Securing the Frisbee

Multicast Disk Loader

Robert Ricci, Jonathon Duerig

University of Utah

What is Frisbee?

Frisbee is Emulab’s tool to
install whole disk images from a
server to many clients using
multicast

What is our goal?

Motivation

m Frisbee was developed for a relatively
trusting environment

* Existing features were to prevent accidents
m Changing Environment
* More users

* More sensitive experiments
* More private images

"
Security Goals

m Confidentiality
m Integrity Protection
m Authentication
* Ensure that an image is authentic

m Use cases
* Public images
* Private images

" I
Our Contribution

m Analyze and describe a new and
interesting threat model

m Protect against those threats while
preserving Frisbee’s essential strengths

Outline

O
m Frisbee Background
O
O

Frisbee & Emulab

10

Control Plane

DDDDDDDD

Frisbee’s Strengths

Frisbee’s Strengths

m Disk Imaging System
* General and versatile
* Robust

m Fast
* |Loads a machine in 2 minutes

m Scalable
* Loads dozens of machines in 2 minutes

m Hibler et al. (USENIX 2003)

13

How Does Frisbee Work?

Frisbee Life Cycle

Storage

&/

SE=S g
()~ Source Fileserver
' n n n
Distribution

Installation

15

Image Layout

Source Disk Stored Image
~__[wa]] ®™Image is divide into
e | chunks
T m Each chunk is
Froe //#/ _ independently
Slocks | 1 e installable
Ny N * Start receiving
Data chunks at any point
®* Chunks are multicast

16

Outline

N
N
m Threat Model
N

17

Potential Attackers

" I
Potential Attackers

m Firewall
* Frisbee traffic can’'t leave control network

* Forged Frisbee traffic can’t enter control
network

m Any attackers are inside Emulab
* Compromised Emulab node
* Infiltrated Emulab server
°* Emulab user

19

"
Vectors for Attack in Emulab

m Space Shared

® Multiple users on the testbed at the same time
m Shared control network

* Frisbee runs on control network

m No software solution to limit users
* Users have full root access to their nodes

20

What do attackers want?

" I
What do attackers want?

m Steal your data

* Malicious software (security research)
* Unreleased software (trade secrets)

m Modify your image
* Denial of Service
* Add a backdoor

m /etc/passwd
m ssh daemon

* Tainting results

22

Frisbee Weakpoints

Frisbee Weakpoints
—= —= Storage

24

How do the attacks work?

Storage Attack

m I[mages are stored on a common fileserver
m All users have shell access on this server

m Images are protected by UNIX
permissions

m Any escalation of privilege attacks
compromise images

26

" I
Distribution Attack

m Emulab is space shared

m A single control network is used to
communicate with all nodes

m Join multicast group

* No security protection in I[P multicast
m Receive copies of packets
m [nject packets into stream

27

Multicast

Outline

m Protecting Frisbee

29

"
Storage and Distribution Attacks

m [wo birds with one stone

m End-to-end encryption & authentication
* Image creation: Encrypt & Sign
* Image installation: Decrypt & Verify
* Same techniques prevent both attacks

m Distribution protocol remains identical

30

"
Confidentiality

m Encrypted at image creation

* Remains encrypted on fileserver
m Decrypted only at image installation
m Detalls

* Encryption algorithm: Blowfish
* Encrypt after compression

31

" S
Integrity Protection &
Authentication

m Calculate cryptographic hash
* Breaks backwards compatibility

m Sign hash using public-key cryptography
(RSA)

32

"
Chunk by Chunk

m Each chunk is self-

Header Header o
describing
C .
Comgr(:ssed —> EnBryfted hunk N HaSh & S|gn eaCh
chunk independently
o aer m CBC restarts at each
chunk
Compressed) ————p | Encryptec m Each header must have
* Digital Signature

* |nitialization Vector

33

Image Authentication

m \Weakness
* Cut and paste attacks
m Give each image a unique UUID and put
that in chunk headers
* UUID is a 128 bit universal identifier
® Can be selected randomly

34

"
Key Distribution

m Through secure control channel
* Already part of Emulab
* Encrypted using SSL with well-known certificate

