
ISSUES IN INTEGRATED NETWORK EXPERIMENTATION

USING SIMULATION AND EMULATION

by

Shashikiran B. Guruprasad

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

August 2005

Copyright c© Shashikiran B. Guruprasad 2005

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Shashikiran B. Guruprasad

This thesis has been read by each member of the following supervisory committee and by majority
vote has been found to be satisfactory.

Chair: Jay Lepreau

Gary E. Lindstrom

John S. Heidemann

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Shashikiran B. Guruprasad in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript
is satisfactory to the Supervisory Committee and is ready for submission to The Graduate School.

Date Jay Lepreau
Chair: Supervisory Committee

Approved for the Major Department

Christopher R. Johnson
Chair/Director

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

Discrete-event network simulation is widely used to rapidly design, evaluate, and

validate new networking ideas as well as study the behavior of existing ones. It is

characterized by complete control, absolute repeatability and ease of use while often

sacrificing detail and realism to increase execution efficiency and the scale of models.

Network emulation allows the study of applications runningon real hosts and “somewhat

real” networks. A key difference between the two approachesis that in the former, the

notion of time is virtual and is independent of real time, whereas the latter must execute in

real time. Typically, emulated resources are also distributed in nature. Thus, emulation

gains realism while naturally foregoing complete repeatability; historically, emulation

was also tedious to control and manage.

Integrated Experiments, where we spatially combine real elements with simulated

elements to model different portions of a network topology in the same experimental

run, enable new validation techniques and larger experiments than obtainable by using

real elements alone.

In this thesis, we present a system in which we employ multiple loosely coordinated

simulator instances running on distributed PCs in real-time to model the simulated por-

tion of a network topology. Our key design techniques are to perform optimistic auto-

mated resource allocation, and to use feedback to adaptively allocate simulated resources

in order for the simulators to run in real-time. Multiple simulator configurations specific

to a resource assignment are automatically generated from an experimenter configuration

which is agnostic to the details of the physical realization. The entire system is highly

automated and is available for production use in Emulab.

To my parents

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . ix

LIST OF TABLES . xi

ACKNOWLEDGMENTS . xii

CHAPTERS

1. INTRODUCTION . 1

1.1 Background 5
1.1.1 Emulab 5
1.1.2 Nse. 7

2. ISSUES. 9

2.1 Naming and Addressing Issues 9
2.1.1 Node Naming 9
2.1.2 Node Addressing 9

2.2 Routing 10
2.3 Model Validity and Fidelity 12

2.3.1 Shared Implementation 13
2.3.2 Nodes 14
2.3.3 Links 14
2.3.4 LANs 14
2.3.5 Protocols 15

2.4 Scalable Resource Allocation and Mapping 16
2.4.1 Limited Intranode Bandwidth 19
2.4.2 Resource Descriptions 19
2.4.3 Dynamic Physical Equivalence Classes 19
2.4.4 Choice of Pnode While Mapping 20
2.4.5 Coarsening the Virtual Graph 20

2.5 Automation of Integrated Experiments 20
2.6 Performance 21
2.7 Real-time Simulation Issues 23

2.7.1 Physical Clock Rate Stability and Skew 23
2.7.2 Separation of Simulator Virtual Clock and Real-time

Physical Clock .. 24

3. DESIGN AND IMPLEMENTATION . 27

3.1 DistributedNse . 27
3.1.1 Distribution of User-specified Events 27

3.1.1.1 Common Notion of Time .. 28
3.1.1.2 Map Event to Simulator Instance 28

3.1.2 Simulated Links Between Nodes in DifferentNseInstances 30
3.1.3 Encapsulation and Decapsulation of Simulator Packets 32
3.1.4 Global Routing of Packets 34

3.2 Integration with Experimental Environment 34
3.2.1 Use 35
3.2.2 Experiment Configuration 35
3.2.3 Parsing 38
3.2.4 Self-configuration of Simulation Host PCs 40

3.3 Virtual Networking 41
3.3.1 Design Issues in Virtual Links and LANs 41

3.3.1.1 Level of Virtualization 42
3.3.1.2 Encapsulation 42
3.3.1.3 Sharing of Interfaces 42
3.3.1.4 Ability to Co-locate Virtual Nodes 42

3.3.2 Virtual Network Interfaces 43
3.3.3 Virtual Routing Table 43

3.4 Auto-Adaptation of Simulated Resources 44
3.4.1 Fast Mapping 44
3.4.2 Fast Pnode Reconfiguration 45
3.4.3 Doubling Vnode Weights 46
3.4.4 Vnode Packet-Rate 46

4. EVALUATION . 48

4.1 Base Performance ofnse . 48
4.1.1 Capacity and Accuracy 48
4.1.2 Scalability of Traffic Flows 50
4.1.3 Sensitivity to Different Slop Factors 51

4.2 Validation of DistributedNse. 52
4.2.1 Comparison of Aggregate Measures 53
4.2.2 Comparison of Packet Interarrivals 53
4.2.3 Multiscale Analysis 62

4.2.3.1 Time-variance Plot 62
4.2.4 Comparison of Queueing Behavior 63

4.3 Auto-adaptation of Simulated Resources 70
4.3.1 Heuristic: Doubling Vnode Weights 76
4.3.2 Heuristic: Vnode Packet Rate Measurements 77
4.3.3 Summary of Auto-adaptation Experiments 77

vii

5. RELATED WORK . 79

5.1 Emulators 79
5.2 Simulators 79
5.3 Miscellaneous 81

6. CONCLUSIONS AND FUTURE WORK . 82

APPENDIX: SIMULATION CODE FOR THE COMPARISON OF QUEUEING
BEHAVIOR . 84

REFERENCES . 87

viii

LIST OF FIGURES

1.1 Emulab system architecture 5

1.2 The basic operation of thensemulation facility (nse) 8

2.1 A network topology illustrating routing issues due to the multiplexing
of simulated nodes and links. Large boxes represent physical nodes and
links, while small boxes and lines (withitalicized labels) represent simu-
lated nodes and links. Virtual network interfaces (vlinks), virtual LANs
(vlans), physical interfaces (iface), and physical links (plinks) have names
as shown. 11

2.2 Pseudo code for thensereal-time event scheduler causing accumalated
errors 23

2.3 Time-line for real-time event dispatch that causes accumulated errors . . . 25

2.4 Pseudo code for thensereal-time event scheduler without accumulated
errors 26

3.1 nsecode in one instance to create a link with one endpoint in a different
nseinstance illustrated in Figure 3.2 31

3.2 Implementation of a simulated duplex-link between nodes mapped to two
nseinstances 33

3.3 nsecode to add IP address based routes 34

3.4 An integrated experiment in a “dumbbell” topology 36

3.5 nscode to create the integrated experiment illustrated in Figure 3.4 37

4.1 Comparison of frequency of packet interarrivals at TCP-sink for one flow . 56

4.2 Comparison of frequency of packet interarrivals at TCP-sink usingselect()
when 60 flows are present 57

4.3 Comparison of frequency of packet interarrivals at TCP-sink usingkqueue()
when 60 flows are present 58

4.4 Comparison of frequency of packet interarrivals at TCP-source for one flow 59

4.5 Comparison of frequency of packet interarrivals at TCP-source usingselect()
when 60 flows are present 60

4.6 Comparison of frequency of packet interarrivals at TCP-source usingkqueue()
when 60 flows are present 61

4.7 Comparison of TCP-sink time-series for one flow 64

4.8 Comparison of TCP-sink time-series usingselect()when 60 flows are
present 65

4.9 Comparison of TCP-sink time-series usingkqueue()when 60 flows are
present 66

4.10 Comparison of TCP-source time-series for one flow 67

4.11 Comparison of TCP-source time-series usingselect() when 60 flows
are present 68

4.12 Comparison of TCP-source time-series usingkqueue() when 60 flows
are present 69

4.13 Comparison of aggregate queueing behavior for six TCP and one UDP flows 71

4.14 Comparison of individual queueing behavior for two flows 72

4.15 Comparison of individual cumulative throughput for two flows 73

4.16 A 416 node topology used in evaluating auto-adaptation. 74

x

LIST OF TABLES

4.1 Delay: Accuracy of observed Dummynet andnse delay at maximum
packet rate as a function of packet size for different link delays. The 0ms
measurement represents the base overhead of the link. Adjusted RTT is
the observed value minus the base overhead. 49

4.2 Bandwidth: Accuracy of observed Dummynet andnsebandwidth as a
function of packet size for different link bandwidths 50

4.3 Loss: Accuracy of observed Dummynet andnsepacket loss rate as a
function of packet size for different loss rates 50

4.4 Sensitivity of slop factor on the number of simulation flows 51

4.5 Throughput comparisons between RTSIM, DIST-RTSIM and DIST-RTSIM-
60 54

4.6 Packet Interarrival comparisons at the TCP-sink between RTSIM, DIST-
RTSIM and DIST-RTSIM-60 54

4.7 Packet Interarrival comparisons at the TCP-source between RTSIM, DIST-
RTSIM and DIST-RTSIM-60 55

4.8 “Pure” simulation data for the workload used in evaluating auto-adaptation
75

4.9 “Pure” simulation vnode packet rates for the workload used in evaluating
auto-adaptation 76

4.10 Auto-adaptation experiment creation and swap-in times 76

4.11 Results of an auto-adaptation experiment using heuristic 1 77

4.12 Results of an auto-adaptation experiment using heuristic 2 78

ACKNOWLEDGMENTS

While completing my masters thesis, I have acquired valuable experience and skills

which I believe will take me a long way in my career as well as life. However, some

people say that in graduate school, one learns about how muchmore there is to learn

than what is actually learnt. My graduate school life has helped me understand the value

of intellectual humility, while balancing it with a healthyamount of confidence.

I’m thankful to my advisor, Jay Lepreau, for giving me the opportunity to work in

the Emulab project and advising me towards the completion ofthis thesis. I’m grateful

that he had more faith in my thesis work and abilities than I sometimes had in myself. I

would like to thank my committee members, John Heidemann andGary Lindstrom, who

asked me the right questions during my thesis proposal and defense that helped me to

strengthen the evaluation of my work.

I would like to thank Robert Ricci for developing and improving “assign”, entertain-

ing my feature requests of which many were difficult problemsand then earnestly coming

up with novel solutions very quickly. I’m also thankful to have worked with Mike Hibler

and Leigh Stoller in the Emulab project. Having them as my role models helped me

immensely to improve my programming skills and work attitude, and I still continue to

be inspired by them. I have to thank Brian White for driving many discussions during the

initial wireless testbed research and then writing most of our position paper. Thanks to

my flux group cohorts: Abhijeet and Parveen, as well as fellowgraduate student Hemanth

for helping me to see things clearly when I had questions or problems. Mohit, Amit and

Piyush deserve special thanks for letting me gatecrash their place for chai and dinner

on a regular basis. Thanks to friends (numerous to name here)for all the fun times we

had as a group on hiking trips and idle chat sessions that mademy graduate school life

so memorable. Finally, many thanks to my best friend Niti forproviding me constant

support and encouragement, especially during difficult times.

CHAPTER 1

INTRODUCTION

There are three experimental techniques used in the design and validation of new

and existing networking ideas: simulation, emulation and live network testing. All three

techniques have unique benefits and tradeoffs compared to each other. However, they

need not be viewed as competing techniques. Using all the three techniques in a process

continuum helps validate ideas better than using any one technique alone.

Network simulation provides an absolutely repeatable and controlled environment

for network experimentation. It is easy to configure and allows a protocol designer to

build at a suitable level of abstraction making simulation arapid prototype-and-evaluate

environment. Such a rapid process allows discarding of manybad alternatives before

attempting a full implementation. Ease of use also allows for large parameter-space

exploration. Discrete-event simulation, where the simulation state changes only at dis-

crete points in time, is the most commonly used network experimentation technique.

ns [7, 11] is a widely used discrete-event packet-level network simulator known for the

richness of transport, network and multicast protocols, buffer management, QoS and

packet scheduling algorithms as well as for models to perform wireless and satellite

network experimentation. The accuracy of simulations is dependent on the level of

abstraction of the models. Models that incorporate a higherlevel of detail reduce both

execution efficiency and scalability of the simulation. An experimenter is forced to make

a tradeoff between accuracy and efficiency without any systematic means of validating

the choice of abstraction [23]

Network emulation [5, 48, 41, 42, 55, 18] is a hybrid approachthat combines real

elements of a deployed networked application, such as end hosts and protocol implemen-

tations, with synthetic, simulated, or abstracted elements, such as the network links, inter-

2

mediate nodes and background traffic. Which elements are real and which are partially or

fully simulated will often differ, depending on the experimenter’s needs and the available

resources. For example, as more components run real code across live networks, one

gains increasing realism at the potential cost of scale, control and unpredictability. A

fundamental difference between simulation and emulation is that while the former runs

in virtual simulated time, the latter must run in real time. Another important difference

is that it is impossible to have an absolutely repeatable order of events in an emulation

due to its real-time nature and typically, a distributed setof resources. Note that the mere

presence of real elements does not necessitate emulation. For example, NCTUns [58]

and umlsim [6] are simulators that use only real elements. However, these real elements

execute in virtual time bringing the advantages of real implementations and simulation

together. What makes emulation a useful experimental technique is that realism is gained

by foregoing complete repeatability. Emulation provides an environment that is closer to

real environments than simulation. However, emulation is more tractable as an evaluation

environment than the real world, such as the Internet.

Live networks such as the Internet provide realistic network conditions. However,

they lack repeatability and the ability to monitor or control intermediate routers and links

in the network. Despite these drawbacks, researchers need to run experiments over live

networks to make their ideas completely credible.

We define integrated network experimentation asspatiallycombining real elements

with simulated elements in one or more instances of an existing simulation engine to

model different portions of a network topology in the same experimental run. An in-

tegrated experiment leverages the advantages of using realand simulated elements to

enable a) validation of experimental simulation models against real traffic b) exposing

experimental real traffic to congestion-reactive cross traffic derived from a rich variety

of existing, validated simulation models, c) scaling to larger topologies by multiplexing

simulated elements on physical resources than would be possible with just real elements.

A related form of network experimentation is to integrate experimental techniquestem-

porally, as researchers experiment iteratively on the same input, providing comparison

and validation. This is one of the key design goals of Emulab.The advantages of the

3

latter are discussed elsewhere [60]. This thesis is confinedto discussing issues in the

former.

In order to simulate workloads that cannot be simulated in real-time in a single

simulator instance, we use multiple simulator instances ona distributed set of PCs. Note

that an integrated network experiment where all simulationresources of an experiment

are modeled in a single simulator instance is different in the level of repeatability from

an experiment where multiple simulator instances are used to model different portions

of the overall topology. Although the former guarantees that no event is dispatched out

of order, the latter has no such guarantees due to the fundamental nature of real-time

distributed systems. Thus, integrated experiments as we have implemented it may have

global “causality errors,” naturally foregoing absolute repeatability offered by “pure”

simulations.

This thesis discusses many of the issues in integrated network experimentation and

presents work that solves some of them in the process of seamlessly integrating simulated

resources vianse1 in Emulab.2 In this thesis, we characterize the limits on performance

and accuracy fornse. We design, implement, and evaluate an adaptive algorithm to

partition simulation models across a cluster to enable themto track real-time while

minimizing resource use. We present the routing challengesraised in integrated network

experimentation, discuss their relationship to other forms of simulation (e.g., virtual

machines), design and implement a solution. We discuss the issues associated with event

management in integrated experimentation. As a result of the work in this thesis, a user of

Emulab is able to include simulated resources in integratedexperiments in a consistent,

highly automated manner without being concerned about their physical realization.

The following is a list of contributions of this thesis.

• Elucidate several tricky semantic and technical issues, inorder to support mul-

tiplexed virtual resources such as simulated resources andEmulab’s virtual-node

support.

1nsemulation facility [18] permits simulated packets to leavethe simulator for the “real” network, and
vice versa. Refer to section 1.1.2 for an overview.

2Refer to section 1.1.1 for an overview.

4

• Add support for multiple routing tables in the OS, which solves one of the above

issues. Develop and implement solutions to solve some of these issues to support

simulated resources.

• Develop methods to automatically adapt the packing of simulated resources onto

simulators running on physical PCs so that they are able to keep up with real-time.

We refer to this as “auto-adaptation.”

• Add primitives tonseto support multiple loosely coordinated instances ofnsethat

each model different portions of the simulation topology inthe same experiment.

By loose coordination, we mean the delivery of user-specified simulation events

that typically change traffic flows, such as starting or stopping flows, over a com-

mon time-base.

• Integrate simulated resources seamlessly into an experimental environment that

allows experimenters to spatially combine real and simulated resources in the same

experiment.

• Validate and analyze the performance integrated experiments.

We define here some of the terms we use in the rest of the thesis.A pnode is a

physical PC node in Emulab. A virtual topology is one that an experimenter specifies and

is independent of its physical realization in the experimental environment. Unfortunately,

two definitions exist for the term vnode. Avnode is a node in the virtual topology which

could be of different types such a PC vnode, simulated vnode or “virtual machine” vnode.

The term vnode is also sometimes used by itself to mean a “virtual machine” vnode. In

this thesis, however, we restrict ourselves to the first definition unless otherwise stated.

