IP address to the list of IP addresses of a
node. A simulated node now has as many IP addresses as théir&kaioriginating from
it. A simulator packet with the destination address equahtpof these IP addresses will
be forwarded and delivered to traffic agents attached tonthake (i.e., if the destination
port matches with one of the agents). An i nk can also be used without bandwidth,
delay or queue type to specify a connection to a real PC nbtiek shaping is required
on the link between a simulated node and a PC node, it is peediby an interposed
delay PC running Dummynet in Emulab.

For every r | i nk that is created, a TAP agent is internally instantiated. &kpa
that traverses am | i nk undergoes link simulation and is eventually handed ovetsto i
TAP agent. If a simulator packet is received, encapsulatigrerformed and injected

set ns [new Sinul at or]
set nO [$ns node]

# Al | P addresses are in dotted quad
# rlink fromnO to another node in a different nse
set rl0 [$ns rlink $n0 <dst_i p> <bandwi dt h> <del ay> <queue_t ype>]

$r10 set-ip <src_ip>

# rlink fromnO to a real PC node
set rl1 [$ns rlink $n0 <dst_ip_for_pc>]

Figure 3.1 nsecode in one instance to create a link with one endpoint infaréiftnse
instance illustrated in Figure 3.2
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into the live network. A live packet previously capturedrfréhe network is injected “as
is.” An encapsulated packet is decapsulated just beforglzilivered to a traffic agent.
Figure 3.2 shows the dataflow between different simulatgeab. Although a TAP
agent is internally allocated for evenyl i nk, complete configuration of the TAP agent
is deferred untill after the setup of the PC host that muses In particular, information
on the network interface(s) from which live packets are tacéptured is not available

untill PC host boots up.

3.1.3 Encapsulation and Decapsulation of Simulator Packst

In order to support traffic agents in different instancesig¢to communicate with
one another, simulator packets must be encapsulated in paylBad and transferred
over the network.nseprotocol state for different protocols is present in therfoof
several header fields organized in contiguous memory alswikras a “bag of bits.”
Therefore, a simple copy is sufficient to perform the enclgpigun. Every packet has
space for header fields of nearly all the protocols suppditeds even if only a small
portion of the header space is used at a time. The unusedp®#re zeroed. We encode
such headers into a compact summary so that they occupydass & the IP payload
and thus reduce the likelihood of IP fragmentation. The samtis made up of repeated
patterns okof f set >, <l engt h>and nonzero words. Theof f set > values are the
locations relative to the start of an unencapsulated bfrfen where nonzero data exists.

An encapsulated packet may have to traverse multiple stomiastances before
it has to be delivered to a traffic agent. Although most of thetqrol state in the
simulated packet is used by the traffic agents on the enddy nestifying performing the
decapsulation just before it is delivered to a traffic ageome state such as the simulated
packet size are needed to perform correct link simulatiomil&ly, other state such as
TTL or Explicit Congestion Notification (ECN)its are modified in the intermediate
router nodes. Therefore, we perform decapsulation as sban ancapsulated packet is
captured from the live network even if the final destinatiodais in a different simulator
instance. If such a packet again leaves the simulator iostahis encapsulated again

before being injected over the live network.
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3.1.4 Global Routing of Packets
As discussed in section 2.1.2, we have extenadeelpacket forwarding to use IP
addresses for global routing. Node addresses@prior to our changes used a 32—signed
address. Changing this to a 32—bit unsigned address to fivith Addresses was trivial.
We also modified the bitmasks used for multicast addressesflert IPv4 multicast
addresses.
We have extendedseto be able to add IP address based routes with the following

syntax described in Figure 3.3.

3.2 Integration with Experimental Environment

Note that the experimenter in Emulab need not worry abouesoar IP addresses
as shown in section 3.2.1. It is merely an implementatiomitief our system. In
setting up integrated experiments, we already compute lthgaias shortest paths for
the experimental topology. We manually add only IP addresset routes in alhse
instances. Currently, we support only two bitmasks 255255 255 and 255.255.255.0.
The address classifier performs a route-lookup using alit82bthe destination address
of the packet. If that fails to find a next hop, it tries anotlwekup with the lower eight
bits masked. This is a limitation of our current implemeiatat However, extendingse
to support a modern longest-prefix-match based classif@ragyhtforward. We believe
that this feature is not necessary to demonstrate the ideg@segent in this thesis.

Integrating simulation into Emulab involves changes to ynaarts of the software,
the details of which are all not discussed in this thesis. Keyepoint worth noting is
that the integration of the simulation back-end fits nicelyhwhe abstractions already
present to support cluster PC nodes and multiplexed virtade backends. Although

the number of lines of code added to support the simulatick-ead are not very large,

set nO [$ns node]
# | P addresses and netnasks in dotted quad
$n0 add-route-to-ip <dst_ip> <nexthop_i p> <net mask>

Figure 3.3 nsecode to add IP address based routes
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thus supporting our claim above, the changes themselves negrstraightforward due
to the immense task of understanding the software of a laigghdited system with

many complex interactions. We first discuss how an experienepecifies an integrated
experiment and use the reminder of the section to discugpardent portions of the

simulation back-end.

3.2.1 Use

To create an experiment in Emulab with simulated resourcésa user simply has
to enclose a block of NS OTcl code $ns make-si nul ated { }. Connections
between simulated and physical nodes are specified as usingladupl ex- 1 i nk.
Multiple make- si mul at ed blocks are allowed in a single experiment which results in
the concatenation of all such blocks. Figure 3.4 illusgate example of an experiment
with a “dumbbell” topology comprised of both real PC noded aimulated nodes. The
OTcl source-code is presented in Figure 3.5.

The “dumbbell” topology of six nodes is mapped to four PCs muab. Note
that this is a very low multiplexing factor explicitly spé&eid in the code to keep the
example simple. Two simulation host PCs are automaticdlibcated by the system.
The code in therake- si mul at ed block will be automatically reparsed into two OTcl
subspecifications, of which each is fed into an instanagsefunning on the simulation
host. Depending on how the mapping happens, there can betrmre or two simulated
links that cross PCs. In Figure 3.4, we have one such linkdtosts PCs.

3.2.2 Experiment Configuration
We list the (details abstracted) steps performed from §ipation to actual experi-

ment instantiation below:

1. Perform initial parsing of user-specified OTcl code. &texperiment information
in the database.

2. Compute all pairs shortest path static routes for thelégyoand store the routes
in the database. This includes routing to every interface mdde, each having an

IP address.
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PC1 PC 2 PC 3 PC 4
Agent/TCP IAgent/TCPSink
siml sim2
TG based TCP 10Mb/2ms 10Mb/2ms TG based TCP
Traffic Source 1.544Mb/40 ms Traffic Sink
; ; simrouter2
il 100Mb Simplex Link 100Mb oalo
Ims = Ims
simrouterl 1.544Mb/40 ms
Simplex Link
[ ] Virtual Nodes in the Topology || PCHosts, NSE on PC2 and PC3
—— Virtual Links in the Topology D 100Mbps physical links

Figure 3.4. An integrated experiment in a “dumbbell” topology

3. Retrieve the experiment virtual topology and availaliggical resources from
the database and perform resource assignment. Repeat tal falures that
may occur due to reasons such as another experiment aggeome physical

resources.
4. Reserve physical resources.

