
Table Of Contents i

Table of Contents
Who Should Read This Document? . 1

Contents . 2

Chapter 1 DTOS Introduction . 1-1
DTOS Kernel . 1-2

Security Enhanced Lites Server . 1-3

Security Server . 1-4

DTOS Prototype and FreeBSD . 1-5

How DTOS Implements Security . 1-6

What is Type Enforcement . 1-8

Assurance Work on DTOS . 1-9

Chapter 2 Installing DTOS. 2-1

ii Table Of Contents

Chapter 3 Building Security Databases. 3-1
Security Server Functions . 3-3

Overview of Building a Security Database 3-5

Set of Security Permissions . 3-8

Relationship of Subject/Object Pairs . 3-11

MLS Implementation . 3-15

Creating a New Domain . 3-18

Adding/Removing Permissions for a Subject/Object Pair 3-19

Controlling Communications Between Domains 3-20

Creating a New Type . 3-22

Adding a New User . 3-24

Structure of the Security ID . 3-25

File Services. 3-29

Network Services . 3-29

Network Security Services . 3-29

Security Association Database . 3-29

Chapter 4 DTOS Demonstration Software. 4-1
How to Install and Run the DTOS Demo . 4-2

DTOS Demo Structure . 4-5

Creating Trusted Applications . 4-10

Creating or Deleting Permissions. 4-17

Where To Go From Here . 4-22

Chapter 5 Recompiling DTOS. 5-1

Appendix A DTOS Release Materials .A-1
DTOS Release Materials . A-1

Appendix B Permissions .B-1
DTOS Kernel Service Permissions . B-2

Appendix C Getting Product Support .C-1
DTOS Support Staff . C-1

Table Of Contents iii

Bibliography

iv Table Of Contents

30 September 1996 - Preface-1

Preface

This DTOS Prototype User’s Guide provides background concepts,
procedures, and reference information needed for installing and using the
DTOS prototype.

Who Should Read This Document?

TheDTOS Prototype User’s Guide is written for researchers operating in
a government or academic capacity who will be using the DTOS
prototype to perform secure systems research.

Preface-2 30 September 1996

Contents

TheDTOS Prototype User’s Guide contains the following chapters and
appendixes.

Chapter 1, DTOS Introduction

This chapter discusses the background and objectives of the DTOS
prototype and gives an overview of how DTOS implements security.

For additional introductory information, please refer to the following
document included with the DTOS Release Materials:Providing Policy
Control Over Object Operations in a Mach Based System(refer to
Bibliography item number 6).

Chapter 2, Installing DTOS

This chapter breaks down the DTOS installation process into several short
procedures that start with downloading the DTOS Release Materials and
end with having DTOS boot loaded and ready to use.

Chapter 3, Building Security Databases

This chapter explains the functions of the security server and provides
information on the structure of the permissions set, the relationship of
subject/object pairs, and the actions required for building and storing
security databases.

Chapter 4, DTOS Demonstration Software

The DTOS Demonstration Software provides an example security policy
implementation for a simulated hospital database. This chapter explains

30 September 1996 - Preface-3

what the DTOS Demonstration Software is doing, how it preforms these
functions, and how to run Demo. This chapter also explains concepts that
you need to understand in order to build your own trusted applications.
These concepts are illustrated by means of the DTOS Demo.

Chapter 5, Recompiling DTOS

This chapter describes how to prepare for recompiling DTOS, how to
build the microkernel, and how to build the Security-Enhanced Lites
Server.

Appendix A, DTOS Release Materials

This appendix lists all of the items included in the DTOS Release
Materials, the support tools included in the release, and the sources for
getting these items.

Appendix B, Permissions

This appendix lists of all permissions checked in DTOS. These
permissions are fields found in the security server database files.

Appendix C, Getting Product Support

This appendix describes the product support that is available for the
DTOS prototype and how to access this support.

Bibliography

The Bibliography provides a list of reference documents that will help
you use the DTOS prototype.

Preface-4 30 September 1996

30 September 1996 - 1-1

11
DTOS Introduction

The Distributed Trusted Operating System (DTOS) program is an effort
being carried out by the Secure Computing Corporation (SCC) for the
Maryland Procurement Office under contract MDA904-93-C-4209. This
effort is coordinated with the researchers at the Information Security
Computer Science Research Division of the Department of Defense. This
effort is directed toward making an experimental microkernel-based
secure operating system generally available to support further research
and development in a number of different aspects of secure distributed
computing.

The prototype system described in this user manual consists of three
primary components. A variant of CMU Mach Kernel(See the DTOS
Kernel Interface DocumentBibliography item number 4) a variant of the
Lites Server and a Security Server. Throughout the rest of this document
the modified Mach Kernel is referred to as the DTOS Kernel, and the
modified Lites Server is referred to as the Security Enhanced Lites or just
Lites. The complete prototype described in this manual is referred to as
the DTOS Prototype.

The complete set of release materials includes additional software and
documentation intended to help other researchers to better understand and
make use of the DTOS Prototype. The list of additional material
includes:

1-2 Chapter 1 - DTOS Introduction - 30 September 1996

o An example security policy, using Secure Computing Corporation’s
Type Enforcement, which can be extended to define control over new
applications,

o A simple demonstration secure database system that demonstrate the
key features of fine grained control provided by the DTOS Prototype,

o Design documentation describing the modifications made to the Mach
Kernel to produce the DTOS Kernel,

o Formal specifications and other documentation describing the
assurance analysis that has been done on the DTOS Kernel, and

o Software tools required to build and extend the DTOS Kernel,
Security Enhanced Lites Server, Security Server and the security
policy enforced by the Security Server.

The remainder of this introduction provides a further overview of the
major elements of the DTOS Prototype and the relationship of the DTOS
Prototype to the FreeBSD environment required to make a fully
operational prototype system.

DTOS Kernel

The DTOS Kernel provided in the DTOS Prototype is based on the CMU
MK83a Mach Microkernel. The kernel was modified to provide policy
directed control over all kernel provided services. The primary objectives
that guided the work resulting in the DTOS Kernel included:

o Provide policy-based control over all Mach services,

o Minimize the impact of security enforcement on system performance,

o Maintain compatibility with the existing Mach interface,

o Support enforcement of a wide range of security policies including
dynamic and adaptive policies, and

Security Enhanced Lites Server 30 September 1996 -1-3

o Provide a platform on which to experiment with a range of secure
applications

The changes to the kernel were of one of the following four general types,

1. Introduction of logic to perform the security checks specified in the
prototype system’s Formal Security Policy Model (refer to
Bibliography item number 1),

2. Extension of the existing Mach Kernel client visible interface to make
security relevant information visible to security conscious
applications,

3. Addition of a new kernel interface defining the required interactions
between the DTOS Kernel and the Security Server, and

4. Introduction of a cache to hold recent security policy decision
information to address potential performance problems that would
arise from extensive interaction between the DTOS Kernel and the
Security Server.

It is important to note that though the DTOS kernel provides control over
all operations on DTOS Kernel objects, it does so without knowledge of
any details about the policy being enforced. More information on the
nature of the DTOS Kernel is provided in the paper titled “Providing
Policy Control Over Object Operations in a Mach Based System” (refer
to Bibliographyitem number 6).

Security Enhanced Lites Server

The Security Enhanced Lites Server provided in the DTOS prototype was
produced by the researchers at the Information Security Computer
Science Research Division of the Department of Defense. The Security
Enhanced version of Lites provides a UNIX(TM) operating system
environment which has been extended in a number of ways.

1-4 Chapter 1 - DTOS Introduction - 30 September 1996

o The file system was extended to attach security policy relevant labels
to all files in the system.

o The file system was also extended to enforce policy defined control
over all operations on files.

o The UNIX interface was extended to allow security conscious
applications and users to specify a security policy relevant label on a
process.

This makes it possible for the DTOS prototype’s UNIX environment to be
isolated and control operations of UNIX applications in agreement with
the system’s security policy as provided by the Security Server. As with
the DTOS Kernel, it is important to note that the Security Enhanced Lites
Server only enforces the security decisions made in the Security Server.

Security Server

The Security Server element of the DTOS Prototype embodies a specific
system security policy and provides security relevant information to other
system elements on demand. The DTOS Kernel interacts with the
Security Server to obtain permission information between client tasks and
objects not currently available in the DTOS kernel’s cache of policy
decision information. The Security Enhanced Lites Server interacts with
the Security Server, as required, to obtain policy defined permission
information relevant to the control of file access.

The Security Server provides services to arbitrary client tasks and system
libraries to obtain policy specific information. It also provides a service
to notify clients when changes are made to the policy (This feature is not
yet implemented). This makes it possible for the DTOS Kernel and the
Lites Server to cache permission information to address performance
issue and still allow the DTOS prototype system to support dynamic
changes to the policy.

DTOS Prototype and FreeBSD 30 September 1996 -1-5

DTOS Prototype and FreeBSD

In order for the DTOS Prototype to provide a full UNIX-like environment
it must include the full UNIX utilities normally provided on a UNIX
system. The DTOS prototype makes use of the UNIX environment
provided by FreeBSD. This is the natural choice because the base Lites
server used to develop the DTOS Prototype’s Security Enhanced Lites
Server expects a FreeBSD environment.