Similarly, vlinks andplinks are virtual links in the virtual topology and physical links

respectively.

5

1.1 Background

1.1.1 Emulab

Emulab is a general system for network experimentation, designed to provide con-

sistent access to all three experimental techniques listedabove. As such, its architec-

ture separates the front-end presented to experimenters from the internal workings of

Emulab, which is also separated from the back-end mechanisms that instantiate experi-

ments. In this section, we give a brief overview of that architecture, shown in Figure 1.1.

Emulab functions like an operating system for experiments in distributed systems and

networking—it provides interfaces and tools to turn bare hardware into something much

more effective to use. Emulab strives to preserve, however,“raw” access to the hardware

for users who require it.

Similar to an operating system process, an “experiment” is Emulab’s central op-

erational entity—it encapsulates an experiment run by a user. It is directly generated

from a front-end representation and then represented by a database. Emulab instantiates

the experiment onto available hardware, performing the difficult tasks of choosing the

appropriate resources and configuring nodes and links. A Emulab experiment may last

from a dozen minutes to many weeks, giving researchers time to make multiple runs,

change their software and parameters, or do long-term data gathering.

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�

�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
� User Interface

Accounts and Database
Expt. Config./Control
Back−ends

Link Management

Node Management

Experiment Scheduling

Experiment Configuration

Resource Allocation

Node Monitoring/Control

Node Self−Configuration

Clearing Node State
Control

Run−Time

Distributed
Event

System

����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������

Simulation PlanetLab

Users Testbed

Cluster Wide−Area

Admins

IXPMultiplexed Wireless

Account Management
(Integrated in all aspects of the Emulab system)

NS Scripts

Database (MySQL)

Command−line
XML−RPC

Access Control

Web Interface GUI

Figure 1.1. Emulab system architecture

6

To specify an experiment, users upload annsscript. Its use provides a powerful and

familiar specification language; in addition, Emulab also features a “point-and-click”

GUI that allows experimenters to draw their desired experiment topology, generating an

appropriatens script for them. The main primitives in an experiment specification are

nodes and links. When specifying nodes, experimenters can request specific hardware,

operating systems, and other parameters. Network links mayinclude characteristics such

as delay, bandwidth, and packet loss. Events can be also be scheduled to change link

characteristics, bring down links or nodes, and start and stop traffic generators. The

distributed event system is based on the Elvin [17] publish-subscribe system.

After being read by Emulab’s custom parser, the experiment specification is uploaded

to a database. The experiment state stored in the database isfurther used in all parts of

Emulab including experiment instantiation (also called “swap in”). Experiment instantia-

tion begins with resource assignment. Finding hardware that matches an experimenter’s

desired topology is an NP-hard problem. To find matches that make efficient use of

resources, without overloading bottlenecks such as cross-switch links, Emulab imple-

ments a custom solver discussed in detail in [44]. Differentresources are reserved and

configured using different back-ends. Allocated physical resources such as PCs boot

up and self-configure by contacting Emulab’smasterhostto download the necessary

customizations. At the end of this process, an experiment is“swapped in” and ready

for experimentation.

Emulab’s emulation back-end uses dedicated PCs and physical links to realize exper-

iments. Although this conservative allocation introducesthe least experimental artifacts,

the size of any experiment is limited to the number of physical PCs and the node degree

to the number of network interfaces on these PCs. This opens up an opportunity to use

“soft” resources such as simulated or “virtual machine” type elements and multiplex

them on physical PCs, thus scaling experiment size. For example, several simulated

nodes and moderate speed simulated links can fit on a physicalPC. Similarly several

moderate speed virtual links can be multiplexed on a high-speed physical link.

7

1.1.2 Nse

The simulation back-end in Emulab that is described in the rest of the thesis takes

advantage of thensemulation facility (callednse) [18] permitting simulated packets to

leave the simulator for the “real” network, and vice versa.nsesupports two modes:

opaque emulation modeandprotocol emulation mode. Mode selection is merely based

on nse’s runtime configuration. These modes are not mutually exclusive and can be

combined in a single run. Inopaque emulation mode, live packets from the network are

treated as opaque packets that may be dropped, delayed, reordered or duplicated in the

simulated network and then perhaps reinjected into the network. Such packets typically

interact with packets natively generated in the simulator in router queues.Protocol

emulation modeis where a simulator protocol implementation is communicating with

its real-world counterpart. To assist this mode, software “transducers” convert packet

formats from simulator to real-world and vice versa. In thisthesis, we use only the

opaque emulation mode. The reason for this is thatns is predominantly composed of

abstracted protocol elements that are incapable of communicating with real protocol

elements without large-scale modifications. However,ns in itself does not pose any

restrictions in building a detailed protocol model that is fully compliant with the specifi-

cation as much as a real world implementation. The basic operation ofnseis illustrated

in Figure 1.2.

Opaque emulation mode by itself is widely useful in the kind of real-simulated traffic

interaction in simulated router queues that it enables. Note that even in opaque emulation

mode, some protocol fields, such as packet length and TTL, aretaken into account when

it is introduced into the simulation.

Other than the ability for simulator packets to cross into the real network and vice

versa,nse is indistinguishable fromns. Even though we only usense to implement

integrated experiments, the termns is sometimes interchangeably used in this thesis.

8

NETWORK (via one or more interfaces)

TAP TAP
AGENT

BPF

FILTER
PACKET

USER−SPACE

KERNEL

NETWORK DRIVER

Node n0

AGENT

RAW

IP

NSE Simulator Unix Process

Node n1
Simulation Topology

Figure 1.2. The basic operation of thensemulation facility (nse)

CHAPTER 2

ISSUES

In this chapter, we elucidate several semantic and technical issues that need to be

addressed in order to support multiplexed virtual resources such as simulated resources

and “virtual machine” type resources in an integrated experiment. We only discuss sim-

ulation performance, model validity and fidelity issues whereas we implement solutions

for the other issues.

2.1 Naming and Addressing Issues
Multiplexing virtual nodes onto physical nodes, and combining these with simulated

and emulated nodes, raises some interesting challenges with respect to naming, address-

ing, and routing between nodes.

2.1.1 Node Naming

One of the strengths of Emulab, which we build on, is virtualized naming for all

nodes. Within an experiment, all nodes share a common namespace. The hostnames by

which they refer to themselves and other nodes are the virtual names assigned by the

experimenter, rather than the physical name of the hardwarethey happen to be instanti-

ated on. This is critical for transparency in two ways. First, it frees experimenters from

having to change their experiment depending on which hardware it was instantiated on.

Second, it allows portions of the experiment to be moved between different simulation

and emulation mechanisms, without having to change the restof the experiment.

2.1.2 Node Addressing

Subtle differences in addressing semantics between simulation and emulation presents

several problems when our goals are to achieve both transparent integration and equiv-

10

alence. The facility the testbed uses for allowing simulated traffic to interact with real

traffic, nse[18], was designed as a simulator that is run on a single machine. When two

or more instances ofnseare distributed across physical machines to simulate resources in

the same experiment, the node addresses used by the stocknseare not unique across these

instances. Routing packets between these instances would thus not be possible without

global addresses. IP addresses within Emulab are unique in an experiment Therefore,

we use IP addresses for global routing of simulator packets.To support this, we have

extended packet forwarding innseto use IP addresses.

nseassigns a single address to eachnode. In real operating systems, however, IP

addresses are assigned to eachnetwork interface. To support seamless integration of

simulated nodes in integrated experiments, we have extended nseto add IP addresses to

every link (i.e., interface) on a node. The source address ofpackets originating from that

node is marked with one of its addresses.

Operating systems typically do not require that packets arrive on an interface with the

destination IP address equal to the IP address of the interface. Thus, all the IP addresses

of such a multihomed host refer to the same node. This represents the “weak end system

model” [53, 9], in which network layer addresses refer to nodes rather than interfaces.

Emulab’s support for static routing did not originally route to all IP addresses of a node.

In Emulab we have extended the routing to use the same shortest path for all IP addresses

of a multihomed host. This sometimes causes nonintuitive routes as well as unused links

in the case of redundant paths. However, route paths are consistent regardless of which IP

address of a node is used by an application, and thus helps preserve repeatability across

experimental invocations. This has its downsides, for example if studying the effect of

controllable multihoming on end to end performance. In sucha case an experimenter

could turn off static routing, instead using manual routingor Emulab’s dynamic routing.

2.2 Routing

Multiplexingvirtual or simulated nodes and links on physical nodes and links poses

an acute problem in the correct routing of packets. Packets should be routed according

to the virtual topology and its routing dynamics over the physical topology. This appears

11

straightforward, but there are several challenges. In the remainder of this section, we

discuss these problems, referring to Figure 2.1 to illustrate the examples.

First, relying on a single routing table provided by the hostphysical node operating

system, and shared by all virtual nodes, is insufficient. Multiple routing tables, one per

virtual node, is an elegant solution to address the issue.

Second, incoming packets on a physical node require the context of the virtual link

on which they arrived so that route lookups can be directed tothe correct routing table,

the table that corresponds to the virtual node on the endpoint of the virtual link. For

example, a packet from source A0 to C0 should follow the path A0→B0→A1→B1→C0.

This translates to physical hops A→B→A→B→C. On physical node B, the physical

next hop will be either A or C depending on whether the packet arrived on virtual link

vlink0-B0 or vlink2-B1. Therefore, if a packet arrived on vlink0-B0, the route lookup

should be directed to B0’s copy of the routing table and if it arrived on vlink2-B1, to B1’s

routing table. Touch et al. identify this issue and term it “revisitation” [53], although in

their context, a packet leaves a physical node before returning on a different virtual link.

In our system, multiple routing tables as well as the contextof a virtual link are needed

even when all the nodes and links of a virtual topology are hosted on one physical host.

Host BHost A Host C

plink1plink0

vlink1−A1

vlan4−B2

vlan4−B1

vlan4−C0

vlink1−B0

vlink5−C1

vlink5−C0

ifa
ce

−
A

0

vlink0−A0

vlink2−A1

ifa
ce

−
B

0

ifa
ce

−
B

1

ifa
ce

−
C

0

vlink0−B0

vlink2−B1

vlink3−B2vlink3−A2

B0 C0

B2A2

A0

A1 B1

C1

Figure 2.1. A network topology illustrating routing issues due to the multiplexing of
simulated nodes and links. Large boxes represent physical nodes and links, while small
boxes and lines (withitalicized labels) represent simulated nodes and links. Virtual net-
work interfaces (vlinks), virtual LANs (vlans), physical interfaces (iface), and physical
links (plinks) have names as shown.

12

Third, depending on the mapping, packets will have source and destination virtual

nodes on the same physical node. Under such circumstances, OS modifications are

required to ensure that packets are not short circuited within the protocol stack instead

of routed according to the virtual topology. For example, consider a packet from source

A0 to A2. Since these two virtual nodes are on the same physical node, many OSes short

circuit the packet.

Fourth, virtual nodes on a LAN that are mapped to different physical nodes and span

multiple physical links/interfaces on one or more physicalnodes are an issue. A LAN

requires that the IP addresses of its members be in the same IPsubnetwork. Attaching

two IP addresses in the same subnetwork on two different network interfaces is disal-

lowed by most OSes. Overcoming this problem requires considerable OS modifications.

For example, virtual nodes B1, B2 and C0 are on a virtual LAN. B1 and B2, however,

are mapped to the same physical node B. If vlan4-B1 and vlan4-B2 are the two virtual

interfaces that are part of the virtual LAN, most OSes do not allow the attachment of IP

addresses in the same subnet, which is necessary in this case, on these interfaces. Emulab

solves all these issues.

Finally, as the topology is scaled using multiplexing, the global and per-vnode routing

table size increases. A simple all pairs shortest path algorithm for N nodes results in

O(N2) routes withN routes per virtual node. We discuss our solution to this scaling

problem in this paper currently under submission [25].

2.3 Model Validity and Fidelity
Integrated experiments are typically constructed with models that represent the cor-

responding real world phenomenon for reasons of scale, efficiency and availability of the

real-world phenomenon for experimentation. Models are constructed at different levels

of abstraction or detail with respect to the real-world phenomenon they represent. For

example, it may be easy to include a full implementation of a protocol in an experiment

rather than using an abstract model. On the other hand, it is easier1 to model network

links or nodes than include those real components. In order to leverage the benefits

1Especially when automated experimental environments suchas Emulab are unavailable

13

of integrated experimentation, such as scaling by replacing portions of a real topology

with a simulated one, it is necessary to ensure the fidelity ofthe models with respect

to the real-world components they replace. For example, replacing a real low-error-rate

wired-network-link with a simulated one having a simple model of delay, bandwidth and

statistical errors will continue to provide expected results. The same is difficult to ensure

in wireless networks [23]. Even if a model is faithful to a real-world implementation,

both the model and the implementation may not be valid with respect to the real-world

phenomenon they represent. For example, a TCP dynamics experiment [60] on Emu-

lab that compared different flavors of TCP between FreeBSD implementations andns

models uncovered a subtle bug in the FreeBSD implementation. This experiment was

based on ans-simulation comparison of different TCP flavors performed by Fall and

Floyd [19].

2.3.1 Shared Implementation

Several simulators [10, 38, 58, 6] provide interfaces for shared implementation be-

tween pure simulation, emulation and live experimentation. Such mechanisms have

many advantages: fidelity of the model across experimental techniques, increased real-

ism and rapid progress from concept to production due to reduction in development time.

However, it is important to have abstraction as a technique in validating networking ideas.

This is because shared implementations require substantially more detail that makes it

difficult to quickly prototype and validate new ideas. Fullydetailed implementations

also make it difficult to attribute observed experimental results to specific parts of the

implementation and also increases the chances of introducing bugs.

nsdoes not export a POSIX or POSIX-like API for shared implementations. There-

fore, it requires a large-scale software reengineering effort to port real implementations

to ns.

Because of issues in abstraction and fidelity of models, it aids an experimenter per-

forming integrated experimentation to know the differences between real resources and

simulated resources. We discuss such differences below between key resources such as

nodes, links, LANs and protocols in Emulab andnse.

14

2.3.2 Nodes

Emulab supports node types such as simulated nodes, PC nodes, widearea PCs,

virtual PCs using a modified version of FreeBSD’s jail [30], aprimitive form of virtual

machine. Simulated and jail nodes are lightweight virtual node abstractions that allow

multiplexing on PCs and scale experiments beyond the limit of PCs. A single PC in

Emulab could be used as a router, a delay node, an end-node or as a host for multiplexing

simulated or jail nodes.

nsdoes not model node delays common in real PCs: packet copyingoverhead across

PCI buses and memory and buffering in the hardware interfacewhile the OS is busy

performing other useful work. It is also not common to model unpredictable hardware

interrupts in network simulation.

2.3.3 Links

Links in Emulab between PC nodes with different bandwidth and delay character-

istics are realized by interposing a traffic-shaping node between the PC nodes. A real

link that has the above characteristics behaves differently by causing packet drops at

the network interface of the node on the link-endpoint rather than in the link. Such

interface packet drops can be detected on the nodes and couldcause applications to

behave differently between emulated and real links. In practice, this difference has no

effect on congestion reactive TCP or TCP-friendly traffic. Simulated links inns are

somewhat similar to the traffic-shaped links in Emulab in that interface drops are also

not present here. A difference between emulated and simulated links is in observed value

of delay versus the specified one. Emulated links are realized using hardware switched

VLANs and involves copying overhead that is not present in simulated links. Switch

effects increase inter node delay by a factor of 1.5 to 2 per-hop [61]. Because these are

constant overheads, compensation could be easily added into simulation if required.

2.3.4 LANs

LANs in Emulab are essentially switched VLANs. Effects suchas collision are very

limited in this environment and can thus scale the number of nodes on a LAN well

15

beyond traditional broadcast LANs.nsmodels a broadcast LAN. Because they are not

equivalent, replacing one with the other will affect the results of experiments.

2.3.5 Protocols

nshas a large number of TCP model variants, many of which now have real imple-

mentations that behave and perform similar to their counterparts in simulation. However,

the simulation TCP models, known as one-way TCP, are abstracted models. They do

not perform initial connection setups and teardowns, do nothandle sequence number

wraparounds, use nonstandard data types for header fields, do not implement dynamic

receiver advertised window, etc. [3]. The name “one-way TCP” is used because data

transfer is allowed only in one direction and only ACKs are allowed in the reverse path

for every connection.nsalso has a TCP variant known as FullTcp which is intended to

model a TCP in complete detail. This model allows two-way simultaneous data transfer

and performs initial connection setup. Although this modelis derived from a Reno

BSD implementation, the port tons was not entirely faithful. It uses a 31-bit signed

integer to represent TCP sequence numbers similar to otherns one-way TCP variants.