5. Update database with information specific to the mapgtog.example, we list a

few below:

e Switch VLANS.
¢ |P address bindings for network interfaces.

e Creation of virtual network interfaces and their bindingptyysical interfaces
for rlinks.

e Compute routing table identifiers only for simulated nodébw | i nks.
e OS that needs to run on the simulation host PCs.

e Second parsing of theake- si nul at ed block to generate OTcl subspec-

ifications.
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set ns [new Sinul ator]
# Enabl e autonmatic static routing
$ns rtproto Static

# Get two real PCs
set reall [$ns node]; set real2 [$ns node]

# Use the standard FreeBSD i mage i n Net bed
t b-set-node-os $real 1 FBSD STD; tb-set-node-os $real 2 FBSD- STD

$ns make-simul ated {
# Al the code here run in the simulation. Get 2 sim end-nodes and 2 router-nodes
set siml [$ns node]; set sinR [$ns node]
set sinrouterl [$ns node]; set sinrouter2 [$ns node]

# Bottleneck link inside sinulation. Sinulated and real traffic share this link
$ns dupl ex-link $sinrouterl $sinrouter2 1.544M 40nms DropTail

# More duplex links inside the simulation
$ns duplex-link $siml $sinrouterl 10Md 2ns DropTail
$ns dupl ex-link $sin2 $sinrouter2 10M 2ns DropTail

# TCP agent object on node siml and TCPSi nk object on node sin®,
# both in sinulation

set tcpl [new Agent/ TCP]

$ns attach-agent $sinl $tcpl

# FTP application object in simulation on node sinl

set ftpl [new Application/FTP]

$ftpl attach-agent $tcpl

set tcpsinkl [new Agent/ TCPSi nk]

$ns attach-agent $sin2 $tcpsinkl

# Tell the systemthat $tcpl and $tcpsinkl agents will talk to each other
$ns connect $tcpl $tcpsinkl

# Starting at tine 1.0 send 75MB of data
$ns at 1.0 "$ftp0 send 75000000"

# Connecting real and sim nodes. Allowed inside/outside nmake-sinulated bl ock
$ns dupl ex-link $reall $sinrouterl 100Mo 1ns DropTail
}

# connecting real and sinul ated nodes.
$ns dupl ex-1ink $real 2 $sinrouter2 100M 1nms DropTail

# Areal TCP traffic agent on PCreall
set tcpreal 1l [ new Agent/ TCP]

$ns attach-agent $reall $tcpreall

set cbr0O [Application/Traffic/CBR]
$cbr0 attach-agent $tcpreal 1

# Areal TCP sink traffic agent on PC real 2

set tcpreal sinkl [ new Agent/ TCPSi nk]

$ns attach-agent $real 2 $tcpreal sinkl

# Tell the systemthat $tcpreall will talk to # tcpreal sinkl
$ns connect $tcpreal 1 $tcpreal sinkl

# Start traffic generator at tine 10.0
$ns at 10.0 "$cbr0O start”

# Drastically reduce colocation factor for sim nodes to show distributed NSE.
# Wth this, the 4 sinmulated nodes will be mapped to 2 PCs.
tb-set-col ocate-factor 2

$ns run

Figure 3.5. nscode to create the integrated experiment illustrated inrei@.4
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6. Load OS if required and boot the physical PCs.
7. Set up VLANSs on switches.
8. Start up per-experiment event scheduler to deliver sigecified events.

9. Simulation host PCs perform self-configuration.

3.2.3 Parsing

User-specified experiment configuration such as the ona giveection 3.2.1 has to
be parsed before the experiment can be realized on varigisscphresources. We have
extended the Emulab parser to store the simulated part ahperiment specification
(enclosed in one or morarake- si mul at ed blocks) into the database “as is” for
further parsing later. This is necessary since OTcl subBpasoons can be generated
only after the mapping phase. We will call this second parsas& parse This parse
is similar to Emulab’s initial parsing. The output of timse parse is a set of OTcl
subspecifications that are targeted to different simuiagiances. Once generated, these
subspecifications are stored in Emulab’s database to bedusied) the experimental run.
Essentially, a source to source translation is performeerevhoth the source and target
language are the same, i.e., OTcl. A single source resultgenor more target OTcl
scripts based on the mapping where each target script essicuan instance ofse We
describe our approach for this parse below.

Written in OTcl, the parser operates by overriding and padsing on standards
procedures. Some kays methods are overloaded. These methods use mapping in-
formation from Emulab’s database to partition user-spetti®@Tcl code into OTcl sub-
specifications for each simulator instance. For examplkedtipl ex- | i nk method
of the Si nul at or class is normally used in creating links. The overloadedioer
of dupl ex- | i nk generates either twa | i nks if the endpoint nodes of the link are
mapped to different simulator instances or regeneratesamedupl ex- | i nk. Due
to the structure of classes irs, we are able to support a large portionnssyntax in
the make- si nmul at ed block. nsclasses that are important for this parsing phase

are Si nul at or, Node, Agent and Application. Links in nsare typically
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instantiated using thedupl ex- 1 i nk method of the Si mul at or class. Traffic in

ns has a simple two-layer model: transport and applicatiorbctsses of theAgent
class normally implement the transport layer functiogaditany protocol. These agents
are all attached to aNode object. Similarly, subclasses of thAppl i cati on class
implement the application layer functionality of a protbcdhe application objects are
all attached to some agenAgent and Appl i cat i on are thus directly or indirectly
associated with aNode object, allowing the OTcl code for them all to be generated
for a particular simulator instance. All simulation obgstupport the specification of
per-object attributes via instance variables.

Classes ims have structured names with the hierarchy delineated byl#sh § )
character. For example, all subclasses of Mgent class have aAgent / prefix.
Tcl/OTcl also supports nf o procedures that can help extract the state of the OTcl
interpreter [59]. Similarly, amnknown method permits us to capture arbitrary method
calls without any knowledge about them. Using the aboveufeat we are able to
construct the OTcl code to be given to different instanceas# Note that most of
the constructs are regenerated as they were specified bypleeraenter while others
such as links are transformed intd i nks if the incident nodes are mapped to differ-
ent simulator instances. For user-specified events spbevith theat method of the
Si mul at or class, our overriddeat method makes an attempt to map the event to a
simulation object, which is further mapped to the simulanstance to which it needs
to be delivered. The events thus mapped are thus stored olathbase. OTcl code is
not generated for user-specified events since they will beeded via Emulab’s central
event scheduler as described in section 3.1.1 The followoigts outline a list of steps

performed by theseparser:

1. Concatenate allreke- si mul at ed blocks and store it in the database during

first parse along with topology info.
2. Perform mapping using topology information from the datse.

3. Initialize mapping info from the database in teeparser (OTcl based).
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4. Source the code in theake- si nul at ed block into the parser creating objects
based on overridden classes such as Simulator, Node, Agentleat we have
defined. The base class object is created for any class natime \wrefix of one
of the above special classes. The actual name of the sulktesed and will be

used later to regenerate Tcl code. Objects of unrecogniasdes are ignored.

5. Unrecognized global Tcl procedures are ignored. Noteuheecognized meth-
ods for the special classes mentioned above are all captisieg theunknown

method for the respective classes.

6. The laststep isto generate OTcl code in this order of straul objects :Si nul -
ator, Node, duplex-link, rlink, Agent, Application. The
code generated will have method invocations as well asaliastion of instance

variables.

Our approach works well within the bounds of careful speaifan, numerous coun-
terexamples of experiment specification can be construdbete our approach for pars-
ing when using either Emulab frontend parsenseparser will fail or is not adequate.
For example, if specified code had dependencies on varialbles of a running simu-
lator, our approach fails. Another example is if an expentaespecified an OTcl loop
to create a large number of simulation objects, our codergé&na will unroll all the
loops, potentially causing code bloat that may be beyondirtiits of our system. Some
of these limitations can be overcome with more work but ctteee difficult to do so
without writing a complete interpreter that understandfins However, the ideas

presented in this thesis are not in any way weakened by thregatlons.

3.2.4 Self-configuration of Simulation Host PCs
The PCs that runseinstances boot up and contact Emuitabsterhosto customize
the setup of the OS in order to serve the role that it was dategifor, in an experiment.
The masterhostetrieves information from the database and returns themesponse.
The PCs receive information such as network identity (DHGRared filesystem (NFS)

mounts, user accounts and keys, hosts file, network ineerfdormation (both real and
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virtual) and routing. These tasks were already performedimulab for cluster PC
self-configuration. Once all tasks are performed, the P@srteback tomasterhost
that they are ready. We have extended the self-configurptiocess to download OTcl
configuration from thenasterhostconfigure and run the simulator if the PCs were to
serve as simulation hosts. The simulation hosts are coefigorrun FreeBSD. The disk
images with this OS were updated with our modifrettbinary as well as a supporting
OTecl script. Our changes also ensured that the PC reportdok tnasterhosthat it is
ready only aftenseis configured and running.

