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What is Frisbee?
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Frisbee is Emulab’s tool to
install whole disk images from a

server to many clients using
multicast
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What is our goal?
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Motivation

 Frisbee was developed for a relatively
trusting environment
 Existing features were to prevent accidents

 Changing Environment
 More users
 More sensitive experiments
 More private images
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Security Goals

 Confidentiality
 Integrity Protection
 Authentication

 Ensure that an image is authentic
 Use cases

 Public images
 Private images
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Our Contribution

 Analyze and describe a new and
interesting threat model

 Protect against those threats while
preserving Frisbee’s essential strengths
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Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation
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Frisbee & Emulab
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Emulab
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Control Plane
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Frisbee’s Strengths
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Frisbee’s Strengths

 Disk Imaging System
 General and versatile
 Robust

 Fast
 Loads a machine in 2 minutes

 Scalable
 Loads dozens of machines in 2 minutes

 Hibler et al. (USENIX 2003)
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How Does Frisbee Work?
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Image Layout

 Image is divide into
chunks

 Each chunk is
independently
installable
 Start receiving

chunks at any point
 Chunks are multicast
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Outline
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Potential Attackers
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Potential Attackers

 Firewall
 Frisbee traffic can’t leave control network
 Forged Frisbee traffic can’t enter control

network
 Any attackers are inside Emulab

 Compromised Emulab node
 Infiltrated Emulab server
 Emulab user
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Vectors for Attack in Emulab

 Space Shared
 Multiple users on the testbed at the same time

 Shared control network
 Frisbee runs on control network

 No software solution to limit users
 Users have full root access to their nodes
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What do attackers want?
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What do attackers want?

 Steal your data
 Malicious software (security research)
 Unreleased software (trade secrets)

 Modify your image
 Denial of Service
 Add a backdoor

 /etc/passwd
 ssh daemon

 Tainting results
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Frisbee Weakpoints
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Frisbee Weakpoints
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How do the attacks work?
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Storage Attack

 Images are stored on a common fileserver
 All users have shell access on this server
 Images are protected by UNIX

permissions
 Any escalation of privilege attacks

compromise images
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Distribution Attack

 Emulab is space shared
 A single control network is used to

communicate with all nodes
 Join multicast group

 No security protection in IP multicast
 Receive copies of packets
 Inject packets into stream
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Multicast

Targets
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Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation
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Storage and Distribution Attacks

 Two birds with one stone
 End-to-end encryption & authentication

 Image creation: Encrypt & Sign
 Image installation: Decrypt & Verify
 Same techniques prevent both attacks

 Distribution protocol remains identical
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Confidentiality

 Encrypted at image creation
 Remains encrypted on fileserver

 Decrypted only at image installation
 Details

 Encryption algorithm: Blowfish
 Encrypt after compression
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Integrity Protection &
Authentication
 Calculate cryptographic hash

 Breaks backwards compatibility
 Sign hash using public-key cryptography

(RSA)
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Chunk by Chunk

 Each chunk is self-
describing

 Hash & sign each
chunk independently

 CBC restarts at each
chunk

 Each header must have
 Digital Signature
 Initialization Vector
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Compressed
Data
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Compressed
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Image Authentication

 Weakness
 Cut and paste attacks

 Give each image a unique UUID and put
that in chunk headers
 UUID is a 128 bit universal identifier
 Can be selected randomly
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Key Distribution

 Through secure control channel
 Already part of Emulab
 Encrypted using SSL with well-known certificate
 TCP spoofing prevented by Utah Emulab’s network

setup
 No forged MAC addresses
 No forged IP addresses

 Key can come from user
 Flexible policy for images

 Not yet integrated into Emulab
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Outline

 Motivation
 Frisbee Background
 Threat Model
 Protecting Frisbee
 Evaluation
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Experimental Procedure

 Machine Specs
 3 GHz Pentium IV Xeon
 2 GB RAM

 Measurement
 CPU time

 Network and disk usage unaffected
 Per chunk

 Typical Image has 300 chunks (300 MB)
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Performance
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Conclusion
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Conclusion

 Frisbee faces an unusual set of attacks
 Cause: Space sharing of infrastructure

 Frisbee can be secured against these
attacks
 Cost: An extra 6 seconds for an average

image
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Emulab

http://www.emulab.net
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Preventing Disk Leakage
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Disk Leakage