It does not handle sequence number wraparounds and does not implement dynamic

receiver advertised window. Implementation issues such asthis make it impossible to

have a mixture of real and simulated protocol endpoints without fixing the simulated

implementation.

ns uses more accurate timers for TCP than does a real OS implementation. In ns

every TCP endpoint schedules separate timer events each with a fine granularity. A real

implementation such as TCP in BSD uses very few timers per host and thus timeouts

have a coarser granularity. For example, BSD TCP uses a slow timer of 0.5 seconds

that sweeps through all active TCP connections to declare time-outs for ones that have

expired in the last 0.5 seconds [39]. Differences such as theones listed above can alter

initial or steady state throughput by a factor of 2-10 [24]

16

2.4 Scalable Resource Allocation and Mapping

Network experimentation on real hardware requires a mapping from the virtual re-

sources an experimenter requests to available physical resources. This problem arises in

a wide range of experimental environments, from network emulation to distributed sim-

ulation. This mapping, however, is difficult, as it must takea number of varying virtual

resource constraints into account to “fit” into physical resources that have bandwidth

bottlenecks and finite physical node memory and compute power. Poor mapping can

reduce efficiency and worse, introduce inaccuracies—such as when simulation events

cannot keep up with real-time—into an experiment. We call this problem the “network

testbed mapping problem” [45]. In general graph theory terms, this is equivalent to the

graph embedding or mapping problem with additional constraints specific to this domain.

This problem is NP-hard [45].

The mapping could be many-to-one, such as multiple vnodes and vlinks on a physical

node, one-to-one, such as a router node on a physical PC, or one-to-many, such as a vlink

of 400Mbps that uses four physical 100Mbps links2 [45].

When simulated traffic interacts with real traffic, it must keep up with real time. For

large simulations, this makes it necessary to distribute the simulation across many nodes.

In order to do this effectively, the mapping must avoid “overloading” any pnode in the

system, and must minimize the links in the simulated topology that cross real plinks. By

“overload,” we mean that there are are more simulated resources mapped to a pnode than

the instance of a simulator can simulate in real-time.

“Pure” distributed simulation also requires similar mapping. In this case, rather than

keeping up with real time, the primary goal is to speed up long-running simulations

by distributing the computation across multiple machines [8]. However, communication

between the machines can become a bottleneck, so a “good” mapping of simulated nodes

onto pnodes is important to overall performance. Although this is primarily achieved by

minimizing the number of vlinks that cross pnodes, another factor that affects perfor-

2Although the latter is not supported currently in Emulab by mapper known asassign. assign was
designed and implemented by other Emulab contributors. Ourprimary role is that of a user of this mapper
to implement integrated experimentation

17

mance is the lookahead that can be achieved. Lookahead refers to the ability to determine

the amount of simulated time that could be safely processed in one simulator process

without causality errors due to events from a different simulation process. Lookahead is

affected by thedistancebetween simulation processes [21]. Distance provides a lower

bound in the amount of simulated time that must elapse for an unprocessed event on

one process to propagate (and possibly affect) another process. Therefore, it is not just

important that a good mapping has fewer links crossing simulation processes, but also

for them to be lower bandwidth links because they increase distance and thus lookahead,

leading to improvement of efficiency of a distributed simulation.

A good mapping has the following properties:

• Sparse cuts: The number of vlinks whose incident vnodes are mapped to different

pnodes should be minimized. At the same time, the number of vnodes and vlinks

mapped to the same pnode should not exceed its emulation capacity.

• Low congestion: The number of vlinks that share plinks should be minimized

without over-subscribing the plinks. Although some plinkssuch as node-to-switch

plinks are dedicated to an experiment, others such as interswitch plinks are shared

between experiments. By minimizing vlinks mapped to sharedplinks, space-

sharing efficiency is increased.

• Low dilation: The physical length (i.e., hops) that correspond to mapped vlinks,

also known as dilation, should be kept to a minimum. For example, a vlink that is

mapped to a plink that traverses multiple cascaded switches, is less desirable than

one that traverses only one switch.

• Efficient use of resources across experiments: The unused capacity of physical

resources that are not shared across experiments must be kept to a minium. In

other words, minimize usage of shared resources such as interswitch links and

maximize usage of experiment private resources such as pnodes and switch links

from/to these nodes.

18

• Fast Runtimes: A suboptimal solution arrived at quickly is much more valuable

than a near optimal solution that has very long runtimes (e.g., minutes vs. hours).

This aspect becomes important when we map iteratively usingruntime information

to perform auto-adaptation of simulated resources. Due to the NP-hard nature

of the problem, the runtimes are easily exacerbated by larger topologies made

possible by “soft” resources such as simulated or “virtual machine” resources.

assign supports a node type system. Each node in the virtual topology is given a

type by the experimenter, and each node in the physical topology has a set of types that it

is able to satisfy. Each type on a pnode is associated with a “packing factor” (also known

as “co-locate factor”), indicating how many nodes of that type it can accommodate. This

enables multiple vnodes to share a pnode, as required by integrated experimentation as

well as “pure” distributed simulation. For example, ifsim is the type associated with

simulated nodes, a pnode will support a co-locate factor fornodes of typesim. However,

if all virtual or simulated nodes are considered to be equal,this can lead to suboptimal

mapping since typically the pnode resources consumed by vnodes are all different. To

achieve better mapping, arbitrary resource descriptions for vnodes and pnodes need to be

supported. However, this adds a bin-packing problem to an already complicated solution

space. In order to flexibly support soft resources such as simulated or “virtual machine”

resources, several new features were added recently toassign [25]. We describe these

features below3:

• Limited intranode bandwidth.

• Resource descriptions.

• Dynamic physical equivalence classes.

• Choice of pnode while mapping.

• Coarsening the virtual graph.

3We discuss how they are used to iteratively map simulated resources in section 3.4

19

2.4.1 Limited Intranode Bandwidth

When multiple vnodes are mapped to a pnode, vlinks are also mapped to the same

pnode. Originally, there was no cost for such vlinks which makes it possible to poten-

tially map an arbitrarily large number of vlinks. In realityhowever, there is a limit on

the number and total capacity of vlinks that can be supported. An idle vlink has no

cost other than memory used up in the simulator. However, there is a computational

cost of processing packets when traffic passes through vlinks. assign now supports

an upper limit on the intranode bandwidth and uses it when mapping vlinks whose

capacities are allowed to add up to the bandwidth. When mapping simulated resources,

we set this capacity to 100Mbps on Emulab hardware, based on measurements reported

in section 4.1.

2.4.2 Resource Descriptions

Pnodes support arbitrary resource capacity descriptions such as CPU speed, memory,

measured network emulation capacity, and real-time simulation event rate. Essentially

this could be any value that represents an arbitrary resource capacity. Capacities for

multiple resources are possible per pnode. Thus, vnodes with resource usage values for

multiple resources are counted against the above capacities. It is possible to use resource

descriptions even if only relative resource usage between vnodes is known. For example,

if vnode A consumes thrice as many resources as vnode B, vnodeA when mapped to an

empty pnode would become 75% full.

2.4.3 Dynamic Physical Equivalence Classes

assign reduces its search space by finding groups of homogenous pnodes and com-

bining them into physical equivalence classes. When multiplexing vnodes on pnodes, a

pnode that is partially filled is not equal to an empty node. This is not just in pnode

capacity but also in its physical connectivity to other pnodes since the plinks between

them are also partially filled.assign now computes the physical equivalence classes

dynamically while mapping. Although this helps a little, this feature is close to not

having physical equivalence classes at all. This factor is the dominant contributor to

20

longer runtimes when mapping multiple vnodes on pnodes, compared to an equal-sized

topology with one-to-one mapping. For large topologies, the runtimes can be very long,

into the tens of minutes and even hours.

2.4.4 Choice of Pnode While Mapping

As we noted before, a good mapping is likely to map two vnodes that are adjacent in

the virtual topology, to the same pnode. Instead of selecting a random pnode to map a

vnode,assign, now, with some probability, selects a pnode to which one of the vnode’s

neighbors has already been assigned. This dramatically improves the quality of solutions,

although not the runtimes on large topologies.

2.4.5 Coarsening the Virtual Graph

Using a multilevel graph partitioner, METIS[31], which runs much faster thanassign

primarily because it has no knowledge of the intricacies of the problem, the virtual

topology is “coarsened.” By “coarsening,” we mean that setsof vnodes are combined

to form a “conglomerate” to form a new virtual graph which is then fed toassign.

This feature dramatically improves runtimes, again due to the reduction in search space,

making it practical to perform auto-adaptation.

2.5 Automation of Integrated Experiments

Virtualization and mapping are not nearly as useful withoutautomation of the com-

plete experiment life cycle. For example, comparisons between manual experimental

setup against an automated one of a six node “dumbbell” topology in Emulab show

an improvement of a factor of 70 in the automated case [60]. One of the aspects of

automating the mapping of the simulated portion of an integrated experiment is that the

specification of the simulated topology must be used to generate multiple specifications

for each subportion of the topology that gets mapped to different physical nodes. The

structure of the specification language and the relationship between virtualized resources

can have an impact on the ease of doing this. The use of OTcl [59], a general purpose

programming language with loops and conditionals, for specification in nsand Emulab

21

makes the above task difficult compared to a domain specific language that enforces

relationships between resources at the syntactic level. For example, the domain specific

language (DML) used by the scalable simulation framework (SSF [15]) simulator has a

hierarchical attribute tree notation [14] that would make it easier to generate specifica-

tions of subportions of the full topology. DML is a static, tree-structured notation similar

to XML. Because of the tree-structured nature of DML, a node and its attributes as well

as any resources belonging to the node are syntactically nested. Thus, a simple parser can

partition such a node and everything associated with it easily. On the other hand,nsOTcl

can have simulated resources with logically nested relationships scattered anywhere in

the code without explicit syntactic hints, making such partitioning more complex.

Emulab uses an OTcl interpreter to parse a user’s OTcl [59] specification into an

intermediate representation and stores this in a database [60]. The parser statically

evaluates the OTcl script and therefore takes loops and conditionals into account. Using

a similar approach, we have developed a custom parser to parse the simulated portion

of the integrated experiment specification and generate newOTcl specifications for each

subportion of the topology mapped to a physical node. The design of such a custom

parser is discussed in the section 3.2.3. The implementation described in this section can

be retargeted to generating OTcl subspecifications to map pure distributed simulation

usingpdns, albeit with modest changes to our implementation. It is a separate project

that will be done outside of this thesis.

2.6 Performance

In the case of integrated experimentation, the performanceof a simulation is even

more critical than “pure” simulations as it could result in inaccurate results if performed

with a model size that exceeds the capacity of a simulator instance4 as opposed to just

taking longer to complete in pure simulations. Mapping is related to performance be-

cause the quality of mapping is dependent on the ability to characterize the performance

of simulation as accurately as possible. An overly optimistic mapping of simulated

4In our system, a violation is detected under an overload and the experiment is retried with a different
mapping or aborted after several retries

22

resources could cause one or more simulated partitions to not track real-time, thus pro-

ducing inaccurate results. On the other hand, an overly pessimistic mapping does not

fully exploit physical resources. An additional overhead over pure simulation is the need

to capture and inject live network packets. Link emulators such as dummynet [48] are

therefore implemented in the OS kernel to avoid the packet-copying and context-switch

overheads across user-kernel boundaries.

We first present an overview of the performance aspects of pure simulation. The

execution time of a discrete event simulation is proportional to the number of events that

need to be processed in a unit of simulation, known as the event rate. Even though the

computation performed by different events is different, averaging over large runtimes of

a complex simulation provides an adequate measure of the overall computational effort

of a simulator [35]. The event rate is proportional to the size of the model and the rate

of traffic flow. In real-time simulations, it is also useful tomeasure the number of events

processed in a unit of runtime. In this thesis, we present results with events per runtime

as we mostly experiment with simulations that are short. Several techniques are used to

speed up simulations: increasing the computational power available for simulations via

faster CPUs and parallel simulations on multiple processors [21, 46, 40], improved event

list algorithms and increasing the level of abstraction [4,26, 35, 22]. The latter technique

reduces the event rate of a comparable model by changing the granularity of simulations.

For example, fluid models abstract streams of packets as fluidflows in which events

correspond to fluid rate changes at traffic sources and network queues. Most of these

techniques trade off accuracy for increased speed. In some cases such as large scale

networks, packet-level simulation is likely to outperformfluid simulation due to “ripple

effects” [36].

Improved event list algorithms such as calendar queues [12]have a theoretical asymp-

totic running time of O(1) for all operations. The splay tree[51] is an O(log n) al-

gorithm [29] that is preferred when the number of events in the queue is not large.

In practice, it is easy for the running time of the calendar queue to degrade to linear

time [40]. In our experience, both the calendar queue and splay tree implementations in

nseperform equally well with the link emulation workloads we have tested.

23

A study that compares the performance of a few packet-level simulators, namelyns,

JavaSim, SSFNet in JavaandSSFNet in C++, under a specific type of workload with a

“dumbbell” topology, foundns to be the fastest simulator [39]. Thus,nsseems to be a

better choice for integrated experimentation than other packet-level simulators, in both

performance as well as the variety of existing, validated protocol modules.

2.7 Real-time Simulation Issues

We present two real-time simulation issues that can arise out of the choice of imple-

mentation. The basic pseudo code for the real-time event scheduler innseis presented in

Figure 2.2. The simulator clock is frequently syncrhonizedto real-time.

2.7.1 Physical Clock Rate Stability and Skew

The simulator uses some physical clock to track real-time. The physical clock rate

stability is more important for our purposes than clock offset from the true time. Synchro-

nization to real-time was originally performed innseby making a Unixgettimeofday()

system call and subtracting the time from the initial value of the same at the beginning of

bool halted = false;
double sim_clock;
while(!halted) {

// get event with earliest timestamp;
next_event = get_next_event();

// synchronize simulator-clock to real-time;
// Get real time relative to start of simulation
sim_clock = get_real_time_clock();

while(next_event->timestamp <= sim_clock) {
dispatch(next_event);

}

// Get real time relative to start of simulation
sim_clock = get_real_time_clock();

// Check and introduce live packets (e.g. from network)
// or events (e.g. from event system) from external
// sources if any.
if (poll_external_event() == true) {

insert_external_events();
}

}

Figure 2.2. Pseudo code for thensereal-time event scheduler causing accumalated errors

24

the simulation. Since the above synchronization is performed frequently, the relatively

high cost of a system call– as compared to simple function calls– increases the overhead

of the scheduler. Most of the newerx86 processors support an accurate CPU cycle

counter or in Pentium processor terminology, known as the time-stamp-counter (TSC)

directly readable in “user-mode.” Most operating systems perform a calibration of the

rate of this counter in order to determine CPU speed during boot time and export this

value to user applications. Reading the TSC hardware counter is cheap and using the

rate above, we get an accurate estimate of the real-time elapsed. We have modifiednseto

use this counter when it is available. Although the oscillator stability of the CPU clock

is very high, the method of determining the CPU clock rate at boot time by interpolating

the standard clock from the 8254 chip over a small measurement interval of around 50ms

introduces the skew of the 8254 clock. The 8254 clock has a skew of around one second

every 5.55 hours [43]. However, our method above is no less accurate than using the

gettimeofday() system call since that uses the standard clock from the 8254 chip.

One downside of this method is that it cannot be used on multiprocessors. Each processor

supports a different TSC, usually with different rates. When a user process is scheduled

on two different processors in different scheduling intervals, it reads the value of two

different TSCs that are not correlated with one another.

2.7.2 Separation of Simulator Virtual Clock and Real-time

Physical Clock

In the algorithm described in Figure 2.2, all events with timestamps earlier and up to

the current simulator clock are dispatched. Note that the simulator clock is frequently

updated with real-time relative to start of the experiment.Depending on how long it

takes to check for live-packets or dispatch an earlier event, nearly all future events are

dispatched late with respect to real-time, by someδ. The event being dispatched could

introduce future events in the scheduler queue, all relative to the current simulator clock.

The above algorithm seems simple enough. However, we show that it reduces the

accuracy of the simulation due to accumulated errors with the following example illus-

trated in Figure 2.3 (a). Consider an event,e, dispatched in the scheduler that results

25

in a packet being scheduled for transmission over a link which has both transmission

delay and propagation delay components being modeled. Thiscauses an evente1 to be

scheduled after the link transmission time from the currentsimulator clock. Similarly,

another evente2 is scheduled after the sum of the link transmission time and propagation

delay.

