Flexlab: A Realistic, Controlled, and
Friendly Environment for Evaluating
Networked Systems

Jonathon Duerig, Robert Ricci, Junxing Zhang,
Daniel Gebhardt, Sneha Kasera, Jay Lepreau

University of Utah

HotNets-V
November 30, 2006

Emulators (Emulab Sucks)

« Examples: Modelnet & Emulab

« The Good: Control, repeatability, wide variety
of network conditions

The Bad: Artificial network conditions

Overlay Testbeds
(PlanetLab Sucks)

Overlay € Overlay
st st

Application Traffic A

¢ Examples: RON & PlanetLab
« The Good: Real network conditions

« The Bad: Overloaded, No privileged operations, Poor
repeatability, Hard to develop/debug

Goal: Best of Both Worlds
(Don't Suck)

Overlay
st

Emulator = Emulator
st i st

w|uuuae aauaaa"™"

Model-driven Emulation
(How not to suck)

Intern:

Emulator Emulator

Internet Model ‘

st st
n Application Traffic

-

Key Points

* Flexlab is an emulation framework into which
different network models may be plugged

« Exploit an overlay testbed to generate
measurements for some example models

— Models make different fidelity, overhead, and
repeatability trade-offs

¢ Application-Centric Internet Modeling

Flexlab: Application

Emulab Emulab

Host Host

Ap?hcatlon
raffic

Flexlab: Application Monitor

Emulab Emulab

Ap?hcatlon
raffic

Flexlab: Network Model

Offered
Load
Model Network Model

Emulab

Ap?hcatlon
raffic

Flexlab: Measurement
Repository

Offered
Load
Model

Ap?hcatlon
raffic

Flexlab: Path Emulator

Offered
Load
Model

Network
Characteristics
Emulab
Host Path Emulator

Ap?hcatlon
raffic

11

Flexlab: Feedback

Offered

Network
haracteristics
Emulab

Host Path Emulator \
_ ApplicXion
| ?raﬂ
‘ g

ACIM:
Application-Centric
Internet Modeling

13

Imagine Ideal Fidelity

PlanetLab

Host
<

ACIM Architecture

PlanetLab GELEET)
Sliyer Measurement Slyer
Traffic

Emulab
Path Emula

Application
Traffic

15

ACIM Challenges

« Hardening implementation to deal with
PlanetLab unreliability

e CPU starvation on PlanetLab
— Host artifacts in throughput
— Packet loss from libpcap

» Reverse path congestion

* Measuring bottleneck queue size in time

« Discovering when bottleneck link is saturated

16

ACIM Network Conditions

17

ACIM Available Bandwidth

e Throughput == available bandwidth
iff agent is saturating

&& bottleneck link is saturated

« Agent saturating = socket buffer full

¢ Bottleneck queue saturated
~ queue filling up
~ RTT increasing recently

Sample Experiment

UT Arlington

PlanetLab' lanetLab

Sliver _ Sliver
Measurement

Traffic

SN——_ ——

Agent

Agent

Emulab
Path Emulator

iperf
Traffic

Sample Results

P2 (Thoughout)

ol— o v 0 000 g
0 10 20 0 4 0 0 7 0 % 100 10 W

Sample Results

P2 (Thoughout)

ol—r 1 T —
0 10 20 0 4 0 0 7 0 % 100 10 1w

Sample Results

P2 (Thoughout)

ol—r M o o 0 4 0
0 10 20 0 4 0 0 7 0 % 100 10 W

Sample Results

P2 (Thoughout)

ol—r 0 v 0 0 444 1
0 10 20 0 4 0 0 7 0 % 100 10 W

23

Network Model Trade-offs

eneral Internet

Dynamic

Sample Real Application: BitTorrent.
with Static Model

< 80 P =
a Vd
3 600 /[
e e
3 400 |

//

200 /’
)
) 50 100 150 200 250 300

Time (s)

25

BitTorrent w/ ACIM Model

BitTorrent w/ PlanetLab

1400

1200

1000

3 0
]
o«
3 600
H
3w
200 1/
0 L
0 50 100 10 200 250 300

Time (s)

What is “correct”? Challenging to determine; work-in-progress.