3.3 Virtual Networking
In this section, we discuss the details of the virtual linkchrenism that allows us to
multiplex several virtual links on a physical link and thepl@mentation of the multiple
routing table. We leveraged the virtual link mechanism thas added (by others) in
Emulab to support multiplexed virtual nodes. We addedahsupport for multiple
routing tables in FreeBSD which was later extended and cet@glby others, again

for use in supporting multiplexed virtual nodes.

3.3.1 Design Issues in Virtual Links and LANs

In a general context, virtual links provide a way of multixileg many logical links
onto a smaller number of physical links. In this light, vatdinks can be used to
provide a higher degree of connectivity to nodes, whethesd¢hodes are virtual or
physical. In the context of virtual nodes, our discussiorvidgiual links includes not
only this multiplexing capability but also the network naspace isolation issues and
the subtleties of interconnecting virtual nodes withind @etween, physical nodes. The
implementation ohsepacket capture and injection dictates our design choice.

The interesting characteristics of virtual links are:
e Level of virtualization.
e Encapsulation.

e Sharing of interfaces.
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¢ Ability to co-locate virtual nodes.

3.3.1.1 Level of Virtualization

Virtual link implementations can present either a virtuakllayer by providing a
virtual ethernet device or a virtual IP layer by using mu#ifP addresses per physical
interface. The former is more flexible, allowing traffic otlilean IP, but such flexibility
may not be needed for some applications. A virtual ethereeicd is needed to support
nsesince it uses a BPF device to capture live packets. Althouighpiossible to support
demultiplexing of packets by using more specific filter ruiesnay not be practical to
generate a rule that encompasses all packet source—diestipairs that may traverse
the link.

3.3.1.2 Encapsulation

Virtual links may or may not encapsulate their packets. peuakation is traditionally
used either to transport nonstandard protocols over deglogtworks (e.g., tunneling
over IPv4) or to support transparent (to end node) multipgxapability (e.g., 802.1Q
VLANS). Encapsulation usually implies a decrease in the MsTz¢ for the encapsulated

protocol, which can affect throughput.

3.3.1.3 Sharing of Interfaces

The end point of a virtual link as seen by a virtual node may itleee a shared
interface device or a private one. This may affect whethiriace-centric applications
like tcpdump can be used in a virtual node. For the same reagwecified above, a

private interface device per-link is better fase

3.3.1.4 Ability to Co-locate Virtual Nodes

Three factors related to the implementation of virtual $inkfluence which, if any,
virtual nodes in the same topology or virtual nodes in ddfgrtopologies can be co-
located on a physical node. First, if virtual links are immpknted using IP aliases on
shared physical interfaces, then there are restrictionshat addresses can be assigned

to the interface. For example, two nodes in different topgmse could not have the same
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IP address or two nodes in the same topology could not be péme same virtual LAN.
Second, if virtual links use a shared routing table, thendoxdocated nodes cannot have
different next hop addresses for the same destination.dTeuen with private routing
tables, virtual links that cross physical links must condeynultiplexing information
so that the receiving physical node can use the correctnguéble for forwarding
decisions. Without this, physical nodes cannot host meltiprtual nodes for the same

topology. This is known as the “revisitation” problem [53].

3.3.2 Virtual Network Interfaces

In order to support virtual links, we leverage Emulab’s ierpkentation of a virtual
Ethernet interface device (veth). The veth driver is a hliybfia virtual interface device,
an encapsulating device and a bridging device. It allows gsdate unbounded numbers
of Ethernet interfaces (virtualization), multiplex them physical interfaces or tie them
together in a loopback fashion (bridging) and have them comoate transparently
through our switch fabric (encapsulation). Virtualizatigives us per-link interfaces
above the physical interface which we can use as the undgriyterface for a BPF
capture device. Bridging allows the correct routing of gaskat the link level so that
virtual interfaces only receive the packets that they stholhcapsulation preserves the
virtual link information necessary to implement revisibatwhen crossing physical links,
without making any assumptions about the switching faliimwever, our switch fabric
learns link-layer addresses as packets cross the switcly ddm also support several
link-layer addresses for the same switch port. Thus, Emudl device also supports

an alternative to encapsulation by using fake link-layetradses.

3.3.3 Virtual Routing Table
We have adopted and extended the work of Scandariato and RBjswhich imple-
ments multiple IP routing tables to support multiple VPN g@athts on a physical node.
Routing tables are identified by a small integer routingedbl (rtabid). These IDs are
the glue that bind together simulated nodes withi nks, virtual interfaces and routing

tables. Simulated nodes that havé i nks use a separate routing table with a unique
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rtabid to make sure packets injected by the node will usedh@ct routing table to find
the next hop. Using a socket option to set the rtabid on a RAWdeket , which is
used to inject packets into the live network, a simulatedenisdable to ensure correct

behavior.

3.4 Auto-Adaptation of Simulated Resources

A mapping of simulated resources to physical resourcesldlayoid “overloading”
any pnode in the system, which was discussed in detail imose2t4. The workload to
which an instance afiseis subjected is not easily determined statically in an irgtsy
experiment, partly because an experimenter can genefateagy traffic without speci-
fying its nature a priori. An overloaded pnode will resultsimulation inaccuracies. In
the case of simulated resources, these inaccuracies cacause the simulator is not able
to dispatch all events in real-time. A similar issue alssesiwhen multiplexing “virtual
machine” type vhodes on pnodes. In order to solve this isga@erform auto-adaptation
when overload is detected by iterative mapping. Successampings use feedback data
from running the experiment with prior mappings, until n@dwead is detected or we run
out of physical resources. Such a solution for “virtual maehtype vnodes is discussed
elsewhere [25]. In this section, we focus on performinggitige mapping for simulated
resources.

The factors that make it feasible for us to perform auto-tatam are:

e Fast mapping.

e Fast pnode reconfiguration

3.4.1 Fast Mapping
This was discussed in section 2.4. A mapping that takes heutsarly too slow. It-
erative mapping reduces the search space by remappinghentpttions of the topology

that were mapped to pnodes reporting an overload.
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3.4.2 Fast Pnode Reconfiguration

Iterative mapping is affected by the speedexdonfiguringpnodes for the new map-
ping, both pnodes currently reserved to the experiment @wdanes that may be al-
located as more resources are needed. Current PC hardwatekealong enough to
boot that this starts to affect remapping time. Emulab incemé optimization, now
avoids doing full reboots by having unused pnodes wait in arfw/ state in the boot
loader. This boot loader has the ability to boot into diffdrdisk partitions, and to
boot different kernels within those partitions. Pnoded thare already part of the
experiment are reconfigured without rebooting. This ineslpushing all the Emulab
client configuration data to the pnode, reconfiguring irstegt, routing tables, and a new
simulation.

Initial mapping is guided by optimistic vnode co-locatettas per pnode type in
Emulab. A more powerful PC supports a higher co-locate fabtm a less powerful one.
The co-locate factor is intended as a coarse grained metrf€RPU and memory load on
a pnode. In simulations with lots of traffic, the CPU bottleks typically reached much
earlier than memory limits are reached. Also, if differemtaaunts of traffic are passing
through different vnodes, their resource consumptions vel different. Considering
these problems, the co-locate factor we choose is basedoonby pnode’s physical
memory. Based on feedback data obtained from running thelaiions, we hope to
quickly converge to a successful experiment if the initi@pping is too optimistic. A
simulated vnode imseconsumes only moderate amounts of memory, allowing us to
support a large co-locate factor. According to a study tlabgared several network
simulators [39],ns allocated roughly 100KB per connection, where each coiorect
consists of two nodes with two duplex-links that each add beaches to a “dumbbell”
topology. Each connection consisted of a TCP source andainthe leaves of the
dumbbell. On a Emulab PC with 256-512MB of memory, a fairhgéaco-locate factor
can be supported.