The following figure shows how the combined services of the DTOS
Kernel and the Security Enhanced Lites Server replace the normal
FreeBSD Kernel. It also shows that the Security Enhanced Lites Server
makes use of the basic structures provided by the FreeBSD file system for
definition and control of files. These structures are extended to support
the binding of security label information to files as discussed above.

The figure also shows that the Security Server operates directly over the
DTOS Kernel and is outside of the Security Enhanced Lites Server and
FreeBSD UNIX environment.

1-6 Chapter 1 - DTOS Introduction - 30 September 1996

Relationship of DTOS to FreeBSD

How DTOS Implements Security

The security framework that DTOS adds to the Mach microkernel is
implemented by adding permission checks to all services provided by the
microkernel. These permission checks consult information provided by a
security server to resolve security policy decisions. That is, the higher
level security policy maps down to specific permissions, and the
enforcement of these permissions ensures proper system security.

The security server makes security decisions based on a set of rules (the
security policy) and passes these decisions to the DTOS microkernel. It is
the microkernel’s job to enforce the security decisions it has received
from the security server.

Kernel Filesystem

DTOS
Kernel

Security
Enhanced

Lites

Security
Server

FreeBSD
Environment

Drop in replacement
for FreeBSD Kernel

DTOS Prototype
S
e
c
u
r
i
t
y

I
n
f
o

DTOS Prototype Execution Model 30 September 1996 -1-7

Moving policy decisions to a server that is external to the kernel allows
the system to support more diverse security policies than is possible with
a system that partially or completely implements security policy decisions
within the kernel. Type Enforcement is the example security policy that is
implemented in the DTOS prototype. But Type Enforcement is just one
style of security policy that could be implemented using DTOS.

The DTOS prototype along with the secure filesystem that is built into
Security-Enhanced Lites are a base on which you can prototype security
policies and secure system components. But these elements, by
themselves, are not a secure system. For example, the DTOS prototype
contains security flaws and is missing some security relevant information
such as authentication.

DTOS Prototype Execution Model

The DTOS prototype execution model requires that the label assigned to a
file must either be a transition domain, or match the context of the domain
in which it is being directed to execute. This requirement is enforced
through permissions on memory regions. When Lites maps a file into
memory for execution. It uses the label on the file to derive the label for
the memory region. By default the only subject permitted to execute in a
memory region, is the subject from which the label on memory region is
derived. Thus when a subject attempts to execute a file labeled with a
different domain, the subject will have no permission to the memory of
the executable image. In the case that the file is labeled with a transition
domain, the program will execute in the domain specified in the definition
for the transition domain.

1-8 Chapter 1 - DTOS Introduction - 30 September 1996

What is Type Enforcement

Type Enforcement is a style of security policy that provides a high level
of security against malicious processes. A Type Enforcement policy
defines the attributes of subjects and objects, and determines how subjects
and objects may be related. That is, a Type Enforcement policy
establishes the rules that govern whether or not the action that a subject is
requesting to perform on an object should be permitted or not.

The default security policy provided by the DTOS prototype is a basic
Type Enforcement model with several Trusted Computing Base (TCB)
domains, a domain for the UNIX server, and a domain for all UNIX tasks.
Multi-level security is also implemented.

Type Enforcement assures applications that the environment they are
operating in has the following fundamental protections:

o Compartmentalized Operations

Type Enforcement constrains access to data using domains and types.
Users are assigned certain roles (such as database administrator, mail
role, etc.), and each role is restricted to executing programs in specific
execution domains. For example, a mail user is assigned a mail role
and can only execute mail programs in the mail domain. Similarly,
data is assigned specific types (for example, mail type) so that only
programs in specific domains can access data of specific types. For
example, mail programs can only access mail data.

o Constrained Flows

Type Enforcement permits system designers to build assured
pipelines. An assured pipeline is a series of operations that must be
carried out in a specific order. Type Enforcement enforces this pipeline
by constraining the flow of data from one domain to the next domain
with a series of read/write restrictions on the data that is passed
between domains.

Assurance Work on DTOS 30 September 1996 -1-9

o Contained Executables

Contained executables refers to Type Enforcement’s capability to
control the execution of programs. Containment restricts how
programs are installed, restricts who can execute programs, and
restricts what the program can do and what resources it can access.

Note: Restricting program execution is not implemented in this
release of the DTOS prototype, since the underlying Mach kernel does
not distinguish between read and execute. Code can be executed from
any region that is readable regardless of whether execute access is
granted or not.

For more information on Type Enforcement, refer to the Type
Enforcement documents (number 9, 11, and 12) listed in the
Bibliography.

Assurance Work on DTOS

Significant effort has been applied to the assurance work on DTOS.
Assurance refers to using rigorous techniques to analyze the security of
the system. The focus of the DTOS assurance effort is investigating
techniques for assuring policy-flexible, microkernel-based systems, rather
than providing complete analysis of DTOS itself. Consequently, DTOS is
actually not a highly assured system.

For more information on the assurance work done on DTOS, refer to the
DTOS Formal Security Policy Model (FSPM) andFormal Top Level
Specification (FTLS) documents referenced in the Bibliography. Other
assurance work such as specification-to-code correspondence analysis is
in progress and could be made available at a later date.

1-10 Chapter 1 - DTOS Introduction - 30 September 1996

30 September 1996 - 2-1

2
Installing DTOS

This chapter is going to be removed. The
information that was here previously can be found
in the file /home/dtos/docs/INSTALLATION.

2-2 Chapter 2 - Installing DTOS - 30 September 19965

30 September 1996 - 3-1

3
Building Security Databases

The DTOS security database is used by the security server to make
security decisions supporting a user-specified security policy. This
security policy determines what actions are allowed in the system
according to the permissions set up in the security database. The security
policy is also partially implemented in the security server code. So
changes to the security policy may require changes to the security server
code.

A security permission specifies that a subject running in a particular
context can do something to an object of a certain context. For a simple
example, if the subject is a UNIX process and the object is a file in the
filesystem, the permission might specify that the subject is allowed to
write to the file.

3-2 Chapter 3 - Building Security Databases - 30 September 1996

This chapter explains:

• The functions of the security server

• The overview of building a security database

• The structure of the permissions set

• The relationship of subject/object pairs

• How multi-level security (MLS) is implemented

• How to create a new domain and give it the permissions it needs to
run as a UNIX process

• How to add or remove permissions for a subject/object pair

• How communication between domains is controlled

• How to create a new type

• How to add a user

• The structure of the security ID (SID)

• File permissions

Security Server Functions 30 September 1996 - 3-3

Security Server Functions

The security server provides four services to other subjects operating on
the system:

• Providing permissions for subject/object pairs

• Converting contexts (user representations of SIDs) to SIDs

• Converting SIDs to contexts

• Loading Security Databases

Permissions are computed based on subject SID (SSID)/object SID
(OSID) pairs. Security IDs (SIDs) are involved in the handling of
subject/object pairs. The Subject Security Identifier (SSID) is the security
identifier that is tied to a subject. The object security identifier (OSID) is
the security identifier that is tied to an object being acted on. Providing
permissions involves computing a set of permissions based on an
SSID/OSID pair that specifies which actions the subject is allowed to
perform on the object. The set of permissions is also called an access
vector.

Note: An object SID is also referred to as a target SID in some of the
related DTOS reference documents. In this document, we use the term
object SID. But please be aware that these two terms may be used
interchangeably.

Security identifiers (SSIDs and OSIDs) are numeric values that represent
a security context. A security context is a human-readable ASCII string
that includes the names of all the security attributes associated with the
subject or object. SIDs are not persistent; the SID associated with a
context could be different each time the system is booted. The security-
enhanced kernel calls take SIDs as parameters rather than contexts. To
find the SID associated with a context, you must send a request to the
security server asking for this information.

The final security server function is loading security databases. One of the
key features of DTOS is that you can support multiple security policies by

3-4 Chapter 3 - Building Security Databases - 30 September 1996

defining multiple security databases and easily change the current
security policy by loading a new security database.

Installing a Private Security Server

The discussion of security database and security server functions in this
chapter describes the security server provided as part of the DTOS
prototype. But you can replace the provided security server with your
own security server if you want to.

After you have created your new security server, you install it with the
following copy command:

cp <your security server binary> /mach_servers/security_server

The copy command replaces the current security server in the
/mach_servers directory with your private security server.

Overview of Building a Security Database 30 September 1996 - 3-5

Files that Make Up a DTOS Security Database

The security server must read two files to perform its functions:

o database_file

This file contains type enforcement information which is part of the
system security database and includes the security attributes (domains,
types, levels, categories, and users) that are the components of security
contexts, and provides the information necessary to complete
context/SID conversions. The database_file comes directly from the
main.db file.

o permissions_file

This file contains permissions for subject/object pairs. There are
several.txt files that get concatenated and converted to machine-
readable form. The set of all permissions that are defined by the
concatenated .txt files is contained in the permissions_file. This set of
security permissions is described in more detail in the following two
topics.

