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Network experimentation of many types require the
ability to map virtual resources requested by an exper-
imenter onto available physical resources. These re-
sources include hosts, switches, and the links that con-
nect them. Experimenter requests, such as nodes with
special hardware or software, must be satisfied, and
bottleneck links and other scarce resources in the phys-
ical topology must be conserved. In the face of these
constraints, this mapping becomes an NP-hard prob-
lem. Yet, in order to prevent mapping time from be-
coming a serious hinderance to such experimentation,
this process cannot consume an excessive amount of
time.

In this paper, we explore this problem, which we call
the network testbed mapping problem. We describe
the interesting challenges that characterize this prob-
lem, and explore its application to other spaces, such
as distributed simulation. We present the design, im-
plementation, and evaluation of a solver for this prob-
lem, which is currently in use on the Netbed network
testbed. It builds on simulated annealing to find very
good solutions in a few seconds for our historical work-
load, and scales gracefully on large well-connected
synthetic topologies.

1 Introduction
Network experimentation on real hardware requires a
mapping from the virtual resources an experimenter re-
quests to available physical resources. This problem
arises in a wide range of experimental environments,
from network emulation to distributed simulation. This
mapping, however, is difficult, as it must take into ac-
count scarce physical resources such as bandwidth over
network bottlenecks. Poor mapping can degrade per-
formance or introduce artifacts into an experiment. We
call this problem the “network testbed mapping prob-
lem.”

In formulating and solving this problem, we aim to:

� Make the problem specification broad enough to
�
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be applicable to a wide range of network experi-
mentation environments;

� Develop abstractions that through their descrip-
tion of virtual and physical resources yield power
and flexibility; and

� Produce a solver that is able to find near-optimal
solutions in a modest amount of time.

In pursuit of these goals, this paper makes the fol-
lowing contributions:

� It defines the network testbed mapping problem,
and examines the challenges that make it interest-
ing.

� It describes our solver for this problem.

� It presents lessons from our solver’s implemen-
tation and its use on Emulab [19], a production
network testbed.

� It identifies open issues for future work.

In Section 2 we present the domain of the network
testbed mapping problem by describing the environ-
ments in which it arises, and why good mapping is
important for each. In Section 3, we discuss the chal-
lenges at the core of the network testbed mapping prob-
lem, and present abstractions which can be generalized
across our target environments. Next, Section 4 cov-
ers the design and implementation of our solver for this
problem, called assign, and the lessons we learned
in this process. Section 5 presents an evaluation of its
performance. Finally, Section 6 covers related work,
Section 7 discusses directions for future work, and Sec-
tion 8 concludes.

2 Environment and Motivation
In this section, we describe some of the environments
to which the network testbed mapping problem is rel-
evant, and identify the characteristics of these environ-
ments that make good mapping necessary, but difficult.



2.1 Netbed and Emulab
Netbed [19] is a shared public facility for research and
education in networking and distributed systems. Ver-
sions of it have been in use since April 2000. One of
its goals is to transparently integrate a variety of dif-
ferent experimental environments. Currently, Netbed
supports three such environments: emulation, simula-
tion, and live-Internet experimentation. Netbed is de-
scended from, and incorporates, Emulab, a time- and
space-shared “cluster testbed” whose main goals are
to provide artifact-free network emulation for arbitrary
experiments, while making that as easy and quick as
simulation. Emulab manages a cluster of commodity
PC “nodes” with configurable network interconnectiv-
ity. The facility is space-shared in the sense that it can
be arbitrarily partitioned for use by multiple experi-
menters simultaneously. Some resources in the system,
such as nodes, can only be used in one experiment at a
time, although an experiment can be “swapped out” to
free resources while it is idle. In that sense, Emulab is
also time-shared.

To run an experiment on Emulab, an experimenter
submits a network topology, which is mapped onto
available physical resources. This virtual topology can
include links and LANs, with associated characteristics
such as bandwidth, latency, and packet loss. Limiting
and shaping the traffic on a link, if requested, is done
by interposing “delay nodes” between the endpoints of
the link. Specifications for hardware and software re-
sources can also be included for nodes in the virtual
topology.

Once it receives this specification, Emulab must se-
lect the hardware that will be used to create the em-
ulation. Since Emulab is space-shared, hardware re-
sources are constantly changing; only those resources
that have not already been allocated are available for
use. Currently, the Emulab portion of Netbed con-
tains 168 PCs connected, via four interfaces each, to
three switches. In general, large scale emulators re-
quire multiple switches, because the number of ports
an each switch is limited. Our switches are connected
via inter-switch links; at the present time, these links
are 2Gbps. Since multiple experimenters or very large
experiments may be using these links, they become a
bottleneck, and overcommitting them could lead to ar-
tifacts in experimental results. Emulab aims to create
an environment suitable for running real applications
without introducing artifacts due to its space-shared na-
ture. Thus, conservative resource allocation is a guid-
ing principle.

The mapping algorithm has a number of simultane-
ous goals. First, it must economize inter-switch band-
width by minimizing the total bandwidth of virtual
links mapped across physical inter-switch links. Sec-

ond, since not all nodes are identical, the mapping al-
gorithm must take into account the experimenter’s re-
quirements regarding the nodes they are assigned. Fur-
thermore, the mapping must be done in such a way as
to maximize the possibility for future mappings; this
means not using scarce resources, such as special hard-
ware, that have not been requested by the experimenter.
Finally, this mapping must be done quickly. Current
experiment creation times in Emulab range from three
minutes for a single-node topology, to six and a half
minutes for an 80-node topology, though we hope to
decrease this time dramatically in the future. Our goal
is to keep the time used by the mapping process much
lower than experiment creation time, so that it does not
hamper interactive use.

2.2 Simulation: Integrated and Distributed
Netbed integrates simulation with the emulation sys-
tem described above. It uses nse [5] to allow the pop-
ular ns [14] network simulator to generate and interact
with live traffic. This also allows packets to cross be-
tween machines to effect transparent distributed simu-
lation. When simulated traffic interacts with real traf-
fic, however, it must keep up with real time. For large
simulations, this makes it necessary to distribute the
simulation across many nodes. In order to do this effec-
tively, the mapping must avoid overloading any node
in the system, and must minimize the links in the sim-
ulated topology that cross real physical links.

“Pure” distributed simulation also requires similar
mapping. In this case, rather than keeping up with
real time, the goal is to speed up long-running simu-
lations by distributing the computation across multiple
machines [4]. However, communication between the
machines can become a bottleneck, so a “good” map-
ping of simulated nodes onto physical nodes is impor-
tant to overall performance. PDNS [13], a parallelized
and distributed version of ns, is an example of such a
distributed simulator. However, except for certain re-
stricted tree topologies, PDNS requires manual parti-
tioning onto physical machines.

2.3 ModelNet
Mapping issues also arise in ModelNet [15], a large-
scale network emulator which aims at accurate emu-
lation of the Internet core through simulating a large
number of router queues on a small number of physical
machines. Thus, virtual router queues must be mapped
onto physical emulation nodes, known as “core” nodes.
In order to minimize artifacts in the emulation, Mod-
elNet’s mapping phase, known as “assignment,” must
ensure that not too many queues are simulated on a sin-
gle core node, and that the links passing between core
nodes are minimized.
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Some aspects of ModelNet mapping are different
from those outlined above for Emulab. A major dif-
ference is that ModelNet does not do conservative re-
source allocation. To reach its goal of supporting large
emulated topologies, ModelNet takes advantage of the
fact that not all links will be used to capacity, and al-
lows them to be over-allocated. The goal of ModelNet
mapping, then, is minimization of the potential for ar-
tifacts, rather than constraint satisfaction. Artifacts in-
troduced by over-taxed CPUs or over-used links can be
detected by ModelNet, and the emulation topology can
be modified to reduce these artifacts in exchange for
less accurate emulation of the core.

