
In Proceedings of the International Workshop on Multimedia Middleware
(M3W ’01), pages 23–27, Ottawa, Canada, October 2001. c© ACM 2001.

The Case for Using Middleware to Manage
Diverse Soft Real-Time Schedulers

John Regehr Jay Lepreau
School of Computing, University of Utah
50 S. Central Campus Drive, Room 3190

Salt Lake City, UT 84112–9205, USA
{regehr, lepreau}@cs.utah.edu

ABSTRACT
Although a number of general-purpose operating systems
have been extended with soft real-time schedulers and have
the potential to support coexisting, independently devel-
oped real-time applications, this potential is currently largely
unexploited by common applications. This is because the
provided scheduling functionality is low-level and depends
on parameters that are difficult to estimate, and because dif-
ferent semantics are provided by different schedulers. The
cost/benefit ratio of real-time support in general-purpose
operating systems is too high for most users and application
developers to tolerate.

The contribution of this paper is the design of the CPU Re-
source Manager (CRM): a middleware application that man-
ages processor allocation in a QoS-enabled general-purpose
operating system by (1) providing a level of indirection be-
tween applications and the scheduling subsystem, (2) auto-
matically calculating scheduling parameters when applica-
ble, and (3) providing an environment supporting the execu-
tion of user-specified rules about the allocation of processor
time. The focus of this work is not to increase the benefit
provided by real-time schedulers, but rather to decrease the
cost of using them.

Keywords
Middleware, multimedia, open systems, resource manage-
ment, scheduler composition, scheduler parameter estima-
tion, soft real-time.

1. INTRODUCTION
Scheduling subsystems that have been added to general-
purpose operating systems are more than adequate to meet
the fairly modest predictability requirements of coexisting,
independently developed soft real-time applications. For
example, Eclipse [2] extends FreeBSD, Rialto/NT [6] and
HLS [10] extend Windows 2000, and there are at least five

publicly available systems providing soft real-time schedul-
ing in Linux [4, 9, 14, 17, 18].

There are several obstacles to widespread use of these sys-
tems. First, application developers are unlikely to support
scheduling abstractions that (at first) are present on only
a small number of machines. Second, these different sched-
ulers provide different scheduling abstractions, making it dif-
ficult to match these abstractions with application require-
ments. Third, real-time schedulers require parameters such
as share or worst-case execution time that are effectively im-
possible to determine in advance and may even be difficult
to accurately estimate at run time.

This paper outlines the design of the CPU Resource Man-
ager (CRM), which represents a step towards surmounting
these obstacles. We plan to implement CRM in Linux be-
cause it has a wide variety of readily available real-time sup-
port, and to eventually port it to other operating systems.
Our thesis is that the common functionality between exist-
ing soft real-time scheduling abstractions can be exploited
by QoS-aware middleware to hide the semantic differences
between scheduling abstractions. This makes the choice of
underlying scheduling abstraction irrelevant to users and ap-
plications as long as basic services such as load isolation
and bounded-latency scheduling are provided. In addition,
a middleware QoS manager provides a convenient mecha-
nism for implementing user-specified rules about processor
allocation, estimating the scheduling parameters of appli-
cations and automatically applying them when applications
are started, and storing these parameters and other infor-
mation such as user-specified application importances. The
goal of this work is to unobtrusively allow application devel-
opers and end-users to benefit from QoS-enabled operating
systems.

In the next section we give an overview of CRM. Sections 3–
5 describe our approach to dealing with the specific research
challenges that must be solved in order to implement this
software. In Section 6 we compare our approach to the re-
lated work and we conclude in Section 7.

2. CRM GOALS AND DESIGN
In previous work [11] we identified the application program-
ming model as a key issue in the design of operating sys-
tem support for soft real-time applications. We identified

1

/proc, ptrace, etc.

preferences

application and
system status

user and
application
information

application and
system status
information

privileged scheduler
control interface

CRM user
interfacedatabase

implicit request
for service

CRM library

CRM−enabled
real−time
application

legacy
real−time
application

request
for
service

RT scheduling
subsystem

User−Mode

End−User Applications

Middleware timing information

Kernel

− rule execution
− guarantee conversion
− parameter estimation
− assignment of guarantees
 to applications

CRM daemon process user

Figure 1: Structure of CRM and relationships with other system components

a maxim that states that application developers will ignore
system support for real-time if it increases the difficulty of
their tasks too much. Rather, they will assume away the
problem of scheduling contention, forcing their users to make
this assumption true by not running several real-time appli-
cations concurrently.