Overview of Building a Security Database

In the previous topic we said that two files make up a security database:
the database_file and the permissions_file. These two files are built from
several user-modifiable source files. The database_file is built from the
main.db file and the permissions_file is built from several .txt files. To
build a security database, you must change or create the source files in
your working directory and then install these changes to the database_file
and the permissions_file. After you have built the security database, you
have the option of loading it or saving it for future use.

The following overview procedure lists the main steps required to build a
security database and load this new security policy.

3-6 Chapter 3 - Building Security Databases - 30 September 1996

1. Modify the main.db file as needed to create (or delete) any domains,
tasks, and users.

See the topics later in this chapterCreating a New Domain, Creating a
New Task, andAdding a User.

2. Modify the .txt files as needed to add (or remove) permissions for
subject/object pairs.

See the topics later in this chapterSet of Security Permissions,
Relationship of Subject/Object Pairs, MLS Implementation, Adding or
Removing Permissions, andControlling Communications Between
Domains.

3. Make and copy the security database files to the appropriate directory.

In the directory:~dtos/build_area/src/mk/dss/security-database

Type the following:

gmake
cp main.db /mach_servers/database_file
cp av.db /mach_servers/permissions_file

Thegmake command creates a new av.db file from the set of .txt files.
This av.db file contains the permissions converted into bit strings (that
is, into a format that is readable by the security server).

The two copy (cp) commands replace the current security database
files in the /mach_servers with the new, modified files. You can specify
a directory other than /mach_servers, but you must use the file names
database_file and permissions_file.

Note: You can create and save as many security databases as you
need, but you must store each in its own directory. You can then load
the security policy of your choice (see the next step).

Overview of Building a Security Database 30 September 1996 - 3-7

4. (Optional) Load and use the new security policy.

From the command prompt or from a program, issue the following
command:sync;reload-policy <directory>

where: <directory> specifies the directory that contains the base
directory in which the security policy (database_file and
permissions_file) reside. Andsync causes all filesystem updates to be
written to disk before the new policy is loaded.

Note: The directory must be specified in the Mach microkernel device
form. This means that you must specify the disk partition in the
directory name. For example, if disk partition /dev/sd0e is mounted on
/usr, and the policy is in directory /usr/policies/policy1, then the
reload-policy command would be called like this:

sync;reload-policy /dev/sd0e/policies/policy1

The rest of this chapter gives you background and reference information
for performing these tasks. In preparation for building security databases,
you should also read theDTOS Kernel and Security Server Software
Design Document (refer toBibliography item number 3) and theDTOS
Demonstration Software Design Document (refer toBibliography item
number 5).

3-8 Chapter 3 - Building Security Databases - 30 September 1996

Set of Security Permissions

Four types of .txt files contain the various security permissions that are
linked together to build the permissions_file.

The following figure summarizes the set of all permissions that the
security server accesses via the permissions_file.

1. aidv.txt

The aidv.txt file indicates which permissions are related to the
authentication ID (AID). For each kernel managed objects, such as
task_port or thread_port, a list of permissions is specified. For each of

Structure of the permissions_file

init-av.txt

op-av.txt

fs-av.txt

<filename>.txt

<filename>.txt

.

.

.

(<filename> = user-specified file name)

permissions_fileav.db

aidv.txt

Set of Security Permissions 30 September 1996 - 3-9

these permissions, the Security Server will verify that the
authentication ID is consistent with other other security information.

2. init-av.txt

The init-av.txt file represents initial permissions pre-loaded into the
access vector cache (AVC) by kernel code. These permissions, or
access vectors, are encountered before the system is initialized to the
point that it can perform security server interactions. After the system
is up and running, the kernel caches all access vectors received from
the security server.

The permissions contained in init-av.txt are listed in Appendix B.

3. op-av.txt

This file contains the permissions that are needed to control normal
system operations. This includes Kernel Subject, UNIX Subject, and
Security Server Subject permissions.

The permissions contained in op-av.txt are listed in Appendix B.

4. fs-av.txt

This file contains the permissions that control interaction with the
filesystem. The fs-av.txt file actually contains filesystem permission
macros that expand into full file permissions.

Additional information on file permissions is given later in this
chapter.

5. User-written .txt files

By creating additional .txt files, you can add application-specific
access control rules. These user-written .txt files are concatenated into
the permissions_file along with the standard permissions files (items
1-3 above). This allows the security server to know about and handle
these user-specified permissions.

Note: If you need to add permissions to an SSID/OSID pair that already
exists in one of the previous .txt files, then those files should be modified
instead of creating a new .txt file. If the latter route is taken, the database

3-10 Chapter 3 - Building Security Databases - 30 September 1996

file build process will detect duplicate SSID/OSID pairs and will not
complete succesfully.

Important: If you create new .txt files, you must make two
modifications to the Makefile file in your working directory to add
information on these new files:

1.) Locate and change the “av_db =” line to add the names of the new
files:
av_db = init-av.db op-av.db fs-av.db <filename>-av.db
where: <filename> is the user-specified filename of the source .txt file

2.) Add the following lines for each new .txt file. (The easiest way is to
copy the fs-av entry and then replacefs with the user-specified file
name<filename>:

<filename>-av.db: <filename>-av.m4 $(av_h)
<tab>calc-av.pl $(av_h) <filename>-av.m4 > <filename>-av.db

<filename>-av.m4: <filename>-av.txt database_macros.m4
<tab>m4 <filename>-av.txt > <filename>-av.m4

Additional information on creating and modifying .txt files is presented in
sections: Adding/Removing Permissions for a Subject/Object Pair, and
Setting up permissions examples.

Relationship of Subject/Object Pairs 30 September 1996 - 3-11

Relationship of Subject/Object Pairs

The security permissions that are set up in the .txt files specify what
subjects can do to objects. All of the specific permissions must be set up
to define what a particular subject can do to a particular object.

Subjects and objects have security IDs (SIDs). An object security ID
(OSID) can be derived from a subject security ID (SSID), or, in the case
of root objects, an OSID can be unrelated to any subject.

The four kinds of security IDs are:

• Subject SID (SSID)

• SID related to subjects

• Root object SID

• Object SID related to root objects

(Please see the topic that follows,An Example Subject/Object
Relationship, for more information on how the OSID is derived from the
SSID.)

Each of the .txt file types contain permissions for multiple subjects. For
example, init-av.txt defines permissions for the Kernel Subject, the
Bootstrap Subject, Startup Subject, Unix Subject, and Security Server
Subject.

The .txt file structure is further broken out by defining all of the objects
that each subject is permitted to act on and what actions may be
performed.

Finally, the set of permissions may be different depending on the MLS
relationship between the subject and object (see the following topic,MLS
Implementation, for more information).

3-12 Chapter 3 - Building Security Databases - 30 September 1996

An Example Subject/Object Relationship

As an example, let’s look at the first subject/object relationship under the
UNIX Subject in the init-av.txt file. (While going through this example,
you should view the init-av.txt and main.db files from the DTOS Release
Materials.)

The following lines in the file identify the subject/object relationship:

Unix/unix task task_port
domain:Unix
type:unix_task_port

In the example above,#Unix/unix task task_port is a comment,
domain:Unix indicates a subject running in the UNIX domain, and
type:unix_task_port indicates an object (a task port) derived from a
subject in the UNIX domain.

To fully understand how the OSID is derived from the SSID, it is also
necessary to look at the statements that define the UNIX domain in the
DOMAINS section of the main.db file:

LONG_NAME: Unix
SHORT_NAME: unix
ID:2
PRIVILEGE: 1
DONE

TheLONG_NAME: Unix identifies the domain and corresponds to
domain:Unix in the init-av.txt file. TheSHORT_NAME: unix is used as
the modifier for the type. (TheID is discussed later in this chapter under
the topicCreating a New Domain.)

So, by looking again at thetype:unix_task_port statement in the init-
av.txt file, we see thatunix represents the domain short name from which
task_port is derived, andtask_port represents the data type of the derived
object.

Relationship of Subject/Object Pairs 30 September 1996 - 3-13

This data type also determines which service permissions are defined for
the particular SSID/OSID pair. In this example, the data type is task_port.
Therefore, only task_port service permissions are appropriate. (Refer to
Appendix B for additional information on service permissions grouped by
data types.)

Now that the subject and object have been defined, We need to process
some administrative details. The next parameter is the CACHE_FLAGS
parameter. This allows the database composer to specify SSID/OSID
pairs to be added or flushed from the the cache when this policy is loaded.
The format is as follows:

CACHE_FLAGS:(level:cat[,cat,...][[aid]]-> level:cat[,cat,...][[aid]]=cache_op)

The first level:cat is the level and category of the subject sid pair, where
the second is the level and category of the object. Thecache_opis one of
the following keywordswired, load, clear, flush and represents which
cache operation to perform when loading the policy. The cache operations
have the following meanings:

wired: wires the specified pair into the cache

load: adds the specified pair into the cache, but not wired

clear: removes the pair from cache, even if it wired

flush: flushes the pair from cache if it is not wired

The next parameter is the override vector. The override vector is used to
specify which permissions, that are duplicated by an existing security
mechanism, shall be overridden by the policy represented in this text file.
For more details on how to use the override vector, consult the file
~dtos/build_area/src/lites_current/README.files, under the section on
“File service override permissions”. The format of the override line, is the
same as the perms line described later.