Figure 2.3 (a) shows the scenario just described wheree1 ande2 are scheduled relative

to the simulator clock synchronized to real-time. In pure simulation running in virtual

time, these events would be scheduled relative toe as shown in Figure 2.3 (b). Thus,

the algorithm described above causes an error ofδ for a single packet. Now consider

a packet that traverses many such links. Each time an event that corresponds to this

packet is dispatched late by someδ, the simulation error for this packet increases by that

δ. Eventually, after crossing many links, simulation errorsfor a packet will accumulate

and become noticeable. When this happens for every packet along this path, aggregate

statistics for the flow will be noticeably incorrect. Thus, it is important to avoid this

accumulation error in order to keep the simulation accurate. The error should be within

only a small constant.

e 1
e2

e1 e2

δ

time(b)
propagation

time

δ

time(a)
transmission

time

propagation

sim_clock
== real time

timeline

transmission

sim_clock
real time

clock

e

e

Figure 2.3. Time-line for real-time event dispatch that causes accumulated errors

26

This issue is addressed by keeping the simulator virtual clock and real-time physical

clock separate. The simulator virtual clock is initializedto the timestamp of the event

being dispatched. Only when live packets are introduced into the simulation is the

simulator virtual clock initialized to the real time physical clock. This is required in

order to ensure that causal future events due to live packetsare inserted into the scheduler

relative to the real-time physical clock. An event dispatchthat avoids accumulated errors

is illustrated in Figure 2.3 (b). We have addressed this issue in nsewith straightforward

changes whose pseudo code is given in Figure 2.4.

bool halted = false;
double sim_clock;
double real_time_clock;
while(!halted) {

// get event with earliest timestamp;
next_event = get_next_event();
// synchronize simulator-clock to real-time;

// Get real time relative to start of simulation
real_time_clock = get_real_time_clock();

while(next_event->timestamp <= real_time_clock) {
sim_clock = next_event->timestamp;
dispatch(next_event);

}

// Get real time relative to start of simulation
real_time_clock = get_real_time_clock();

// sim_clock is now synchronized to real time so
// that external events introduced into the scheduler
// queue have future time relative to real time as
// closely as possible
sim_clock = real_time_clock;

// Check and introduce live packets (e.g. from network)
// or events (e.g. from event system) from external
// sources if any.
if (poll_external_event() == true) {

insert_external_events();
}

}

Figure 2.4. Pseudo code for thensereal-time event scheduler without accumulated errors

CHAPTER 3

DESIGN AND IMPLEMENTATION

In this chapter, we first discuss the design changes we have made to the stocknse

in order to support integrated experimentation. In particular, the changes are primarily

related to supporting multiplense instances running on a distributed set of PCs in a

coordinated manner simulating different portions of the experimental topology. We then

discuss how we integrated the simulation back-end with the rest of the experimental

environment.

3.1 Distributed Nse

In order to scale to larger simulation topologies that cannot be supported in real-time

by a single instance ofnseon Emulab hardware, we map portions of the simulation

topology to different instances ofnseon multiple PCs in a single experiment. Each

instance ofnseprocesses simulator events independently of one another and in real-time.

However, user-specified events must be distributed to the simulator instance where the

associated simulator object is mapped. This is discussed insection 3.1.1. When portions

of the topology are mapped to different simulator instances, several links are cut. In

section 3.1.2, we discuss how we replace such links with special links that we have

designed that cross simulator instances. In sections 3.1.3and 3.1.4 we discuss how we

transport simulator packets and globally route them acrossmultiple simulator instances.

3.1.1 Distribution of User-specified Events

When a user explicitly specifies future events, such as bringing links up or down, it

is easily implemented in pure simulation by adding such an event to the global event list

in the correct position corresponding to the time when it needs to be dispatched. We face

28

the following challenges when implementing the above with multiple simulator instances

responsible for different simulated resources:

3.1.1.1 Common Notion of Time

Since multiple simulator instances are modeling differentportions of the same experi-

mental topology, they must share a common notion of time. Therate of the flow of time is

roughly taken care of by real-time-simulation modulo clock-skews that may be different

for different PCs. This aspect is discussed in section 2.7. The offset of these clocks from

the global common time at any given time should be nearly zero. This is needed in order

to dispatch two user-specified same-time-events at the sameglobal time if those events

were present in the event lists of two simulator instances. There are at least two ways

of implementing this, although achieving perfect synchronization for same-time events

across distributed simulator instances executing in real-time is impossible:

• Use distributedbarrier synchronizationto synchronize the start time of each sim-

ulator instance and insert user-specified events in the individual event lists. Clock

skews across the simulator instances could result in out of order event dispatch for

same-time or nearly same-time events across these simulator instances.

• Use a centralized event scheduler that maintains the notionof a per-experiment

time and dispatches user-specified events to the distributed instances at their dis-

patch time. There is a latency associated with every event delivered as well as

a skew between different same-time events. We use this method in integrated

experimentation, the details of which are discussed later in this section.

3.1.1.2 Map Event to Simulator Instance

An event must be mapped to the correct simulator instance in which it is to be

dispatched. Unlike pure simulation withns, it is difficult to support execution of arbitrary

OTcl code in user-specified events. Without a binding between the event and a particular

simulated resource, such as an object that has been mapped toa particular simulator

instance, there is not enough information on where to directan event. In Emulab, an

29

event is associated with objects such as nodes, links and traffic agents. After the mapping

(aka resource allocation) phase, we can establish the mapping between an event and the

physical host to which the event needs to be delivered. The list of events as well as

mapping of simulation objects to physical hosts are stored in Emulab’s database. For

events that affect simulation objects, actual OTcl stringsthat affect the object are stored.

As part of the experiment swapin process, a per-experiment event scheduler process is

run on Emulab’smasterhost. It reads the events from the database, queues them up and

delivers them to the physical hosts over the control network. Besides processing static

events that the experimenter specified in thens file, the event scheduler also supports

dynamic events. An experimenter can affect simulation objects dynamically by running

an Emulab provided event generation tool with the correct parameters, which includes

the name of the simulation object, time relative to when the above program runs, the type

of event and event arguments.

We have integratednsewith Emulab’sevent system. Event delivery in Emulab is

supported via the Elvin [17] publish-subscribe system thatsupports a flexible, content-

addressable messaging model. We have modified thensereal-time scheduler to check for

events sent from the Emulab central event scheduler similarto checks for live packets.

The events themselves contain OTcl strings that are evaluated innse, which typically act

on simulation objects, such as starting and stopping trafficagents.

The latency of the delivery of events over Emulab control network was measured and

reported in a technical report [61]. The latency for a singleevent is expected to be on

the order of a packet round-trip between themasterhostand the PC runningnseover the

control network. When same-time events are dispatched to multiple PCs, an additional

skew exists between events dispatched to the first and last nodes. From [61], out of 10

PCs receiving same-time events, the smallest latency was around 200µs and the largest

value was around 2ms.

We choose Emulab’s event system over barrier synchronization for delivering user

specified events to be uniform with event delivery mechanisms across simulation and em-

ulation objects. The centralized event scheduler at least has the guarantee of dispatching

events in the order it was specified even though they could come into effect in different

30

instances ofnseout of order. If the order of event dispatch needs to be strictly preserved

in integrated experimentation, it is best achieved by keeping events at least 10ms or more

apart, although there are no guarantees. Notice that with this method, there is no need to

keep the start times of differentnseinstances synchronized. In other words, the absolute

value of the simulator-clocks in differentnse instances are unimportant. In fact, they

could be seconds to tens-of-seconds apart depending on how different PCs running the

simulator instances boot up. The centralized event scheduler, however, starts processing

user specified events only after all PCs in an experiment are ready.

Although simulation offers the ability to be perfectly synchronized across nodes, thus

having absolute repeatability, it is not possible or necessarily desirable to achieve perfect

synchrony in integrated experimentation. In fact, modeling asynchrony in simulation

that is common in distributed systems is important in getting realistic results [24]. Thus,

using integrated experimentation, it is possible to explore the effects of clock drifts on a

simulated protocol under study. By mapping simulated nodesone-to-one on PCs, com-

plete asynchrony as seen in real-systems is achieved. At theother end of the spectrum,

if all simulated nodes were mapped to a single PC, the effectsof synchrony could be

observed. Hence, our system enables qualitatively new validation techniques.

3.1.2 Simulated Links Between Nodes in DifferentNse Instances

The Emulab mapper considers nodes as the basic unit of resource assignment. When

two simulated nodes with a duplex link between them are mapped to different instances

of nserunning on two PCs, we replace such a duplex-link with a new kind of link object

we have developed, known as anrlink (short for remote link). Anrlink is a simplex

link with one endpoint being a node and the other endpoint being an object that encap-

sulates a simulator packet in a live IP packet and sends it over the physical network. The

details of the encapsulation and decapsulation are discussed in section 3.1.3. The idea

of an rlink is similar to the one developed for parallel and distributedns (pdns) [46]

in that both represent a link whose one endpoint is in a different simulator instance.

However, they are different both conceptually as well as in implementation. Inpdns,

events are passed around between simulator instances whereas integrated experiments

31

encapsulate packets and transport them over the physical network. A duplex link between

two simulated nodes mapped to twonseinstances is implemented using tworlinks.

Eachrlink is instantiated in thenseinstance where the source endpoint node is present

instead of mapping both in the samenseinstance. This helps to load balance the link

simulation.

Figure 3.1 has a code snippet that demonstrates how our system uses anrlink to

create a simplex link from noden0 to a node in anothernseinstance with the IP address

<dst ip>. Notice that we also set an IP address<src ip> on the rlink using the

set-ip method on the node object. Every link object now supports aset-ip method

to set IP addresses on every link (i.e., interface), which was discussed in section 2.1.2.

The result of aset-ip method is to add the IP address to the list of IP addresses of a

node. A simulated node now has as many IP addresses as there are links originating from

it. A simulator packet with the destination address equal toany of these IP addresses will

be forwarded and delivered to traffic agents attached to thisnode (i.e., if the destination

port matches with one of the agents). Anrlink can also be used without bandwidth,

delay or queue type to specify a connection to a real PC node. If link shaping is required

on the link between a simulated node and a PC node, it is performed by an interposed

delay PC running Dummynet in Emulab.

For every rlink that is created, a TAP agent is internally instantiated. A packet

that traverses anrlink undergoes link simulation and is eventually handed over to its

TAP agent. If a simulator packet is received, encapsulationis performed and injected

set ns [new Simulator]
set n0 [$ns node]

All IP addresses are in dotted quad

rlink from n0 to another node in a different nse
set rl0 [$ns rlink $n0 <dst_ip> <bandwidth> <delay> <queue_type>]
$rl0 set-ip <src_ip>

rlink from n0 to a real PC node
set rl1 [$ns rlink $n0 <dst_ip_for_pc>]

Figure 3.1. nsecode in one instance to create a link with one endpoint in a differentnse
instance illustrated in Figure 3.2

32

into the live network. A live packet previously captured from the network is injected “as

is.” An encapsulated packet is decapsulated just before being delivered to a traffic agent.

Figure 3.2 shows the dataflow between different simulator objects. Although a TAP

agent is internally allocated for everyrlink, complete configuration of the TAP agent

is deferred untill after the setup of the PC host that runsnse. In particular, information

on the network interface(s) from which live packets are to becaptured is not available

untill PC host boots up.

3.1.3 Encapsulation and Decapsulation of Simulator Packets

In order to support traffic agents in different instances ofnseto communicate with

one another, simulator packets must be encapsulated in an IPpayload and transferred

over the network.nseprotocol state for different protocols is present in the form of

several header fields organized in contiguous memory also known as a “bag of bits.”

Therefore, a simple copy is sufficient to perform the encapsulation. Every packet has

space for header fields of nearly all the protocols supportedby ns even if only a small

portion of the header space is used at a time. The unused portions are zeroed. We encode

such headers into a compact summary so that they occupy less space in the IP payload

and thus reduce the likelihood of IP fragmentation. The summary is made up of repeated

patterns of<offset>, <length> and nonzero words. The<offset> values are the

locations relative to the start of an unencapsulated bufferfrom where nonzero data exists.

An encapsulated packet may have to traverse multiple simulator instances before

it has to be delivered to a traffic agent. Although most of the protocol state in the

simulated packet is used by the traffic agents on the ends, nearly justifying performing the

decapsulation just before it is delivered to a traffic agent,some state such as the simulated

packet size are needed to perform correct link simulation. Similarly, other state such as

TTL or Explicit Congestion Notification (ECN)bits are modified in the intermediate

router nodes. Therefore, we perform decapsulation as soon as an encapsulated packet is

captured from the live network even if the final destination node is in a different simulator

instance. If such a packet again leaves the simulator instance, it is encapsulated again

before being injected over the live network.

33

1.544Mbps/25ms

KERNEL

Object

no delay

PC2PC1

AGENT
TAP

IP

BPF
PACKET
FILTER

W
 T
 E
 N

 O
 R
 K

 D
 R
 I
 V
 E
 R

W
 T
 E
 N

 O
 R
 K

 E
 R

FILTER

W
 T
 E

 R

RAW TAP
AGENT

Packet Capture
Object

KERNEL

 O

 K

 V
 I
 R
 D

 N

RAW

IP

BPF
PACKET

NSE Simulator Unix Process

Packet Capture

Node n0 Node n1

USER−SPACE

NSE Simulator Unix Process

USER−SPACE

rlink (simplex)
1.544Mbps/25ms
rlink (simplex)

no delay

Figure 3.2. Implementation of a simulated duplex-link between nodes mapped to twonseinstances

34

3.1.4 Global Routing of Packets

As discussed in section 2.1.2, we have extendednsepacket forwarding to use IP

addresses for global routing. Node addresses innseprior to our changes used a 32–signed

address. Changing this to a 32–bit unsigned address to fit in IPv4 addresses was trivial.

We also modified the bitmasks used for multicast addresses toreflect IPv4 multicast

addresses.

We have extendednseto be able to add IP address based routes with the following

syntax described in Figure 3.3.

3.2 Integration with Experimental Environment

Note that the experimenter in Emulab need not worry about routes or IP addresses

as shown in section 3.2.1. It is merely an implementation detail of our system. In

setting up integrated experiments, we already compute the all pairs shortest paths for

the experimental topology. We manually add only IP address based routes in allnse

instances. Currently, we support only two bitmasks 255.255.255.255 and 255.255.255.0.

The address classifier performs a route-lookup using all 32 bits of the destination address

of the packet. If that fails to find a next hop, it tries anotherlookup with the lower eight

bits masked. This is a limitation of our current implementation. However, extendingnse

to support a modern longest-prefix-match based classifier isstraightforward. We believe

that this feature is not necessary to demonstrate the ideas we present in this thesis.

Integrating simulation into Emulab involves changes to many parts of the software,

the details of which are all not discussed in this thesis. Onekey point worth noting is

that the integration of the simulation back-end fits nicely with the abstractions already

present to support cluster PC nodes and multiplexed virtualnode backends. Although

the number of lines of code added to support the simulation back-end are not very large,

set n0 [$ns node]
IP addresses and netmasks in dotted quad
$n0 add-route-to-ip <dst_ip> <nexthop_ip> <netmask>

Figure 3.3. nsecode to add IP address based routes

35

thus supporting our claim above, the changes themselves were not straightforward due

to the immense task of understanding the software of a large distributed system with

many complex interactions. We first discuss how an experimenter specifies an integrated

experiment and use the reminder of the section to discuss independent portions of the

simulation back-end.

3.2.1 Use

To create an experiment in Emulab with simulated resources in it, a user simply has

to enclose a block of NS OTcl code in$ns make-simulated { }. Connections

between simulated and physical nodes are specified as usual using aduplex-link.

Multiple make-simulated blocks are allowed in a single experiment which results in

the concatenation of all such blocks. Figure 3.4 illustrates an example of an experiment

with a “dumbbell” topology comprised of both real PC nodes and simulated nodes. The

OTcl source-code is presented in Figure 3.5.

The “dumbbell” topology of six nodes is mapped to four PCs in Emulab. Note

that this is a very low multiplexing factor explicitly specified in the code to keep the

example simple. Two simulation host PCs are automatically allocated by the system.

The code in themake-simulated block will be automatically reparsed into two OTcl

subspecifications, of which each is fed into an instance ofnserunning on the simulation

host. Depending on how the mapping happens, there can eitherbe one or two simulated

links that cross PCs. In Figure 3.4, we have one such link thatcross PCs.

3.2.2 Experiment Configuration

We list the (details abstracted) steps performed from specification to actual experi-

ment instantiation below:

1. Perform initial parsing of user-specified OTcl code. Store experiment information

in the database.

2. Compute all pairs shortest path static routes for the topology and store the routes

in the database. This includes routing to every interface ofa node, each having an

IP address.

36

PC 4PC 3

100Mbps physical links

PC Hosts, NSE on PC2 and PC3Virtual Nodes in the Topology

Virtual Links in the Topology

PC 2PC 1
Agent/TCPSink

100Mb
1ms

sim1

simrouter1

Agent/TCP

Simplex Link

10Mb/2ms
Traffic Source

TG based TCP

sim2

real2

TG based TCP
Traffic Sink

10Mb/2ms

real1
100Mb
1ms

1.544Mb/40 ms

1.544Mb/40 ms
Simplex Link

simrouter2

Figure 3.4. An integrated experiment in a “dumbbell” topology

3. Retrieve the experiment virtual topology and available physical resources from

the database and perform resource assignment. Repeat on partial failures that

may occur due to reasons such as another experiment acquiring some physical

resources.

4. Reserve physical resources.

5. Update database with information specific to the mapping.For example, we list a

few below:

• Switch VLANs.

• IP address bindings for network interfaces.

• Creation of virtual network interfaces and their binding tophysical interfaces

for rlinks.

• Compute routing table identifiers only for simulated nodes with rlinks.

• OS that needs to run on the simulation host PCs.

• Second parsing of themake-simulated block to generate OTcl subspec-

ifications.