In order to determine “overload” and declare the simulatiorbe in “violation,”
we make use of the “slop factor” of a real-time simulation.eTBlop factor” is the

largest skew allowed between the simulated virtual cloctt #re real-time physical
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clock. We can have different meanings for “overload”. Ongrigon is to consider the
simulation to be overloaded at a certain “slop factor” if #hep is exceeded even once.
Another definition would consider a true “overload” in whitte simulation is constantly
exceeding the slop factor at a certain slop factor insteas@éeding the slop factor once
or infrequently. In this thesis, we use the first definitionaenga slop factor exceeding
even once is considered a violation. However, we exploferdifit “slop factors.”

When an overload is detected by a simulator instance, itrteadl necessary infor-
mation to Emulabmasterhosvtia the event system. On receiving the first such event, a
program on themasterhosts run that waits for several seconds, giving sufficient time
for other pnodes to report overload if present. This progstores the feedback data into
the database and begins remapping the experiment.

We outline two heuristics that we separately experiment wiguide auto-adaptation:
e Doubling vnode weights.

e Vnode packet-rate.

3.4.3 Doubling Vnode Weights
A coarse heuristic that we use is to double the weight of alsimulated nodes hosted
on the pnode that reported an “overload” and remap the tggolthese simulated nodes
will then consume twice as many slots from the pnode co-®tattor as before. This
process repeats untill no overload is detected or a vnodeagped one-to-one to an
overloaded pnode. If the overload is still present, it mahasthe experiment could not

be mapped on Emulab hardware.

3.4.4 Vnode Packet-Rate
Simulation event-rate is proportional to the rate of paskieat pass through a vnode
or are generated by that vnode. This is because every paghealty causes roughly
a constant number of events. For packet forwarding, eveaugth@vents ims occur in
links, the cost of processing these events can be attriiatdte vnode to which such
links are connected. Because the Emulab ma@sesj gn, associates resource capaci-

ties with pnodes and resource use with vnodes, we use thef igaekets passing through
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a vnode as the cost. Based on packet-rate measurementseviakew (section 4.1), we
set the pnode packet-rate capacities. This is a fine-grdieedstic compared to the
previous one. Starting from an optimistic mapping, we cagilg&entify the vnodes
that are “heavyweight,” allowing subsequent mappings tkaich vnodes less tightly.

Section 4.3 examines the results of using each of thesestiealisted above.



CHAPTER 4

EVALUATION

In this chapter, we present some results to establish treepgErformance ofiseon
Emulab hardware. We then present results that show theasityi{land differences)
when multiple simulator instances are used. We collectgidcices and evaluate using

following methods:

e Compare aggregate measures such as throughput.
e Compare packet traces for first-order statistics such deepaterarrival
e Multiscale analysis of packet traces

e Compare queueing behavior

Lastly, we present the results of our experiments with @aadaptation using two

different heuristics.

4.1 Base Performance ohse

4.1.1 Capacity and Accuracy

We have obtained some results that show the capacity, irepackcessing rate per
instance ohseon Emulab PCs, and the accuracynskas a link emulator. During this
evaluation, a number of problems and bugs were uncoverédha#that we have since
solved.

As a capacity test, we generated streams of UDP round-@ifictbetween two
nodes, with an interposed 850Mhz PC runnimsgon a FreeBSD 4.5 1000HZ kernel.
A maximum stable packet rate of 4000 packets per second viasrdeed over a range

of packet rates and link delays using 64-byte and 1518-bgté&egis. Since these are
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round trip measurements, the packet rates are actuallg tweenumbers reported. With
this capacity, we performed experiments to measure thg,dsadwidth and loss rates
for representative values. The results measured recamtlgtanmarized in Tables 4.1,
4.2 and 4.3. These tables also report corresponding resfuli® Dummynet emulator
for comparison [60].

The high error rates that we see in uniform loss rate measmenare present even

in pure simulation and is suspected to be a bugsn

Table 4.1 Delay: Accuracy of observed Dummynet andedelay at maximum packet
rate as a function of packet size for different link delaysheTOms measurement
represents the base overhead of the link. Adjusted RTT i®liserved value minus
the base overhead.

delay| packet| observed Dummynet || adjusted Dummyneﬁ
(ms) | size RTT | stdev| %err|| RTT % err
0 64 0.177 | 0.003| N/A N/A N/A
1518 1.225 | 0.004| N/A N/A N/A
5 64 10.183 | 0.041| 1.83 | 10.006 0.06
1518 | 11.187 | 0.008| 11.87| 9.962 0.38
10 64 20.190 | 0.063| 0.95 || 20.013 0.06
1518 | 21.185| 0.008| 5.92 || 19.960 0.20
50 64 100.185| 0.086| 0.18 || 100.008; 0.00
1518 || 101.169| 0.013| 1.16 || 99.943 0.05
300 64 600.126| 0.133| 0.02 || 599.949 0.0
1518 || 600.953| 0.014| 0.15 || 599.728] 0.04

delay | packet observedhse adjustechse
(ms) | size RTT | stdev| %err|| RTT | %err
0 64 0.233 | 0.003| N/A N/A N/A

1518 || 1.572 | 0.030| N/A N/A N/A

5 64 10.226 | 0.016| 2.26 | 9.993 | 0.07
1518 || 11.575| 0.058| 15.75| 10.003 | 0.03
10 64 20.241 | 0.023| 1.21 | 20.008 | 0.04
1518 | 21.599 | 0.071| 8.00 | 20.027 | 0.14
50 64 100.239| 0.024| 0.24 || 100.006| 0.006
1518 || 101.617| 0.078| 1.62 || 100.045| 0.05
300 64 || 600.244| 0.029| 0.04 | 600.011| 0.002
1518 || 601.612| 0.078| 0.27 || 600.040| 0.007
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Table 4.2 Bandwidth: Accuracy of observed Dummynet amse bandwidth as a
function of packet size for different link bandwidths

bandwidth| packet| observed Dummynef  observedise
(Kbps) size || bw (Kbps)| % err | bw (Kbps)| % err

56 64 56.06 0.11 55.013 | 0.023
1518 56.67 1.89 56.312 | 0.556
384 64 384.2 0.05 384.015 | 0.004

1518 385.2 0.34 384.367 | 0.096
1544 64 1544.7 0.04 1544.047 | 0.003
1518 1545.8 0.11 1544.347| 0.022
10000 64 10004 0.04 N/A N/A

1518 10005 0.05 || 10000.519 0.005
45000 1518 45019 0.04 || 45001.092 0.002

Table 4.3 Loss: Accuracy of observed Dummynet angdepacket loss rate as a function
of packet size for different loss rates

packet losg packet| observed Dummynel observedise
rate (%) size || lossrate| % err loss rate| % err
(%) (%)

0.8 64 0.802 0.2 0.818 | 2.29
1518 | 0.803 0.3 0.809 | 1.15

2.5 64 2.51 0.4 2.469 | 1.22
1518 2.47 1.1 2.477 | 0.92

12 64 12.05 0.4 11.88 | 1.00
1518 | 12.09 0.7 11.98 | 0.21

4.1.2 Scalability of Traffic Flows

In order to evaluate the scalability in the number of flows thaingle instance of
nsecould support on a Emulab PC, we simulated 2Mbps constamateitUDP flows
between pairs of nodes on 2Mbps links with 50ms latenciesm&asurenses ability
to keep pace with real time, and thus with live traffic, a samiink was instantiated
inside the samasesimulation, to forward live TCP traffic between two physiEahulab
nodes, again at a rate of 2Mbps. On an 850MHz PC, we were abtale the number of
simulated flows up to 150 simulated links and 300 simulatedkspwhile maintaining

the full throughput of the live TCP connection. With additéd simulated links, the
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throughput dropped precipitously. We also measus#s TCP model on the simulated
links: the performance dropped after 80 simulated links tdug higher event rate from

the acknowledgment traffic in the return path.