Next, the full list of permissions must be specified. These permissions are
grouped under four dominance relationships, as discussed in the next
topicMLS Implementation.

3-14 Chapter 3 - Building Security Databases - 30 September 1996

This building of subject/object pairs through the relationship of domain to
type (that is SSID to OSID) is fundamental to modifying and creating .txt
files in order to implement security the way you need it for your
applications.

MLS Implementation 30 September 1996 - 3-15

MLS Implementation

Multi-level security, or MLS, is basically implemented via four possible
sets of permissions between subject/object pairs:

1. dom_perms

These are the permissions granted when the subject level strictly
dominates the object level. That is, the subject level is at a strictly
higher security level than the object level.

2. domby_perms

These are the permissions granted when the object level strictly
dominates the subject level. That is, the subject level is at a strictly
lower security level than the object level.

3. eq_perms

These are the permissions granted when the subject level and the
object level are equal. That is, the subject level is at the same security
level as the object level.

4. incomp_perms

These are the permissions granted when the subject level and the
object level are incomparable. An example of incomparable is a
subject and an object with the same security level but different
compartments.

Permissions for subject/object pairs are specified in the .txt files in the
following format:

domain:Unix
type:unix_reg_file
cache_flags:
override:

perms:av_can_send,fsv_truncate,fsv_visible,fsv_exec,fsv_write
perms:fsv_create,fsv_link,fsv_unlink,fsv_append
perms:fsv_read,fsv_chflags,fsv_chmod,fsv_chown
dom_perms:
domby_perms:-fsv_link,+fsv_visible

3-16 Chapter 3 - Building Security Databases - 30 September 1996

incomp_perms=fsv_exec,fsv_read
notify:fsv_exec,fsv_link

Theperms lines list the permissions relevant to this domain/type pair.
Each permission is assigned an MLS flow of read, write, neutral, or
private as specified in the file mls_flow.txt. A read flow means that the
eq_perms and dom_perms vectors can have this permission. A write flow
means that the eq_perms and the domby_perms vectors can have this
permission. A neutral flow means that the eq_perms, dom_perms and
domby_perms vectors can have this permission. A private flow means
that only the eq_perms vector can have this permission. The
incomp_perms vector does not get any permission, by default. The
dom_perms line is empty, indicating that it is not modifying the default
MLS flow. It could have been left out in this case. The domby_perms line
specifies that the permissionsfsv_link must be removed andfsv_visible
added to what the vector normally gets as determined by the MLS flow.
The incomp_perms line indicates that this vector contains exactly the
permission(s) listed, regardless of what the MLS flow says. Note that
when you are completely overriding MLS, the ‘=’is used and the
permissions are not prefixed with a ‘+/-’.

Thenotify line specifies the permissions that go into the 4 notification
vectors. As with permission vectors, there are 4 notification vectors,
corresponding to the 4 MLS relationships. Whenever a subject causes a
permission check to go off and the corresponding bit in the notification
vector is set, the Security Server will be notified. This feature allows
history-based security policies to keep track of which permissions have
been used. By default, all 4 notification vectors will contain the
permission(s) listed on thenotify line. However, when given the-f option,
the notification vectors will also follow the read/write flow. This is
accomplished by setting the variablentfy_option in the Makefile to-f.

The 4 permission vectors and the 4 notify vectors generated from the
above example, assuming the option-f was specified, are as follows:

eq_perms:av_can_send,fsv_truncate,fsv_visible,fsv_exec,fsv_write
eq_perms:fsv_create,fsv_link,fsv_unlink,fsv_append
eq_perms:fsv_read,fsv_chflags,fsv_chmod,fsv_chown
dom_perms:av_can_send,fsv_visible, fsv_exec,fsv_read
domby_perms:av_can_send,fsv_create,fsv_unlink,fsv_append

MLS Implementation 30 September 1996 - 3-17

domby_perms:fsv_truncate,fsv_visible,fsv_write
domby_perms:fsv_chflags,fsv_chmod
incomp_perms:fsv_stat,fsv_read
eq_notify:fsv_exec,fsv_link
dom_notify:fsv_exec
domby_notify:fsv_link
incomp_notify:

This example uses the following MLS flow definition

Please refer to Appendix B for a summary of the permissions defined in
DTOS.

Permission MLS Flow

av_can_send neutral

fsv_create write

fsv_link write

fsv_unlink write

fsv_append write

fsv_truncate write

fsv_visible read

fsv_exec read

fsv_write write

fsv_read read

fsv_chflags write

fsv_chmod write

fsv_chown private

3-18 Chapter 3 - Building Security Databases - 30 September 1996

Creating a New Domain

If you want to create a new domain on the system, database modifications
are required: the new domain with all of its object permissions must be
created as well as any subject-to-subject permissions that you need to
create (for example, for the kernel to be able to read the new domain’s
task port). The unix_proc macro automates creating the new domain and
its required interactions with the UNIX server.

This procedure creates a new domain and gives it the permissions it needs
to run as a UNIX process.

1. Modify the main.db file to add the name and ID information for the new
domain.

Open the main.db file using the editor of your choice. Locate the
SECTION: DOMAINS portion of the file. You must enter a
LONG_NAME, SHORT_NAME, ID and PRIVILEGE for the new
domain. (Refer to the topicRelationship of Subject/Object Pairs for
more information.) Make sure that the LONG_NAME,
SHORT_NAME, and ID number you specify for the new domain are
not already assigned to another domain. If this is privileged domain
then, set the PRIVILEGE field to 1, otherwise it should be 0.

For our example in this procedure, let’s add the following lines to
main.db:

LONG_NAME: My_appl
SHORT_NAME: mine
ID: 50
PRIVILEGE: 0

DONE

2. Modify the op-av.txt file to add the unix_proc macro to the file.
(Optionally, you could make this change to a user-created .txt file.)

unix_proc (Unix,unix,My_appl,mine)

In the unix_proc statement,Unix,unix is always the same and
specifies the UNIX server.My_appl,mine specifies the new domain

Adding/Removing Permissions for a Subject/Object Pair 30 September 1996
- 3-19

(in our example) that needs the permissions required to run as a UNIX
process. This LONG_NAME/SHORT_NAME combination would
match whatever you specified for the new domain in the main.db file.

3. Make and copy the database files to the appropriate place

In the directory:~dtos/build_area/src/mk/dss/security-database

Type the following:

gmake
cp main.db /mach_servers/policies/base/contexts.db
cp av.db /mach_servers/policies/base/permissions.db

Thegmake command creates a new av.db file. The two copy (cp)
commands replace the current security policy with the new, modified
policy.

Note: The database changes do not become effective until you reload
the security policy. Refer to the topicOverview of Building a Security
Database earlier in this chapter.

Adding/Removing Permissions for a Subject/Object Pair

When you use the unix_proc macro to create a new domain, it adds a
default set of permissions for that domain. For your application security
purposes, it may be necessary to modify these default permissions by
adding or removing permissions.

To modify permissions, you must locate the .txt file that contains the
subject/object permissions you want to change. You can then remove an
existing permission or add a new permission.

After modifying subject/object permissions, be sure to run gmake to
create a new av.db file and then copy av.db to the permissions_file.

3-20 Chapter 3 - Building Security Databases - 30 September 1996

Controlling Communications Between Domains

In order for domains to communicate, they must explicitly be given the
privilege to talk to each other. When you create a new domain in the
system, it is necessary to determine what other domain(s) the new domain
needs to communicate with and create the appropriate port permissions to
allow this communication.

Earlier, we discussed using the unix_proc macro to create default
permissions for a new domain. When the unix_proc macro runs, it
automatically defines several sets of permissions between the new
domain and the UNIX server domain. However, if you want to create two
new domains and have them be able to talk to each other, you must
manually set up the permissions required to provide appropriate security
for this inter-domain communication. First, use the procedure described
underCreating a New Domain to create both of the new domains with the
permissions required to communicate with the UNIX server domain.
Then edit the appropriate .txt files to set up all of the permissions required
for the two new domains to communicate with each other. The following
examples will help you get started.

Controlling Communications Between Domains 30 September 1996 - 3-21

Setting Up Permissions Examples

For these examples, let’s assume that you want Domain1 to be able to
communicate with Domain2 through PortX. A port can have many
senders but only one receiver. And communication through a port only
flows one direction. So the way to allow a subject running in Domain1
(Subject1) to communicate with a subject running in Domain2 (Subject2)
is to make Subject1 a sender to PortX and Subject2 a receiver of PortX.

In the first example, PortX is set up as a port derived from Domain2. The
permissions may be set up as follows:

Domain 1 .txt Setup Domain 2 .txt Setup

domain: Domain1 domain: Domain2
type: domain2_port type: domain2_port
eq_perms: eq_perms:

av_hold_send, av_hold_receive,
av_can_send av_can_receive

In the next example, PortX is set up as a root object that is unrelated to
any subject. The permissions may be set up as follows:

Domain 1 .txt Setup Domain 2 .txt Setup

domain: Domain1 domain: Domain2
type: any_name type: any_name
eq_perms: eq_perms:

av_hold_send, av_hold_receive,
av_can_send av_can_receive

The DTOS Demonstration System provides a good example of
communication between domains. It features a Database Server managing
a database of patients’ records and interacting with the Security Server
and several clients that are running in different domains. Refer to the
DTOS Demonstration Software Design Document for additional
information. Also, look at the Demo database for examples of how to get
domains to interact.

