
1

Securing the Frisbee
Multicast Disk Loader

Robert Ricci, Jonathon Duerig

University of Utah

2

What is Frisbee?

3

Frisbee is Emulab’s tool to
install whole disk images from a

server to many clients using
multicast

4

What is our goal?

5

Motivation

 Frisbee was developed for a relatively
trusting environment
 Existing features were to prevent accidents

 Changing Environment
 More users
 More sensitive experiments
 More private images

6

Security Goals

 Confidentiality
 Integrity Protection
 Authentication

 Ensure that an image is authentic
 Use cases

 Public images
 Private images

7

Our Contribution

 Analyze and describe a new and
interesting threat model

 Protect against those threats while
preserving Frisbee’s essential strengths

8

Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation

9

Frisbee & Emulab

10

Emulab

11

Control Plane

12

Frisbee’s Strengths

13

Frisbee’s Strengths

 Disk Imaging System
 General and versatile
 Robust

 Fast
 Loads a machine in 2 minutes

 Scalable
 Loads dozens of machines in 2 minutes

 Hibler et al. (USENIX 2003)

14

How Does Frisbee Work?

15

Creation

Source

Frisbee Life Cycle

Installation

Targets

Fileserver

Distribution

Control Server

Storage

16

Image Layout

 Image is divide into
chunks

 Each chunk is
independently
installable
 Start receiving

chunks at any point
 Chunks are multicast

Allocated
Blocks

Free
Blocks

Source Disk

Header

Compressed
Data

Header

Compressed
Data

Stored Image

Chunk

17

Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation

18

Potential Attackers

19

Potential Attackers

 Firewall
 Frisbee traffic can’t leave control network
 Forged Frisbee traffic can’t enter control

network
 Any attackers are inside Emulab

 Compromised Emulab node
 Infiltrated Emulab server
 Emulab user

20

Vectors for Attack in Emulab

 Space Shared
 Multiple users on the testbed at the same time

 Shared control network
 Frisbee runs on control network

 No software solution to limit users
 Users have full root access to their nodes

21

What do attackers want?

22

What do attackers want?

 Steal your data
 Malicious software (security research)
 Unreleased software (trade secrets)

 Modify your image
 Denial of Service
 Add a backdoor

 /etc/passwd
 ssh daemon

 Tainting results

23

Frisbee Weakpoints

24

Frisbee Weakpoints

Targets

Fileserver

Steal &
Modify

Control Server

Steal &
Modify

Distribution

Installation

Storage

25

How do the attacks work?

26

Storage Attack

 Images are stored on a common fileserver
 All users have shell access on this server
 Images are protected by UNIX

permissions
 Any escalation of privilege attacks

compromise images

27

Distribution Attack

 Emulab is space shared
 A single control network is used to

communicate with all nodes
 Join multicast group

 No security protection in IP multicast
 Receive copies of packets
 Inject packets into stream

28

Multicast

Targets

Frisbee Server

29

Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation

30

Storage and Distribution Attacks

 Two birds with one stone
 End-to-end encryption & authentication

 Image creation: Encrypt & Sign
 Image installation: Decrypt & Verify
 Same techniques prevent both attacks

 Distribution protocol remains identical

31

Confidentiality

 Encrypted at image creation
 Remains encrypted on fileserver

 Decrypted only at image installation
 Details

 Encryption algorithm: Blowfish
 Encrypt after compression

32

Integrity Protection &
Authentication
 Calculate cryptographic hash

 Breaks backwards compatibility
 Sign hash using public-key cryptography

(RSA)

33

Chunk by Chunk

 Each chunk is self-
describing

 Hash & sign each
chunk independently

 CBC restarts at each
chunk

 Each header must have
 Digital Signature
 Initialization Vector

Header

Encrypted
Data

Header

Encrypted
Data

Chunk

Header

Compressed
Data

Header

Compressed
Data

34

Image Authentication

 Weakness
 Cut and paste attacks

 Give each image a unique UUID and put
that in chunk headers
 UUID is a 128 bit universal identifier
 Can be selected randomly

35

Key Distribution

 Through secure control channel
 Already part of Emulab
 Encrypted using SSL with well-known certificate
 TCP spoofing prevented by Utah Emulab’s network

setup
 No forged MAC addresses
 No forged IP addresses

 Key can come from user
 Flexible policy for images

 Not yet integrated into Emulab

36

Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation

37

Experimental Procedure

 Machine Specs
 3 GHz Pentium IV Xeon
 2 GB RAM

 Measurement
 CPU time

 Network and disk usage unaffected
 Per chunk

 Typical Image has 300 chunks (300 MB)

38

Performance

53.8

208.8

44.5

198.5

34.3

187.9

0 50 100 150 200 250

Install

Create

Time per chunk (ms)