4.1.3 Sensitivity to Different Slop Factors

The “slop” factor is the largest skew allowed between theusated virtual clock
and the real-time physical clock. It is a configurable parnamgrovided to the real-time
simulation. If the skew exceeds the slop factor, a simutatsodeemed to be in “vio-
lation.” In order to determine how the scalability of the ragn of flows is affected by
the slop factor, we simulated TCP traffic over 2Mbps linksv&Oms latencies between
pairs of nodes on an Emulab PC running at 850Mhz. In this @xweert, we do not
have any external traffic, although the cost of a Unix systathig still incurred since
the real-time scheduler makes a calktel ect () for the presence of live packets. In
Table 4.4, we report the number of TCP flows at which a viotaisadetected at different
slop factors. We also report the run-time when the same wadkis run under pure
simulation inns Underns the workload we generated had a run-time of 42.46 seconds.
We see that the slop of 108 and 1ms is exceeded at a small number of flows even
though pure simulation runs much faster than real-time. w4 6lop factor provides us
with a better tolerance for simulator clock skews as we dta@ure simulation to when
it runs slightly faster than real-time. A possible reasontfi@se observations is that the
changes of exceeding 1ms slop is high because the OS thaheureal-time simulation

runs at 1000HZ scheduling intervals.

Table 4.4 Sensitivity of slop factor on the number of simulation flows

Slop | Number of flows when| Event Ratel Wall-clock time

Factor| skew exceeds slop factor when run inns
10Qus 1 942 < 1 second
1ms 3 2826 1 second

10ms 66 62176 41 seconds
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4.2 Validation of Distributed Nse

When simulated resources in an integrated experiment appedao multiple PCs,
some of the flow endpoints also get mapped to differssinstances on different PCs.
To determine how similar are packet flows inside a singleamst ofnsecompared to
the ones that cross physical (switched) links, we perforefoliowing experiment:

The basic experimental setup consists of two simulated swodenected by a T1-
like duplex-link of 1.544Mbps bandwidth and 25ms latehdyraffic is generated using
Agent / TCP which is an abstract implementation of the BSD Tahoe TCPopm{[3].
About 75MB of simulated data bytes are transferred oveidbisection in one direction.
This gives us a trace of about 50,000 data packets and almsathe number of ACK
packets in the reverse direction. In the rest of this secaohCP-sink is the endpoint
which receives DATA packets while a TCP-source refers todhe that sends DATA
packets (and receives ACKs). The simple model describedeabaiseful in establishing
a lower bound on the difference between absolute repeatabidations and emulations
using distributedhse

The above setup is realized under the following scenarios:

1. Both simulated nodes are in one instancesé i.e., pure real-time simulation.

Whenever we usBTSIManywhere in this section, we mean this scenario. Unless

nsefalls behind real-time due to an intensive workload, theseilts are the same
as that of pure simulation. We have verified that all RTSIMulessreported in
this section exactly match punssimulation (i.e., running in discrete virtual time)

which runs faster than real-time for this workload.

2. Each simulated node is in a different instancen®€on two different PCs con-
nected via a 100Mbps switched Ethernet link. Each instahosesimulates one

node and the outgoing link to the other node. The physicaViis link is simply

IThis latency of the link roughly models traversing an uncestgd, intracontinental piece of the
terrestrial Internet [50].
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used as a transport for the encapsulated simulator pack&eswill refer to this

scenario in this section YIST-RTSIMFigure 3.2 illustrates the setup in detail.

3. The above scenario is replicated to have 60 simulttdihks mapped to the same
100Mbps switched Ethernet link. Each instanceséis handling approximately
7646 packets per second which is within the stable capatihseon this hard-
ware, as reported in section 4.1. Note that these are erlasgxdpackets roughly
about 100 bytes in size resulting in 6—7% utilization of aid@s Ethernet link.
The simulated nodes on each end for these links are mappea twifferentnse
instances running on two PCs. This setup is useful in id@ntifthe effects of
multiplexing packets from independent virtual links oviee same physical link.
We will refer to this scenario in this section B$ST-RTSIM-60

The platform on which we runseis a 850Mhz Pentium-111 PC with FreeBSD 4.9 for
all three tests listed above. We now present comparisomsebatRTSIM, DIST-RTSIM
and DIST-RTSIM-60.

4.2.1 Comparison of Aggregate Measures
Table 4.5 shows how the aggregate throughput for the TCP flesertbed in the
setup above compares between RTSIM, DIST-RTSIM and DIS$IRF60. For the
latter case, of the 60 flows, we show flows with both best andsinmgrcentage errors
from the expected value. For the experimental setup destribove, the expected
value is 1.544Mbps. As we see below, the difference betwdethrae experiments

is imperceptible at the aggregate level.

4.2.2 Comparison of Packet Interarrivals
Comparing packet interarrivals provides us with a bettergint into the effect of
the OS, network device and the physical network on the packffic. Tables 4.6 and

4.7 compare the mean, standard deviation and 95% confidater®al for the mean,

>The size of the encapsulated packets does not always depéine simulated packet size since packet
data is not typically included. In the experiments perfadrhere, the encapsulated packet size including
the IP and Ethernet headers was about 100 bytes.
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Table 4.5 Throughput comparisons between RTSIM, DIST-RTSIM and BRI SIM-
60

Experiment Throughput (Kbps) Percentage Error (%)
RTSIM 1543.767 0.0151
DIST-RTSIM 1543.669 0.0214
DIST-RTSIM-60 (best) 1543.782 0.0141
DIST-RTSIM-60 (worst) 1543.761 0.0153

Table 4.6 Packet Interarrival comparisons at the TCP-sink betwe€8IM, DIST-
RTSIM and DIST-RTSIM-60

Experiment Mean Standard | 95% Confidence Interval
(us) | Deviation (us) for the mean

RTSIM 7846.84 312.05 7844.16 — 7849.53

DIST-RTSIM 7846.77 314.22 7844.07 — 7849.48

DIST-RTSIM-60 7846.80 395.65 7843.39 — 7850.21
(best usingsel ect ())

DIST-RTSIM-60 7846.79 323.42 7844.01 — 7849.58
(best usingkqueue())

DIST-RTSIM-60 7846.85 644.87 7841.29 — 7852.40
(worst, usingsel ect ())

DIST-RTSIM-60 7846.82 395.51 7843.41 - 7850.22
(worst, usingkqueue())

for the packet data at the TCP-sink and TCP-source, resp8ctiFor the experiment
DIST-RTSIM-60, thebestdata point corresponds to the flow that has the least variance
and correspondingly theorstdata point is for a flow with the highest variance. In all
these results, unless mentioned otherwise, we use thesvalfltiee simulator clock — just
before the packets are delivered to the traffic agent to cteripterarrival times.

Results from the DIST-RTSIM experiment are very close to RT $roviding us
with some confidence about the similarity of results betwiéentwo. However, both
the best and the worst case results for DIST-RTSIM-60 havglehstandard deviation
compared to the other two cases. In order to determine theeai this variability,
we looked at kernel timestamps provided by the Berkeley gatiker (BPF). These

timestamps are stored by the kernel for every packet storedel BPF buffer and is
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Table 4.7. Packet Interarrival comparisons at the TCP-source bet&8eIM, DIST-
RTSIM and DIST-RTSIM-60

Experiment Mean Standard | 95% Confidence Interval
(us) | Deviation us) for the mean
RTSIM 7846.84 312.05 7844.16 — 7849.53
DIST-RTSIM 7846.86 314.01 7844.16 — 7849.56
DIST-RTSIM-60 7846.88 498.50 7842.59 — 7851.18
(best usingsel ect ())
DIST-RTSIM-60 7846.87 345.42 7843.89 — 7849.84
(best usingkqueue())
DIST-RTSIM-60 7846.87 852.46 7839.53 —7854.21
(worst, usingsel ect ())
DIST-RTSIM-60 7846.87 522.96 7842.36 — 7851.37
(worst, usingkqueue())

made available to the user-space prograrsein this case— that reads the BPF buffer.
The interarrival distribution using these timestamps foe TCP-sink gives us a best
case standard deviation 821.34us and a worst case 869.93s among the 60 flows.
Therefore, the majority of the variability could be attribd to the overhead of reading
packets from the kernel buffer. In particular, the Usi@l ect () system call- which
is used to check for I/O readiness— is not very efficient whemgning large numbers
of file descriptors. The TCP-source ACK-packet interats\ae affected further more
because of encountering the above effects at both TCP-sshH @P-source endpoints.
We evaluated an alternative method, namely FreeB&§eue( ) [34], for I/O readiness
which is known to be more efficiert.