 Disks are time shared
 Frisbee is aware of

filesystem
 Does not write free blocks
 Old image will not be

completely overwritten

 Another user could read
the unwritten parts
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Fixing Disk Leakage

 Zero out disks on
next disk load

 Implemented in
Frisbee
 Much slower
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Comparison to Symantec Ghost
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Image Creation (CPU per chunk)
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Image Installation (CPU per chunk)
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Disk Imaging Matters

 Data on a disk or partition, rather than file,
granularity

 Uses
 OS installation
 Catastrophe recovery

 Environments
 Enterprise
 Clusters
 Utility computing
 Research/education environments
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Key Design Aspects

 Domain-specific data compression
 Two-level data segmentation
 LAN-optimized custom multicast protocol
 High levels of concurrency in the client



52

Image Creation

 Segments images into self-describing
“chunks”

 Compresses with zlib
 Can create “raw” images with opaque

contents
 Optimizes some common filesystems

 ext2, FFS, NTFS
 Skips free blocks
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Image Distribution Environment

 LAN environment
 Low latency, high bandwidth
 IP multicast
 Low packet loss

 Dedicated clients
 Consuming all bandwidth and CPU OK
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Custom Multicast Protocol

 Receiver-driven
 Server is stateless
 Server consumes no bandwidth when idle

 Reliable, unordered delivery
 “Application-level framing”
 Requests block ranges within 1MB chunk
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Client Operation

 Joins multicast channel
 One per image

 Asks server for image size
 Starts requesting blocks

 Requests are multicast

 Client start not synchronized
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Client Requests

Request
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Client Requests

Block
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Tuning is Crucial

 Client side
 Timeouts
 Read-ahead amount

 Server side
 Burst size
 Inter-burst gap
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Image Installation

 Pipelined with distribution
 Can install chunks in any

order
 Segmented data makes

this possible

 Three threads for overlapping
tasks

 Disk write speed the bottleneck
 Can skip or zero free blocks

Decompression Disk Writer

Blocks Chunk

Distribution

Decompressed
Data
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Evaluation
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Performance

 Disk image
 FreeBSD installation used on Emulab
 3 GB filesystem, 642 MB of data
 80% free space
 Compressed image size is 180 MB

 Client PCs
 850 MHz CPU, 100 MHz memory bus
 UDMA 33 IDE disks, 21.4 MB/sec write speed
 100 Mbps Ethernet, server has Gigabit
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Speed and Scaling
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FS-Aware Compression
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Packet Loss
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Related Work

 Disk imagers without multicast
 Partition Image [www.partimage.org]

 Disk imagers with multicast
 PowerQuest Drive Image Pro
 Symantec Ghost

 Differential Update
 rsync 5x slower with secure checksums

 Reliable multicast
 SRM [Floyd ’97]
 RMTP [Lin ’96]
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Ghost with Packet Loss
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How Frisbee Changed our Lives
(on Emulab, at least)
 Made disk loading between experiments

practical
 Made large experiments possible

 Unicast loader maxed out at 12
 Made swapping possible

 Much more efficient resource usage
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The Real Bottom Line

“I used to be able to go to lunch while I
loaded a disk, now I can’t even go to the
bathroom!”

   - Mike Hibler (first author)
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Conclusion

 Frisbee is
 Fast
 Scalable
 Proven

 Careful domain-specific design from top to
bottom is key

Source available at www.emulab.net



70



71

Comparison to rsync
 Timestamps not robust
 Checksums slow
 Conclusion: Bulk writes beat

data comparison
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How to Synchronize Disks

 Differential update - rsync
 Operates through filesystem
 + Only transfers/writes changes
 + Saves bandwidth

 Whole-disk imaging
 Operates below filesystem
 + General
 + Robust
 + Versatile

 Whole-disk imaging essential for our task
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Image Distribution Performance:
Skewed Starts
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Future

 Server pacing
 Self tuning
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The Frisbee Protocol
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The Evolution of Frisbee

 First disk imager: Feb, 1999
 Started with NFS distribution
 Added compression

 Naive
 FS-aware

 Overlapping I/O
 Multicast
30 minutes down to 34 seconds!
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