37

set ns [new Simulator]
Enable automatic static routing
$ns rtproto Static

Get two real PCs
set real1 [$ns node]; set real2 [$ns node]

Use the standard FreeBSD image in Netbed
tb-set-node-os $real1 FBSD-STD; tb-set-node-os $real2 FBSD-STD

$ns make-simulated {
All the code here run in the simulation. Get 2 sim. end-nodes and 2 router-nodes
set sim1 [$ns node]; set sim2 [$ns node]
set simrouter1 [$ns node]; set simrouter2 [$ns node]

Bottleneck link inside simulation. Simulated and real traffic share this link
$ns duplex-link $simrouter1 $simrouter2 1.544Mb 40ms DropTail

More duplex links inside the simulation
$ns duplex-link $sim1 $simrouter1 10Mb 2ms DropTail
$ns duplex-link $sim2 $simrouter2 10Mb 2ms DropTail

TCP agent object on node sim1 and TCPSink object on node sim2,
both in simulation
set tcp1 [new Agent/TCP]
$ns attach-agent $sim1 $tcp1
FTP application object in simulation on node sim1
set ftp1 [new Application/FTP]
$ftp1 attach-agent $tcp1
set tcpsink1 [new Agent/TCPSink]
$ns attach-agent $sim2 $tcpsink1
Tell the system that $tcp1 and $tcpsink1 agents will talk to each other
$ns connect $tcp1 $tcpsink1

Starting at time 1.0 send 75MB of data
$ns at 1.0 "$ftp0 send 75000000"

Connecting real and sim. nodes. Allowed inside/outside make-simulated block
$ns duplex-link $real1 $simrouter1 100Mb 1ms DropTail

}

connecting real and simulated nodes.
$ns duplex-link $real2 $simrouter2 100Mb 1ms DropTail

A real TCP traffic agent on PC real1
set tcpreal1 [new Agent/TCP]
$ns attach-agent $real1 $tcpreal1
set cbr0 [Application/Traffic/CBR]
$cbr0 attach-agent $tcpreal1

A real TCP sink traffic agent on PC real2
set tcprealsink1 [new Agent/TCPSink]
$ns attach-agent $real2 $tcprealsink1
Tell the system that $tcpreal1 will talk to # tcprealsink1
$ns connect $tcpreal1 $tcprealsink1

Start traffic generator at time 10.0
$ns at 10.0 "$cbr0 start"

Drastically reduce colocation factor for sim. nodes to show distributed NSE.
With this, the 4 simulated nodes will be mapped to 2 PCs.
tb-set-colocate-factor 2

$ns run

Figure 3.5. nscode to create the integrated experiment illustrated in Figure 3.4

38

6. Load OS if required and boot the physical PCs.

7. Set up VLANs on switches.

8. Start up per-experiment event scheduler to deliver user-specified events.

9. Simulation host PCs perform self-configuration.

3.2.3 Parsing

User-specified experiment configuration such as the one given in section 3.2.1 has to

be parsed before the experiment can be realized on various physical resources. We have

extended the Emulab parser to store the simulated part of theexperiment specification

(enclosed in one or moremake-simulated blocks) into the database “as is” for

further parsing later. This is necessary since OTcl subspecifications can be generated

only after the mapping phase. We will call this second parse an nse parse. This parse

is similar to Emulab’s initial parsing. The output of thenseparse is a set of OTcl

subspecifications that are targeted to different simulatorinstances. Once generated, these

subspecifications are stored in Emulab’s database to be usedduring the experimental run.

Essentially, a source to source translation is performed where both the source and target

language are the same, i.e., OTcl. A single source results inone or more target OTcl

scripts based on the mapping where each target script executes in an instance ofnse. We

describe our approach for this parse below.

Written in OTcl, the parser operates by overriding and interposing on standardns

procedures. Some keyns methods are overloaded. These methods use mapping in-

formation from Emulab’s database to partition user-specified OTcl code into OTcl sub-

specifications for each simulator instance. For example, the duplex-link method

of the Simulator class is normally used in creating links. The overloaded version

of duplex-link generates either tworlinks if the endpoint nodes of the link are

mapped to different simulator instances or regenerates thesameduplex-link. Due

to the structure of classes inns, we are able to support a large portion ofns syntax in

the make-simulated block. ns classes that are important for this parsing phase

are Simulator, Node, Agent and Application. Links in ns are typically

39

instantiated using theduplex-link method of the Simulator class. Traffic in

nshas a simple two-layer model: transport and application. Subclasses of theAgent

class normally implement the transport layer functionality of any protocol. These agents

are all attached to aNode object. Similarly, subclasses of theApplication class

implement the application layer functionality of a protocol. The application objects are

all attached to some agent.Agent and Application are thus directly or indirectly

associated with aNode object, allowing the OTcl code for them all to be generated

for a particular simulator instance. All simulation objects support the specification of

per-object attributes via instance variables.

Classes inns have structured names with the hierarchy delineated by the slash (/)

character. For example, all subclasses of theAgent class have aAgent/ prefix.

Tcl/OTcl also supportsinfo procedures that can help extract the state of the OTcl

interpreter [59]. Similarly, anunknown method permits us to capture arbitrary method

calls without any knowledge about them. Using the above features, we are able to

construct the OTcl code to be given to different instances ofnse. Note that most of

the constructs are regenerated as they were specified by the experimenter while others

such as links are transformed intorlinks if the incident nodes are mapped to differ-

ent simulator instances. For user-specified events specified with theat method of the

Simulator class, our overriddenat method makes an attempt to map the event to a

simulation object, which is further mapped to the simulatorinstance to which it needs

to be delivered. The events thus mapped are thus stored in thedatabase. OTcl code is

not generated for user-specified events since they will be delivered via Emulab’s central

event scheduler as described in section 3.1.1 The followingpoints outline a list of steps

performed by thenseparser:

1. Concatenate allmake-simulated blocks and store it in the database during

first parse along with topology info.

2. Perform mapping using topology information from the database.

3. Initialize mapping info from the database in thenseparser (OTcl based).

40

4. Source the code in themake-simulated block into the parser creating objects

based on overridden classes such as Simulator, Node, Agent etc., that we have

defined. The base class object is created for any class name with a prefix of one

of the above special classes. The actual name of the subclassis stored and will be

used later to regenerate Tcl code. Objects of unrecognized classes are ignored.

5. Unrecognized global Tcl procedures are ignored. Note that unrecognized meth-

ods for the special classes mentioned above are all capturedusing theunknown

method for the respective classes.

6. The last step is to generate OTcl code in this order of simulation objects :Simul-

ator, Node, duplex-link, rlink, Agent, Application. The

code generated will have method invocations as well as initialization of instance

variables.

Our approach works well within the bounds of careful specification, numerous coun-

terexamples of experiment specification can be constructedwhere our approach for pars-

ing when using either Emulab frontend parser ornseparser will fail or is not adequate.

For example, if specified code had dependencies on variable values of a running simu-

lator, our approach fails. Another example is if an experimenter specified an OTcl loop

to create a large number of simulation objects, our code generation will unroll all the

loops, potentially causing code bloat that may be beyond thelimits of our system. Some

of these limitations can be overcome with more work but others are difficult to do so

without writing a complete interpreter that understands all of ns. However, the ideas

presented in this thesis are not in any way weakened by these limitations.

3.2.4 Self-configuration of Simulation Host PCs

The PCs that runnseinstances boot up and contact Emulabmasterhostto customize

the setup of the OS in order to serve the role that it was designated for, in an experiment.

The masterhostretrieves information from the database and returns them inresponse.

The PCs receive information such as network identity (DHCP), shared filesystem (NFS)

mounts, user accounts and keys, hosts file, network interface information (both real and

41

virtual) and routing. These tasks were already performed byEmulab for cluster PC

self-configuration. Once all tasks are performed, the PCs report back tomasterhost

that they are ready. We have extended the self-configurationprocess to download OTcl

configuration from themasterhost, configure and run the simulator if the PCs were to

serve as simulation hosts. The simulation hosts are configured to run FreeBSD. The disk

images with this OS were updated with our modifiednsebinary as well as a supporting

OTcl script. Our changes also ensured that the PC reported tothe masterhostthat it is

ready only afternseis configured and running.

3.3 Virtual Networking

In this section, we discuss the details of the virtual link mechanism that allows us to

multiplex several virtual links on a physical link and the implementation of the multiple

routing table. We leveraged the virtual link mechanism thatwas added (by others) in

Emulab to support multiplexed virtual nodes. We added initial support for multiple

routing tables in FreeBSD which was later extended and completed by others, again

for use in supporting multiplexed virtual nodes.

3.3.1 Design Issues in Virtual Links and LANs

In a general context, virtual links provide a way of multiplexing many logical links

onto a smaller number of physical links. In this light, virtual links can be used to

provide a higher degree of connectivity to nodes, whether those nodes are virtual or

physical. In the context of virtual nodes, our discussion ofvirtual links includes not

only this multiplexing capability but also the network namespace isolation issues and

the subtleties of interconnecting virtual nodes within, and between, physical nodes. The

implementation ofnsepacket capture and injection dictates our design choice.

The interesting characteristics of virtual links are:

• Level of virtualization.

• Encapsulation.

• Sharing of interfaces.

42

• Ability to co-locate virtual nodes.

3.3.1.1 Level of Virtualization

Virtual link implementations can present either a virtual link layer by providing a

virtual ethernet device or a virtual IP layer by using multiple IP addresses per physical

interface. The former is more flexible, allowing traffic other than IP, but such flexibility

may not be needed for some applications. A virtual ethernet device is needed to support

nsesince it uses a BPF device to capture live packets. Although it is possible to support

demultiplexing of packets by using more specific filter rules, it may not be practical to

generate a rule that encompasses all packet source–destination pairs that may traverse

the link.

3.3.1.2 Encapsulation

Virtual links may or may not encapsulate their packets. Encapsulation is traditionally

used either to transport nonstandard protocols over deployed networks (e.g., tunneling

over IPv4) or to support transparent (to end node) multiplexing capability (e.g., 802.1Q

VLANs). Encapsulation usually implies a decrease in the MTUsize for the encapsulated

protocol, which can affect throughput.

3.3.1.3 Sharing of Interfaces

The end point of a virtual link as seen by a virtual node may be either a shared

interface device or a private one. This may affect whether interface-centric applications

like tcpdump can be used in a virtual node. For the same reasons specified above, a

private interface device per-link is better fornse.

3.3.1.4 Ability to Co-locate Virtual Nodes

Three factors related to the implementation of virtual links influence which, if any,

virtual nodes in the same topology or virtual nodes in different topologies can be co-

located on a physical node. First, if virtual links are implemented using IP aliases on

shared physical interfaces, then there are restrictions onwhat addresses can be assigned

to the interface. For example, two nodes in different topologies could not have the same

43

IP address or two nodes in the same topology could not be part of the same virtual LAN.

Second, if virtual links use a shared routing table, then twoco-located nodes cannot have

different next hop addresses for the same destination. Third, even with private routing

tables, virtual links that cross physical links must conveydemultiplexing information

so that the receiving physical node can use the correct routing table for forwarding

decisions. Without this, physical nodes cannot host multiple virtual nodes for the same

topology. This is known as the “revisitation” problem [53].

3.3.2 Virtual Network Interfaces

In order to support virtual links, we leverage Emulab’s implementation of a virtual

Ethernet interface device (veth). The veth driver is a hybrid of a virtual interface device,

an encapsulating device and a bridging device. It allows us to create unbounded numbers

of Ethernet interfaces (virtualization), multiplex them on physical interfaces or tie them

together in a loopback fashion (bridging) and have them communicate transparently

through our switch fabric (encapsulation). Virtualization gives us per-link interfaces

above the physical interface which we can use as the underlying interface for a BPF

capture device. Bridging allows the correct routing of packets at the link level so that

virtual interfaces only receive the packets that they should. Encapsulation preserves the

virtual link information necessary to implement revisitation when crossing physical links,

without making any assumptions about the switching fabric.However, our switch fabric

learns link-layer addresses as packets cross the switch. They can also support several

link-layer addresses for the same switch port. Thus, Emulabveth device also supports

an alternative to encapsulation by using fake link-layer addresses.

3.3.3 Virtual Routing Table

We have adopted and extended the work of Scandariato and Risso [49] which imple-

ments multiple IP routing tables to support multiple VPN endpoints on a physical node.

Routing tables are identified by a small integer routing table ID (rtabid). These IDs are

the glue that bind together simulated nodes withrlinks, virtual interfaces and routing

tables. Simulated nodes that haverlinks use a separate routing table with a unique

44

rtabid to make sure packets injected by the node will use the correct routing table to find

the next hop. Using a socket option to set the rtabid on a RAW IPsocket, which is

used to inject packets into the live network, a simulated node is able to ensure correct

behavior.

3.4 Auto-Adaptation of Simulated Resources

A mapping of simulated resources to physical resources should avoid “overloading”

any pnode in the system, which was discussed in detail in section 2.4. The workload to

which an instance ofnseis subjected is not easily determined statically in an integrated

experiment, partly because an experimenter can generate arbitrary traffic without speci-

fying its nature a priori. An overloaded pnode will result insimulation inaccuracies. In

the case of simulated resources, these inaccuracies occur because the simulator is not able

to dispatch all events in real-time. A similar issue also arises when multiplexing “virtual

machine” type vnodes on pnodes. In order to solve this issue,we perform auto-adaptation

when overload is detected by iterative mapping. Successivemappings use feedback data

from running the experiment with prior mappings, until no overload is detected or we run

out of physical resources. Such a solution for “virtual machine” type vnodes is discussed

elsewhere [25]. In this section, we focus on performing iterative mapping for simulated

resources.

The factors that make it feasible for us to perform auto-adaptation are:

• Fast mapping.

• Fast pnode reconfiguration

3.4.1 Fast Mapping

This was discussed in section 2.4. A mapping that takes hoursis clearly too slow. It-

erative mapping reduces the search space by remapping only the portions of the topology

that were mapped to pnodes reporting an overload.

45

3.4.2 Fast Pnode Reconfiguration

Iterative mapping is affected by the speed ofreconfiguringpnodes for the new map-

ping, both pnodes currently reserved to the experiment and new ones that may be al-

located as more resources are needed. Current PC hardware can take long enough to

boot that this starts to affect remapping time. Emulab in a recent optimization, now

avoids doing full reboots by having unused pnodes wait in a “warm” state in the boot

loader. This boot loader has the ability to boot into different disk partitions, and to

boot different kernels within those partitions. Pnodes that were already part of the

experiment are reconfigured without rebooting. This involves pushing all the Emulab

client configuration data to the pnode, reconfiguring interfaces, routing tables, and a new

simulation.

Initial mapping is guided by optimistic vnode co-locate factors per pnode type in

Emulab. A more powerful PC supports a higher co-locate factor than a less powerful one.

The co-locate factor is intended as a coarse grained metric for CPU and memory load on

a pnode. In simulations with lots of traffic, the CPU bottleneck is typically reached much

earlier than memory limits are reached. Also, if different amounts of traffic are passing

through different vnodes, their resource consumptions will be different. Considering

these problems, the co-locate factor we choose is based onlyon a pnode’s physical

memory. Based on feedback data obtained from running the simulations, we hope to

quickly converge to a successful experiment if the initial mapping is too optimistic. A

simulated vnode innseconsumes only moderate amounts of memory, allowing us to

support a large co-locate factor. According to a study that compared several network

simulators [39],ns allocated roughly 100KB per connection, where each connection

consists of two nodes with two duplex-links that each add newbranches to a “dumbbell”

topology. Each connection consisted of a TCP source and sinkon the leaves of the

dumbbell. On a Emulab PC with 256–512MB of memory, a fairly large co-locate factor

can be supported.

In order to determine “overload” and declare the simulationto be in “violation,”

we make use of the “slop factor” of a real-time simulation. The “slop factor” is the

largest skew allowed between the simulated virtual clock and the real-time physical

46

clock. We can have different meanings for “overload”. One definition is to consider the

simulation to be overloaded at a certain “slop factor” if theslop is exceeded even once.

Another definition would consider a true “overload” in whichthe simulation is constantly

exceeding the slop factor at a certain slop factor instead ofexceeding the slop factor once

or infrequently. In this thesis, we use the first definition where a slop factor exceeding

even once is considered a violation. However, we explore different “slop factors.”

When an overload is detected by a simulator instance, it reports all necessary infor-

mation to Emulabmasterhostvia the event system. On receiving the first such event, a

program on themasterhostis run that waits for several seconds, giving sufficient time

for other pnodes to report overload if present. This programstores the feedback data into

the database and begins remapping the experiment.

We outline two heuristics that we separately experiment with to guide auto-adaptation:

• Doubling vnode weights.

• Vnode packet-rate.

3.4.3 Doubling Vnode Weights

A coarse heuristic that we use is to double the weight of all the simulated nodes hosted

on the pnode that reported an “overload” and remap the topology. These simulated nodes

will then consume twice as many slots from the pnode co-locate factor as before. This

process repeats untill no overload is detected or a vnode is mapped one-to-one to an

overloaded pnode. If the overload is still present, it meansthat the experiment could not

be mapped on Emulab hardware.

3.4.4 Vnode Packet-Rate

Simulation event-rate is proportional to the rate of packets that pass through a vnode

or are generated by that vnode. This is because every packet typically causes roughly

a constant number of events. For packet forwarding, even though events innsoccur in

links, the cost of processing these events can be attributedto the vnode to which such

links are connected. Because the Emulab mapper,assign, associates resource capaci-

ties with pnodes and resource use with vnodes, we use the rateof packets passing through

47

a vnode as the cost. Based on packet-rate measurements we have taken (section 4.1), we

set the pnode packet-rate capacities. This is a fine-grainedheuristic compared to the

previous one. Starting from an optimistic mapping, we can easily identify the vnodes

that are “heavyweight,” allowing subsequent mappings to pack such vnodes less tightly.