A resource manager for CPU time must be unobtrusive: its
default mode of operation should be to add value behind the
scenes by estimating application scheduling requirements
and automatically applying them to applications as they
are started. During overload, the resource manager should
have a sensible default behavior such as reducing the CPU
time available to some applications, as opposed to applying
admission control and refusing to run a new application. Al-
though it will avoid the frustrating and confusing (to users)
behavior of refusing to start running a new application, this
heuristic will sometimes cause the performance of running
applications to be degraded. However, it can be refined by
presenting the user with a simple graphical interface that
permits selected applications to be identified as important,
making them exempt from being “squeezed” in the future.
Or, more likely, the resource manager would be distributed
with a default list of applications such as CD burners and
audio players that are known to provide little value when
given less than their full CPU requirement.

The structure of our CPU Resource Manager, CRM, is shown
in Figure 1. Although CRM will be structured as a suite
of tools and libraries, its main component is a user-level
daemon that executes user-specified rules about processor
allocation, performs conversions between different kinds of
guarantees, estimates the parameters for scheduling guar-
antees that should be provided to applications, and assigns
appropriate scheduling behavior to applications. The CRM

daemon interacts with a database that manages a persis-
tent store of application and user information, a graphical
user interface, kernel scheduling and application monitoring
subsystems, and library code that can be linked into applica-
tions to provide them with instrumentation and fine-grained
control over scheduling behavior.

The performance overhead of CRM will be low because it
is only active when an application starts, terminates, or has
a change of requirements. In other words, CRM controls
medium- and long-term CPU allocation, leaving fine-grained
scheduling decisions to the operating system thread sched-
uler.

The next three sections describe the techniques that we be-
lieve will make CRM possible.

3. CONVERTING BETWEEN SOFT REAL-
TIME GUARANTEES

This section provides technical background for the conver-
sion between types of real-time scheduling. In previous
work [10] (some of which is currently in submission [12])
we developed these conversions to make it possible to rea-
son about the properties provided by CPU schedulers that
are composed in a hierarchy.

The function of a real-time scheduler can be viewed as pro-
viding guarantees to applications about the distribution of
CPU time that they will receive. For example, a scheduler
that provides CPU reservations might guarantee an applica-
tion to receive 5 ms of CPU time during any 33 ms time in-
terval for as long as the guarantee remains in effect. Since all
real-time guarantees bound CPU allocation during a period
of time, it is sometimes possible to convert between these

2

guarantees. In this paper we are concerned only with sched-
ulers that, unlike fixed-priority and time-sharing schedulers,
enforce limits on application CPU usage. We now briefly
characterize several guarantees provided by soft real-time
schedulers that have been described in the literature.

CPU Reservations have a period and an amount (with the
application being guaranteed to receive the amount of CPU
time during each period of time). CPU reservations may
be characterized as basic or continuous and as hard or soft.
These properties are orthogonal. The hard versus soft dis-
tinction (terminology that we borrow from Oikawa and Ra-
jkumar [9]) does not reflect a difference between hard and
soft real-time, but rather the fact that hard CPU reserva-
tions guarantee upper and lower bounds on the allocation
of CPU time while soft reservations guarantee only a lower
bound. Therefore, hard reservations are useful for limiting
the rate at which applications run while soft reservations
are useful for applications that require a minimum amount
of CPU time to operate correctly but can take advantage of
extra time to provide added value.

Continuous CPU reservations guarantee that a thread will
receive a certain amount of CPU time during any time inter-
val of a certain size, while basic reservations guarantee that a
thread will receive an amount of processor time during time
intervals of application-specified duration, with the interval
boundaries chosen by the scheduler. The distinction can be
understood by observing that basic reservation schedulers
have the freedom to rearrange CPU time within a period
(for example, scheduling an application at the beginning of
one period and the end of the next), while continuous reser-
vation schedulers do not have this freedom. The portable
Resource Kernel [9] provides hard and soft basic CPU reser-
vations. Rialto [7] and Rialto/NT [6] provide soft, continu-
ous reservations.