3-22 Chapter 3 - Building Security Databases - 30 September 1996

The following directory holds the .db and .txt files for the DTOS
Demonstration System:

/home/dtos/build_area/src/applications/demo/security-database

Creating a New Type

Root objects, which are not derived from a subject’s domain, need to be
explicitly defined in the security database. This means they must be added
to the file main.db. Examples of root objects would be files, devices, or
ports that you want to label with specific SIDs.

To create a new type, do the following:

1. Modify the main.db file to add the name and ID information for the new
type

Open the main.db file using the editor of your choice. Locate the
SECTION: TYPES portion of the file. You must enter a
LONG_NAME, SHORT_NAME, and ID for the new type. The
LONG_NAME and SHORT_NAME can be any names you want.
Make sure that the ID number you specify for the new type is not
already assigned to another type. TRANSITION_DOMAIN is the
domain that a subject will transition to as a result of executing an
object of type LONG_NAME.

As an example, you could add the following lines to main.db for a new
root type:

LONG_NAME: device_xx{must be a unique name}

SHORT_NAME: dx{must be a unique name}

ID: nnn{must be unique number}

TRANSITION_DOMAIN: domain_name

SERVICES:
PERMISSIONS:
DONE

The SERVICES: and PERMISSIONS: are not currently used.

Creating a New Type 30 September 1996 - 3-23

2. Make and copy the database files to the appropriate place

In the directory:~dtos/build_area/src/mk/dss/security-database

Type the following:

gmake
cp main.db /mach_servers/policies/base/contexts.db
cp av.db /mach_servers/policies/base/permissions.db

Thegmake command creates a new av.db file.

The two copy (cp) commands replace the current security database
files in the /mach_servers directory with the new, modified files. You
can specify a directory other than /mach_servers, but you must use the
file names database_file and permissions_file.

Note: The database changes do not become effective until you reload
the security policy. Refer to the topicOverview of Building a Security
Database earlier in this chapter.

3-24 Chapter 3 - Building Security Databases - 30 September 1996

Adding a New User

To add a new user, you specify the user’s name, ID, the domains that he or
she can be in, and the list of security levels that he or she can operate at.
To create a new user, do the following:

1. Modify the main.db file to add the name, ID, domains, and security levels
information for the new user

Open the main.db file using the editor of your choice. Locate the
SECTION: USERSportion of the file. You must enter NAME, ID,
DOMAINS, and LEVEL information for the new user. The user
NAME and ID must match the user name and user ID set up in the
password file (/etc/passwd). Also specify the domains and security
levels allowed for the new user.

As an example, you could add the following lines to main.db for a new
user:

NAME: j_smith {must match user name in password file}

ID: 10 {must match user ID in password file}

DOMAINS: Unix, user, security, nodomain
LEVELS: unclassified: none; confidential: nato; secret: nato,noforn
DONE

2. Copy main.db file to the appropriate place

In the directory:~dtos/build_area/src/mk/dss/security-database

Type the following:

cp main.db /mach_servers/database_file

You can specify a directory other than /mach_servers, but you must
use the file name database_file.

Note: The database changes do not become effective until you reload
the security policy. Refer to the topicOverview of Building a Security
Database earlier in this chapter.

Structure of the Security ID 30 September 1996 - 3-25

Structure of the Security ID

There are four kinds of security IDs (SIDs):

1. Subject SID (SSID)

These SIDs are associated with subjects.

2. SID related to subjects

These SIDs are derived from subject SIDs.

3. Root Object SID

These SIDs are associated with root objects which are not related to
any subject.

4. Object SID related to root objects

These SIDs are associated with objects which are related to stand-
alone root objects.

Security Contexts

As we said earlier in this chapter, security contexts represent human
readable security IDs. There is a security context format corresponding to
each of the four kinds of security IDs.

Security contexts can contain the following four fields:

1. Domain/Type

If this is a subject security context, then this field defines the domain
associated with the subject (that is, the domain the user is running in).
However, for an object security context (derived object, root object, or
object related to a root object), this field contains the type associated
with the object.

3-26 Chapter 3 - Building Security Databases - 30 September 1996

2. Level

This is the security level associated with a subject or an object. Level
is sometimes referred to as base level. Level and Categories together
define the full security level.

3. Categories

Categories describe the compartments of the associated security level.
You can specify up to 11 categories in a security context.

4. Classifier

This field is present only in security contexts of derived objects.

The following security context formats correspond to each of the four
kinds of security IDs. The values that can be specified for the fields in
these contexts are the values available in the main.db file (except for the
classifier field for derived object contexts).

Security Context for Subjects

“Domain:Level:Category 1, Category 2, . . . , Category N”

Security Context for Objects Related to Subjects (Derived Objects)

“Domain:Level:Category 1, Category 2, . . . , Category N:Classifier”

Security Context for Root Objects

“Type:Level:Category 1, Category 2, . . . , Category N”

Security Context for Objects Related to Root Objects

“Type:Level:Category 1, Category 2, . . . , Category N:Classifier”

Note: Derived subjects/objects can have short security contexts where the
Classifier field is omitted altogether.

Structure of the Security ID 30 September 1996 - 3-27

The following points are important for the context formats shown above:

• Subject contexts have can have no Classifier field or one which indicates
the kernel operating on the behalf of another subject (kern_derived_sid)

• Root object contexts have a Type field for which possible values are the
TYPES listed in the main.db file.

• The valid values for domains, levels and categories are also listed in the
main.db file.

• Derived object contexts have a Classifier field whose valid string values can
be found in ~dtos/build_area/src/mk/dss/server-scc/ss_functions.c, in the
array type_lookup_p. The corresponding numerical classifier values are
defined in ~dtos/build_area/src/mk/kernel/sys/security_private.h

3-28 Chapter 3 - Building Security Databases - 30 September 1996

Obtaining a User-Specified SID

Using the context information above, you should obtain a SID from the
security server. After these SIDs are obtained, you can supply them as
arguments to calls such as task_create_secure or
mach_port_allocate_secure.

To do this, you must know your user security context, you must create the
desired context using one of the context formats shown above, and you
must then convert the security context to a security ID using the function
SSI_context_to_mid.

However, for some servers, such as the file system, the security context
may be passed directly to the interface calls(e.g. mkdir_secure), thus
bypassing the conversion stop

For additional information on the structure of the security ID, refer to
Section 3.2.5, Security ID, in theDTOS Kernel and Security Server
Software Design Document.

File Services 30 September 1996 - 3-29

File Services

Please consult the file ~dtos/build_area/src/lites_current/README.files.

Network Services

Please consult the file
~dtos/build_area/src/lites_current/README.network

Network Security Services

Please consult the file ~dtos/build_area/src/apps/netsecurity/README

Security Association Database

Please consult the file ~dtos/build_area/src/apps/sadb/README

3-30 Chapter 3 - Building Security Databases - 30 September 1996

30 September 1996 - 4-1

4
DTOS Demonstration Software

The Demonstration Software included with the DTOS prototype
simulates a hospital database. In this database different classes of hospital
staff have access to different fields within patient records. For example, a
nurse and a doctor may each be able to read the medical prescriptions for
a patient, but only the doctor is permitted to write a prescription. Refer to
theDTOS Demonstration Software Design Document (Bibliography item
number 5) for detailed demo scope and design information.

This chapter explains how to install and run the DTOS Demo, gives an
overview of the DTOS Demo System structure, and provides background
information useful for creating your own TCB extensions programs that
take advantage of the security provided by the DTOS prototype.

4-2 Chapter 4 - DTOS Demonstation Software - 30 September 1996

How to Install and Run the DTOS Demo

When you ran theInstalling DTOS procedures described in Chapter 2, the
DTOS Demo software was installed as part of the DTOS prototype
installation. However, there are some additional things you need to do
before running the Demo.

Build the Demonstration Package

To build the Demonstration package, follow these steps:

1. Change the current directory to the DTOS demo directory.

To change your current directory, type:

cd ~dtos/build_area/src/applications/demo

2. Build the DTOS Demonstration

Type:gmake

Make and Copy the Demo Database Files

Follow these steps to make the Demo security database files and copy
these files to the appropriate place.

1. Remove the old binaries.

Change your current directory to the demo directory, if you are not
already in this directory. To change your current directory, type:

cd ~dtos/build_area/src/applications/demo

To remove the old binaries, type:

gmake clean

How to Install and Run the DTOS Demo 30 September 1996 - 4-3

2. Rebuild the binaries.

To change to the security-database directory under /demo, type:

cd security-database

To create av.db, type:

gmake

3. Copy the security database files to the appropriate directory.

In the directory:

~dtos/build_area/src/applications/demo/security-database

Type the following:

cp main.db /mach_servers/database_file
cp av.db /mach_servers/permissions_file

Reload the Demo Security Policy

From the command prompt or from a program, issue the following
command:sync;reload-policy <directory>

where: <directory> specifies the directory that contains the security
policy (database_file and permissions_file) you want to load
(/mach_servers).