ModelNet, as currently designed, is not space-
shared, meaning that all available resources are used
for a single experiment. Their goal is to load-balance
among these resources, rather than use the least num-
ber. ModelNet also has some constraints in accept-
able solutions, introduced by IP routing semantics, that
must be taken account when mapping.

We plan to integrate ModelNet into Netbed as an-
other emulation mechanism; for this to be seamless,
mapping will have to take into account both environ-
ments’ goals and virtual resources.

2.4 Similarities
Emulab was the first environment that presented us
with the testbed mapping problem. Over several years
we developed and improved our solver, targeted exclu-
sively at the Emulab domain. More recently we in-
tegrated other network experimentation mechanisms—
geographically distributed nodes, simulated nodes, and
soon ModelNet—to form the general Netbed platform.
We immediately faced the mapping issue in each of
them.

In the wide-area case we chose to develop a separate
genetic algorithm-based solver [19], outlined in Sec-
tion 7. This was partly due to the degree to which the
wide-area problem differed from the Emulab problem,
and partly due to the exigencies of software develop-
ment.

However, the simulated and ModelNet environments
are more similar in their mapping needs to Emulab. For
example, minimizing inter-switch bandwidth in Emu-
lab is similar to minimizing communication between
simulator nodes in distributed simulation, and to min-
imizing communication between cores in ModelNet.
All three environments share a need for mapping that
completes quickly. In Emulab and ModelNet, lengthy
mapping times discourage experimenters from trying
experiments on a variety of configurations, nullifying
one of the major strengths of these platforms. In dis-
tributed simulation, little benefit is gained from distri-
bution of work if the mapping time is a significant frac-

tion of the simulation runtime.
Therefore, we recently extended our solver to han-

dle simulation and ModelNet. The algorithms and pro-
gram proved general enough that the extension was not
difficult. As reported later in this paper, our initial ex-
perience with simulation and ModelNet is promising,
although not yet tuned to the degree we have achieved
for Emulab. It appears that more environments could
be accomodated. Indeed, as outlined in Section 7, with
modest work our general solver might handle the wide-
area case, should that be desirable.

3 Mapping Challenges
In the context of the environments outlined in the
last section, the network testbed mapping problem be-
comes the following:

� As input, take a virtual topology and a description
of physical resources.

� Map the virtual nodes to physical nodes, ensuring
that the hardware needs of the virtual nodes are
met.

� Map virtual links to physical links, minimizing
the use of bottleneck links in the physical topol-
ogy.

� In shared environments, maximize the chance of
future mappings by avoiding the use of scarce re-
sources when possible.

Flexibility in specifying these resources is essential,
both for describing available physical resources and re-
questing desired virtual topologies.

In this section, we describe the interesting map-
ping challenges in more detail. While doing so, we
also discuss the abstractions we have designed into our
solver, assign, to deal with them, and the ways in
which they relate to Emulab and our other target en-
vironments. These challenges can be divided into two
classes: link mapping and node mapping. We begin by
describing link mapping, which is applicable across all
three target environments. We then address interesting
aspects of node mapping, which are of greater specific
interest when mapping for Emulab.

3.1 Network Links
At the core of the network testbed mapping problem is
the task of mapping nodes in such a way that a mini-
mal amount of traffic passes through bottleneck links.
This problem, however, is NP-hard, by reduction to the
multiway separator problem [2].

Figure 1 shows a trivial example of this problem.
The virtual topology on the left is to be mapped onto
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Figure 1: A trivial six-node mapping problem

the physical topology shown to its right. The band-
widths of all virtual and physical links in this exam-
ple are 100Mbps. To avoid over-burdening the link
between the two switches, the sets of nodes

�
A,B,C �

and
�
D,E,F � should be assigned to physical nodes that

are connected to the same switch. This way, the only
virtual link that crosses between switches is the one be-
tween C and E.

In the virtual topology, assign accepts two types
of network connections: links and LANs. A link is
simply a point-to-point connection between two virtual
nodes, and includes information such as the bandwidth
that it requires. A LAN is specified by creating a vir-
tual “LAN node” in the topology, and connecting all
members of the LAN to the LAN node using standard
links.

At present, assign recognizes four different types
of physical links onto which these virtual links can be
mapped. Direct links connect two nodes, without an
intermediary switch. Intra-switch links are those that
can be satisfied on a single switch. Inter-switch links
must cross between switches. Intra-node links con-
nect nodes run on the same hardware; these links do
not need to traverse any network hardware at all, and
are used to represent flows in distributed simulation or
ModelNet that remain on one machine.

When mapping topologies to physical resources, the
key limitation is that switch nodes are of finite degree;
only a finite number of physical nodes can be attached
to a given switch. Neighboring virtual nodes that are
attached to the same switch can connect via intra-
switch links which traverse only that switch’s back-
plane. (This backplane, by design in Emulab, has suf-
ficient bandwidth to handle all nodes connected to it,
and can thus be considered to have infinite resources.)

To allow topologies that cannot be fulfilled using
the nodes of a single switch, Emulab employs several
switches, connected together by high-bandwidth links.
These “inter-switch links,” however, do not have suf-
ficient bandwidth to carry all traffic that could be put
on them by an inefficient mapping. A goal, then, is to
minimize the amount of traffic sent across inter-switch
links, and use intra-switch links instead, wherever pos-
sible. As Emulab is a space-shared facility it is impor-
tant that inter-switch traffic be minimized, rather than

node node1 pc
node node2 pc850
node delay1 delay
node delay2 delay

Figure 2: Samples nodes in a virtual topology

node pc1 pc:1 pc850:1 delay:2
node pc2 pc:1 pc850:1 delay:2
node pc3 pc:1 pc600:1 delay:2
node pc4 pc:1 pc600:1 delay:2

Figure 3: Sample nodes in a physical topology

simply not oversubscribed. By minimizing such traffic,
maximum capacity for future experiments is preserved.

This problem of minimizing inter-switch connec-
tions is similar to sparse cuts in multicommodity flow
graph problems—the goal is to separate the graph of
the virtual topology into disjoint sets by cutting the
minimum number of edges in the graph.

3.2 Node Types
A facility like Emulab will generally have distinct sets
of nodes with identical hardware. Emulab, for exam-
ple, has 40 600-MHz PCs, and 128 850-MHz PCs. Fa-
cilities like this will tend to grow incrementally as de-
mand increases, and, to achieve the greatest possible
number of nodes, old nodes will continue to be used
alongside newly-added hardware. As network testbeds
become larger, their hardware will therefore tend to be-
come more heterogeneous. With varying node hard-
ware, it becomes important for experimenters to be
able to request specific types, for example, if they have
run experiments on a specific type in the past, and need
consistent hardware to ensure consistent results. Of
course, experimenters who do not have such require-
ments should not be burdened with this specification.

In order to meet this challenge, we have designed
a simple type system for assign. Each node in the
virtual topology is given a type, and each node in the
physical topology is given a list of types that it is able to
satisfy. The fact that a physical node can satisfy more
than one type allows for differing levels of detail in
specification, as we will see below. In addition, each
type on a physical node is associated with a number
indicating how many nodes of that type it can accom-
modate. This enables multiple virtual nodes to share a
physical node, as required for distributed simulation,
or ModelNet. One restriction is invariant, however: all
virtual nodes mapped to the same physical node must
be of the same type.

To illustrate the type system, consider the fragments
of a virtual topology in Figure 2 and a physical topol-
ogy in Figure 3. These samples are typical of nodes
that are found in Emulab. In this example, virtual
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node node1 can be mapped to any physical node, as
all physical nodes are allowed to satisfy a single pc
node. node2, on the other hand, specifically requests a
pc850, which can only be satisfied by pc1 or pc2. In
Emulab, this allows an experimenter to specify a gen-
eral class of physical node, such as pc, or request a
specific type of PC, such as pc850 or pc600.

