
Vertically Integrated
Analysis and Transformation

for Embedded Software

John Regehr
University of Utah



Embedded Systems
� Most new microprocessors

are embedded
� Consumer electronics
� Vehicle control systems
� Medical equipment
� Smart dust



Problem
� Compared to general-purpose

compilation:
� We have a lot more information
� We have a lot more constraints

� So, using standard toolchain:
� Ignores most of the information
� Ignores most of the constraints

� However:
� Strong economic incentive to

avoid reinventing the wheel



Vertically Integrated
Program Analysis (VIPA)

� Framework for combining
analyses and transformations
operating on a system at
multiple levels of abstraction



(1) What good is gcc?
� Traditional C/C++ compilers pretty

close to end of the line with respect
to optimizing embedded SW

� However, C/C++ still useful for a
while

� VIPA:
� Keep the compiler around as a code

generator
� But do analysis and coarse-grain

transformation in separate tools



(2) Tradeoffs are hard

� Embedded compilers must make
difficult tradeoffs between goals
� Power use, code size, data size,

avoid crashing, etc…
� Each embedded system has a

different prioritization for these
goals

� Standard compilers are ill-
equipped to do what we want
� Mechanism and policy all mixed up



(3) Levels of abstraction
� Analyses and transformations

need to be performed at multiple
levels of abstraction
� Model – task mapping, exclusive

modes, real-time deadlines
� Source – concurrency, exceptions
� Binary – memory usage, execution

time, bit widths

� Standard compilers are ill-
equipped to do what we want



(4) Tools are myopic
� Analysis tools often return binary

results
� “System is not schedulable”
� “Network acceptor thread contains a

potential stack overflow”

� Often more information is available
but hidden
� Which task is blocking schedulability?
� What is the path to max stack depth?

� This information can be exploited



(5) Analysis good!

� Increasing asymmetry between
� Resources on a PC and
� Resources on a typical embedded

system

� Program analysis and
transformation tools are rapidly
becoming more useful and
effective

� The asymmetry can and should
be exploited



VIPA Example 1

� Given:
� Tool to compute a static upper

bound on stack memory usage
� Global function inlining tool

� Goal:
� Reduce the stack memory

requirements of an embedded
system



Reducing Stack Depth
[EMSOFT 2003]

� Observation: Function inlining
often decreases stack
requirements
� Avoids pushing registers, frame

pointer, return address
� Called code can be specialized

� Strategy: Use stack tool output
as input to global inlining tool



Feedback Loop

C compiler
(source)

stack
analyzer
(binary)

whole
program
inliner

(source)

policy
here search

heuristic



Challenges
1. Inlining causes code bloat

� Solution: Minimize user-defined
cost function that balances stack
memory and code size

2. Inlining sometimes increases
stack depth!
� Solution: Trial compilations

3. Search space is exponential in
number of static function calls
� Solution: Heuristic search



Results

� Averaged over a bunch of
TinyOS kernels…
� 60% reduction in stack

requirements compared to no
inlining

� 32% reduction compared to whole-
program inlining not aimed at
reducing stack depth



Result Details



VIPA Example 2
� Given:

� WCET analysis
� Synchronization analysis
�Race / deadlock detection

� Synchronization transformation
� Lock elimination
� Lock coarsening

� Real-time-aware task mapping

� Goal: balance response time,
efficiency, and memory use



Feedback Loop 2

WCET
analysis
(binary)

synch.
analysis
(source)

C compiler
(source)

task
mapping
(model)

synch.
transform.
(source)

search
heuristic



VIPA Example N

� Given:
� Many, many tools that exist for

analyzing and transforming
embedded software

� Goal:
� Rapidly produce efficient and

reliable software



What is VIPA?

� Exchange formats for analysis
results
� Annotated callgraph
� Annotated task set
� Others?
� Type and alias information
�Heap allocation / deallocation

protocols

� Tools “opened up” to read/write
the exchange formats



What is VIPA? Cont’d

� Strategies for connecting tools
� E.g. feedback loops

� Policies
� Manage tradeoffs between goals

� Auxiliary tools (that don’t exist
yet)
� GUI to help developers specify

tradeoffs
� Manage interactions between

analyses



Research Challenges

� Maintaining invariants
� Transformations will invalidate

some analysis results

� Avoiding bloat in the trusted
computing base
� Embedded developers have a hard

time trusting even the compiler

� Avoiding long build times
� Providing good error messages



Related Work

� Phasing of optimizations inside
compilers

� Model based design of
embedded software

� MOBIES analysis interchange
format



Conclusion
� Benefits for developers:

� Keep using the standard toolchain
� Write straightforward code
� Fewer fragile manual specializations

� Explicit support for meeting design
goals in the presence of tradeoffs
� Policies externalized

� Benefit for researchers:
� Lots of cool tools out there – let’s make

them play together



More info here:
http://www.cs.utah.edu/~regehr/