Section 4.3 examines the results of using each of these heuristics listed above.

CHAPTER 4

EVALUATION

In this chapter, we present some results to establish the base performance ofnseon

Emulab hardware. We then present results that show the similarity (and differences)

when multiple simulator instances are used. We collect packet traces and evaluate using

following methods:

• Compare aggregate measures such as throughput.

• Compare packet traces for first-order statistics such as packet interarrival

• Multiscale analysis of packet traces

• Compare queueing behavior

Lastly, we present the results of our experiments with auto-adaptation using two

different heuristics.

4.1 Base Performance ofnse

4.1.1 Capacity and Accuracy

We have obtained some results that show the capacity, in packet processing rate per

instance ofnseon Emulab PCs, and the accuracy ofnseas a link emulator. During this

evaluation, a number of problems and bugs were uncovered with nsethat we have since

solved.

As a capacity test, we generated streams of UDP round-trip traffic between two

nodes, with an interposed 850Mhz PC runningnseon a FreeBSD 4.5 1000HZ kernel.

A maximum stable packet rate of 4000 packets per second was determined over a range

of packet rates and link delays using 64-byte and 1518-byte packets. Since these are

49

round trip measurements, the packet rates are actually twice the numbers reported. With

this capacity, we performed experiments to measure the delay, bandwidth and loss rates

for representative values. The results measured recently are summarized in Tables 4.1,

4.2 and 4.3. These tables also report corresponding resultsof the Dummynet emulator

for comparison [60].

The high error rates that we see in uniform loss rate measurements are present even

in pure simulation and is suspected to be a bug inns.

Table 4.1. Delay: Accuracy of observed Dummynet andnsedelay at maximum packet
rate as a function of packet size for different link delays. The 0ms measurement
represents the base overhead of the link. Adjusted RTT is theobserved value minus
the base overhead.

delay packet observed Dummynet adjusted Dummynet
(ms) size RTT stdev % err RTT % err

0 64 0.177 0.003 N/A N/A N/A
1518 1.225 0.004 N/A N/A N/A

5 64 10.183 0.041 1.83 10.006 0.06
1518 11.187 0.008 11.87 9.962 0.38

10 64 20.190 0.063 0.95 20.013 0.06
1518 21.185 0.008 5.92 19.960 0.20

50 64 100.185 0.086 0.18 100.008 0.00
1518 101.169 0.013 1.16 99.943 0.05

300 64 600.126 0.133 0.02 599.949 0.0
1518 600.953 0.014 0.15 599.728 0.04

delay packet observednse adjustednse
(ms) size RTT stdev % err RTT % err

0 64 0.233 0.003 N/A N/A N/A
1518 1.572 0.030 N/A N/A N/A

5 64 10.226 0.016 2.26 9.993 0.07
1518 11.575 0.058 15.75 10.003 0.03

10 64 20.241 0.023 1.21 20.008 0.04
1518 21.599 0.071 8.00 20.027 0.14

50 64 100.239 0.024 0.24 100.006 0.006
1518 101.617 0.078 1.62 100.045 0.05

300 64 600.244 0.029 0.04 600.011 0.002
1518 601.612 0.078 0.27 600.040 0.007

50

Table 4.2. Bandwidth: Accuracy of observed Dummynet andnse bandwidth as a
function of packet size for different link bandwidths

bandwidth packet observed Dummynet observednse
(Kbps) size bw (Kbps) % err bw (Kbps) % err

56 64 56.06 0.11 55.013 0.023
1518 56.67 1.89 56.312 0.556

384 64 384.2 0.05 384.015 0.004
1518 385.2 0.34 384.367 0.096

1544 64 1544.7 0.04 1544.047 0.003
1518 1545.8 0.11 1544.347 0.022

10000 64 10004 0.04 N/A N/A
1518 10005 0.05 10000.519 0.005

45000 1518 45019 0.04 45001.092 0.002

Table 4.3. Loss: Accuracy of observed Dummynet andnsepacket loss rate as a function
of packet size for different loss rates

packet loss packet observed Dummynet observednse
rate (%) size loss rate % err loss rate % err

(%) (%)
0.8 64 0.802 0.2 0.818 2.29

1518 0.803 0.3 0.809 1.15
2.5 64 2.51 0.4 2.469 1.22

1518 2.47 1.1 2.477 0.92
12 64 12.05 0.4 11.88 1.00

1518 12.09 0.7 11.98 0.21

4.1.2 Scalability of Traffic Flows

In order to evaluate the scalability in the number of flows that a single instance of

nsecould support on a Emulab PC, we simulated 2Mbps constant bitrate UDP flows

between pairs of nodes on 2Mbps links with 50ms latencies. Tomeasurense’s ability

to keep pace with real time, and thus with live traffic, a similar link was instantiated

inside the samensesimulation, to forward live TCP traffic between two physicalEmulab

nodes, again at a rate of 2Mbps. On an 850MHz PC, we were able toscale the number of

simulated flows up to 150 simulated links and 300 simulated nodes, while maintaining

the full throughput of the live TCP connection. With additional simulated links, the

51

throughput dropped precipitously. We also measurednse’s TCP model on the simulated

links: the performance dropped after 80 simulated links dueto a higher event rate from

the acknowledgment traffic in the return path.

4.1.3 Sensitivity to Different Slop Factors

The “slop” factor is the largest skew allowed between the simulated virtual clock

and the real-time physical clock. It is a configurable parameter provided to the real-time

simulation. If the skew exceeds the slop factor, a simulation is deemed to be in “vio-

lation.” In order to determine how the scalability of the number of flows is affected by

the slop factor, we simulated TCP traffic over 2Mbps links with 50ms latencies between

pairs of nodes on an Emulab PC running at 850Mhz. In this experiment, we do not

have any external traffic, although the cost of a Unix system call is still incurred since

the real-time scheduler makes a call toselect() for the presence of live packets. In

Table 4.4, we report the number of TCP flows at which a violation is detected at different

slop factors. We also report the run-time when the same workload is run under pure

simulation inns. Underns, the workload we generated had a run-time of 42.46 seconds.

We see that the slop of 100µs and 1ms is exceeded at a small number of flows even

though pure simulation runs much faster than real-time. A 10ms slop factor provides us

with a better tolerance for simulator clock skews as we scalethe pure simulation to when

it runs slightly faster than real-time. A possible reason for these observations is that the

changes of exceeding 1ms slop is high because the OS that runsthe real-time simulation

runs at 1000HZ scheduling intervals.

Table 4.4. Sensitivity of slop factor on the number of simulation flows

Slop Number of flows when Event Rate Wall-clock time
Factor skew exceeds slop factor when run inns
100µs 1 942 < 1 second
1ms 3 2826 1 second
10ms 66 62176 41 seconds

52

4.2 Validation of Distributed Nse

When simulated resources in an integrated experiment are mapped to multiple PCs,

some of the flow endpoints also get mapped to differentnseinstances on different PCs.

To determine how similar are packet flows inside a single instance ofnsecompared to

the ones that cross physical (switched) links, we perform the following experiment:

The basic experimental setup consists of two simulated nodes connected by a T1-

like duplex-link of 1.544Mbps bandwidth and 25ms latency.1 Traffic is generated using

Agent/TCP which is an abstract implementation of the BSD Tahoe TCP protocol [3].

About 75MB of simulated data bytes are transferred over thisconnection in one direction.

This gives us a trace of about 50,000 data packets and about the same number of ACK

packets in the reverse direction. In the rest of this section, a TCP-sink is the endpoint

which receives DATA packets while a TCP-source refers to theone that sends DATA

packets (and receives ACKs). The simple model described above is useful in establishing

a lower bound on the difference between absolute repeatablesimulations and emulations

using distributednse.

The above setup is realized under the following scenarios:

1. Both simulated nodes are in one instance ofnse, i.e., pure real-time simulation.

Whenever we useRTSIManywhere in this section, we mean this scenario. Unless

nsefalls behind real-time due to an intensive workload, these results are the same

as that of pure simulation. We have verified that all RTSIM results reported in

this section exactly match purenssimulation (i.e., running in discrete virtual time)

which runs faster than real-time for this workload.

2. Each simulated node is in a different instance ofnseon two different PCs con-

nected via a 100Mbps switched Ethernet link. Each instance of nsesimulates one

node and the outgoing link to the other node. The physical 100Mbps link is simply

1This latency of the link roughly models traversing an uncongested, intracontinental piece of the
terrestrial Internet [50].

53

used as a transport for the encapsulated simulator packets.2 We will refer to this

scenario in this section byDIST-RTSIM. Figure 3.2 illustrates the setup in detail.

3. The above scenario is replicated to have 60 simulatedT1 links mapped to the same

100Mbps switched Ethernet link. Each instance ofnseis handling approximately

7646 packets per second which is within the stable capacity of nseon this hard-

ware, as reported in section 4.1. Note that these are encapsulated packets roughly

about 100 bytes in size resulting in 6–7% utilization of a 100Mbps Ethernet link.

The simulated nodes on each end for these links are mapped to two differentnse

instances running on two PCs. This setup is useful in identifying the effects of

multiplexing packets from independent virtual links over the same physical link.

We will refer to this scenario in this section asDIST-RTSIM-60

The platform on which we runnseis a 850Mhz Pentium-III PC with FreeBSD 4.9 for

all three tests listed above. We now present comparisons between RTSIM, DIST-RTSIM

and DIST-RTSIM-60.

4.2.1 Comparison of Aggregate Measures

Table 4.5 shows how the aggregate throughput for the TCP flow described in the

setup above compares between RTSIM, DIST-RTSIM and DIST-RTSIM-60. For the

latter case, of the 60 flows, we show flows with both best and worst percentage errors

from the expected value. For the experimental setup described above, the expected

value is 1.544Mbps. As we see below, the difference between all three experiments

is imperceptible at the aggregate level.

4.2.2 Comparison of Packet Interarrivals

Comparing packet interarrivals provides us with a better insight into the effect of

the OS, network device and the physical network on the packettraffic. Tables 4.6 and

4.7 compare the mean, standard deviation and 95% confidence interval for the mean,

2The size of the encapsulated packets does not always depend on the simulated packet size since packet
data is not typically included. In the experiments performed here, the encapsulated packet size including
the IP and Ethernet headers was about 100 bytes.

54

Table 4.5. Throughput comparisons between RTSIM, DIST-RTSIM and DIST-RTSIM-
60

Experiment Throughput (Kbps) Percentage Error (%)
RTSIM 1543.767 0.0151

DIST-RTSIM 1543.669 0.0214
DIST-RTSIM-60 (best) 1543.782 0.0141

DIST-RTSIM-60 (worst) 1543.761 0.0153

Table 4.6. Packet Interarrival comparisons at the TCP-sink between RTSIM, DIST-
RTSIM and DIST-RTSIM-60

Experiment Mean Standard 95% Confidence Interval
(µs) Deviation (µs) for the mean

RTSIM 7846.84 312.05 7844.16 – 7849.53
DIST-RTSIM 7846.77 314.22 7844.07 – 7849.48

DIST-RTSIM-60 7846.80 395.65 7843.39 – 7850.21
(best, usingselect())

DIST-RTSIM-60 7846.79 323.42 7844.01 – 7849.58
(best, usingkqueue())

DIST-RTSIM-60 7846.85 644.87 7841.29 – 7852.40
(worst, usingselect())

DIST-RTSIM-60 7846.82 395.51 7843.41 – 7850.22
(worst, usingkqueue())

for the packet data at the TCP-sink and TCP-source, respectively. For the experiment

DIST-RTSIM-60, thebestdata point corresponds to the flow that has the least variance

and correspondingly theworstdata point is for a flow with the highest variance. In all

these results, unless mentioned otherwise, we use the values of the simulator clock – just

before the packets are delivered to the traffic agent to compute interarrival times.

Results from the DIST-RTSIM experiment are very close to RTSIM providing us

with some confidence about the similarity of results betweenthe two. However, both

the best and the worst case results for DIST-RTSIM-60 have a higher standard deviation

compared to the other two cases. In order to determine the source of this variability,

we looked at kernel timestamps provided by the Berkeley packet filter (BPF). These

timestamps are stored by the kernel for every packet stored in the BPF buffer and is

55

Table 4.7. Packet Interarrival comparisons at the TCP-source between RTSIM, DIST-
RTSIM and DIST-RTSIM-60

Experiment Mean Standard 95% Confidence Interval
(µs) Deviation (µs) for the mean

RTSIM 7846.84 312.05 7844.16 – 7849.53
DIST-RTSIM 7846.86 314.01 7844.16 – 7849.56

DIST-RTSIM-60 7846.88 498.50 7842.59 – 7851.18
(best, usingselect())

DIST-RTSIM-60 7846.87 345.42 7843.89 – 7849.84
(best, usingkqueue())

DIST-RTSIM-60 7846.87 852.46 7839.53 – 7854.21
(worst, usingselect())

DIST-RTSIM-60 7846.87 522.96 7842.36 – 7851.37
(worst, usingkqueue())

made available to the user-space program–nsein this case– that reads the BPF buffer.

The interarrival distribution using these timestamps for the TCP-sink gives us a best

case standard deviation of321.34µs and a worst case of359.93µs among the 60 flows.

Therefore, the majority of the variability could be attributed to the overhead of reading

packets from the kernel buffer. In particular, the Unixselect() system call– which

is used to check for I/O readiness– is not very efficient when examining large numbers

of file descriptors. The TCP-source ACK-packet interarrivals are affected further more

because of encountering the above effects at both TCP-sink and TCP-source endpoints.

We evaluated an alternative method, namely FreeBSDkqueue() [34], for I/O readiness

which is known to be more efficient.3

In Figures 4.1, 4.2, and 4.3, we present the frequency plots at the TCP-sink when

only one flow is present, as well as, when 60 flows are present using select(), and

kqueue(), respectively. Similarly, in Figures 4.4, 4.5 and, 4.6, we present frequency

plots for the packet interarrivals at the TCP-source.

3However, as we found out,kqueue() support for BPF devices is fairly recent as well as buggy. This
was confirmed by a FreeBSD bug report [2]. The data reported inTables 4.6 and 4.7 were obtained after
applying the fix for the aforementioned bug.

56

 28384

 10000

 1000

 100

 10

 1
58.124ms7.845ms

mean=7.844ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(a) RTSIM

 6714

 1000

 100

 10

 1
58.434ms7.388ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(b) DIST-RTSIM

Figure 4.1. Comparison of frequency of packet interarrivals at TCP-sink for one flow

57

 143
 100

 10

 1
59.097ms10.055ms2.846ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(a) DIST-RTSIM-60 (best, usingselect())

 62

 10

 1
60.667ms10.029ms3.378ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(b) DIST-RTSIM-60 (worst, usingselect())

Figure 4.2. Comparison of frequency of packet interarrivals at TCP-sink using
select() when 60 flows are present

58

 550

 100

 10

 1
59.135ms10.082ms4.973ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(a) DIST-RTSIM-60 (best, usingkqueue())

 159

 100

 10

 1
60.16ms10.785ms4.095ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(b) DIST-RTSIM-60 (worst, usingkqueue())

Figure 4.3. Comparison of frequency of packet interarrivals at TCP-sink using
kqueue() when 60 flows are present

59

 28376

 10000

 1000

 100

 10

 1
58.124ms7.845ms

mean=7.844ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(a) RTSIM

 5441

 1000

 100

 10

 1
58.366ms7.392ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(b) DIST-RTSIM

Figure 4.4. Comparison of frequency of packet interarrivals at TCP-source for one flow

60

 130

 10

 1
58.770ms10.042ms2.768ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(a) DIST-RTSIM-60 (best, usingselect())

 103

 10

 1
58.517ms10.0ms4.182ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(b) DIST-RTSIM-60 (worst, usingselect())

Figure 4.5. Comparison of frequency of packet interarrivals at TCP-source using
select() when 60 flows are present

61

 313

 100

 10

 1
58.415ms12.697ms5.439ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(a) DIST-RTSIM-60 (best, usingkqueue())

 244

 100

 10

 1
58.416ms10.334ms5.248ms

mean=7.847ms

F
re

qu
en

cy
 (

lo
g

sc
al

e)

Packet Interarrival (ms), log scale

(b) DIST-RTSIM-60 (worst, usingkqueue())

Figure 4.6. Comparison of frequency of packet interarrivals at TCP-source using
kqueue() when 60 flows are present

62

The variability of the packet interarrival progressively increases from RTSIM to

DIST-RTSIM-60. It is also clear that usingkqueue() is better than usingselect()

when examining large numbers of file descriptors for I/O readiness.

4.2.3 Multiscale Analysis

It is well established that both wide-area and local-area data network traffic is bursty

across a wide range of time-scales. This is explained by the notion of distributional

self-similarity, which is that the correlational structure of the time-series for the traffic

remains unchanged at varying time scales [33, 20]. A self-similar time-series exhibits

bursts—- extended periods above the mean—- at a wide range oftime scales. Several

statistical techniques – of which we name one here:time–varianceplots– are available

to test for the presence of self-similarity.