Proportional Share schedulers guarantee an application with
s shares to receive s/t of the CPU where t is the total num-
ber of shares over all applications. However, all propor-
tional share schedulers are quantum-based and introduce
error with respect to this ideal model of CPU allocation.
Some of these schedulers do not bound allocation error and
are not real-time schedulers. A guarantee provided by a
scheduler that bounds allocation error is characterized by
a parameter δ that indicates the largest possible difference
between the actual amount of CPU time that a thread may
receive during an arbitrary time interval and the thread’s
ideal share of the CPU during the same interval. For ex-
ample, the EEVDF scheduler [16] bounds allocation error
to the size of a single scheduling quantum, while the error
for start-time fair queuing [17] is a function of a thread’s
share, the quantum size, and the number of threads being
scheduled.

Soft real-time guarantees can be converted into other guar-
antees. This means that scheduling behavior that meets the
criteria for one kind of guarantee also provably meets the
criteria for being another kind of guarantee. Some conver-
sions that we have shown to be correct [10, Ch. 5] are listed
below.

• A hard or soft basic CPU reservation with amount

with unbounded error

reservation

continuous,
hard res.

proportional share
with bounded error

basic, soft
reservation

continuous,
soft res.

proportional share

basic, hard

Figure 2: Permissible conversions between soft real-
time scheduling guarantees

x and period y may be converted, for any c, into a
soft, continuous reservation with amount x and period
(2y − x + c).

• A continuous CPU reservation may be converted into
a basic CPU reservation with the same amount and
period. The basic reservation will be hard if the con-
tinuous reservation was hard and will be soft otherwise.

• A hard or soft continuous CPU reservation with amount
x and period y may be converted into a proportional
share guarantee that has share x/y and error bound
(x/y)(y − x).

• A hard or soft basic CPU reservation with amount x
and period y may be converted into a proportional
share guarantee that has share x/y and error bound
2(x/y)(y − x).

• A proportional share guarantee with share s and error
δ may be converted, for any y ≥ δ/s, into a basic or
continuous soft CPU reservation with amount (ys− δ)
and period y. (This conversion was first presented by
Stoica et al. [15].)

These conversions, depicted in Figure 2, give CRM the abil-
ity to provide diverse guarantee semantics given any one
of basic CPU reservations, continuous CPU reservations, or
proportional share scheduling with bounded error. However,
when scheduling real applications, the number of conversions
should be minimized. There is a genuine semantic mismatch
between the different kinds of guarantees and conversions
can therefore result in wasted CPU time.

4. ENFORCING USER-SPECIFIED RULES
CRM will provide users and user-specified rules with an or-
ganized collection of hooks and reflective information about
the system that they can use to make decisions about the
allocation of processor time. The following entities exist
within our CRM design:

• Resource principals represent entities whose aggre-
gate resource usage is to be controlled: for example,
users, administrative domains, or accounting domains.
Resource principals are lightweight: they are not hier-
archical and every application in a system belongs to
exactly one principal.

• Guarantees are held by each application thread in
the system. Each guarantee is owned by a single re-
source principal.

3

• Requests for guarantees are made by applications.
Requests have first-class status within CRM since re-
quests that are not immediately granted may remain
pending until resources become available.

• Processor allocation rules are either system-wide
or are owned by a particular resource principal. They
determine how CPU time allocated to a principal is to
be sub-allocated.

• Events cause rules to be evaluated. Events are named.
Rules may be configured to run when certain events
are signaled, and may signal additional events. Some
events are built-in; for example, the new request rule
is signaled whenever an application requests real-time
service or when CRM determines that such service
should be requested for the application.

Rules are used to enforce high-level policies about the allo-
cation of CPU time; for example, to enforce fairness between
users on a multi-user machine, to run the set of applications
that is the most important to a user, to run the feasible set
of applications that maximizes total importance, or to se-
lect an appropriate mode for an adaptive application. Still
to be addressed are the issues of ensuring that rules execute
in an order that makes sense, and otherwise detecting or
preventing unintentional interference between rules.

5. OTHER FUNCTIONALITY
CRM includes the following additional functionality.

Gathering application timing information. Although
the period of a real-time application depends only on the
structure of the application, the required amount of CPU
time depends on many factors: the speed and model of the
CPU, the particular data being processed, and characteris-
tics of the operating system and device drivers. For example,
a game may require far less CPU time when it has the use
of a powerful 3D accelerator than when the graphics sub-
system must perform rendering in software. In most cases
it is impossible to predict, a priori, the CPU requirements
of a given application. Rather, they must be measured on a
particular system.