27

1400
1200
- 1000
i
g e LN
% 600 ///"\r" gl
3 «00 / /’I
d
200 I
Lz
] 50 100 150 200 250 300 350
Time (s)
26
Conclusions

¢ Contribution: Modeling Framework for Emulation

— Models can allow the experimenter to trade-off fidelity,
repeatability, and overhead

« Contribution: Application-Centric Internet Modeling

¢ Contribution: Running on Emulab and PlanetLab in
alpha stage

Backup Slides

29

Why not just add more nodes to every
PlanetLab site? (cf. public review)

« Remaining problems:
— Poor repeatability
— Hard to develop/debug
— No privileged operations
« Malicious traffic cannot be tested
« Some Flexlab network models reduce network load
¢ Emulab node pool stat muxed and shared more
efficiently than per-site pools
« Overload can (will?) still happen with PL’s pure
shared-host model
« Major practical barriers: admin, cost

PlanetLab Overload (What)

09

08
07
06
05
04
03
02
LA 6
LA 15
LA 27
Local Emukb (LAQ

0 1 2 3 4 5 6 7
Scheduler delay (millseconds)

01

Percentage of samples ator bekow x-axis valus

0

31

PlanetLab Overload (Why)

¢ Only a few nodes per site
— Sites supply their own nodes
— No incentive to increase number of nodes

« No admission control
* No resource guarantees
¢ No incentive to minimize usage

« Typically tedious to set up experiments
(exceptions: Emulab portal, Plush, other?)

Network Model 1: Static

Static Network Model

Network Characteristics
to Path Emulator

33

Static Trade-offs

¢ Low fidelity
¢ Fixed continuous overhead
¢ Complete repeatability

Network Model 2: Dynamic

Application Network Characteristics

to Path Emulator

etwork Model
from Monitor|

35

Dynamic Trade-offs

¢ Moderate fidelity

¢ Overhead proportional to number of
paths used

¢ High repeatability

Low-Frequency Measurements Miss
Changes (Changepoint Analysis)

20 Sec. |2 Sec.
Path Period |Period
Src Dest |Count |Count Avg magnitude of
2 sec changes
Commodity | Commodity |2 20 39%
Commodity | Internet2 1 13 15%
Internet2 Internet2 0 0 -

37

Flexlab and VINI

Entirely different kinds of realism and control

« Flexlab: passes “experiment” traffic over shared path

— Real Internet conditions from other traffic on same path, but
app. traffic is not from real users

— Control: of all software
— Environment: friendly local dev. environ, dedicated hosts
« VINI: can pass “real traffic” over dedicated link

— Real routing, real neighbor ISPs, potentially traffic from real
users, but network resources are not realistic/representative

— Dedicated pipes with dedicated bandwidth, that insulate
experiment from normal Internet conditions

— Control: restricted to VINI's APIs (Click, XORP, etc)
— Environment: distributed environ; shared host resources.

Dealing with PlanetLab
Unreliability

* Our initial design was optimistic
* Nodes fall

— There is no set of ‘good nodes’

— Agents must react robustly to node failure
» Most errors are transient

—Log everything

— Replay packet analysis

39

CPU Starvation on PlanetLab

» Host Artifacts

— Long period when agent can’t read or write
— Empty socket buffer or full receive window
— Solution: Detect and ignore

» Packet loss from libpcap
— Long period without reading libpcap buffer
— Many packets are dropped at once
— Solution: Detect and ignore

40

Handling Reverse Path
Congestion

» Can cause ack compression

e Throughput Measurement
— Throughput numbers become much noisier
— We abuse the TCP timestamp option
— PlanetLab: homogenous OS environment
— Extending it would require hacking client

* RTT Measurement
— Future work

41

Measuring Bottleneck Queue
Size
 Important to emulate loss episodes due
to congestion

» No one knows how in terms of
bytes/packets

 Easier to measure in terms of time:
—full = RTT when queue is full
—empty = RTT when queue is empty
—queue_time = full - empty

42

Initial Conditions

» Needed to bootstrap ACIM
— ACIM uses traffic to generate conditions
— But conditions must exist for first traffic

» We created a measurement framework
— All pairs of sites are measured
— Put data into measurement repository

« Set initial conditions to latest
measurements

43

Path Emulator (detail)

available
bandwidth

Packets
leave

Packets

enter other

ueuin
q & delay

delay

44