Multiscale analysis techniques such astime–variance plots[16] are usually used to

test the presence of self-similarity. However, such a plot has a useful property that it

can sometimes show differences in traffic that simple aggregate measures or first-order

statistical comparisons might fail to capture [32]. In thisthesis, we use the time–variance

plot to determine if RTSIM, DIST-RTSIM and DIST-RTSIM-60 have different properties

across timescales even when the latter has higher packet-interarrival variance than the

former.

4.2.3.1 Time-variance Plot

Let X = (Xt : t = 0, 1, 2, ...) be a stationary time series. An example forXt is

a traffic rate process, i.e., the number of bytes seen in the last time interval. We define

X(m) = (X(m) : k = 1, 2, 3, ...) by averaging the original seriesX over nonoverlapping

blocks of sizem. For eachm = 1, 2, 3, ...,

X
(m)
k =

1

m
(Xkm−m+1 + ... + Xkm), k = 1, 2, 3, ... (4.1)

We obtain thetime–varianceplot by plotting the variance ofX(m) againstm on a

log10 − log10 scale. A straight line with a slope(−β) where−β is greater than−1 is

63

often indicative of a self-similar process with “Hurst parameter” H = 1 − β

2
[16]. In

other words, a self-similar time-series exhibits a slowly decaying variance.

Note that the aim of generating time–variance plots in this thesis is to visually com-

pare any differences across time-scales and not to make any conclusions about the scaling

properties of the simulation traffic in the experiment described above or its validity with

respect to the real-world behavior.

Figures 4.7, 4.8, and 4.9 plot the time–variance plots for the time-series data obtained

at the TCP-sink. Similarly, Figures 4.10, 4.11, and 4.12 plot the time–variance plots for

the time-series data obtained at TCP-source. Notice that the basic shapes for both the

sink and source are quite similar modulo a constant shift in the variance (or roughly so)

across all time scales.

The only perceptible difference between RTSIM and DIST-SIM-60 occurs at the

first trough in the plot close to 10ms aggregation. At this point, the RTSIM time-series

has less variance compared to DIST-SIM-60. The best values for bothselect() and

kqueue() in DIST-SIM-60 are closer to RTSIM than the corresponding worst values.

Also, kqueue() gets us closer to RTSIM thanselect() at this time-scale. Beyond

this time-scale, the plots are all more or less identical. Thus, the variability that we saw

in DIST-RTSIM-60 in Figures 4.2, 4.3, 4.5, and 4.5 do not haveany noticeable effect at

longer time-scales.

4.2.4 Comparison of Queueing Behavior

In sections 4.2.1 and 4.2.3, we compared the traffic rate characteristics of the dis-

tributednsewith one instance ofnseusing an experimental setup described in section 4.2.

In this section, we analyze queueing behavior. The experimental setup for this compari-

son is described below:

The setup consists of two simulated nodes connected by a T1-like duplex-link similar

to the experimental setup described in section 4.2. A total of six TCP flows and one UDP

flow are instantiated on this link. The link queue size is set to 100 packet slots. The TCP

flows are of theAgent/TCP/Newreno flavor in ns. Traffic due to one of the flows

starts 0.5 seconds after the other five flows start.

64

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(a) RTSIM

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(b) DIST-RTSIM

Figure 4.7. Comparison of TCP-sink time-series for one flow

65

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(a) DIST-RTSIM-60 (best, usingselect())

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(b) DIST-RTSIM-60 (worst, usingselect())

Figure 4.8. Comparison of TCP-sink time-series usingselect() when 60 flows are
present

66

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(a) DIST-RTSIM-60 (best, usingkqueue())

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(b) DIST-RTSIM-60 (worst, usingkqueue())

Figure 4.9. Comparison of TCP-sink time-series usingkqueue() when 60 flows are
present

67

−3

−2

−1

 0

 1

 2

 3

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(a) RTSIM

−3

−2

−1

 0

 1

 2

 3

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(b) DIST-RTSIM

Figure 4.10. Comparison of TCP-source time-series for one flow

68

−3

−2

−1

 0

 1

 2

 3

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(a) DIST-RTSIM-60 (best, usingselect())

−3

−2

−1

 0

 1

 2

 3

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(b) DIST-RTSIM-60 (worst, usingselect())

Figure 4.11. Comparison of TCP-source time-series usingselect() when 60 flows
are present

69

−3

−2

−1

 0

 1

 2

 3

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(a) DIST-RTSIM-60 (best, usingkqueue())

−3

−2

−1

 0

 1

 2

 3

 0 1 2 3 4 5 6

1000s100s10s1s100ms10ms1ms

lo
g1

0(
V

ar
(X

(m
))

)

log10(m)

(b) DIST-RTSIM-60 (worst, usingkqueue())

Figure 4.12. Comparison of TCP-source time-series usingkqueue() when 60 flows
are present

70

RTSIM-QUEUEdenotes the experimental setup where both simulated nodes are in

one instance ofnse, i.e., pure simulation.DIST-RTSIM-QUEUEdenotes the setup where

the simulated nodes are in two instances ofnseacross a physical link.

In Figure 4.13, we show the aggregate queueing behavior, namely, instantaneous

queue size sampled every 0.5 seconds, cumulative average queue size and packet drops

in the last five seconds. At the aggregate level, the difference between RTSIM-QUEUE

and DIST-RTSIM-QUEUE are small.

In Figure 4.14, we look at instantaneous queueing behavior for two individual TCP

flows. RTSIM-QUEUE and DIST-RTSIM-QUEUE are noticeably different. Similarly,

Figure 4.15 compares cumulative throughput for the same twoindividual TCP flows.

Again, there is a noticeable difference between RTSIM-QUEUE and DIST-RTSIM-QUEUE.

Note that TCP Flow #1 starts 0.5 seconds after Flow #2.

Thus, we can conclude that distributednsesignificantly affects the individual queue-

ing behavior of traffic flows when these flows are competing over the same link. Aggre-

gate behavior is somewhat preserved.

4.3 Auto-adaptation of Simulated Resources
We evaluate the following auto-adaptation heuristics in this section, the details of

which are discussed in section 3.4.

• Heuristic 1: Doubling vnode weights for vnodes mapped to overloaded pnode (s).

• Heuristic 2: Using packet-rate measurements per vnode during remapping.

The topology used for this experiment is illustrated in Figure 4.16. It is composed of

416 simulated vnodes and 436 links. It is composed of eight binary trees each containing

52 vnodes with the root of the trees connected to each other ina full mesh. We call

the vnodes in a full-meshinterior nodes, other routers in the topologyborder nodes,

and the vnodes on the edgeleaf nodes. We have 200 leaf vnodes, 208 border vnodes

and 8 interior vnodes in this topology. The access links (i.e., from leaf nodes) and the

intermediate links are of 2Mbps bandwidth. The links in the full-mesh are made up of

10Mbps links.

71

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 100 200 300 400 500
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

P
ac

ke
ts

 D
ro

pp
ed

Simulation Time (sec)

Packet Drops Every 5 Seconds Interval
Instantaneous Queue Size

Cumulative Average Queue Size

(a) RTSIM-QUEUE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 100 200 300 400 500
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

P
ac

ke
ts

 D
ro

pp
ed

Simulation Time (sec)

Packet Drops Every 5 Seconds Interval
Instantaneous Queue Size

Cumulative Average Queue Size

(b) DIST-RTSIM-QUEUE

Figure 4.13. Comparison of aggregate queueing behavior for six TCP and one UDP
flows

72

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

P
ac

ke
ts

 in
 Q

ue
ue

Simulation Time (sec)

Flow #1
Flow #2

(a) RTSIM-QUEUE

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

P
ac

ke
ts

 in
 Q

ue
ue

Simulation Time (sec)

Flow #1
Flow #2

(b) DIST-RTSIM-QUEUE

Figure 4.14. Comparison of individual queueing behavior for two flows

73

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500

C
um

ul
at

iv
e

T
hr

ou
gh

pu
t (

pk
ts

/s
ec

)

Simulation Time (sec)

Flow #1
Flow #2

(a) RTSIM-QUEUE

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500

C
um

ul
at

iv
e

T
hr

ou
gh

pu
t (

pk
ts

/s
ec

)

Simulation Time (sec)

Flow #1
Flow #2

(b) DIST-RTSIM-QUEUE

Figure 4.15. Comparison of individual cumulative throughput for two flows

74

Figure 4.16. A 416 node topology used in evaluating auto-adaptation

75

Traffic is generated usingns’s Agent/TCP model. A total of 400 traffic flows are

configured between leaf nodes out of which 200 of them are between pairs of vnodes in

the same binary tree and 200 are between pairs of vnodes on different trees. We modeled

the sending of 10,000 packets for each flow in pure simulation, i.e., inns.

On an Emulab 850Mhz PC, the simulation is not able to run in real time. Tables 4.8

and 4.9 report information about running the above workloadunder ns. We report

our measurements only after all the flows have completed sending the above number

of bytes. Note that the wall-clock time reported is measuredonly from the start of

simulation. It does not include the simulation configuration time. We also measured

the aggregate packet rate passing through all the 416 simulated nodes in the topology to

be 73,185 packets per second over 1310.79 seconds of simulation time. The peak packet

rate numbers for the simulation could likely be higher than reported in the averages in

Table 4.9.

In the evaluation of auto-adaptation, we do not introduce real PC vnodes in the

topology since their presence simply increases the simulator traffic load and does not

alter the methodology of auto-adaptation. On the other hand, because we only have

simulated vnodes, it is possible to compare results with pure simulation.

We experimented with both 10ms and 100ms “slop factors”. In the case of heuristic

1, a 10ms slop factor yielded a failed experiment. In other words, even for a one-to-one

mapping, the slop was exceeded. With a slop factor of 100ms, we were able to get

successful experiments for both heuristic 1 and 2.

In Table 4.10, we report the time taken for different phases of the experiment creation

and swap-in process. Both heuristic 1 and 2 have approximately the same creation and

swap-in times.

Table 4.8. “Pure” simulation data for the workload used in evaluatingauto-adaptation

Simulation Runtime Slowdown Total Events per Total simulated
time (seconds) Ratio Events runtime data

(seconds) processed transferred (MB)
1310.79 3018 2.30 165357063 54590 3814.7

76

Table 4.9. “Pure” simulation vnode packet rates for the workload usedin evaluating
auto-adaptation

vnode Observed Packet Rate
type Lowest (Average Packets/s)Highest (Average Packets/s)
Leaf 62 67

Border 68 895
Interior 1043 1068

Table 4.10. Auto-adaptation experiment creation and swap-in times

Experiment Creation Time 10 mins total
3 mins to run parser
7 mins for route computation

Experiment Swap-in Time 7–16 mins total
1–2 mins for mapping
20–40 seconds to generate OTcl
sub-specification
1–4 minsnsestartup time
2–9 mins for PC reboot/setup time
1 min for PC disk loading

4.3.1 Heuristic: Doubling Vnode Weights

For this evaluation, we set the co-locate factor to 512 lettingassign map the above

416 node topology on to a small number of PCs. We choose 512 as it is a power of

two. Since we double vnode weights, eventually a vnode whoseweight is 512 will

cause it to be mapped one-to-one. The actual co-locate factor that may be supported

on Emulab PCs, if we only consider simulation memory use, is much higher. In that

case, an experiment would take more mapping iterations for auto-adaptation. For this

experiment, we also increase theintra node bandwidthto a large value in order to map the

entire topology on one PC if possible and will likely cause run-time violation. Because

of the randomized nature of mapping, we cannot ensure that two mappings are the same

or similar in every respect. In Table 4.11, we report some characteristics of this auto-

adaptation experiment.

77

Table 4.11. Results of an auto-adaptation experiment using heuristic1

Total swap-in iterations 8
Number of PCs used in different 1→ 2 → 3 → 6 → 8→ 10→ 11→ 12
iterations
Maximum PCs reporting violation 3
in an iteration
Iterations that had all PCs 1
reporting violation
Maximum vnodes on a PC 10
in the final iteration
Minimum vnodes on a PC 64
in the final iteration
Weights for different types of Interior: 64
vnodes in the final mapping Border: 8, 16, 32, 64

Leaf: 8, 16, 32, 64
Experiment Result Final mapping has no “violations” at 100ms

“slop” factor using 12 PCs

4.3.2 Heuristic: Vnode Packet Rate Measurements

We evaluate this heuristic by setting the packet rate capacity of PCs to 6000 packets

per second so as to be well within the limits we reported in section 4.1.1. Packet-rates

reported for any vnode in an iteration are used for the next mapping only if they are higher

than previous iterations. In this manner, we take peak packet-rates in an iteration. The

time used to compute the packet rate is the difference in timebetween the receipt of the

last packet and the first packet by a vnode. In Table 4.12, we report some characteristics

of this auto-adaptation experiment.

4.3.3 Summary of Auto-adaptation Experiments

The packet-rate measurements do not take into account shortterm bursts that may be

present in the flow of packets. However, further study is required to determine if such

bursts were present in our experiment and whether they were the cause of exceeding the

10ms slop factor. Relaxing the “slop factor” to 100ms provided us with a successful map-

ping after five iterations. Notice that the convergence using packet-rate measurements is

much faster than doubling vnode-weights as we see in the mapping going from one PC

78

Table 4.12. Results of an auto-adaptation experiment using heuristic2

Total swap-in iterations 5
Number of PCs used in different 1→ 9 → 10→ 10→ 10
iterations
Maximum PCs reporting violation 2
in an iteration
Iterations that had all PCs 1
reporting violation
Maximum vnodes on a PC 75
in the final iteration
Minimum vnodes on a PC 20
in the final iteration
Packet-rates for different types of Interior: 608–1041
vnodes in the final mapping Border: 53–555

Leaf: 45–145
Experiment Result Final mapping has no “violations” at 100ms

“slop” factor using 10 PCs

to nine PCs in a single iteration. However, the primary disadvantage of this method is

that we need a fairly accurate measure of the packet rate capacity of running simulations

on any PC. Overestimation of this capacity will cause this auto-adaptation heuristic to go

into an infinite loop. In other words, a higher estimate of thepnode packet rate capacity

than what can actually be supported will cause violations and remapping at the same

vnode packet rates without a successful mapping.

Heuristic 1 is much better overall since we do not need to havemuch apriori informa-

tion before mapping an arbitrary simulation workload and weare sure that the iterations

will always terminate either with a successful mapping or a failed one. A combination of

heuristic 1 and 2 may provide us with a better auto-adaptation solution. In other words,

use heuristic 2 with coarse pnode packet rates that need not be accurate and then switch

to heuristic 1 if the vnode packet rates do not change betweensuccessive iterations.

However, we have not experimented with this method and leaveit as future work.

CHAPTER 5

RELATED WORK

We can broadly classify the related work to this thesis into three categories: (a)

Pure simulators that run in virtual time and strive to bring complete repeatability to

real implementations or abstractions of networking entities, (b) network emulators that

run in real-time and naturally forego fine grained repeatability to gain realism. (c)

miscellaneous

5.1 Emulators
Dummynet [47] is a link emulator in the FreeBSD kernel that regulates bandwidth,

latency, loss and some queuing behavior. This is used in Emulab for link emulation

unless a simulated link is requested. ALTQ [13] is a queuing framework in BSD kernels

that supports a large number of queuing disciplines.

Modelnet [55] is an emulation system focused on scalability. It uses a small gigabit

cluster, running a much extended and optimized version of Dummynet which is able

to emulate an impressively large number of moderate speed links. It has the added

capability of optionally distilling the topology to trade accuracy for scalability. It is

complementary to our work. Our work leveragesns’s rich variety of models and proto-

cols.

5.2 Simulators
The x-sim [10] simulator provides an infrastructure to directly execute x-kernel [28]

protocols in the simulator. It simulates links, routers andend-node protocols and provides

logging mechanisms to capture the state of the simulation and post-process it.

pdns [46] is a parallel and distributed version of thens simulator. It implements a

conservative parallel simulation and has mechanisms for event distribution and simula-

80

tion time synchronization. This system requires the experimenter to manually map a

topology into its submodels that run on different processors and manually configure the

global routing paths and IP addresses to run the simulation.This approach therefore is

tedious, error-prone and can sometimes result in overall simulation slowdown compared

to its serial version. The automated mapping that we developis applicable to the mapping

of a parallel simulation. Our work is in integrated experimentation whereas pdns is a pure

simulation.

Dynamic Network Emulation Backplane [1] is an ongoing project that uses a dy-

namic library approach for capturing, synchronizing and rerouting network data from un-

modified distributed applications over a simulated network. They also define an API for

heterogenous simulators to exchange messages, synchronize simulation time and keep

pace with real time in order to simulate a larger network, thus leveraging the strengths

of different network simulators. Time-synchronization inthe distributed simulation case

has a high overhead and it remains to be seen whether it can be performed in real-time.

Data are captured from unmodified applications by intercepting system call functions

using a dynamic-library preloading approach. This however, is platform dependent as

well as error prone due to duplication of code and specialized implementation of several

system calls.

nsclick [38] embeds the click modular router [37] in ns-2, which allows a single click

based protocol implementation to run over a simulated wiredor wireless network as well

as on a real node on a real network.