Our planned strategy for performing this measurement is
to run each newly installed application in isolation and to
measure the amount of CPU time that it requires. There
are a variety of techniques that can be used to do this even
when no direct instrumentation has been added to the OS:
e.g. timed waits (used by applications to implement periodic
tasks) can be monitored using standard debugging hooks.
Debugging hooks can also be used to determine the prior-
ity and starting address of each application thread. The
start address can be used to distinguish between threads
during later program invocations, and the priority can be
interpreted as a hint about relative application importance.
Finally, CRM can run an instrumented thread at low prior-
ity to determine an application’s overall CPU requirements
by measuring the amount of slack time in the schedule.

Once the CPU requirements for an application have been
determined, its scheduling parameters can be estimated by

mapping the requirements to one of the scheduling abstrac-
tions that we described in Section 3. One possible heuristic
for doing this would be to assign a basic, soft CPU reser-
vation to an application where the period is equal to the
observed application period, and an amount equal to the
observed amount of CPU time per period plus a small fudge
factor.

Interacting with the user. Although we believe that end-
users should have as little to do with the resource manager
as possible, some interaction will be necessary. Such inter-
action could take place through very simple interfaces. For
example, a pie chart could be used to describe the resource
usage of the set of running applications to the user, and
a mouse click on a poorly performing application could be
used to notify CRM that the user wishes the application’s
performance to be improved.

Storing timing information and user preferences.
CRM will interact with one of the many free, lightweight
database packages to store information about application
requirements and user preferences.

Interacting with the scheduling subsystem. We will
provide a back-end (implemented as a dynamically linked li-
brary) for CRM for each scheduler that it supports. Initially,
we plan to support some or all of the following QoS-enhanced
versions of Linux: Linux/RK [9] and Linux-SRT [4], which
both provide hard and soft basic CPU reservations; RED-
Linux [18], which has a flexible scheduling subsystem and
could be programmed to provide any kind of CPU reserva-
tion; and QLinux [17], which provides hierarchical propor-
tional share scheduling with bounded error.

6. RELATED WORK
Previous middleware resource managers such as the QoS
Broker [8], the Dynamic QoS Resource Manager [1], and the
modular resource manager for Rialto [5] have tended to fo-
cus on adaptive applications and resource management in a
distributed system. Unlike these systems, CRM is designed
to be portable between OSs that provide different schedul-
ing abstractions, and takes the viewpoint that few desktop
applications are capable of automatic adaptation.

RT-CORBA 1.0 [13] assumes that systems it runs on pro-
vide fixed-priority scheduling, and it provides a consistent
view of priorities across a distributed heterogeneous sys-
tem. Recent RT-CORBA work [3] is more ambitious with
respect to scheduler diversity and has the goal of ensuring se-
mantic correctness of distributed real-time applications even
when different nodes in a network run completely different
scheduling algorithms.

Although there is overlap between RT-CORBA and CRM,
the goals of the two systems are somewhat different. RT-
CORBA is designed to support real-time computation on
heterogeneous distributed systems, whereas CRM is designed
to enable a graceful transition from traditional closed-system
scheduling techniques to those that provide meaningful guar-
antees to applications in an open system.

7. CONCLUSIONS AND FUTURE WORK

4

In this paper we have described the design of CRM: a mid-
dleware application that manages the allocation of CPU
time in soft real-time operating systems. It will have the
ability to convert between different soft real-time schedul-
ing abstractions and can also enforce user-specified rules
about the allocation of processor time. Furthermore, CRM
will interact with the user and have the ability to determine
and store application requirements, and to store information
about user preferences.

Once we have implemented a basic version of CRM, there
will be many avenues for future work. First, we could port it
to other QoS-enabled operating systems. Second, we would
like to integrate CRM with existing middleware such as the
X Window System, the GNOME and KDE desktop envi-
ronments, and real-time CORBA systems. Third, modules
for gathering feedback from applications about performance
metrics such as frame rate, missed deadlines, number of page
faults, and the status of queues and buffers should be added
to CRM. Fourth, CRM could be extended to support the
scheduling of other resources such as memory, disk band-
width, and network bandwidth. And finally, although we
argued in [10] that the scheduler conversion rules in Sec-
tion 3 are correct, we plan to develop a formal type system
for describing real-time schedules and converting between
them.