Virtual nodes delay1 and delay2 can be placed
on the same physical node, since all nodes in the phys-
ical topology can accommodate two virtual nodes of
type delay. In Emulab, the traffic-shaping nodes,
called delay nodes, that are used to introduce latency,
packet loss, etc. into a link, can be multiplexed onto a
single physical node; this is possible since delaying a
link requires two network interfaces, and four are avail-
able on Emulab nodes.

Types themselves are opaque to assign—there are
only two types that are treated specially: switch,
which is necessary to support inter-switch links, and
lan, which will be discussed in Section 4.2. Thus,
assign is not tied to the hardware types available on
Emulab; new types can be added simply by including
them in the physical topology.

3.3 Virtual Equivalence Classes
We have found that a common pattern is for experi-
menters to care not about which node type they are
allocated, but that all nodes be of the same type. To
address this, assign allows the creation of equiva-
lence classes in the virtual topology. Virtual equiva-
lence classes ( ���

��������	
�
) increase the flexibility of the

type system, by allowing the user to specify that a set
of nodes should be all of the same type, without forcing
the user to pick a specific type ahead of time.

���
��������	
�

allow, in the virtual topology, the declara-
tion of a virtual equivalence class, along with a list of
types that can be used to fulfill the ���

������
. (The latter

could be automatically determined by Emulab.) Vir-
tual nodes are then declared to belong to the ���

������
,

rather than a specific physical type. assign will then
attempt to ensure that all nodes in the ���

�������
are as-

signed to physical nodes of the same type. Multiple
���

�������	�
can be used in a virtual topology. This is

useful in circumstances where, for example, the exper-
imenters wants a set of client machines and a set of
servers, each of which can be its own class.

���
��������	
�

can be of two types, hard or soft. Hard
���

�������	�
must be satisfied, or the mapping will fail.

Soft ���
�������	�

allow assign to break the ���
������

—
that is, use nodes of differing types—if necessary, but
homogeneity is still preserved if possible. For soft
���

�������	�
, the weight used to determine how much a so-

lution is penalized for violating the ���
������

is included
in the virtual topology specification.

3.4 Features and Desires
On a finer granularity than types, assign also sup-
ports “features” and “desires.” Features are associated
with physical nodes, and indicate special qualities of
a node, such as special hardware. Desires are associ-
ated with virtual nodes, and are requests for features.
Unfulfilled desires—that is, desires of a virtual node
that are not satisfied by the corresponding features on
the mapped physical node—are penalized in the scor-
ing function. Likewise, wasted features—features that
exist on a physical node, but were not requested by the
virtual node mapped to it—are also penalized.

The chief use of features and desires is to put a pre-
mium on scarce hardware. If some nodes have, for ex-
ample, extra RAM, extra drive space, or higher-speed
links, the penalty against using these features if they
are not requested will tend to leave them free for use
by experimenters who require them.

Other uses are possible as well. For example, fea-
tures and desires can be used to prefer nodes that al-
ready have a certain set of software loaded. In Emulab,
for example, custom operating systems can be loaded,
but features can be used to prefer nodes that already
have the correct OS loaded, saving the substantial time
it would take to load the OS. Or, if some subset of
physical resources have been marked as only usable by
a certain experimenter (for example, by some sort of
advance reservation system), those nodes can be pre-
ferred.

Specifying features and desires is easy. Since they
are represented as arbitrary strings in the input files,
like types, they are not restricted to the Emulab envi-
ronment. Penalties for wasted features can also be in-
tuitively derived. In general, it is sufficient to choose
a penalty based on a feature’s relative importance to
other resources—for example, one may choose to pe-
nalize waste of a gigabit interface more than using an
extra link (thus preferring to use another link rather
than waste the feature), but lower than the cost of using
an extra node (thus preferring to waste a gigabit inter-
face before choosing to use another node). Weights
can be made infinite, to indicate that a solution failing
to satisfy a desire, or wasting a feature, should not be
considered a feasible mapping.

3.5 Partial Solutions
Also useful is the ability to take partial solutions and
complete them. These partial solutions can come from
the user or from a previous run of the mapping pro-
cess. In the virtual topology, assign can be given a
fixed mapping of a virtual node onto a physical node.
This mapping is made at the start of a run, and is not
changed during the algorithm. The biggest benefits
from this feature are the ability to use assign for in-
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cremental topology enlargement and for replacement
of nodes in existing topologies.

When using a large amount of commodity hardware,
failures are not uncommon. When such a failure occurs
during a running experiment, the instantiated topology
can be repaired by replacing the failed node or nodes.
The topology can be run through the mapping algo-
rithm again, with nodes that do not need to be replaced
fixed to their existing mapping. This will allow the
mapping algorithm to select good replacements for the
failed nodes.

To add or remove nodes from a topology that has
already been mapped, a similar strategy can be em-
ployed. In this case, parts of the topology that have not
changed are fixed onto their currently mapped nodes,
and new nodes are chosen by the algorithm that fit as
well as possible into the existing mapping.

4 Design, Implementation, and Lessons
Our implementation of a solver for the testbed mapping
problem, assign, is written in 4,800 lines of C++
code. It uses the Boost Graph Library [3] for efficient
graph data structures, and for generic graph algorithms
such as Dijkstra’s shortest path algorithm.

Use of a randomized heuristic algorithm helps fulfill
the design goals of creating a mapper that is able to find
near-optimal solutions in a modest amount of time. For
assign, we have chosen to use simulated annealing.

Simulated annealing [8] is a randomized heuristic
search technique originally developed for use in VLSI
design, and commonly used for combinatorial opti-
mization problems. It requires a cost function, for de-
termining how “good” a particular configuration is, and
a generation function, which takes a configuration and
perturbs it to create a new configuration. If this new
configuration is better than the old one, as judged by
the cost function, it is accepted. If worse, it is accepted
with some probability, controlled by a “temperature.”
This allows the search to get out of local minima in the
search space, which would not be possible if only bet-
ter solutions were accepted. The algorithm begins by
setting the temperature to a high value, so that nearly
all configurations are accepted. Over a large number
of applications of the generation function (typically, at
least in the hundreds of thousands), the temperature is
slowly lowered, controlled by a cooling schedule, until
a final configuration, the solution, is converged upon.
Clearly, this may not be the optimal solution, but the
goal of the algorithm is to arrive at a solution near the
optimal one.

In this section, we discuss how the functions key to
simulated annealing are designed and implemented in
assign. We also introduce two concepts that are key

to the design of assign: violations, which are used
to flag whether or not a configuration is acceptable or
not, and � � �������	� , which are equivalence classes used
to dramatically reduce the search space.

4.1 Initial Configuration
Typically, simulated annealing is started with a
randomly-generated configuration [8]. However, as-
sign uses a different strategy. Our concept of viola-
tions allows us to begin with an empty configuration—
one in which no virtual nodes are assigned to physi-
cal nodes. Mapping of unassigned nodes gets prior-
ity over other transitions. The algorithm must, there-
fore, spend some time arriving at a valid configuration,
but that configuration is likely to be much better than
a purely random one, since type information is taken
into account.

4.2 Cost Function
assign’s cost function must score a configuration and
return a number that indicates how “good,” in terms
of the goals laid out in Section 2, the configuration is.
To compute this score, the mappings for all nodes and
links must be considered. In assign, a lower score is
preferable.

Computing the cost for an entire configuration is
quite expensive, requiring ������� �	�

time, where � is
the number of nodes that have been mapped, and

�
is

the number of links between them. If, instead, the cost
is computed incrementally, as mappings are added and
removed, the time to score a new solution is ��� ��
�� ,
where

�

is the number of links connected to the node

being re-assigned; this is because, in addition to scor-
ing the mapping of the node itself, all links that it has to
other nodes must be scored as well. Clearly, incremen-
tal scoring provides better scaling to large topologies,
so this approach is used in assign.
assign’s scoring function is split into three parts:� � ��� �

����� 	 initializes the cost for an empty configura-
tion, and computes violations that result from not hav-
ing any nodes mapped.

