

Towards a High Quality Pathoriented Network Measurement and Storage System

David Johnson, Daniel Gebhardt, Jay Lepreau School of Computing, University of Utah www.emulab.net

Different Goals for our NMS

- Many uses for Internet-scale path measurements:
 - Discover network trends, find paths
 - Building network models
 - Run experiments using models and data
- A different design point on the NMS spectrum:
 - Obtain highly accurate measurements
 - ... from a resource-constrained, unreliable network
 - ... for multiple simultaneous users
 - ... sometimes at high frequency
 - ... and return results fast and reliably

2

Flexlab: a Motivating Use Case

- Problem: real Internet conditions matter, but can make controlled experiments difficult
- Flexlab [NSDI 07]: integrate network models into emulation testbeds (i.e., Emulab)
 - Example: network models derived from PlanetLab
- · How it works:
 - Measure Internet paths in real time
 - Clone conditions in Emulab

Requirements

- Shareable
 - Anticipate multiple users
 - Frequent simultaneous probing can cause selfinterference, and increase cost
 - Amortize cost of measurements by removing probe duplication across users
- Reliable
 - Reliably buffer, transmit, and store measurements
 - Probing & storage should continue when network partitions disrupt control plane

4

Requirements, cont'd

- Accurate
 - Need best possible measurements for models
- Safe
 - Protect resource-constrained networks and nodes from probing tools, and vice versa
 - And yet support high freq measurements
 - Limit BW usage, reduce probe tool CPU overhead
- Adaptive & controllable
 - Function smoothly despite unreliable nodes
 - Modify parameters of executing probes

5

Hard System To Build!

- End-to-end reliability
 - Data transfer and storage, control
 - PlanetLab: overloaded nodes, sched delays
- Measurement accuracy vs resource limits
- => We're not all the way there yet

6

Flexmon

- A measurement service providing shared, accurate, safe, reliable wide area path-oriented measurements

 Reliable probing and results transfer & storage atop unreliable

 - Accurate, high freq measurements for multiple users despite network resource limits
- Transfers and exports results quickly and safely
- · Not perfect, but good start
- Deployed on an unreliable network, PlanetLab, for 2+ yrs
- Nearly 1 billion measurements
- Data available publicly via multiple query interfaces and the Web

User Interface

- · Authentication through Emulab
- Users request probes through manager clients
 - Type of probe, set of nodes, frequency and duration, and other tool-specific arguments
 - Users can "edit" currently executing probes to change parameters
- · Get measurements from caching DB via SQL

Central Management

- Manager applies safety checks to client probe requests:
 - Reject if probe request is over frequency and duration thresholds
 - Can reject if expected bandwidth usage will violate global or per-user limits
 - Estimates future probe bandwidth usage based off past results in write-back cache

Background Measurements

- The *Auto-manager Client* requests all-pairs probing for one node at each PlanetLab site
 - Assumption: all nodes at a site exhibit "identical" path characteristics to other sites
 - Chooses least loaded node at each site to avoid latencies in process scheduling on PlanetLab
- · Assesses node liveness and adjusts node set
- · Uses low probe duty cycle to leave bandwidth for high-freq user probing

Probing

- A Path Prober on each node receives probe commands from the Manager
- Spawns probe tools at requested intervals
 - Newer (early) generic tool support, although safety not generalized
- Multiple probe modes to reduce overhead
 - One-shot: tool is executed once per interval, returns one result
 - Continuous: tool is executed once; returns periodic results

Probing, cont'd

- Probers maintain a queue of probe commands for each probe type and path, ordered by frequency
 - Serially execute highest-frequency probe
 - All users get at least what they asked for, maybe more
- Trust model: only allow execution of approved probing tools with sanity-checked parameters
- Currently use two tools
 - fping measures latency
 - Attempts to distinguish loss/restoration of connectivity from heavy packet loss by increasing probing frequency
 - Modified iperf estimates ABW

13

Collecting & Storing Measurements

- Probers send results to central data collector over UDP
 - Stable commit protocol on both sides
 - Collector drops duplicate results from retransmits
- Not perfectly reliable i.e., cannot handle node disk failures
- · Use write-back cache SQL DB for perf
- Newest results in write-back cache are flushed hourly to long-term storage in Datapository
 - Fast stable commit

14

Searching the Data

- "Write-back cache" SQL DB
- Available to Emulab users by default
- Fast but limited scope
- Datapository containing all measurements
 - Access upon request
 - Weekly data dumps to www
- · XMLRPC server
 - Can query both DBs over specific time periods
 - More expressive query power (i.e., FullyConnectedSet, data filtering, etc)

15

Deployment & Status

- Probers run in an Emulab experiment, using Emulab's portal to PlanetLab
- Managers, clients, and data collectors run on a central Emulab server
 - Use secure event system for management
- Running on PlanetLab for over 2 years
 - Some architecture updates, but largely unchanged over past year
 - Some system "hiccups" i.e., our slice has been bandwidth-capped by PlanetLab
 - Set of monitored nodes changes over time

40

Measurement Summary

- Many measurements of pairwise latency and bandwidth
- Latency measurements are 89% of total
 - 17% are failures (timeouts, name resolution failures, ICMP unreachable)
- Available bandwidth estimates are 11%
 - Of these, 11% are failures (mostly timeouts)

17

PlanetLab Sites

- Logfile snapshot of 100-day period
- Median of 151 sites
- System "restart" is the big drop

18

Node Churn

- Typically 250-325 nodes in slice
- Churn: number of newly unresponsive nodes at periodic liveness check

19

Brief Look at Some Data

- 24-hour snapshot from Feb
 - 100k+ ABW samples; 1M+ latency samples
- · Latency vs bandwidth: curve approx BDP
 - Outliers due to method

20

Related Work

- S3: scalable, generic probing framework; data aggregation support
 - We need fast & reliable results path
 - Need support to limit probe requests when necessary
 - Also need adaptability for background measurements
- Scriptroute: probe scripts executed in safe environment, in custom language
 - No node-local storage, limited data output facilities
- Others that lack shareability or reliable storage path; see paper

21

More To Be Done...

- More safety
 - LD_PRELOAD, libpcap to track usage toolagnostically at probe nodes
 - distributed rate limiting [SIGCOMM '07]; scale probe frequency depending on use
- Add another user data retrieval interface (pubsub would be nice)
- Increase native capabilities of clients
 - Adaptability, liveness

22

Conclusion

- Developed an accurate, shareable, safe, reliable system
- · Deployed on PlanetLab for 2+ years
- · Accumulated lots of publicly-available data

23

Data!

- http://utah.datapository.net/flexmon
 - Weekly data dumps and statistical summaries
- Write-back cache DB available to Emulab users
- SQL Datapository access upon request; ask testbed-ops@flux.utah.edu

24