NCTUns [58] is a TCP/IP simulator that has descended from theHarvard network

simulator [57]. This simulator virtualizes the OS’s notionof time to be the simulation

time. Using a combination of link simulation and tunnel devices, a network topology is

built on a simulation host machine. Applications and the protocol stack are unmodified

and therefore more realistic than traditional simulators.

umlsim [6, 54] extends user-mode Linux (UML) with an event-driven simulation

engine and other instrumentation needed for deterministically controlling the flow of

time as seen by the UML kernel and applications running underit. The current level of

support allows network experimentation with a single link.The degree of multiplexing

81

of virtual nodes is limited due to the use of a complete kernel. The current system also

performs poorly and has much scope for improvement.

The Entrapid [27] protocol development environment virtualizes the kernel network-

ing stack and user processes and moves them into user-mode. This enables building

of network topologies with virtual nodes, links and application processes on a single

machine.

5.3 Miscellaneous

The X-bone [52] is a software system that configures overlay networks. It is an

implementation of the Virtual Internet Architecture [53] that defines “revisitation” al-

lowing a single network component to emulate multiple virtual components, although

in their context, a packet always leaves a physical node before returning on a different

virtual link. In our system, multiple routing tables as wellas the context of a virtual

link are needed even when all the nodes and links of a virtual topology are hosted on

one physical host. In the general sense, however, the issuesthey identify have a broader

scope than what they have restricted themselves to, in theirpaper. Thus, virtual internets

can be formed not just in the wide-area but also using a cluster such as the one employed

in Emulab. Integrated network experimentation spans all three experimental techniques

and we therefore believe that it is the most comprehensive form of virtual internet that

we know of.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Integrated network experimentation using simulation and emulation bridges the gap

between each other to enable new validation techniques, such as traffic interaction, and

performance comparisons of real protocol implementationsagainst abstracted ones writ-

ten for simulators. We have discussed many of the issues in realizing integrated network

experimentation. We have solved some of them and provided anautomated integrated

experimentation environment in Emulab. By providing automation and programmability

that is common in “pure” simulations to integrated experimentation with distributed

real-time simulators, we enable “what if” experiments thatwere heretofore not practical

to perform.

The results from section 4.2 show that in order to have packetflows in distributed

real-time simulator instances be as similar to “pure” simulation as possible, experimental

artifacts that occur due to OS interactions must be kept at a minimum. Usingtime-

varianceplots, we were able to conclude that the differences from “pure” simulation are

only noticeable in the time-scale of the mean packet interarrival and do not change the

behavior at large time-scales. Further research is required to make similar conclusions

for a complex real-time simulation distributed over many PCs.

We explored two heuristics to guide auto-adaptation of mapping simulated resources

on PCs in order for them to run in real-time. These heuristicsutilize feedback data

to repack simulated resources that were originally mapped in an optimistic manner.

Although we are unable to make any conclusions about the quality of these heuristics

due to failed experiments, we believe that this technique isattractive in general. Auto-

adaptation is useful in other environments such as “virtualmachine” based emulation

experiments as well as mapping “pure” distributed simulation automatically to reduce

83

overall simulation time. Faster remapping makes it practical to perform auto-adaptation

experiments.

Overall, discrete-event packet-level simulation is computationally expensive. Better

performance results than what we have presented in this thesis may be obtained by using

modern PC hardware. It would also be interesting to see if recent techniques such

as staged simulation [56] provide major improvements in performance and scaling of

integrated experiments.

APPENDIX

SIMULATION CODE FOR THE COMPARISON

OF QUEUEING BEHAVIOR

85

global ns fmon f1 f2
set ns [new Simulator]

$ns rtproto Static

#Open the processed trace file
set f2 [open packet-trace.dat w]

set n1 [$ns node]
set n2 [$ns node]

bottleneck link
$ns duplex-link $n1 $n2 1.544Mb 25ms DropTail
$ns queue-limit $n1 $n2 100

Used instead of trace-queue. NS tracing
is disabled and a new custom class
StorePktInfo keeps track of queue drop
packets in memory
set sp [new StorePktInfo]
$sp store-pkts 10000
set dt [[$ns link $n1 $n2] set drophead_]
$dt target $sp

Define a procedure that prints statistical data periodically
proc print_status {} {

global ns fmon f2

Get current simulation time
set curr_time [$ns now]

Get information from queue monitor
set pdrop(0) [$fmon set pdrops_]
set parri(0) [$fmon set parrivals_]
set pdept(0) [$fmon set pdepartures_]
set pcurr(0) [$fmon set pkts_]
set pInt [$fmon get-pkts-integrator]
set pqsize(0) [$pInt set sum_]

puts -nonewline $f2 "$curr_time $pcurr(0) $pqsize(0) $parri(0) $pdept(0) $pdrop(0) "

Get information of a particular flow (by flow id)
for {set j 1} {$j <= 2} {incr j} {

set a flow classifier
set fcl [$fmon classifier];

select a particular flow
set flow [$fcl lookup auto 0 0 $j]

get stats for this flow
if { $flow != "" } then {

set pdrop($j) [$flow set pdrops_]
set parri($j) [$flow set parrivals_]
set pdept($j) [$flow set pdepartures_]
set pcurr($j) [$flow set pkts_]

puts -nonewline $f2 "$pcurr($j) $parri($j) $pdept($j) $pdrop($j) "
}

}
puts $f2 " "

#Call this function again in future
$ns at [expr $curr_time + 0.5] "print_status"

}

86

#Define a ’finish’ procedure
proc finish {} {

reference to global variables
global ns f1 f2 sp

#Flush the traces
$ns flush-trace

#Close the trace file
close $f1
close $f2

$sp print-pkts
#Exit simulator
exit 0

}

for {set i 0} {$i < 6} {incr i} {
set tcp($i) [new Agent/TCP/Newreno]
$tcp($i) set fid_ [expr $i + 1]
$ns attach-agent $n1 $tcp($i)

set tcpsink($i) [new Agent/TCPSink]
$ns attach-agent $n2 $tcpsink($i)
$ns connect $tcp($i) $tcpsink($i)

set ftp($i) [new Application/FTP]
$ftp($i) attach-agent $tcp($i)
if { $i == 0 } {

$ns at 0.5 "$ftp($i) start"
} else {

$ns at 0.0 "$ftp($i) start"
}

}

set udp0 [new Agent/UDP]
$udp0 set fid_ 100
$udp0 set packetSize_ 1440
$ns attach-agent $n1 $udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 1440
$cbr0 set interval_ 0.04
$cbr0 attach-agent $udp0

set udpsink0 [new Agent/Null]
$ns attach-agent $n2 $udpsink0
$ns connect $udp0 $udpsink0
$ns at 0.0 "$cbr0 start"

set fmon [$ns makeflowmon Fid]
set dsample [new Samples]
$fmon set-delay-samples $dsample
set pktInt [new Integrator]
$fmon set-pkts-integrator $pktInt
$fmon reset
$pktInt set sum_ 0

set l0 [$ns link $n1 $n2]
$ns attach-fmon $l0 $fmon

$ns at 0.0 "print_status"

$ns at 1000.0 "finish"

$ns run

REFERENCES

[1] Dynamic network emulation backplane project. http://www.cc.gatech.edu/comput-
ing/pads/nms/.

[2] FreeBSD bug report: kqueue does not work with BPF when using BIOCIMMEDI-
ATE or BIOCSRTIMEOUT. http://lists.freebsd.org/pipermail/freebsdbugs/2004-
March/005856.html.

[3] Limitations in NS. http://www.isi.edu/nsnam/ns/nslimitations.html.

[4] J. S. Ahn and P. B. Danzig. Packet network simulation: speedup and accu-
racy versus timing granularity.IEEE/ACM Transactions on Networking (TON),
4(5):743–757, 1996.

[5] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evaluation of TCP Vegas: Emulation
and experiment. InProc. of SIGCOMM ’95, pages 185–195, Cambridge, MA, Aug.
1995.

[6] W. Almesberger. UML Simulator. InOttawa Linux Symposium, 2003.

[7] S. Bajaj et al. Improving simulation for network research. Technical Report 99-
702b, USC, March 1999.

[8] A. Boukerche and C. Tropper. A static partitioning and mapping algorithm for
conservative parallel simulations. InProceedings of the Eighth Workshop on
Parallel and Distributed Simulation. ACM Press, 1994.

[9] R. Braden. Requirements for internet hosts – communication layers. Technical
report, IETF, 1989. RFC 1122.

[10] L. S. Brakmo and L. L. Peterson. Experiences with network simulation. In
Proceedings of the 1996 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, May 1996.

[11] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. S. Heidemann, A. Helmy, P. Huang,
S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in networksimulation.
IEEE Computer, 33(5):59–67, 2000.

[12] R. Brown. Calendar queues: a fast 0(1) priority queue implementation for the
simulation event set problem.Communications of the ACM, 31(10):1220–1227,
1988.

88

[13] K. Cho. A framework for alternate queueing: Towards traffic management by
pc-unix based routers. InIn Proceedings of USENIX 1998 Annual Technical
Conference, New Orleans LA, June 1998.

[14] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. Towards realistic million-
node internet simulations. InProceedings of the 1999 International Conference on
Parallel and Distributed Processing Techniques and Applications, Jun. 1999.

[15] J. Cowie, D. Nicol, and A. Ogielski. Modeling the globalinternet. Computing in
Science and Engineering, 1(1):42 – 50, 1999.

[16] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic: evi-
dence and possible causes.IEEE/ACM Transactions on Networking, 5(6):835–846,
1997.

[17] Elvin: Content based messaging. http://elvin.dstc..com/.

[18] K. Fall. Network emulation in the vint/ns simulator. InProc. of the 4th IEEE
Symposium on Computers and Communications, 1999.

[19] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno and SACK
TCP. In Computer Communication Review, volume 26, pages 5–21. ACM, July
1996.

[20] A. Feldmann, A. C. Gilbert, and W. Willinger. Data networks as cascades: In-
vestigating the multifractal nature of internet wan traffic. In Proceedings of the
ACM SIGCOMM ’98 conference on Applications, technologies,architectures, and
protocols for computer communication, pages 42–55. ACM Press, 1998.

[21] R. M. Fujimoto. Parallel discrete event simulation. InCommunications of the
ACM, volume 33, pages 30–53, October 1990.

[22] S. Gadde, J. Chase, and A. Vahdat. Coarse-grained network simulation for wide-
area distributed systems. InCommunication Networks and Distributed Systems
Modeling and Simulation Conference 2002.

[23] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K. chan Lan, Y. Xu, W. Ye,
D. Estrin, and R. Govindan. Effects of detail in wireless network simulation. In
Proc. of the SCS Multiconference on Distributed Simulation, pages 3–11. USC/ISI,
January 2001.

[24] J. Heidemann, K. Mills, and S. Kumar. Expanding confidence in network simula-
tion. IEEE Network Magazine, 15(5):58–63, Sept./Oct. 2001.

[25] M. Hibler, L. Stoller, R. Ricci, J. L. Duerig, S. Guruprasad, T. Stack, and J. Lep-
reau. Virtualization Techniques for Network Experimentation. Technical report,
University of Utah, May 2004.

89

[26] P. Huang, D. Estrin, and J. Heidemann. Enabling large-scale simulations: selective
abstraction approach to the study of multicast protocols. In Proceedings of the
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 241–248, Montreal, Canada, July 1998. IEEE.

[27] X. W. Huang, R. Sharma, and S. Keshav. The entrapid protocol development
environment. InProc. of the 18th Annual Joint Conf. of the IEEE Computer and
Communications Societies (INFOCOM ’99), volume 3, pages 1107–1115, 1999.

[28] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implement-
ing network protocols.IEEE Transactions on Software Engineering, 17(1):64–76,
1991.

[29] D. W. Jones. An empirical comparison of priority-queueand event-set implemen-
tations.Communications of the ACM, 29(4):300–311, 1986.

[30] P.-H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root. InProc.
2nd Intl. SANE Conference, May 2000.

[31] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs.SIAM Journal of Scientific Computing, 20(1):359–392, 1998.

[32] K.-C. Lan. Rapid Generation of Structural Model from Network Measurements.
PhD thesis, University of Southern California, 2003.

[33] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson.On the self-similar na-
ture of ethernet traffic (extended version).IEEE/ACM Transactions on Networking,
2(1):1–15, February 1994.

[34] J. Lemon. Kqueue – a generic and scalable event notification facility. In Proceed-
ings of the FREENIX Track: 2001 USENIX Annual Technical Conference, pages
141–153. USENIX Association, 2001.

[35] B. Liu, D. R. Figueiredo, Y. Guo, J. Kurose, and D. Towsley. A study of networks
simulation efficiency: Fluid simulation vs. packet-level simulation. In Proc. of
the 20th Annual Joint Conf. of the IEEE Computer and Communications Societies
(INFOCOM ’01), Apr. 2001.

[36] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong. Fluid simulation of large
scale network: Issues and tradeoffs. Technical Report UM-CS-1999-038, 1999.

[37] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click modular router.
In Symposium on Operating Systems Principles, pages 217–231, 1999.

[38] M. Neufeld, A. Jain, and D. Grunwald. Nsclick: Bridgingnetwork simulation
and deployment. InProc. of the 5th ACM International Workshop on Modeling,
Analysis, and Simulation of Wireless and Mobile Systems (MSWiM ’02), pages 74–
81, Atlanta, GA, Sept. 2002.

[39] D. M. Nicol. Comparison of network simulators revisited. http://www.ssfnet.org/
Exchange/gallery/dumbbell/dumbbell-performance-May02.pdf.

90

[40] D. M. Nicol. Scalability, locality, partitioning and synchronization in PDES. In
Proceedings of the Parallel and Distributed Simulation Conference (PADS’98),
1998. Banff, Canada.

[41] NIST Internetworking Technology Group. NIST Net home page. http://-
www.antd.nist.gov/itg/nistnet/.

[42] B. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz. Trace-based mobile
network emulation. InProc. of SIGCOMM ’97, September 1997.

[43] A. Psztor and D. Veitch. PC based precision timing without GPS. InProceedings
of the 2002 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 1–10. ACM Press, 2002.

[44] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network testbed mapping
problem. ACM SIGCOMM Computer Communication Review (CCR), 32(2):65–
81, Apr. 2003.

[45] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network testbed mapping
problem.ACM SIGCOMM Computer Communications Review, 2003.

[46] G. F. Riley, R. Fujimoto, and M. H. Ammar. A generic framework for paralleliza-
tion of network simulations. InProceedings of the Seventh International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, 1999.

[47] L. Rizzo. Dummynet: a simple approach to the evaluationof network protocols.
Computer Communication Review, 27(1):31–41, Jan. 1997.

[48] L. Rizzo. Dummynet and forward error correction. InProc. of the 1998 USENIX
Annual Technical Conf., New Orleans, LA, June 1998. USENIX Association.

[49] R. Scandariato and F. Risso. Advanced vpn support on freebsd systems. InProc.
of the 2nd European BSD Conference, 2002.

[50] T. Shepard and C. Partridge. When TCP starts up with Fourpackets into only
3 buffers. Internet Request For Comments RFC 2416, BBN Technologies, Sept.
1998.

[51] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. volume 32,
pages 652–686. ACM Press, 1985.

[52] J. Touch and S. Hotz. The X-bone. In Third Global Internet Mini-Conference in
conjunction with Globecom, Novemeber 1998.

[53] J. Touch, Y. shun Wang, L. Eggert, and G. G. Finn. A virtual internet architecture.
Technical Report ISI-TR-2003-570, Information Sciences Institute, 2003.

[54] UML Simulator Project. http://umlsim.sourceforge.net/.

91

[55] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,J. Chase, and D. Becker.
Scalability and accuracy in a large-scale network emulator. In Proc. of the Fifth
Symposium on Operating Systems Design and Implementation, pages 271–284,
Boston, MA, Dec. 2002.

[56] K. Walsh and E. G. Sirer. Staged Simulation: A General Technique for Improv-
ing Simulation Scale and Performance. InACM Transactions on Modeling and
Computer Simulation (TOMACS), Special Issue on Scalable Network Modeling and
Simulation, April 2004.

[57] S. Y. Wang and H. T. Kung. A simple methodology for constructing extensible
and high-fidelity tcp/ip network simulators. InProc. of the 18th Annual Joint Conf.
of the IEEE Computer and Communications Societies (INFOCOM’99), volume 3,
pages 1134–1143, 1999.

[58] S. Y. Wang and H. T. Kung. A new methodology for easily constructing extensible
and high-fidelity tcp/ip network simulators.Computer Networks: The International
Journal of Computer and Telecommunications Networking, 40(2):257–278, 2002.

[59] D. Wetherall and C.J.Linblad. Extending Tcl for Dynamic Object-Oriented Pro-
gramming. InProceedings of of the Tck/Tk Workshop, 1995.

[60] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar. An integrated experimental environment for distributed
systems and networks. InProc. of the Fifth Symposium on Operating Systems
Design and Implementation, pages 255–270, Boston, MA, Dec. 2002.

[61] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar. An integrated experimental environment for dis-
tributed systems and networks (full report). http://www.cs.utah.edu/flux/papers/-
emulabtr02.pdf, May 2002.