����� ��� � 	 takes a configura-
tion, a physical node � , and a virtual node � . It com-
putes the changes in cost and violations that result from
mapping � to � . � 	�� �� 	 ��� ��	 performs the inverse
function, calculating the cost and violations changes
that result in unmapping a virtual node.

While incremental scoring greatly reduces the
time taken to score large topologies, it does have
a cost in the complexity of the scoring function.
In particular, care must be taken to ensure that����� ��� ��	 and � 	�� �� 	 ��� ��	 are completely symmet-
ric; � 	�� �� 	 ��� ��	 must correctly remove the cost
added by the corresponding

����� ��� ��	 . This is made
trickier by the fact that other mappings may have been
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Physical Resource Cost

Intra-node Link 0.00
Direct Link 0.01
Intra-switch Link 0.02
Inter-switch Link 0.20
Physical Node 0.20
Switch 0.50
� � ������ 0.50

Table 1: Scores used in assign

added and removed in the time between when a virtual
node was mapped and when the mapping is removed.
In general, though, we feel that the added complexity
is an acceptable tradeoff for better evaluation times for
large virtual topologies.

Link resolution, the mapping of a virtual link to a
physical link, is also done in

����� ��� ��	 —any virtual
links associated with � for which the other end of the
link has already been mapped are resolved at this point.
This means that links are not first-class objects, subject
to annealing. This limits assign’s effectiveness in
physical topologies that have multiple paths between
nodes, such as nodes that both have direct links to each
other, and inter-switch links. Our experience, however,
is that such topologies do not tend to occur in practice.
So, while assign supports these topologies, it does
not include the additional code and time complexity to
treat them as first-class entities. Instead, if both intra-
switch and inter-switch links are present between a set
of nodes, assign chooses between them randomly.

To resolve a link, assign finds all possible links
between the nodes (direct, intra-switch, and inter-
switch) and chooses one. Direct links are used first,
if they exist, followed by intra-switch and inter-switch
links. To find inter-switch paths, Dijkstra’s shortest
path algorithm is run for all switches when assign
starts. The shortest paths between all switches to which
the nodes are connected are then considered possible
candidates. If no resolution for a link can be found, a
violation is flagged.

A configuration is penalized based on the number of
nodes and links it uses. The default penalties, listed
in Table 1, can be overridden by by passing them to
assign on the command line. Intra-node links, en-
tirely contained within a single node and used in map-
ping simulations, are not penalized at all. Direct node-
to-node links, which do not go through a switch, have
only a small penalty. Slightly higher is the penalty for
intra-switch links. Inter-switch links have a cost an or-
der of magnitude higher, since they consume the main
resource we wish to conserve. A configuration is also
penalized on the number of � � �������	
� that the chosen

LAN

A B

C

D E

Figure 4: Scoring for LANs is done with a “LAN
node,” which LAN members have links to. This LAN
uses 3 intra-switch links and 2 inter-switch links.

physical nodes belong to. This encourages solutions
that use homogeneous hardware, which is a quality de-
sired by many experimenters. Penalties for unsatisfied
desires and unused features are given in the input, and
can be chosen based on their relative importance to the
resources listed above.

LANs are more computationally costly to score than
links, since links involve only two nodes, and their
scoring time is thus constant, but LANs can contain
many nodes, and their scoring time is linear in the num-
ber of nodes that are in the LAN. In assign, we rep-
resent a LAN by connecting its members to a “LAN
node,” shown in Figure 4, which is used solely for the
purpose of assessing scoring penalties. LAN nodes
only exist in the virtual topology—since they do not
correspond to a real resource, they are not included in
the input physical topology. As needed, LAN nodes are
dynamically bound to switches in the physical topol-
ogy, each is attached to the same switch as the major-
ity of its members. Thus, any LAN member that is
on another switch will be assessed an inter-switch link
penalty. Clearly, then, when LAN members are reas-
signed, this must be re-calculated, and the LAN node
may need to be “migrated” to a new switch, which in-
cludes re-scoring all links to it. Doing so is a heavy-
weight operation, and the time taken can add more than
a factor of three to the runtime for LAN-heavy topolo-
gies. Instead, we perform migration only occasionally:
when the LAN node is selected for re-mapping by the
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generation function, and at the end of every tempera-
ture step. In practice, we find that this greatly reduces
runtime, and has acceptable effects on the solutions
found by assign.

4.3 Violations
One issue that must be decided when implementing
simulated annealing is whether or not to allow the algo-
rithm to consider infeasible solutions; that is, configu-
rations that violate fundamental constraints. In the con-
text of our problem, the primary constraint considered
is over-use of bottleneck bandwidth between switches.
The benefits to allowing infeasible solutions, as put for-
ward in [1], are twofold. First, this makes the genera-
tion function simpler, as it does not need to take feasi-
bility into account. Second, it allows the search to more
easily escape local minima, with the possibility that a
lower minima will be found elsewhere. It does so by
smoothing the cost function. A generation function that
excludes infeasible solutions must either simply reject
these configurations, or “warp” to a new area of the
space, conceptually on the other side of the portion of
the space that is infeasible. If infeasible solutions are
simply rejected, the “connectivity” of the solution is
reduced, possibly even leading to portions of the space
that are isolated; these could leave the search trapped
in a poor local minima. Figure 5 shows an example
of this situation. If “warping” is used, the score from
a configuration to its potential successor may be very
high, resulting in a low probability of its acceptance,
even at high temperatures.

A common approach to the search of infeasible con-
figurations [1] is to give them a high cost penalty, thus
making them possible to traverse at high temperatures,
but unlikely to be reached at lower ones. This approach
has some drawbacks, however. It is difficult to choose
a penalty high enough such that an infeasible solution
will never be considered to be better than a feasible
one. If this can occur, the algorithm may abandon a fea-
sible, but poor, solution and instead return an infeasible
one. Thus, in assign, we have chosen to keep track
of the violation of constraints separately from the cost
function; this is implemented with a feature known as
“violations.” Each possible configuration has a number
of violations associated with it. If a configuration has
one or more violations, then it is considered to be in-
feasible. If no solutions are found with zero violations,
the algorithm has failed to find a mapping; frequently,
this is because no mapping is possible.

When considering whether or not to accept a state
transition, violations are considered before the configu-
rations’ costs. If the new configuration results in fewer
violations than the old, it is accepted. If the number of
violations in the new configuration is equal to or greater

D

B C

ADA

C B

Figure 5: A situation in which allowing solutions with
violations helps reach the optimal solution. If the band-
width between switches is such that only one virtual
link can cross between them, the mapping shown on
the right is in violation of this constraint. However, it
is a necessary intermediate step between the mapping
on the left and the optimal mapping, which places all
nodes on the upper switch.

than the old violations, then the costs are compared
normally. This allows the algorithm to leave feasible
space for a time, guiding it back to feasible space fairly
quickly so excessive time is not spent on infeasible so-
lutions.

One important side effect of violations is that they
provide the user of the program with feedback about
why a mapping has failed. Six different types of viola-
tions are tracked, ranging from overuse of inter-switch
bandwidth to user desires that could not be met. These
are summed together to produce the overall violations
score. When assign fails to find a feasible solution,
it prints out the individual violations for the best so-
lution found. This helps the user to find the “most
constraining constraint”; the one whose modification
is most likely to allow the mapping to succeed. This
gives the user the opportunity to modify and re-submit
their virtual topology.

4.4 Generation Function
assign’s generation function has the task of taking a
potential configuration and generating a different, but
similar, configuration for consideration. assign does
this by taking a single virtual node and mapping it to
a new physical node. First, assign maintains a list
of virtual nodes that are currently unassigned to phys-
ical nodes. If this list is non-empty, it picks a member
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of the list and randomly chooses a mapping for it. If
there are no unassigned nodes, it picks a virtual node,
removes its current mapping, and attempts to re-map
it onto a different physical node. If this is not possi-
ble (i.e., there are no free nodes that the virtual node
can be mapped to), then it chooses a random physical
node, to which the chosen virtual node can be success-
fully mapped, and unmaps it.