8. ACKNOWLEDGMENTS
The authors would like to thank Eric Eide and Alastair Reid
for their helpful feedback on a draft of this paper.

9. REFERENCES
[1] S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A

dynamic quality of service middleware agent for
mediating application resource usage. In Proc. of the
19th IEEE Real-Time Systems Symposium, pages
307–317, Madrid, Spain, Dec. 1998.

[2] J. Bruno, J. Brustoloni, E. Gabber, B. Özden, and
A. Silberschatz. Retrofitting quality of service into a
time-sharing operating system. In Proc. of the
USENIX Annual Technical Conf., Monterey,
California, June 1999.

[3] A. Corsaro, D. C. Schmidt, C. Gill, and R. Cytron.
Formalizing meta-programming techniques to
reconcile heterogeneous scheduling policies in open
distributed real-time systems. In Proc. of the 3rd
International Symposium on Distributed Objects and
Applications, Rome, Italy, Sept. 2001.

[4] D. Ingram. Integrated Quality of Service Management.
PhD thesis, University of Cambridge, Aug. 2000.

[5] M. B. Jones, P. J. Leach, R. P. Draves, and J. S.
Barrera, III. Modular real-time resource management
in the Rialto operating system. In Proc. of the 5th
Workshop on Hot Topics in Operating Systems, May
1995.

[6] M. B. Jones and J. Regehr. CPU Reservations and
Time Constraints: Implementation experience on
Windows NT. In Proc. of the 3rd USENIX Windows
NT Symposium, pages 93–102, Seattle, WA, July 1999.

[7] M. B. Jones, D. Roşu, and M.-C. Roşu. CPU
Reservations and Time Constraints: Efficient,
predictable scheduling of independent activities. In
Proc. of the 16th ACM Symposium on Operating
Systems Principles, pages 198–211, Saint-Malô,
France, Oct. 1997.

[8] K. Nahrstedt and J. Smith. The QoS broker. IEEE
MultiMedia, 2(1):53–67, Spring 1995.

[9] S. Oikawa and R. Rajkumar. Portable RK: A portable
resource kernel for guaranteed and enforced timing
behavior. In Proc. of the 5th IEEE Real-Time
Technology and Applications Symposium, pages
111–120, Vancouver, Canada, June 1999.

[10] J. Regehr. Using Hierarchical Scheduling to Support
Soft Real-Time Applications on General-Purpose
Operating Systems. PhD thesis, University of Virginia,
May 2001.

[11] J. Regehr, M. B. Jones, and J. A. Stankovic.
Operating system support for multimedia: The
programming model matters. Technical Report
MSR-TR-2000-89, Microsoft Research, Sept. 2000.

[12] J. Regehr and J. A. Stankovic. HLS: A framework for
composing soft real-time schedulers. In Proc. of the
22nd IEEE Real-Time Systems Symposium (RTSS
2001), London, UK, Dec. 2001.

[13] D. C. Schmidt and F. Kuhns. An overview of the
real-time CORBA specification. IEEE Computer,
33(6), June 2000.

[14] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and
D. Niehaus. A firm real-time system implementation
using commercial off-the-shelf hardware and free
software. In Proc. of the 4th IEEE Real-Time
Technology and Applications Symposium, Denver, CO,
June 1998.

[15] I. Stoica, H. Abdel-Wahab, and K. Jeffay. On the
duality between resource reservation and proportional
share resource allocation. In Proc. of Multimedia
Computing and Networking 1997, pages 207–214, San
Jose, CA, Feb. 1997.

[16] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah,
J. E. Gehrke, and C. G. Plaxton. A proportional share
resource allocation algorithm for real-time,
time-shared systems. In Proc. of the 17th IEEE
Real-Time Systems Symposium, pages 288–299,
Washington DC, Dec. 1996.

[17] V. Sundaram, A. Chandra, P. Goyal, P. Shenoy,
J. Sahni, and H. Vin. Application performance in the
QLinux multimedia operating system. In Proc. of the
8th ACM Conf. on Multimedia, Nov. 2000.

[18] Y.-C. Wang and K.-J. Lin. Implementing a general
real-time scheduling framework in the RED-Linux
real-time kernel. In Proc. of the 20th IEEE Real-Time
Systems Symposium, pages 246–255, Phoenix, AZ,
Dec. 1999.

5