Base

Signed Hash

Signed Hash +
{En,De}cryption

39

Conclusion

40

Conclusion

 Frisbee faces an unusual set of attacks
 Cause: Space sharing of infrastructure

 Frisbee can be secured against these
attacks
 Cost: An extra 6 seconds for an average

image

41

Emulab

http://www.emulab.net

42

43

Preventing Disk Leakage

44

Disk Leakage

 Disks are time shared
 Frisbee is aware of

filesystem
 Does not write free blocks
 Old image will not be

completely overwritten

 Another user could read
the unwritten parts

45

Fixing Disk Leakage

 Zero out disks on
next disk load

 Implemented in
Frisbee
 Much slower

46

Comparison to Symantec Ghost

47

48

Image Creation (CPU per chunk)

11.1%20.9208.8Signed
Hash +

Encryption

5.6%10.5198.5Signed
Hash

187.9Base

Overhead
(%)

Overhead
(ms)

Time
(ms)

49

Image Installation (CPU per chunk)

56.8%19.553.8Signed
Hash +

Decryption

29.5%10.244.5Signed
Hash

34.3Base

Overhead
(%)

Overhead
(ms)

Time
(ms)

50

Disk Imaging Matters

 Data on a disk or partition, rather than file,
granularity

 Uses
 OS installation
 Catastrophe recovery

 Environments
 Enterprise
 Clusters
 Utility computing
 Research/education environments

51

Key Design Aspects

 Domain-specific data compression
 Two-level data segmentation
 LAN-optimized custom multicast protocol
 High levels of concurrency in the client

52

Image Creation

 Segments images into self-describing
“chunks”

 Compresses with zlib
 Can create “raw” images with opaque

contents
 Optimizes some common filesystems

 ext2, FFS, NTFS
 Skips free blocks

53

Image Distribution Environment

 LAN environment
 Low latency, high bandwidth
 IP multicast
 Low packet loss

 Dedicated clients
 Consuming all bandwidth and CPU OK

54

Custom Multicast Protocol

 Receiver-driven
 Server is stateless
 Server consumes no bandwidth when idle

 Reliable, unordered delivery
 “Application-level framing”
 Requests block ranges within 1MB chunk

55

Client Operation

 Joins multicast channel
 One per image

 Asks server for image size
 Starts requesting blocks

 Requests are multicast

 Client start not synchronized

56

Client Requests

Request

57

Client Requests

Block

58

Tuning is Crucial

 Client side
 Timeouts
 Read-ahead amount

 Server side
 Burst size
 Inter-burst gap

59

Image Installation

 Pipelined with distribution
 Can install chunks in any

order
 Segmented data makes

this possible

 Three threads for overlapping
tasks

 Disk write speed the bottleneck
 Can skip or zero free blocks

Decompression Disk Writer

Blocks Chunk

Distribution

Decompressed
Data

60

Evaluation

61

Performance

 Disk image
 FreeBSD installation used on Emulab
 3 GB filesystem, 642 MB of data
 80% free space
 Compressed image size is 180 MB

 Client PCs
 850 MHz CPU, 100 MHz memory bus
 UDMA 33 IDE disks, 21.4 MB/sec write speed
 100 Mbps Ethernet, server has Gigabit

62

Speed and Scaling

63

FS-Aware Compression

64

Packet Loss

65

Related Work

 Disk imagers without multicast
 Partition Image [www.partimage.org]

 Disk imagers with multicast
 PowerQuest Drive Image Pro
 Symantec Ghost

 Differential Update
 rsync 5x slower with secure checksums

 Reliable multicast
 SRM [Floyd ’97]
 RMTP [Lin ’96]

66

Ghost with Packet Loss

67

How Frisbee Changed our Lives
(on Emulab, at least)
 Made disk loading between experiments

practical
 Made large experiments possible

 Unicast loader maxed out at 12
 Made swapping possible

 Much more efficient resource usage

68

The Real Bottom Line

“I used to be able to go to lunch while I
loaded a disk, now I can’t even go to the
bathroom!”

 - Mike Hibler (first author)

69

Conclusion

 Frisbee is
 Fast
 Scalable
 Proven

 Careful domain-specific design from top to
bottom is key

Source available at www.emulab.net

70

71

Comparison to rsync
 Timestamps not robust
 Checksums slow
 Conclusion: Bulk writes beat

data comparison

0 50 100 150 200

Frisbee:

Write

rsync:

Checksum

rsync:

Timestamps

Seconds

72

How to Synchronize Disks

 Differential update - rsync
 Operates through filesystem
 + Only transfers/writes changes
 + Saves bandwidth

 Whole-disk imaging
 Operates below filesystem
 + General
 + Robust
 + Versatile

 Whole-disk imaging essential for our task

73

Image Distribution Performance:
Skewed Starts

74

Future

 Server pacing
 Self tuning

75

The Frisbee Protocol

Chunk
Finished?

More Chunks
Left?

Wait for
BLOCKs

Outstanding
Requests?

Send
REQUESTStart

Finished

No
BLOCK

ReceivedYes

Yes

Yes

Timeout

No

No

76

The Evolution of Frisbee

 First disk imager: Feb, 1999
 Started with NFS distribution
 Added compression

 Naive
 FS-aware

 Overlapping I/O
 Multicast
30 minutes down to 34 seconds!

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Generation
S
e
c
o
n
d
s