In Figures 4.1, 4.2, and 4.3, we present the frequency ptditseal CP-sink when
only one flow is present, as well as, when 60 flows are presémg s&l ect (), and
kqueue(), respectively. Similarly, in Figures 4.4, 4.5 and, 4.6, wesent frequency

plots for the packet interarrivals at the TCP-source.

3However, as we found outqueue() support for BPF devices is fairly recent as well as buggysThi
was confirmed by a FreeBSD bug report [2]. The data report@dlifes 4.6 and 4.7 were obtained after
applying the fix for the aforementioned bug.
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Figure 4.1 Comparison of frequency of packet interarrivals at TQik$or one flow
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The variability of the packet interarrival progressivehcieases from RTSIM to
DIST-RTSIM-60. It is also clear that usidgqueue() is better than usingel ect ()

when examining large numbers of file descriptors for I/O neask.

4.2.3 Multiscale Analysis

It is well established that both wide-area and local-area datwork traffic is bursty
across a wide range of time-scales. This is explained by thiem of distributional
self-similarity, which is that the correlational structure of the time-asefior the traffic
remains unchanged at varying time scales [33, 20]. A saiflar time-series exhibits
bursts—- extended periods above the mean—- at a wide rangm®fcales. Several
statistical technigues — of which we name one hérae—varianceplots— are available
to test for the presence of self-similarity.

Multiscale analysis techniques suchtase—variance plot$16] are usually used to
test the presence of self-similarity. However, such a p&s & useful property that it
can sometimes show differences in traffic that simple agdesmeasures or first-order
statistical comparisons might fail to capture [32]. In tthissis, we use the time—variance
plot to determine if RTSIM, DIST-RTSIM and DIST-RTSIM-60Vvedifferent properties
across timescales even when the latter has higher padketinval variance than the

former.

4.2.3.1 Time-variance Plot

Let X = (X, : t = 0,1,2,...) be a stationary time series. An example oy is
a traffic rate process, i.e., the number of bytes seen in #iditae interval. We define
Xm = (X0 .k =1,2,3,...) by averaging the original serie§ over nonoverlapping

blocks of sizen. For eachn =1,2,3, ...,

m 1

E(ka_m_,_l—k...—}—ka),k‘: 1,2,3,... (41)

We obtain thetime—varianceplot by plotting the variance ok (™ againstm on a

log10 — log10 scale. A straight line with a slope ) where—/ is greater than-1 is
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often indicative of a self-similar process with “Hurst payeter” H = 1 — § [16]. In
other words, a self-similar time-series exhibits a slonwdgalying variance.

Note that the aim of generating time—variance plots in thésis is to visually com-
pare any differences across time-scales and not to makevaojusions about the scaling
properties of the simulation traffic in the experiment dissst above or its validity with
respect to the real-world behavior.

Figures 4.7, 4.8, and 4.9 plot the time—variance plots fetithe-series data obtained
at the TCP-sink. Similarly, Figures 4.10, 4.11, and 4.12 ffle time—variance plots for
the time-series data obtained at TCP-source. Notice tleabdisic shapes for both the
sink and source are quite similar modulo a constant shitiénviariance (or roughly so)
across all time scales.

The only perceptible difference between RTSIM and DIST-Si®loccurs at the
first trough in the plot close to 10ms aggregation. At thimpdihe RTSIM time-series
has less variance compared to DIST-SIM-60. The best vabrdsothsel ect () and
kqueue() in DIST-SIM-60 are closer to RTSIM than the correspondingstealues.
Also, kqueue() gets us closer to RTSIM thasel ect () at this time-scale. Beyond
this time-scale, the plots are all more or less identicalsT the variability that we saw
in DIST-RTSIM-60 in Figures 4.2, 4.3, 4.5, and 4.5 do not hamg noticeable effect at

longer time-scales.

4.2.4 Comparison of Queueing Behavior

In sections 4.2.1 and 4.2.3, we compared the traffic rateachkenistics of the dis-
tributednsewith one instance aiseusing an experimental setup described in section 4.2.
In this section, we analyze queueing behavior. The expatahsetup for this compari-
son is described below:

The setup consists of two simulated nodes connected by &a& titiplex-link similar
to the experimental setup described in section 4.2. A tdtsikol CP flows and one UDP
flow are instantiated on this link. The link queue size is s€tG0 packet slots. The TCP
flows are of theAgent / TCP/ Newr eno flavor in ns Traffic due to one of the flows

starts 0.5 seconds after the other five flows start.
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Figure 4.7. Comparison of TCP-sink time-series for one flow
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Figure 4.10 Comparison of TCP-source time-series for one flow
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RTSIM-QUEUEdenotes the experimental setup where both simulated nodes a
one instance afisg i.e., pure simulationDIST-RTSIM-QUEUHlenotes the setup where
the simulated nodes are in two instanceaséacross a physical link.

In Figure 4.13, we show the aggregate queueing behaviorglyainstantaneous
gueue size sampled every 0.5 seconds, cumulative average gize and packet drops
in the last five seconds. At the aggregate level, the diffsxdretween RTSIM-QUEUE
and DIST-RTSIM-QUEUE are small.

In Figure 4.14, we look at instantaneous queueing behagromfo individual TCP
flows. RTSIM-QUEUE and DIST-RTSIM-QUEUE are noticeablyfdient. Similarly,
Figure 4.15 compares cumulative throughput for the sameiwividual TCP flows.
Again, there is a noticeable difference between RTSIM-QBEdd DIST-RTSIM-QUEUE.
Note that TCP Flow #1 starts 0.5 seconds after Flow #2.

Thus, we can conclude that distributesksignificantly affects the individual queue-
ing behavior of traffic flows when these flows are competing tive same link. Aggre-

gate behavior is somewhat preserved.

4.3 Auto-adaptation of Simulated Resources
We evaluate the following auto-adaptation heuristics is #ection, the details of

which are discussed in section 3.4.

e Heuristic 1: Doubling vnode weights for vnodes mapped taloaeled pnode (s).

e Heuristic 2: Using packet-rate measurements per vhodegloeimapping.

The topology used for this experiment is illustrated in Feyd.16. It is composed of
416 simulated vnodes and 436 links. It is composed of eigtargitrees each containing
52 vnodes with the root of the trees connected to each otharfull mesh. We call
the vnodes in a full-meshterior nodes, other routers in the topologgrder nodes,
and the vnodes on the edtgaf nodes. We have 200 leaf vnodes, 208 border vnodes
and 8 interior vnodes in this topology. The access links, (frem leaf nodes) and the
intermediate links are of 2Mbps bandwidth. The links in thi-mesh are made up of
10Mbps links.
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Figure 4.16 A 416 node topology used in evaluating auto-adaptation
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Traffic is generated usingss Agent / TCP model. A total of 400 traffic flows are
configured between leaf nodes out of which 200 of them aredstvpairs of vnodes in
the same binary tree and 200 are between pairs of vnodesferediftrees. We modeled
the sending of 10,000 packets for each flow in pure simulatien inns

On an Emulab 850Mhz PC, the simulation is not able to run ihtneee. Tables 4.8
and 4.9 report information about running the above workloaderns. We report
our measurements only after all the flows have completedirsgride above number
of bytes. Note that the wall-clock time reported is measwely from the start of
simulation. It does not include the simulation configunattone. We also measured
the aggregate packet rate passing through all the 416 dedul@des in the topology to
be 73,185 packets per second over 1310.79 seconds of sonuiate. The peak packet
rate numbers for the simulation could likely be higher theparted in the averages in
Table 4.9.