Our generation function avoids certain invalid solu-
tions. When assign begins, it pre-computes a list
of acceptable assignments for each virtual node. An
acceptable assignment is one that is capable of ful-
filling the type of the virtual node, and has at least
enough physical links to satisfy the virtual node’s re-
quirements.

We have discovered that this behavior is important
when dealing with scarce resources. For example, in
physical topologies containing a few nodes with many
network interfaces, any virtual node can be assigned to
these nodes, even those that do not have many links,
and thus need few interfaces. If the virtual topology
contains a node that requires this large number of in-
terfaces, it has to compete for the appropriate physi-
cal node against other virtual nodes which do not re-
quire so many interfaces. If the generation function
is allowed to assign high-degree virtual nodes to low-
degree physical nodes (which, of course, introduces a
violation), this competition can prevent assign from
finding a valid solution for large topologies. Thus, we
have found that it is critical to avoid violations in node
assignment, to cope with scarce resources.

Though some types of violations are useful to ex-
plore, as covered in Section 4.3, these are not, because
they will not be removed by future assignments; though
a future choice may cause an overburdened link to be
reduced to an acceptable level of traffic, future choices
will not change the type, capacity, or number of inter-
faces of a physical node. Thus, by not exploring these
areas of the solution space, we save on work that we
can be sure will not lead to a viable solution.

4.5 Physical Equivalence Classes
4.5.1 Reducing the Solution Space
One of the features of assign that has most improved
its runtime and quality of solutions in the introduc-
tion of physical equivalence classes. This improvement
comes from the observation that, in a typical network,
many hosts are indistinguishable in terms of hardware
and network links. For the purposes of scoring a con-
figuration, it does not matter which of these indistin-
guishable nodes is selected. The solution space to ex-
plore can be reduced by exploiting this equivalence.

The neighborhood structure, or branching factor, of a
solution in assign has a size on the order of ��� ����� � ,

where � is the number of nodes in the physical topol-
ogy, and � is the set of nodes in the virtual topology.
This number is an upper bound, because, as assign
progresses, the number of free nodes in � will tend to
be � � � as most or all virtual nodes will be mapped,
removing the the physical node from the free pool.
Clearly, if we can safely reduce the size of � or � , as-
sign will be able to explore a reasonable subset of the
solution space in less time, resulting in lower runtimes.

In practice, it is more straightforward, and provides
greater benefit, to reduce � . The Emulab facility con-
sists of a large number of identical nodes connected to
a small number of switches, and other emulation fa-
cilities are likely to have similar configurations. For
example, in Emulab, depending on available resources,
there are 168 PCs that can be in the physical topology
input to assign. These reduce to only 4 � � �������	
� ,
resulting in a branching factor two orders of magnitude
smaller. Attempting to reduce � , on the other hand, will
generally not lead to such drastic results, since experi-
menters’ topologies are much more heterogenous, and
attempting to find symmetries in them would require
relatively complicated and computationally expensive
graph isomorphism problems.

4.5.2 pclasses

In order to effect this reduction in the physical topol-
ogy, assign defines an equivalence relation. Any
equivalence relation on a set will partition that set into
disjoint subsets in which all members of a subset are
equivalent (satisfy the relation); these subsets are called
equivalence classes. When assign begins it calcu-
lates this partition. Each equivalence class is called a
� � ������ .

The equivalence relation assign uses defines two
nodes to be equivalent if: they have identical types and
features and there exists a bijection from the links of
one node to the links of the other which preserves des-
tination and bandwidth. It is easily verified that this
relation is an equivalence relation.

When the generation function in invoked, rather than
choosing a physical node from among a large set of po-
tentially equivalent nodes, it instead selects a � � ������ ,
and a node is chosen from that � � ������� and used. This
technique reduces the size of the search space dramat-
ically, without degrading the the results of the scoring
function; it remains unchanged.
� � �������	
� have an interesting effect on the way that

the solution space is explored. To illustrate this issue,
consider an extreme case: � identical nodes connected
to one switch,

�
, and � identical nodes each connected

to their own switches, �����	� 
 . Now, consider a virtual
topology with � nodes, where ��
 � . Clearly, the ideal
solution is to map all virtual nodes onto physical nodes
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connected to
�

. Without pclasses, when the generation
function selects from among all nodes, it has approxi-
mately a �� chance of selecting one of these ideal nodes.
With � � �������	
� however, this drops to �
�� � . If � is large,
this makes it more difficult for assign to find a good
mapping, as the probability of finding a “good” node is
lower. On the converse side, this increases the chance
of selecting a scarce type of node, which may improve
the mapping, from �� 
�� � to �
�� � . This circumstance
is not likely to occur in practice, so it does not greatly
decrease the utility of � � �������	� . However, it is still an
issue that warrants further study.

There are some circumstances, however, when
� � ������ 	
� are not appropriate. When mapping large
numbers of virtual nodes onto a small set of physi-
cal nodes, as is frequently the case with distributed
simulations or ModelNet, the base assumption, equiva-
lency of certain physical nodes, is violated. As a physi-
cal node becomes partially filled, it becomes no longer
equivalent to other nodes. Mapping a new virtual node
to different physical nodes in the same � � ������� can now
result in different scores, as this affects whether some
of their virtual links can be satisfied as intra-node links
or not. As a result, when mapping simulated or Mod-
elNet topologies, we disable � � �������	
� . Fortunately,
these mappings tend to involve smaller numbers of
physical nodes than full Emulab-style mappings, and
are thus still able to complete in reasonable time.

4.6 Cooling Schedule
By default, assign uses the polynomial-time cool-
ing schedule described in [1]. It uses a melting phase
to determine the starting temperature, so that initially,
nearly all configurations are accepted. It generates a
number of new configurations equal to the branching
factor (as defined in Section 4.5) before lowering the
temperature. The temperature is decremented using a
function that helps ensure that the stationary distribu-
tion of the cost function between successive tempera-
ture steps is similar. Finally, when the derivative of the
average-cost function reaches a suitably low value, the
algorithm is terminated. The parameters to this cooling
schedule were chosen through empirical observation.
However, we are exploring the idea of using another
randomized heuristic algorithm, such as a genetic algo-
rithm, to tune these constants for our typical workload,
maximizing solution quality while keeping the runtime
at acceptable levels.

The result of this cooling schedule is that assign’s
runtime should scale linearly in two dimensions: the
number of virtual nodes, and the number of � � ������ 	
� .
The temperature decrement function and termination
condition, however, will depend on how quickly as-
sign is able to converge to a good solution, roughly

reflecting the difficulty of mapping the supplied virtual
and physical topologies.
assign also has two time-limited cooling sched-

ules. The first simply takes a time limit, and, using the
default cooling schedule, terminates annealing when
the time limit is reached. The second mode attempts
to run in a target time, even extending the runtime if
necessary. It uses a much simpler cooling schedule in
which the initial temperature is determined by melting,
the final temperature is fixed, and the temperature is
decreased multiplicatively, with a constant chosen such
that annealing should finish at approximately the cho-
sen time. Both of these cooling schemes are useful in
limiting the runtime for large topologies, which oth-
erwise could take many minutes or even hours to run.
The latter is also useful for estimating the best solution
to a given problem, as assign can be made to run
much longer than normal, in the hope that it will have
a better chance of finding a solution near the optimal
one.

5 Evaluation
In this section, we evaluate the performance of as-
sign. First, we consider the performance of assign
on a real workload—a set of 3,113 virtual and phys-
ical topology files collected on Emulab over a period
of 17 months. Then, we use a synthetic workload to
determine how assign will scale to larger virtual and
physical topologies, and to examine the impact of some
features and implementation decisions. Then, we ex-
amine assign’s ability to map simulated and Model-
Net topologies. Finally, we compare assign to a re-
implementation of a mapper using a genetic algorithm
instead of simulated annealing.