* TCP spoofing prevented by Utah Emulab’s network
setup
= No forged MAC addresses
= No forged IP addresses
m Key can come from user

* Flexible policy for images
m Not yet integrated into Emulab

35

Outline

Evaluation

36

"
Experimental Procedure

m Machine Specs
* 3 GHz Pentium IV Xeon
* 2 GB RAM

m Measurement
* CPU time
» Network and disk usage unaffected

® Per chunk
m Typical Image has 300 chunks (300 MB)

37

Performance

Create

Install

3
O
53.8

l Base

H Signed Hash

M Signed Hash +
{En,De}cryption

0 50

Time

100 150 200 250

per chunk (ms)

38

Conclusion

39

Conclusion

m Frisbee faces an unusual set of attacks
* Cause: Space sharing of infrastructure

m Frisbee can be secured against these
attacks

® Cost: An extra 6 seconds for an average
Image

40

Emulab

http://www.emulab.net

41

Preventing Disk Leakage

"
Disk Leakage

m Disks are time shared

m Frisbee is aware of
filesystem
* Does not write free blocks
* Old image will not be
completely overwritten
m Another user could read
the unwritten parts

44

" I
Fixing Disk Leakage

m Zero out disks on
next disk load

m Implemented in
Frisbee
* Much slower

45

Comparison to Symantec Ghost

Runtime (seconds)

350

300 -
250 +
200 +
150 ¢
100 +
50

0

Syméntec Ghost —+—
Frisbee —x—

)
)
X
X
X

X

5 10 15
Number of Nodes

20

25

46

Image Creation (CPU per chunk)

Time Overhead | Overhead
(ms) (ms) (%)
Base 187.9
Signed 198.5 10.5 5.6%
Hash
Signed 208.8 20.9 11.1%
Hash +

Encryption

48

Image Installation (CPU per chunk)

Time Overhead | Overhead
(ms) (ms) (%)
Base 34.3
Signed 44.5 10.2 29.5%
Hash
Signed 53.8 19.5 56.8%
Hash +

Decryption

49

-
Disk Imaging Matters

m Data on a disk or partition, rather than file,
granularity

m Uses
* OS installation
* Catastrophe recovery

m Environments
* Enterprise
® Clusters
* Utility computing
* Research/education environments

50

Key Design Aspects

m Domain-specific data compression

m [wo-level data segmentation

m LAN-optimized custom multicast protocol
m High levels of concurrency in the client

51

"
Image Creation

m Segments images into self-describing
“‘chunks”

m Compresses with zlib

m Can create “raw” images with opaque
contents

m Optimizes some common filesystems

* ext2, FFS, NTFS
* Skips free blocks

52

Image Distribution Environment

m LAN environment

* Low latency, high bandwidth
* |P multicast

* Low packet loss

m Dedicated clients
* Consuming all bandwidth and CPU OK

53

" I
Custom Multicast Protocol

m Receilver-driven
®* Server is stateless
* Server consumes no bandwidth when idle

m Reliable, unordered delivery
m “Application-level framing”
m Requests block ranges within 1MB chunk

54

" I
Client Operation

m Joins multicast channel
®* One per image
m Asks server for image size

m Starts requesting blocks
* Requests are multicast

m Client start not synchronized

55

" S
Client Requests

I —

" S
Client Requests

Tuning is Crucial

m Client side
* Timeouts
* Read-ahead amount

m Server side
* Burst size
* Inter-burst gap

58

"
Image Installation

Decompression Disk Writer
Distribution
— T
Blocks
Decompressed
Data

m Pipelined with distribution Three threads for overlapping

®* Can install chunks in an tasks
order Y |m Disk write speed the bottleneck

» Segmented data makes m Can skip or zero free blocks
this possible 59

Evaluation

60

B
Performance

m Disk image
* FreeBSD installation used on Emulab
* 3 GB filesystem, 642 MB of data
* 80% free space
* Compressed image size is 180 MB

m Client PCs
* 850 MHz CPU, 100 MHz memory bus
* UDMA 33 IDE disks, 21.4 MB/sec write speed
* 100 Mbps Ethernet, server has Gigabit