In the evaluation of auto-adaptation, we do not introducd RC vnodes in the
topology since their presence simply increases the simutedffic load and does not
alter the methodology of auto-adaptation. On the other hbedause we only have
simulated vnodes, it is possible to compare results witle gimulation.

We experimented with both 10ms and 100ms “slop factors”héndase of heuristic
1, a 10ms slop factor yielded a failed experiment. In othemdspeven for a one-to-one
mapping, the slop was exceeded. With a slop factor of 100nesywere able to get
successful experiments for both heuristic 1 and 2.

In Table 4.10, we report the time taken for different phadekeexperiment creation
and swap-in process. Both heuristic 1 and 2 have approxiyniie same creation and

swap-in times.

Table 4.8 “Pure” simulation data for the workload used in evaluaogo-adaptation

Simulation| Runtime | Slowdown Total Events perl Total simulated
time (seconds Ratio Events runtime data
(seconds) processed transferred (MB)
1310.79 3018 2.30 165357063 54590 3814.7
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Table 4.9 “Pure” simulation vnode packet rates for the workload usedvaluating

auto-adaptation

vnode Observed Packet Rate
type | Lowest (Average Packets/sHighest (Average Packets/s)
Leaf 62 67

Border 68 895

Interior 1043 1068

Table 4.1Q Auto-adaptation experiment creation and swap-in times

Experiment Creation Time 10 mins total

3 mins to run parser
7 mins for route computation

Experiment Swap-in Time 7—16 mins total

1-2 mins for mapping

20—-40 seconds to generate OTc
sub-specification

1-4 minsnsestartup time

2—-9 mins for PC reboot/setup tim

1 min for PC disk loading

4.3.1 Heuristic: Doubling Vnode Weights

e

For this evaluation, we set the co-locate factor to 512dgtiissi gn map the above

416 node topology on to a small number of PCs. We choose 51Risas ipower of

two. Since we double vnode weights, eventually a vnode whasight is 512 will

cause it to be mapped one-to-one. The actual co-locater fdb may be supported

on Emulab PCs, if we only consider simulation memory use, ushrhigher. In that

case, an experiment would take more mapping iterationsutr-adaptation. For this

experiment, we also increase ih&ra node bandwidtho a large value in order to map the

entire topology on one PC if possible and will likely causa-time violation. Because

of the randomized nature of mapping, we cannot ensure tloatrtappings are the same

or similar in every respect. In Table 4.11, we report someattaristics of this auto-

adaptation experiment.
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Table 4.11 Results of an auto-adaptation experiment using heudistic

Total swap-in iterations 8
Number of PCs used in different| 1 -2 -3 —-6—-8 — 10— 11— 12
iterations

Maximum PCs reporting violation 3
in an iteration

Iterations that had all PCs 1
reporting violation

Maximum vnodes on a PC 10
in the final iteration

Minimum vnodes on a PC 64

in the final iteration
Weights for different types of Interior: 64

vnodes in the final mapping Border. 8, 16, 32, 64
Leaf: 8, 16, 32, 64
Experiment Result Final mapping has no “violations” at 100ms

“slop” factor using 12 PCs

4.3.2 Heuristic: Vnode Packet Rate Measurements
We evaluate this heuristic by setting the packet rate cgpatPCs to 6000 packets
per second so as to be well within the limits we reported inigecet.1.1. Packet-rates
reported for any vnode in an iteration are used for the nepimmg only if they are higher
than previous iterations. In this manner, we take peak paekes in an iteration. The
time used to compute the packet rate is the difference in bieteeen the receipt of the
last packet and the first packet by a vnode. In Table 4.12, p@rrsome characteristics

of this auto-adaptation experiment.

4.3.3 Summary of Auto-adaptation Experiments
The packet-rate measurements do not take into accounttshorbursts that may be
present in the flow of packets. However, further study is ireguto determine if such
bursts were present in our experiment and whether they \Wwereause of exceeding the
10ms slop factor. Relaxing the “slop factor” to 100ms predads with a successful map-
ping after five iterations. Notice that the convergencegipiaicket-rate measurements is

much faster than doubling vnode-weights as we see in the imgpping from one PC
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Table 4.12 Results of an auto-adaptation experiment using heugéstic

Total swap-in iterations 5
Number of PCs used in different| 1 — 9 — 10— 10— 10
iterations

Maximum PCs reporting violation 2
in an iteration

Iterations that had all PCs 1
reporting violation

Maximum vnodes on a PC 75
in the final iteration

Minimum vnodes on a PC 20

in the final iteration
Packet-rates for different types af Interior: 608—1041

vnodes in the final mapping Border. 53-555
Leaf: 45-145
Experiment Result Final mapping has no “violations” at 100ms

“slop” factor using 10 PCs

to nine PCs in a single iteration. However, the primary disatlage of this method is
that we need a fairly accurate measure of the packet rateicapérunning simulations
on any PC. Overestimation of this capacity will cause this-adaptation heuristic to go
into an infinite loop. In other words, a higher estimate ofpphede packet rate capacity
than what can actually be supported will cause violatiorns @mapping at the same
vnode packet rates without a successful mapping.

Heuristic 1 is much better overall since we do not need to haweh apriori informa-
tion before mapping an arbitrary simulation workload andanesure that the iterations
will always terminate either with a successful mapping aiketl one. A combination of
heuristic 1 and 2 may provide us with a better auto-adaptatdution. In other words,
use heuristic 2 with coarse pnode packet rates that neeceraatdurate and then switch
to heuristic 1 if the vnode packet rates do not change betwaeoessive iterations.

However, we have not experimented with this method and lgasefuture work.



CHAPTER 5

RELATED WORK

We can broadly classify the related work to this thesis ifi@é categories: (a)
Pure simulators that run in virtual time and strive to brirmmplete repeatability to
real implementations or abstractions of networking esgiti{b) network emulators that
run in real-time and naturally forego fine grained repeditghio gain realism. (c)

miscellaneous

5.1 Emulators

Dummynet [47] is a link emulator in the FreeBSD kernel thaiulates bandwidth,
latency, loss and some queuing behavior. This is used in &mialr link emulation
unless a simulated link is requested. ALTQ [13] is a queuiaghework in BSD kernels
that supports a large number of queuing disciplines.

Modelnet [55] is an emulation system focused on scalabilityses a small gigabit
cluster, running a much extended and optimized version aghibynet which is able
to emulate an impressively large number of moderate speéd.lilt has the added
capability of optionally distilling the topology to trade@uracy for scalability. It is
complementary to our work. Our work leveragess rich variety of models and proto-

cols.

5.2 Simulators
The x-sim [10] simulator provides an infrastructure to dilg execute x-kernel [28]
protocols in the simulator. It simulates links, routers and-node protocols and provides
logging mechanisms to capture the state of the simulatidrpast-process it.
pdns [46] is a parallel and distributed version of tiesimulator. It implements a

conservative parallel simulation and has mechanisms femtedistribution and simula-
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tion time synchronization. This system requires the expenter to manually map a

topology into its submodels that run on different processord manually configure the
global routing paths and IP addresses to run the simulafibrs approach therefore is

tedious, error-prone and can sometimes result in overallisition slowdown compared

to its serial version. The automated mapping that we devslapplicable to the mapping

of a parallel simulation. Our work is in integrated expentaion whereas pdns is a pure
simulation.