Evaluation is primarily done in two ways: through
the runtime of assign, and through the quality of the
solutions it produces. To compare the quality of solu-
tions, we compute the average error for each test case.
Ideally, the average error is defined as

�����	��
 
 ������
���� ,

where � � � is the optimal score, and
� 	�� � � � is the me-

dian of scores across all trials. However, since it is
intractable to compute the true value of � � � , we sub-
stitute

�����	��
 
 � ��� 

��� 
 , where

� � � is the minimum score
found by assign for the test case. This standard met-
ric still gives a good feel for the differing scores found
by assign over repeated runs on the same topology.

All tests were performed on a 2.0 GHz Pentium 4
with 512 MB of RAM.

5.1 Topologies from Emulab
Our first set of tests were done using historical data
collected from Emulab. The 3,113 test cases are virtual
topologies submitted by experimenters, and the physi-
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Figure 6: Runtimes for Emulab topologies. Each test
case was run 10 times. The scatter-plot shows the me-
dian runtime for each test case. The line shows the
average across all topologies of the same size.
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Figure 7: Error for Emulab topologies.

cal topology available at the time the experiment was
submitted. Since virtual topologies vary widely, along
with available physical resources, the goal of these tests
is not to show trends such as scaling to a large num-
ber of virtual nodes. Instead, the goal is to show that
assign handles the typical workload on Emulab very
well.

Figure 6 shows runtimes for the test cases. This
graph shows three important things. First, the major-
ity of experiments run on Emulab, and thus, the typical
workload for assign, consists of experiments smaller
than 20 virtual nodes. Second, the relatively flat run-
times up to 30 nodes are caused by lower bounds in
assign—to prevent assign from exiting prema-
turely for small topologies, a lower limit is placed on
the number of iterations assignwill run until it deter-
mines that it is done. Finally, we can see that assign
always completes quickly for its historical workload,
in less than 2.5 seconds.

Figure 7 shows the amount of error for the same test
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Figure 8: CDF of error on on Emulab topologies. The
line represents how many topologies had an error of
a given value or smaller. Note that the y-axis for this
graph begins at .90.

cases, which were each run 10 times. Here, we see
that, for virtual topologies of up to 12 nodes, assign
nearly always finds the same solution. Up to 20 nodes,
covering most Emulab topologies, the error for most
topologies remains below 0.05, or 5%. Even past this
range, error stays low. More telling is the Cumula-
tive Distribution Function (CDF) for these test cases,
shown in Figure 8. Here, we see that approximately
93% of the test cases in this set showed an error of 0,
96% showed an error of less than .05, and over 99%
showed an error of less than .17. From this, we can see
that assign is more than adequate for handling the
workload of the present-day Emulab. The tests in later
subsections aim to show that assign will scale to
larger Emulab-like facilities, in addition to being gen-
eral enough for other environments.

5.1.1 Utilization
To evaluate the importance of good mapping to the uti-
lization of Emulab’s physical resources, we performed
two tests. We used Emulab’s actual physical topology,
with virtual topologies consisting of Emulab’s histori-
cal data of over 3000 experiments. In each, we com-
pared the benefit of using the normal assign with a
version that randomly (instead of near-optimally) ob-
tains a valid mapping of virtual to physical nodes. I.e.,
the random version still observes physical link limits,
experimenters’ constraints on node types, etc.

For the first test, we measured simulated through-
put. We placed the virtual topologies into a randomly-
ordered work queue. Experiments were removed from
the queue and mapped, until the mapper failed to find
a solution due to overuse of inter-switch bandwidth or
lack of free nodes. At that point, the queue stalled un-
til one or more experiments terminated, allowing the
experiment at the head of the queue to be mapped.
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Each experiment was assumed to terminate 24 hours
after beginning.1 Mapping using assign processed
the queue in 194 virtual days, while random mapping
took 604 days, a factor of 3.1 longer. Limited by trunk
link overuse, random mapping maintained an average
of only 5.1 experiments on the testbed. Limited by
available nodes, assign maintained an average of 16
experiments.

For the second test, we used consumption of inter-
switch bandwidth as our metric. First, we altered the
physical topology to show infinite bandwidth between
switches. As above, we first generated a randomly-
ordered work queue, then removed and mapped ex-
periments until one failed to map by exceeding the
number of available nodes. We recorded bandwidth
consumption on the inter-switch links. To prepare
for the next iteration, we emptied the testbed and re-
shuffled the queue. The result, after 30 iterations,
was that assign-based mapping used an average of
0.28Gbps across both links, while random mapping
used 7.4Gpbs, a factor of 26 higher.2

To gain further insight into assign’s value, we are
writing a “simple mapper” against which to compare.
It will use a simple heuristic such as flood-filling the
switches.

5.2 Synthetic Topologies
For the remainder of our performance results, we use
synthetically generated topologies, rather than those
gathered from Emulab. One reason for this is that the
Emulab topologies vary widely, making it difficult to
discern whether trends are due to irregularities in the
data, such as topologies with no links, or due to as-
sign itself. Second, we wish to show that assign
scales well past the resources currently available on
Emulab.

Virtual topologies for these tests were generated us-
ing BRITE [11], a tool for generating realistic inter-
AS topologies. A simple Waxman model with random
placement was used. This results in topologies that are
relatively well-connected, of average degree 4. This
provides a good test of assign’s abilities, as such
topologies are more difficult to map than ones that have
tree-like structures, due to the lack of obvious “skinny”
points in the topology.

The first test set, brite100, consists of 10 topologies

1The random mapper timed out and could not map 98 large ex-
periments due to overuse of the inter-switch links, even on an empty
testbed; we adjusted by assuming they mapped and took the entire
testbed.

2The apparent disparity between the ratios in the throughput (3)
and bandwith consumption tests (26) is explained by observing that
for bandwidth, the difference on the bottleneck link between band-
width use (5.7Gbps) and capacity (2Gpbs) is what governs job ad-
mission in the throughput test; the �����

���	��
���������
ratio is 2.85.
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Figure 9: Runtimes for the brite100 test set
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Figure 10: Solution quality for the brite100 test set

ranging from 10 to 100 nodes. The physical topology
is similar to Emulab’s, with 120 nodes divided evenly
among three switches. The majority of tests are run
using this test set, as the randomized nature of assign
makes it necessary to run a large number of tests to
distinguish real overall trends from random effects, and
the lower runtimes of this test set make this feasible;
each topology in this test case was run 100 times.

The second test set, brite500, is similar to the
brite100 test set, but has virtual topologies ranging
from 50 to 500 nodes, which are mapped onto a phys-
ical topology containing 525 nodes divided evenly
across 7 switches.

5.2.1 Scaling

Figure 9 shows runtimes for the brite100 test set. Here,
we can see that the mean runtime goes up in an approx-
imately linear fashion, and that, for most test cases,
the worst-case performance is not much worse than the
mean performance. While there is significant variation
in the mean runtime, due, we believe, to the relative
difficulty of mapping each topology, the best and worst
case runtimes remain very linear.
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Figure 11: Runtimes for the brite500 test set
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Figure 12: Solution quality for the brite500 test set

Figure 10 shows error for the same test set. The low
error up to 40 nodes reflects the fact that these topolo-
gies can be fit into the nodes on a single switch, and
assign usually finds this optimal solution. For larger,
more difficult, topologies, assign still performs well,
with an average of only 5% error.

Figures 11 and 12 show, respectively, the runtimes
and waste for the brite500 test set. Again, we see linear
scaling of runtimes. The slope of the line is somewhat
steeper than that of the brite100 set. This is due to the
larger physical topology onto which these test cases are
mapped.