Note: The directory must be specified in the Mach microkernel device
form. This means that you must specify the disk partition in the
directory name. For example, if disk partition /dev/sd0e is mounted on
/usr, and the database files are in directory /usr/mach_servers, then the
reload-policy command would be called like this:

sync;reload-policy /dev/sd0e/mach_servers

Label the DTOS Demo Files

The demo files need to be labeled with the appropriate contexts so that
they can be run in the desired domains.

4-4 Chapter 4 - DTOS Demonstation Software - 30 September 1996

1. Change the current directory to the DTOS demo directory, if you are not
already in this directory.

To change your current directory, type:

cd ~dtos/build_area/src/applications/demo

2. Label the demo files.

To label the files, type: gmake label

Run the DTOS Demo

1. Change the current directory to the DTOS demo directory, if you are not
already in this directory.

To change your current directory, type:

cd ~dtos/build_area/src/applications/demo/bin
mkdir database
cp ../sample_database/lea_veas database

2. Run the demo_exec program to start the DTOS Demonstration.

Type:demo_exec

The demo_exec program starts the database server, the tcb_extension
and several copies of the client program which represent different
client domains.

Refer to the file demo_howto for additional information on interacting
with the Demo after it is running. The demo_howto file is located in the
directory ~dtos/build_area/src/applications/demo/docs.

DTOS Demo Structure 30 September 1996 - 4-5

DTOS Demo Structure

The DTOS Demonstration Software emulates a hospital database where
there are several classifications of people who need to access selected
parts of patient records. Each of these database user classifications (client
tasks) is assigned a SID. So each classification is a different domain and
is allowed to request different data services. Whether or not access to
services is allowed is determined by the relationship between the client’s
security context and the security context associated with the database
server’s service port.

The DTOS Demonstration Software consists of four programs that are
depicted in the following figure and described below:

database_servertcb_extensions

TCB Domain Database DomainClient Domains

port

Doctor

Nurse

Admin

Accounting

Insurance

demo_exec

client program

p

o
r

t

DTOS Demo Structure

4-6 Chapter 4 - DTOS Demonstation Software - 30 September 1996

1. database_server

This database_server task takes a patient’s name and performs a read or a
write operation of the entire database record for the patient with that
name. This rudimentary database program creates a port with three
services: read entry, create entry, and replace entry. No access
permissions are checked within the database_server. However the only
subject allowed by the security policyto send to the database_server port
is the subject used by the tcb_extension. Therefore, service requests made
by client tasks actually get carried out indirectly through the
tcb_extension.

2. tcb_extension

This program provides the access controls to the database. The
tcb_extension holds the send right to the port created by the
database_server. It is the only subject that can send to the database_server
port. So the tcb_extension takes requests from the client programs and
performs database requests as needed.

The tcb_extension is where database related service checks take place.
The port used by clients to communicate with the tcb_extension is a root
object (that is, it has a defined SID assigned to it). Each client is permitted
a different set of services on the port. The service checks for this port are
performed within the tcb_extension according to an access vector
supplied in the service request message. This access vector is based on the
relationship between the client subject SID and the defined tcb_extension
port SID. This access vector is checked against a mask of bits that
correspond to the services provided by this port and represent each
possible service that the tcb_extension can perform. These mask bits are
defined by the DTOS Demonstration Software (refer to the topicCreating
TCB Extension Programs later in this chapter).

3. client

This program is the user interface to the hospital database. The same
program is used for all five classifications of users. That is, multiple
instances of the same client program run in different domains. The
domain in which this program runs determines which database operations

DTOS Demo Structure 30 September 1996 - 4-7

are permitted. For example it can run in the doctor, nurse, admin,
accounting, or insurance domains.

The client program’s SID indicates the domain in which it is running. The
client program requests a send right to the tcb_extension port in order to
communicate with the database_server. The client program is able to send
every possible request to the tcb_extension regardless of which domain it
is running in. However due to service checks within the tcb_extension,
only requests permitted for a given domain will succeed and be forwarded
to the database_server task.

The client program may be started stand-alone or under the control of the
demo_exec program.

4. demo_exec

The demo_exec program is provided to make the DTOS Demo easy to
use. The demo_exec starts the other Demo programs in their proper
domains and coordinates communications among these programs.

The demo_exec starts the database_server and the tcb_extension. It also
starts one copy of the client program for each user classification. It then
performs user interaction on behalf of each client.

The demo_exec program runs in the default user domain.

4-8 Chapter 4 - DTOS Demonstation Software - 30 September 1996

Permitted Client Services

Different client domains are allowed different levels of access to patient
database services. The following table shows the services that are allowed
for each client domain:

Client requests for the services shown in the preceding table are
submitted to the tcb_extension which provides the access controls to the
database. The following figure shows the services available to client
domains through the tcb_extension and database_server.

Client Domain Services Allowed

Doctor Read Admin, Read Vitals, Modify
Vitals, Append Vitals, Read
Diagnosis, Modify Diagnosis, Append
Diagnosis

Nurse Read Admin, Read Vitals, Modify
Vitals, Append Vitals, Read
Diagnosis

Administrative Create Record, Read Admin, Modify
Admin, Read Billings

Accounting Read Admin, Read Billings, Modify
Billings, Append Billings

Insurance Read Admin, Read Billings

DTOS Demo Structure 30 September 1996 - 4-9

Services in the TCB Extension are controlled by the policy, but the only
controls on the services provided by the database server is access to the
port.

The determination of whether of not a particular service is allowed for a
given client domain is determined according to an access vector that the
DTOS kernel inserts into the service request message. The following
topic,Creating TCB Extension Programs, discusses this concept in detail.

TCB
Extension

Database
Server

Services: Services:

Query
Replace
Create

Read Admin
Modify Admin
Read Billings
Modify Billings
Append Billings
Read Diagnosis
Modify Diagnosis
Append Diagnosis
Read Vitals
Modify Vitals
Append Vitals
Create Record

Doctor

Nurse

Admin

Accounting

Insurance

Services Available to Client Domains

4-10 Chapter 4 - DTOS Demonstation Software - 30 September 1996

Creating Trusted Applications

The conceptual background information presented here is intended to
help you write your own trusted applications. The tcb_extension program
supplied with the Demo takes advantage of the security features of the
DTOS prototype to provide control over service requests in the Demo
application. There are four pieces that together define the tcb_extension
(located in ~dtos/build_area/src/applications/demo/db_tcb_extension):

mig/tcb_extension.defs — defines the services provided and the
parameters for each service.

tcb_extensions.h — defines the format and meaning of access vectors
supplied by the security server to the kernel, which in turn supplies an
access vector to the tcb_extension for each service request. The access
vector format must include the Interprocess Communications (IPC) part
of the access vector in the proper place in the structure definition.

server.c — defines a structure that maps message IDs (service requests)
to service permission bits in the access vector.

mach_message_secure_server.c — This routine performs all of the
permission checks based on the information in the request message and
the information in the table supplied by server.c.

We will only discuss the permission checking aspects of these pieces.

Examining the structure of the tcb_extension files that are part of the
DTOS Demonstration Software will help you understand how service
checks have been implemented in the Demo. This background should
help you build your own secure applications. The approach described
here is one way of doing service checks in an application, but it is not the
only way. Please refer to the various files that are part of the Demo to
supplement the discussion that follows.

Note: It will probably not be necessary for you to change the
mach_message_secure_server routine, but you will probably need to add

Creating Trusted Applications 30 September 1996 - 4-11

this entire routine to your application. This routine is discussed later in
this chapter.

The Service Request Message

When a client requests a service, the Security Server calculates an access
vector that specifies whether the requested action is permitted. The access
vector computation is based on the subject SID of the requesting client
and the object SID for the port to which the request is being sent. Refer to
the main.db file that is part of the DTOS Demo materials for a complete
list of Domains and Types (root objects). The Security Server passes the
calculated access vector to the DTOS Kernel which inserts the access
vector into the service request message along with the sender (subject)
SID.

The following figure shows a partial service request message format.

Reply Port

Message ID

Sender ID *

Access Vector *

Patient Name
...

* Supplied by the DTOS Kernel

Service Request Message Format (partial)

4-12 Chapter 4 - DTOS Demonstation Software - 30 September 1996

In the partial service request message format shown here, thePatient
Name is the field that the database keys off, theReply Port is a derived
object needed for a response, and theSender ID is the SSID of the
requesting client. But the fields of most importance to our discussion are
theMessage ID and theAccess Vector.

Message ID

The Message ID is a number that corresponds to the service being
requested. The tcb_extension checks (by means of
mach_message_secure_server) to see what service is specified by the
message ID and if the bit that corresponds to the requested service is set
in the Services portion of the access vector. If there is a match, the service
is permitted.

There is a Mach tool (mig) that generates code for messaging between
clients and servers. You define services in a data file (<name>.defs) that is
supplied to mig, and mig will then build message IDs to correspond to
these services.