Dynamic Network Emulation Backplane [1] is an ongoing pcbjthat uses a dy-
namic library approach for capturing, synchronizing amduéng network data from un-
modified distributed applications over a simulated netwditkey also define an API for
heterogenous simulators to exchange messages, synasmalation time and keep
pace with real time in order to simulate a larger networkstlayeraging the strengths
of different network simulators. Time-synchronizatiorthe distributed simulation case
has a high overhead and it remains to be seen whether it cagrfogrped in real-time.
Data are captured from unmodified applications by interngpsystem call functions
using a dynamic-library preloading approach. This howeigeplatform dependent as
well as error prone due to duplication of code and specidlizglementation of several
system calls.

nsclick [38] embeds the click modular router [37] in ns-2 jefhallows a single click
based protocol implementation to run over a simulated woredireless network as well
as on a real node on a real network.

NCTUns [58] is a TCP/IP simulator that has descended fronHtevard network
simulator [57]. This simulator virtualizes the OS’s notiohtime to be the simulation
time. Using a combination of link simulation and tunnel d&g, a network topology is
built on a simulation host machine. Applications and thegrol stack are unmodified
and therefore more realistic than traditional simulators.

umisim [6, 54] extends user-mode Linux (UML) with an evenisn simulation
engine and other instrumentation needed for determiaisticontrolling the flow of
time as seen by the UML kernel and applications running uitd@he current level of

support allows network experimentation with a single lifikke degree of multiplexing
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of virtual nodes is limited due to the use of a complete keriile current system also
performs poorly and has much scope for improvement.

The Entrapid [27] protocol development environment vilizes the kernel network-
ing stack and user processes and moves them into user-mddg.effables building

of network topologies with virtual nodes, links and appiica processes on a single
machine.

5.3 Miscellaneous

The X-bone [52] is a software system that configures overktyvarks. It is an
implementation of the Virtual Internet Architecture [S53jat defines “revisitation” al-
lowing a single network component to emulate multiple \afttaomponents, although
in their context, a packet always leaves a physical noderée&iurning on a different
virtual link. In our system, multiple routing tables as wa#i the context of a virtual
link are needed even when all the nodes and links of a viryadlbgy are hosted on
one physical host. In the general sense, however, the ifseye&dentify have a broader
scope than what they have restricted themselves to, inghpier. Thus, virtual internets
can be formed not just in the wide-area but also using a c¢lssteh as the one employed
in Emulab. Integrated network experimentation spans edletlexperimental techniques

and we therefore believe that it is the most comprehensira @f virtual internet that
we know of.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Integrated network experimentation using simulation amdlation bridges the gap
between each other to enable new validation techniqueb, asitraffic interaction, and
performance comparisons of real protocol implementatagasnst abstracted ones writ-
ten for simulators. We have discussed many of the issueslizirey integrated network
experimentation. We have solved some of them and providexltomated integrated
experimentation environment in Emulab. By providing auadiom and programmability
that is common in “pure” simulations to integrated expemagion with distributed
real-time simulators, we enable “what if” experiments thate heretofore not practical
to perform.

The results from section 4.2 show that in order to have paities in distributed
real-time simulator instances be as similar to “pure” sgtioh as possible, experimental
artifacts that occur due to OS interactions must be kept atrémmam. Usingtime-
varianceplots, we were able to conclude that the differences frommépsimulation are
only noticeable in the time-scale of the mean packet intewedrand do not change the
behavior at large time-scales. Further research is redjtarenake similar conclusions
for a complex real-time simulation distributed over manysPC

We explored two heuristics to guide auto-adaptation of nmapgimulated resources
on PCs in order for them to run in real-time. These heurisitd&ze feedback data
to repack simulated resources that were originally mappedni optimistic manner.
Although we are unable to make any conclusions about thatgudithese heuristics
due to failed experiments, we believe that this techniquatractive in general. Auto-
adaptation is useful in other environments such as “virtmathine” based emulation

experiments as well as mapping “pure” distributed simatatutomatically to reduce
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overall simulation time. Faster remapping makes it prattc perform auto-adaptation
experiments.

Overall, discrete-event packet-level simulation is cotapanally expensive. Better
performance results than what we have presented in this timesy be obtained by using
modern PC hardware. It would also be interesting to see #metechniques such
as staged simulation [56] provide major improvements irfguerance and scaling of

integrated experiments.



APPENDIX

SIMULATION CODE FOR THE COMPARISON
OF QUEUEING BEHAVIOR



gl obal ns fnon f1 f2
set ns [new Sinul at or]

$ns rtproto Static

#Open the processed trace file
set f2 [open packet-trace.dat w

set nl [$ns node]
set n2 [$ns node]

# bottleneck |ink
$ns dupl ex-1ink $nl1 $n2 1.544M> 25ns DropTail
$ns queue-linmt $nl $n2 100

# Used instead of trace-queue. NS tracing
# is disabled and a new custom cl ass

# StorePktlnfo keeps track of queue drop
# packets in nmenory

set sp [new StorePktl nfo]

$sp store-pkts 10000

set dt [[$ns link $nl $n2] set drophead_]
$dt target $sp

# Define a procedure that prints statistical data periodically
proc print_status {} {

gl obal ns fnon f2

# Get current sinulation tine
set curr_time [$ns now

# Get information from queue nonitor
set pdrop(0) [$frmon set pdrops_]

set parri(0) [$fnon set parrivals_]
set pdept(0) [$fnmon set pdepartures_]
set pcurr(0) [$frmon set pkts_]

set plnt [$fnon get-pkts-integrator]
set pgsize(0) [$plnt set sum ]

puts -nonew ine $f2 "$curr_time $pcurr(0) $pgsi ze(0) $parri (0) $pdept(0) $pdrop(0)

# Get information of a particular flow (by flowid)
for {set j 1} {$] <=2} {incr j} {

# set a flow classifier
set fcl [$fnon classifier];

# select a particular flow
set flow [$fcl |ookup auto 0 0 $j]

# get stats for this flow

if { $flow!="" 1} then {
set pdrop($j) [$fl ow set pdrops_]
set parri($j) [$flow set parrivals_]
set pdept($j) [$fl ow set pdepartures_]
set pcurr($j) [$flow set pkts_]

puts -nonewline $f2 "$pcurr($j) Sparri($j) $pdept($j) $pdrop($j) "
}

}
puts $f2 "

#Call this function again in future
$ns at [expr $curr_time + 0.5] "print_status"



#Define a 'finish' procedure

proc finish {} {
# reference to global variables
global ns f1 f2 sp

#Fl ush the traces
$ns flush-trace

#Cl ose the trace file
close $f1l
cl ose $f2

$sp print-pkts
#Exit simul at or
exit 0

for {set i 0} {$i < 6} {incr i} {
set tcp($i) [new Agent/ TCP/ Newr eno]
$tcp($i) set fid_ [expr $i + 1]
$ns attach-agent $nl $tcp($i)

set tcpsink($i) [new Agent/ TCPSi nk]
$ns attach-agent $n2 $tcpsink($i)
$ns connect $tcp($i) $tcpsink($i)

set ftp($i) [new Application/FTP]
$ftp($i) attach-agent $tcp($i)
if { $i == 01} {
$ns at 0.5 "$ftp($i) start”
} else {
$ns at 0.0 "$ftp(S$i) start”
}

}

set udpO [ new Agent/ UDP]

$udp0 set fid_ 100

$udp0 set packet Size_ 1440

$ns attach-agent $nl $udpO

set chbr0 [new Application/Traffic/CBR]
$cbr0 set packet Size_ 1440

$cbr0 set interval _ 0.04

$cbr0 attach-agent $udpO

set udpsi nkO [ new Agent/ Nul | ]
$ns attach-agent $n2 $udpsi nkO
$ns connect $udpO0 $udpsi nkO
$ns at 0.0 "$cbrO start”

set fron [$ns makef | ownon Fid]
set dsanple [new Sanpl es]

$f non set - del ay- sanpl es $dsanpl e
set pktlnt [new Integrator]

$f non set - pkts-integrator $pktlnt
$f non reset

$pktInt set sum O

set 10 [$ns link $nl $n2]
$ns attach-fnon $I 0 $f non

$ns at 0.0 "print_status"”
$ns at 1000.0 "finish"

$ns run
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