5.2.2 Physical Equivalence Classes
To evaluate the effect that � � ������ 	
� have on assign,
we ran it with � � �������	
� disabled. Runtimes increased
by two orders of magnitude, as shown in Figure 13,
in which the runtime with � � ��������	
� enabled is barely
visible at the bottom of the graph. This is primarily due
to the fact that the physical topology used for this set of
tests has 120 physical nodes that reduce to 6 � � ������ 	
� ,
a 95% reduction.

Error in the solution found went down significantly
due to the longer runtimes, as shown in Figure 14. The
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Figure 13: Runtimes for the brite100 test with and
without pclasses
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Figure 14: Solution quality for the brite100 test with
and without pclasses

decrease suggests that some tuning may be possible
to improve solution quality in the version of assign
that has � � �������	� . However, the magnitude of the run-
time increase clearly does not justify the extra reduc-
tion of error, which was already at an acceptable level.
Though error is lower, the minimum-scored solution
found both with and without � � ��������	
� is the same.

5.2.3 Features and Desires
For our first test of features and desires, we examined
assign’s performance in avoiding nodes with unde-
sired features. For this test, we gave 40, or one-third, of
the physical nodes in the brite100 physical topology a
feature, called undesirable, which was not desired
by any nodes in the virtual topology. We gave this fea-
ture a weight that penalizes using an undesirable
node more severely than using an extra inter-switch
link. This feature was given to all nodes on one of
the three switches, so it does not introduce additional
� � ������ 	
� , which would have lengthened the runtime.

We found that, in all runs, assign properly avoided
using undesirable nodes. Up to 80, the number
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Figure 15: Runtimes for the brite100 test set when
avoiding undesirable features
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Figure 16: Solution quality for the brite100 test set
when avoiding undesirable features

of non-undesirable nodes in the physical topol-
ogy, assign avoided using undesirable nodes
entirely. At 90 nodes, all solutions found used only
the minimum of 10 undesirable nodes, and at
100 nodes, all solutions used only 20 undesirable
nodes.

Figure 15 shows runtimes for this test. As we can
see, features used in this manner do not adversely affect
runtime. Figure 16 compares error for this test case to
the cases without features, which is quite similar.

To examine how well assign does at finding de-
sired features, we again modified the physical topol-
ogy from the brite100 set, giving 10% of the nodes
feature A, and another 10% feature B. These nodes
were spread evenly across all three switches in the
physical topology. This results in a larger number of
� � ������ 	
� (specifically, three times as many) than the
base brite100 physical topology, and thus longer run-
times. Then, 10% of nodes in the virtual topology were
given the desire for feature A, and none given the de-
sire for feature B. Thus, assign will attempt to map
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Figure 17: Runtimes for the brite100 test set, when at-
tempting to satisfy desires
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Figure 18: Solution quality for the brite100 test set,
when attempting to satisfy desires

certain virtual nodes to the physical nodes with feature
A, and will try to avoid the nodes with feature B.

Figures 17 and 18 show the results from this test. As
expected, the slope of the runtime line is steeper with
these features than without them, due to the fact that
they introduce new � � �������	� . In nearly all tests runs,
assign was able to satisfy all desires for feature A. In
the 100-node test case, however, failure to satisfy the
desire led to a 4% failure rate.

For topologies of size 30 or smaller, which allow a
mapping that remains on a single switch without us-
ing nodes with feature B, avoiding these nodes is sim-
ple, and assign found such a solution in all of our
test runs. For larger topologies, the weight that we
gave to feature B, .5, plays a role in the optimal solu-
tion. This weight places the feature as being more valu-
able than two inter-switch links, but less valuable than
three. Thus, depending on the virtual topology, it may
be desirable for assign to conserve inter-switch links
rather than these nodes. Table 2 shows the number of
nodes with feature B in the minimally-scored solution,
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Test Case Nodes selected with feature B
Minimum Median

10 0 0
20 0 0
30 0 0
40 4 4
50 3 4
60 3 4
70 3 4
80 4 4
90 4 4
100 4 4

Table 2: assign’s performance in avoiding feature B

and the median number chosen. If we placed more
value on feature B, we could give it a higher weight,
so that its cost is higher than a larger number of inter-
switch links.

5.3 Distributed Simulation
To test mapping of distributed simulation with as-
sign, we first mapped the 500-node topology from
the brite500 test set as a simulated topology. To do this,
we multiplexed 50 virtual nodes on each of 10 physical
nodes. The mapping typically took 46 seconds, with an
error of .023.

Second, we applied assign to a large topology
generated by the specialized topology generator pro-
vided with PDNS. This topology consists of 416 nodes
divided into 8 trees of equal height, with the roots of
all trees connected in a mesh. In total, this topology
contains 436 links. Since the topology generated is of
a very restricted nature, the script that generated it is
able to optimally partition it to use only 56 links be-
tween nodes. Because of its generality, assign does
not find the same solution. It does, however, typically
find a very good solution: the median number of cross-
node links found in our test runs was 60. For com-
parison, a random mapping of this topology typically
results in 385 cross-node links.

The ideal test of the mappings found by assign
for PDNS is to measure the runtime of the distributed
simulation, both when mapped by assign, and when
using the optimal mapping. However, limitations of
PDNS make it unable to accept arbitrary network par-
titions, such as those generated by assign. We are
working to eliminate these restrictions, so that we can
perform this comparison.

Running these tests, we encountered unexpected be-
havior in assign; it performed very poorly when
mapping these topologies as exact-fits. By slightly
increasing the number of virtual nodes allowed to be

Cores Runtime (s) Bandwidth (Mbps) Error

1 0.184 0 0
2 4.81 1332 0.27
3 10.5 1183 0.36
4 16.61 947.5 0.28
5 26.0 807.6 0.24

Table 3: Performance of assign when mapping a
ModelNet topology. The bandwidth shown is the aver-
age bandwidth used by each core node to communicate
with other cores.

multiplexed on each physical node, we were able to
dramatically increase assign’s solution quality. For
example, with the PDNS topology, when each physi-
cal node was allowed to host exactly 52 virtual nodes
( ��������� ), the error exceeded 0.4. By allowing each
physical node to host 55 virtual nodes, we lowered this
error to .05.

It remains an interesting problem for us, then, to
analyze this phenomenon and improve assign ac-
cordingly. In the case of simulation, it appears we
can easily adapt by providing excess “virtual capac-
ity.” For physical resources, we would need to im-
prove exact-fit matches. Since simulated annealing has
fundamental problems dealing with tightly constrained
problems [16], this is likely best attacked by improving
the generation function.

5.4 ModelNet
To apply assign to mapping ModelNet, we devel-
oped tools to convert ModelNet’s topology represen-
tation into assign’s. We then mapped the topol-
ogy used in [15] to evaluate ACDC, an application-
layer overlay. This topology is a transit-stub network
containing 576 nodes to be mapped onto the Mod-
elNet core. Transit-transit links have a bandwidth
of 155Mbps, transit-stub links have a bandwidth of
45Mbps, and stub-stub links are 100Mbps. The results
of mapping this topology to differing numbers of core
nodes is shown in Table 3. Though the error is sig-
nificantly higher than for the Emulab topologies that
assign has been tuned for, the average bandwidth
to each core node stays near 1000Mbps, which is the
speed of the core nodes’ links.

The ModelNet goal of balancing virtual nodes be-
tween core nodes can be met in two different ways
with assign. First, the type system can be used to
enforce limits on the number of virtual nodes that can
be mapped onto a single ModelNet core. Second, we
have implemented experimental load-balancing code in
assign that attempts to spread virtual nodes evenly
between physical nodes.

Because they use different scoring functions, direct

15



0

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

R
un

tim
e 

(s
)

Number of Virtual Nodes

Median Runtime - assign
Median Runtime - genetic algorithm

Figure 19: Runtimes for the brite500 test set for as-
sign and our genetic algorithm
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Figure 20: Solution quality for the brite500 test set for
assign and our genetic algorithm

comparison between the solutions from assign and
ModelNet’s mapper is problematic. The best way,
which we are pursuing, would be to run both mappers
and the resulting emulations, and compare the details
of their performance and behavior.