The contents of the <name>.defs file not only define available services,
but also determine the numbering of message IDs (by the order that
services appear in the .defs file). A portion of the file tcb_extension.defs is
shown below as a sample. Please note that the first line in the file
determines the base number for message IDs (in this case, 900000). Then
the order in which services appear determines their message IDs. In our
example, we show the first three (of twelve) services that are in the file.
These three services have the following message IDs: create (900000),
read_admin (900001), modify_admin (900002).

In the demo directory, you will find a subdirectory for each of the four
main programs that make up the DTOS Demo. And each of these
program directories has a /mig subdirectory. These /mig subdirectories
contain the .defs input files that describe the client-server services as they
are set up in the DTOS Demo. Please view one of these .defs files as a
sample. The following example is from the file tcb_extension.defs that is
located in the directory
~dtos/build_area/src/applications/demo/db_tcb_extension/mig.

Creating Trusted Applications 30 September 1996 - 4-13

subsystem Demo_Database_TCB_EXT 900000;

#include <mach/std_types.defs>
#include "../../include/demo.h"

type name_data_t = array[*:MAX_DB_NAME_SIZE] of char;
type data_buffer_t = array[*:MAX_DB_RECORD_SIZE] of char;

import "./tcb_extension.h";

userprefix TCB_;
serverprefix tcb_;

routine create(
 DBPort : mach_port_t;
 Name : name_data_t;
 data : data_buffer_t;
 out status : int
);

routine read_admin(
 DBPort : mach_port_t;
 Name : name_data_t;
 out data : data_buffer_t
);

routine modify_admin(
 DBPort : mach_port_t;
 Name : name_data_t;
 old_record : name_data_t;
 new_record : name_data_t;
 out status : int
);

Note: For a service specified by the Message ID to be completed, the
tcb_extension must also be able to hold a send right to the reply port
specified in the service request message. As part of the message
processing, the DTOS kernel checks if the tcb_extension can hold this
send right.

4-14 Chapter 4 - DTOS Demonstation Software - 30 September 1996

Access Vector

As we stated earlier, when a client requests a service, the Security Server
calculates an access vector that will control whether or not the requested
action is permitted, and the DTOS Kernel inserts this access vector into
the service request message.

This 64-bit access vector contains two fields: the IPC field and the
Services field.

The IPC, or Interprocess Communication, portion of the access vector
contains the av permissions (such as av_hold_send, av_can_send,
av_can_receive, etc) that control communication between the subject and
the port. The DTOS Kernel performs permission checks based on the IPC
portion of the access vector.

The Services portion of the access vector determines which database
services are allowed for the subject domain. The tcb_extension performs
permission checks based on the Services portion of the access vector. The
Services field contains a bit for each of the tcb_extension services that
were shown earlier under the topicPermitted Client Services. There is
one access vector per domain/type pair which specifies all the services
allowed for that domain.

This is a good time to open the file:
~dtos//build_area/src/applications/demo/security_database/demo_av.txt
and study its contents, if you have not done so already. This file specifies
the IPC and Services permissions for all of the subjects (domains) that
exist in the DTOS Demo.

IPC Services

Access Vector Format

Creating Trusted Applications 30 September 1996 - 4-15

To see where the permissions names used in the demo_av.txt file come
from, view the contents of the tcb_extensions.h file (located in
~dtos/build_area/src/applications/demo/db_tcb_extension). This file
contains the demo_services permissions that are available for specifying
permissions in the demo_av.txt file. If you were to remove a
demo_services permission from this file, that service would not longer be
available to the DTOS Demo application. Conversely, you could also add
new demo_services permissions to this file.

Checking Services Bits In the Access Vector

One final piece of service request processing to look at is the code that
checks the service bits in the access vector against the contents of the
message ID to determine if the service is permitted.

There is a standard library function, mach_message_server, that listens
for messages on a port and then routes the contents of messages to
appropriate routines for processing according to the message ID.

The DTOS prototype includes a secure version of this function
(mach_message_secure_server) which resides in the /db_tcb_extension
directory of the DTOS Demo:

~dtos/build_area/src/applications/demo/db_tcb_extensions

The mach_message_secure_server routine performs permission checking
after receipt of a message according to the service permission/message ID
map structure that is passed to it from server.c. A portion of the server.c
file is shown below. This sample shows the data structure that provides
the service mask bits which are compared to the access vector, and shows
the data structure that is passed to mach_message_secure_server and used
for permission checking after receipt of a message.

4-16 Chapter 4 - DTOS Demonstation Software - 30 September 1996

/*
 * This data structure provides a mask of what bits
 * Must be set in the access vector for this service
 * (create, read_admin, etc) to be allowed.
 * The access vector is obtained from the message where it was
 * left by the kernel after computing the callers sid to the
 * tcb_extension port sid.
 */

unsigned long long int permission_msgid_map[] = {
 0x10000ULL, /* create delete */
 0x20000ULL, /* read_admin */
 0x40000ULL, /* modify_admin */
 0x80000ULL, /* read_billings */
 0x100000ULL, /* modify_billings */
 0x200000ULL, /* append_billings */
 0x400000ULL, /* read_diagnosis */
 0x800000ULL, /* modify_diagnosis */
 0x1000000ULL, /* append diagnosis */
 0x2000000ULL, /* read_vitals */
 0x4000000ULL, /* modify_vitals */
 0x8000000ULL /* append_vitals */
};

/*
 * This data structure is a wrapper for the above structure and
 * is passed to mach_msg_secure_server to be used for permission
 * checking after receipt of a message.
 */

struct msg_id_to_av_mask_data_t msg_id_to_av_mask =
 {12, TCB_MSGID_BIAS, &permission_msgid_map[0]};

The service permission/message ID map structure includes a range of
valid message IDs and an array of access vectors (one access vector per
message ID). Each of the access vectors in the array has one or more
service permission bits set. For a service request to be permitted, the bit
that is set in the message ID to specify that service must have the
corresponding service permission bit set in the access vector. When this is
the case, mach_message_secure_server will permit the service requested
by the subject.

Creating or Deleting Permissions 30 September 1996 - 4-17

Creating or Deleting Permissions

In Chapter 3, Building Security Databases, we discussed adding or
removing permissions for a subject/object pair by modifying the contents
of the appropriate .txt file. When you add or remove a permission for a
subject/object pair, you are working with a permission that already exists.
To complete the picture of working with permissions and building
applications, we must also discuss how to create permissions. (To delete
permissions, you follow the same process, but you remove the existing
permissions that you no longer want to have available.)

There are two reasons for creating permissions:

1. You are creating a new security server.

2. You are adding an application that requires security controls.

For example, if you were to write a new file server, the permissions you
created would determine if subjects can request a specific service of the
file server.

To create permissions for a new security server or application, you must
create/modify the header file to add the new permissions and then update
the database so that these changes take effect.

Creating/Modifying the Header File

There is one header (.h) file per security server. This file defines access
vectors and contains the permissions that the security server can use. You
can give this .h file any name you want (<filename>.h). It is useful to refer
to the tcb_extensions.h file in the DTOS Demo software when you are
learning to create or modify a header file.

Earlier in this chapter we discussed the access vector format. We said that
the access vector has an IPC portion and a Services portion. We also said
that the IPC portion of the access vector contains permissions that control
communication between the subject and the tcb_extension service port,

4-18 Chapter 4 - DTOS Demonstation Software - 30 September 1996

and that the Services portion determines what services are allowed for the
subject domain.

The following sample from the tcb_extensions.h file shows the structure
that defines the services allowed in the DTOS Demo.

struct demo_services
{

 unsigned char demo_create_delete_record:1,
demo_read_admin:1,
demo_modify_admin:1,
demo_read_billings:1,
demo_modify_billings:1,
demo_append_billings:1,
demo_read_diagnosis:1,
demo_modify_diagnosis:1;

 unsigned char demo_append_diagnosis:1,
demo_read_vitals:1,
demo_modify_vitals:1,
demo_append_vitals:1,
demo_pad:4;

 unsigned char unused[4];
};

When you are building (or modifying) a header file, it must contain a
structure similar to the sample above for the user-defined service
permissions that you are creating for your application/security server.

Creating or Deleting Permissions 30 September 1996 - 4-19

This next sample (also from the tcb_extensions.h file) shows the structure
that defines the IPC permissions in the DTOS Demo.

struct demo_access_vector
{
 /* IPC permissions.
 Must be the same as the IPC permissions defined in
 mk/kernel/sys/access_vector.h:struct mach_access_vector */
 unsigned char av_can_receive: 1,

av_can_send: 1,
av_hold_receive: 1,
av_hold_send:1,
av_hold_send_once:1,
av_interpose: 1,
av_specify: 1,
av_transfer_ool: 1;

 unsigned char av_transfer_receive: 1,
av_transfer_send: 1,
av_transfer_send_once: 1,
av_transfer_rights: 1,
av_unused: 4;

 /* Services permissions */
 struct demo_services demo_serv;
};

When you define the access vector permissions in the header file, this IPC
portion must be included, and it must match the IPC permissions structure
contained in the access_vector.h file. The access_vector.h file is located in
the directory ~dtos/build_area/src/mk/kernel/sys.