61

Speed and Scaling

W
5
:
i

I] I | I]
1 | | 1 | | | !
-H" ! IT + ! ! L ! T T T T B T = B

- = N N
c O ©o O O

Average Runtime (seconds)
&

| | | Dis:k Loqd Timle ——
10 20 30 40 50 60 70 80
Number of Nodes

o

o

62

FS-Aware Compression

180
160

Average Runtime (seconds)

0

140 ¢
120 +
100 +
80 |
60 |
40
20 ¢

| A—————+—+—+ +—+ —+—+
S22 VAR VIR VISR VIS VIR VENE SE VIS VSR VNS VL VI VS VIS VN
Naive Compression —+—
| ES—AV\(are Clomprlessioln —X—
0 10 20 30 40 50 60 70 80

Number of Nodes

63

Packet Loss

160

140 |
120
100
80
60
40
20

Runtime (seconds)

0

’l X

10% loss —+—

1% loss —>— A
no Ioss —Kk—

0

10 20 30 40 5 60 70 80
Number of Nodes

64

"
Related Work

m Disk imagers without multicast
* Partition Image [www.partimage.org]

m Disk imagers with multicast
* PowerQuest Drive Image Pro
* Symantec Ghost

m Differential Update

* rsync 5x slower with secure checksums

m Reliable multicast
° SRM [Floyd '97]
°* RMTP [Lin '96]

65

Ghost with Packet Loss

1400
1200
)
© 1000 | -
9 Ghost 1% plr
Q 800 Ghost 0% plr —<—
~ Frisbee 1% plr —8—
g 600 - Frisbee 0% plr
S 400 r o
oC
200 ¢ .
. =
0 1)) . iy
0 5 10 15 20 25

Number of Nodes
66

- S
How Frisbee Changed our Lives
(on Emulab, at least)

m Made disk loading between experiments
practical

m Made large experiments possible
* Unicast loader maxed out at 12

m Made swapping possible
* Much more efficient resource usage

67

The Real Bottom Line

“| used to be able to go to lunch while |
loaded a disk, now | can’t even go to the
bathroom!”

- Mike Hibler (first author)

68

- I
Conclusion

m Frisbee is
* Fast
* Scalable
* Proven

m Careful domain-specific design from top to
bottom is key

Source available at www.emulab.net

69

Comparison to rsync

m Timestamps not robust
m Checksums slow

. m Conclusion: Bulk writes beat
rsync: data comparison

Checksum

rsync:]
Timestamps

Frisbee:
Write

0 50 100 150 200

Seconds
71

"
How to Synchronize Disks

m Differential update - rsync
* QOperates through filesystem
* + Only transfers/writes changes
* + Saves bandwidth
m \Whole-disk imaging
* QOperates below filesystem
* + General
* + Robust
* + Versatile

m \Whole-disk imaging essential for our task

72

= S
Image Distribution Performance:
Skewed Starts

Runtime (s)
Ave |Rungc

Startup

Chent | Dup
Data

Scenario msgs

Small [m'luc

Clustered 35.6 4561 46%

Uniform T875 599,

[Large Image

Simultancous

002 I 100101

N =
la— / c‘ : | i .-\.\. 0

[Clustered 106126 l“-w» 6%,

Uniform

Simultancous I 3.6 | 329 347 I 2733 3 00,
D
N

[3
32.4] 120147 | 23842 I 37%

Future

m Server pacing
m Self tuning

74

The Frisbee Protocol

Send
REQUEST

Start

Wait for
BLOCKs

Timeout

Outstanding
Requests?

Yes

BLOCK
Received

More Chunks
Left?

N

Finished

75

The Evolution of Frisbee

m First disk imager: Feb, 1999
m Started with NFS distribution

m Added compression
* Naive
* FS-aware

m Overlapping I/O
m Multicast
30 minutes down to 34 seconds!

Seconds

2000
1800

1600 -
1400 -
1200 -
1000 -
800 -
600 -
400 -
200 -

1.

Generation

76