5.5 Comparison to Genetic Algorithm
Finally, we compared our simulated annealing ap-
proach to the testbed mapping problem to another
general-purpose and randomized heuristic approach, a
genetic algorithm (GA) [6]. For this test, we indepen-
dently implemented another mapper. This mapper uses
a standard generational GA, with tournament selection
and a specialized crossover operator. The population
size is 32, the mutation rate 25%, and the crossover
rate 50%. We took care to ensure that the cost func-
tions of the two mappers are identical, so that we can
compare scores and errors of returned solutions.

Except for small numbers of nodes, where it was
worse, the quality of solutions found by the genetic
algorithm, shown in Figure 20, is close to simulated

annealing’s. Performance is a different story. For the
brite100 topologies (not shown), the GA was faster
when mapping 40 or fewer virtual nodes. However, as
shown in Figure 19, the GA exhibited much worse scal-
ability than simulated annealing; for all of the brite500
test cases, the GA was slower, on average. In the most
complex topology tested, simulated annealing far out-
performed the genetic algorithm.

The key reason for this disparity in performance ap-
pears to be incremental scoring, which cannot be done
in GA’s with crossover. When a new configuration
is generated, assign incrementally alters the score.
However, the GA relies on a crossover operator that
blends two parents to produce two children. Here,
incremental scoring is not feasible; childrens’ scores
must be entirely reevaluated. The linearly increasing
cost of evaluation is somewhat offset by the GA re-
quiring fewer evaluations, on average, than simulated
annealing; this accounts for its good performance on
small topologies. However, the GA exhibits super-
linear scaling as both the cost of evaluations and the
number of evaluations required increase.

6 Related Work

Simulated annealing was first proposed for use in VLSI
design [8]. Much literature is available on aspects of
it [1, 18, 17]. The key problem it was intended to solve
was the placement of circuits, which are arranged in a
connectivity graph, onto chips. The goal of the map-
ping is to minimize inter-chip dependencies, which re-
quire communication over expensive pins and busses.
In this way, this problem is similar to ours, but does
not have the unique challenges described in Section 3.
Simulated annealing is also used in combinatorial op-
timization in various Operations Research fields.

Similar partitioning problems arise on parallel multi-
processor computers [7]. Some network mapping algo-
rithms can also be found in the literature. For example,
[4] discusses partitioning of distributed simulation us-
ing simulated annealing. [9] discusses algorithms for
network resources when providing bandwidth guaran-
tees for VPNs. None of these, however, meet our goal
of being more generally applicable across a range of
experimentation environments.

We know of ongoing work on ModelNet’s mapper,
with the goal of allowing re-mapping in real-time based
on observed network load. It seems likely that this
work will be complementary to ours, and that some of
the lessons learned in each mapper will be applicable
to the other.
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7 Future Work
7.1 Wide-Area Assignment
As network testbeds expand into the wide-area, such
as Netbed’s wide-area nodes [19] and PlanetLab [12],
resource allocation faces a new challenge. When re-
sources are distributed across the public Internet, an
experimenter’s desired topology must be chosen from
the paths available, which are not controllable by the
testbed’s maintainers. Since the number of links be-
tween � nodes is � ��� � � � , this problem has similar
complexity characteristics to the one we describe in
this paper.

Netbed currently uses a separate program for map-
ping wide-area resources, which picks from among
them using a genetic algorithm. Thus, two passes
are used when mapping both wide-area and local re-
sources. In general, we think that this two-phase strat-
egy is appropriate, since doing both phases at once
complicates the solution space, and the choice of each
set of resources in each phase does not depend on
choices made in the other phase. However, we plan to
investigate whether it appropriate to use the same pro-
gram, or at least, the same approach, for both phases.

Another potential approach to wide-area mapping is
the simplification of the problem into mapping “last-
mile” characteristics of network links. For some types
of network experimentation, the primary concern is
whether, for example, a node is connected to a DSL
line, a cable modem, or Internet2. Though it fails to
capture all of the global behavior characteristics of the
node, this approach makes mapping considerably eas-
ier, and eases the specification burden on the experi-
menter. Netbed currently supports a crude form of this
type of mapping using its type system, but more work
is required to determine the proper specification and
use of this style of mapping.

7.2 Resource Descriptions
One potential avenue for further work on assign is
the introduction of arbitrary resource descriptions for
virtual and physical nodes. For example, a given virtual
node may specify that it will require approximately �
amount of memory and � amount of processor cycles
per second. When multiplexing onto a physical node
the resource requirements of the assigned virtual nodes
would be subtracted from the resources available on the
physical node.

Our current method for representing such things in-
volves our type system. For example, we may deter-
mine empirically how many simulated nodes can be
handled on a physical node, to get a “packing factor”
� . Then, we declare the simulated virtual nodes to
be of type sim, and allow physical nodes to satisfy �
sim nodes. This works reasonably well, but can make

sub-optimal choices, since all simulated nodes must be
assumed to consume the same resources. Alternately,
simulated nodes can be classified by their resource con-
sumption, say into “heavyweight” and “lightweight”
nodes, but these cannot be mixed on a single physical
node, since a physical node is only permitted to act as
one type at a time.

The main problem with this modification will be in
our generation function. Currently we are able to avoid
certain types of violations, such as multiplexing too
many virtual nodes on to a physical node, with mini-
mal processing cost. This is simple, because the type
system can know that no virtual node consumes more
than a single “slot” on a physical node. With arbitrary
resource costs on virtual nodes, however, maintaining
a structure that allows us to efficiently find a physical
node into which a given virtual node “fits” becomes
much more complicated. This could make our genera-
tion function slower, or reduce the quality of solutions,
and more time is spent exploring invalid solutions. In
essence this adds a bin-packing aspect, another NP-
complete problem, to an already complicated solution
space. It remains to be seen whether the better pack-
ing allowed by these resource descriptions can be done
with a minimum of increase in runtimes.

7.3 Dynamic Delay Nodes
Emulab’s delay nodes present an interesting mapping
challenge. In the current Emulab environment, where
all nodes are connected using 100Mbps Ethernet, it is
possible to determine the necessity of traffic-shaping
nodes before mapping is done; all links that are not
100Mbps require them. However, in an environment
with mixed link speeds, which Emulab hopes to have
with the addition of gigabit Ethernet, this can not ef-
fectively be done outside the mapper. For example,
if only gigabit links are available, but an experimenter
desires a 100Mbps link, a delay node may need to be
inserted, where it would not if a 100Mbps link were
available. Since these decisions about which links to
use are known only to assign, it becomes necessary
for assign to be able to introduce delay nodes when
appropriate. This dynamic addition of nodes to the vir-
tual topology, however, presents interesting challenges
for the generation and cost functions. We have an ini-
tial implementation of dynamic delay nodes, but more
work is needed.

7.4 Local Search
A possible way to improve assign’s performance
would be to combine it with local search, another strat-
egy for combinatorial optimization. [10] proposes a
combination of simulated annealing with local search,
in such a way that simulated annealing is performed
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on local minima, rather than on all states. The basic
algorithm for this is to apply a “kick” to a potential so-
lution, which, in contrast to the neighborhood structure
typically used with simulated annealing, is designed to
move to a very different area of the solution space. In
assign, this would likely be best accomplished by
re-assigning a connected subset of the virtual topology,
rather than a single virtual node. A local search is then
done from the new configuration, attempting to find
its local minima. Then, the same acceptance criteria
for standard simulated annealing is applied, to decide
whether or not to move to the new minima.

8 Conclusion

We have presented the network testbed mapping prob-
lem, formulating it in such a way that it is applicable
to a range of experimental environments. We have pre-
sented our solver for this problem, discussing its de-
sign, implementation, and lessons learned in the pro-
cess. Through evaluation on real and synthetic work-
loads, we have shown its effectiveness on a range of
problems. Finally, we have identified interesting prob-
lems that remain as future work.
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