Updating the Database

After you have created or modified the header file, you must make some
modifications to the Makefile file in your working security_database
directory in order for all required database updates to be processed when
you run gmake.

4-20 Chapter 4 - DTOS Demonstation Software - 30 September 1996

The following example shows the modifications that would be necessary
in the Makefile to add a new server (myserver) and a related set of new
permissions defined in the file myserver_access_vector.h. These
modifications are shown in boldface italic type. (You may also want to
refer to the topicSet of Security Permissions in Chapter 3 where we
previously discussed modifications to the Makefile required for creating
new .txt files.)

Title: Makefile
#
Protection Notice :
#
This material may be reproduced by or for the
U.S. Government pursuant to the copyright license under the
clause at DFARS 252.227-7013 (Oct 1988).
#
(c) Copyright, 1995, Secure Computing Corporation. All Rights Reserved.
#
#
Purpose :
#
Controls the building of the system security database
#

mk_src = /home/dtos/build_area/src/mk
mk_db = $(mk_src)/dss/security-database
demo_src = /home/dtos/build_area/src/applications/demo

access_vector_h = $(mk_src)/kernel/sys/access_vector.h
av_to_perm_h = $(mk_src)/kernel/sys/av_to_perm.h
ss_access_vector_h = $(mk_src)/dss/server-scc/ss_access_vector.h
demo_av_h = $(demo_src)/db_tcb_extension/tcb_extensions.h
fs_av_h = $(mk_src)/dss/security-database/fs_access_vector.h
myserver_av_h = <some_path>/myserver_access_vector.h

av_db = init-av.db op-av.db fs-av.db myserver-av.db
av_h = av.h

target = av.db

all: links demo

links:
 rm -f init-av.txt ; ln -s $(mk_db)/init-av.txt .
 rm -f op-av.txt ; ln -s $(mk_db)/op-av.txt .
 rm -f fs-av.txt ; ln -s $(mk_db)/fs-av.txt .
 rm -f database_macros.m4 ; ln -s $(mk_db)/database_macros.m4 .
 rm -f header ; ln -s $(mk_db)/header .
 rm -f footer ; ln -s $(mk_db)/footer .

$(target): $(av_db) header footer
 cat header > $(target)
 cat $(av_db) >> $(target)
 cat footer >> $(target)
 dupe-finder.pl < av.db

Creating or Deleting Permissions 30 September 1996 - 4-21

demo: $(av_db) demo_av.db header footer
 cat header > $(target)
 cat $(av_db) >> $(target)
 cat demo_av.db >> $(target)
 cat footer >> $(target)
 dupe-finder.pl < av.db

init-av.db: init-av.m4 $(av_h)
 calc-av.pl $(av_h) init-av.m4 > init-av.db

init-av.m4: init-av.txt database_macros.m4
 m4 init-av.txt > init-av.m4

op-av.db: op-av.txt $(av_h)
 calc-av.pl $(av_h) op-av.txt > op-av.db

fs-av.db: fs-av.m4 $(av_h)
 calc-av.pl $(av_h) fs-av.m4 > fs-av.db

fs-av.m4: fs-av.txt database_macros.m4
 m4 fs-av.txt > fs-av.m4

demo_av.db: demo_av.m4 $(demo_av_h)
 calc-av.pl $(av_h) demo_av.m4 > demo_av.db

demo_av.m4: demo_av.txt database_macros.m4
 m4 demo_av.txt > demo_av.m4

myserver-av.db: myserver-av.m4 $(myserver_av_h)
 calc-av.pl $(av_h) myserver-av.m4 > myserver-av.db

myserver-av.m4: myserver-av.txt database_macros.m4
 m4 myserver-av.txt > myserver-av.m4

$(av_h): $(access_vector_h) $(ss_access_vector_h) $(demo_av_h) $(fs_av_h) $(myserver_av_h)
cat $(access_vector_h) $(ss_access_vector_h) $(demo_av_h) $(fs_av_h) $(myserver_av_h)

clean:
 rm -f $(av_db) av.db demo_av.db init-av.m4 av.h init-av.txt op-av.txt
 rm -f *.m4 header footer fs-av.txt fs-av.m4 fs-av.db myserver-av.db

For additional information on defining services and determining message
IDs by means of the tcb_extension.defs file, please refer to the topic
Message IDearlier in this chapter.

4-22 Chapter 4 - DTOS Demonstation Software - 30 September 1996

Where To Go From Here

To help prepare for building your own secure applications, you should run
the DTOS Demo, familiarize yourself with the programs and related
source files that make up the Demo, and possibly even experiment with
modifying the demo source files as a way to learn more about how these
changes affect Demo operation.

If you have questions or need assistance, please contact the DTOS
Support Staff (refer toAppendix C for instructions).

30 September 1996 - 5-1

5
Recompiling DTOS

This chapter is going to be removed. The
information that was here previously can be found
in the file /home/dtos/docs/BUILDING.

5-2 Chapter 5 - Recompiling DTOS -30 September 1996

30 September 1996 - A-1

A
Appendix A DTOS Release Materials

This appendix lists all of the items included in the DTOS Release
Materials, the support tools included in the release, and the sources for
getting these items.

DTOS Release Materials

The following binaries, sources, and documents are included in the DTOS
prototype release. Which is available via sup from machpc.sctc.com. To
retrieve the release materials perform the following steps

A-2 Appendix A - DTOS Release Materials - 30 September 1996

l ftp to machpc.sctc.com

l change directory /home/dtos/dtos-dist

l get the file README and follow the instructions..

Binaries

1. gcc-2.7.2

Configured for host i386-freebsd2.1.0 and target i386-mach. Only "C"
is supported. The source can be found at ftp://prep.ai.mit.edu/pub/gnu/
gcc-2.7.2.tar.gz.

DTOS Release Materials 30 September 1996 - A-3

2. gas-960319

Configured for host i386-freebsd2.1.0 and target i386-mach. This is
the GAS assembler from GNU plus the binutils collection. Later
snapshots will probably work also. The snapshots are available from
ftp://ftp.cygnus.com/private/gas/*.

3. gmake-3.74

Available from ftp://alpha.gnu.ai.mit.edu/make-<version>

4. gawk-2.15.5

Available from ftp://prep.ai.mit.edu/pub/gnu/gawk-2.15.5.tar.gz

5. perl-5.001

Available from ftp://ftp.cis.ufl.edu/pub/perl/src/5.0/perl5.001e.tar.gz

6. zsh-2.5.0

Available from ftp://ftp.math.gatech.edu/pub/zsh/zsh-2.5.0.tar.gz

7. i386_bnr collection from CMU.

This must be "supped" from CMU. The following line in a supfile will
do the trick:

mach3.release release=i386bnr host=x29.mach.cs.cmu.edu hostbase=/usr2 base=/ crypt=<???>

Note that in the above text <???> is a crypt key obtained from CMU

8. DTOS-related binaries

This includes the DTOS kernel and security server, security-enhanced
Lites server and emulator, secure filesystem utilities and demo.

9. tcsh-6.03

Available from ftp://tesla.ee.cornell.edu/pub/tcsh/tcsh-6.06.tar.gz

10. m4-1.4

Available from ftp://prep.ai.mit.edu/pub/gnu/m4-1.4.tar.gz

A-4 Appendix A - DTOS Release Materials - 30 September 1996

Sources

1. The DTOS microkernel, security server and utility programs/libraries

2. The security-enhanced Lites server/emulator and utilities

Source Tree Diagram

~dtos/build_area/src/

apps/ applications/ lites/ mk/ user/

dss kernel

DTOS Release Materials 30 September 1996 - A-5

Documents

1. DTOS Prototype User’s Guide (this document)

2. DTOS Kernel and Security Server Software Design Document

3. DTOS Demonstration Software Design Document

4. DTOS Kernel Interface Document

5. DTOS Formal Security Policy Model (FSPM)

6. DTOS Formal Top-Level Specification (FTLS)

7. 1995 Usenix Unix Security Symposium Conference Paper: Providing
Policy Control Over Object Operations in a Mach Based System

A-6 Appendix A - DTOS Release Materials - 30 September 1996

30 September 1996 - B-1

B
Appendix B Permissions

This appendix summarizes, by prefix, the permissions checked in DTOS.
Permissions are fields found in the security server database files.

Refer to theDTOS Kernel and Security Server Software Design
Document (Bibliography item number 3) for the actual permission names
to append to the prefixes.

B-2 Appendix B - DTOS Kernel Service Permissions - 30 September 1996

DTOS Kernel Service Permissions

The following table lists permission prefixes for DTOS kernel service
permissions.

Service Checks Performed On Prefix

Device Port dsv

Host Privileged Port hpsv

Host Port hsv

Kernel Supplied Reply Ports krpsv

Memory Objects Ports mosv

Memory Control Ports mcsv

Kernel Processor Port psv

Kernel Processor Set Port pssv

Kernel Task Port tsv

Kernel Thread Port thsv

All Message Processing (IPC
Checks)

av

30 September 1996 - C-1

C
Appendix C Getting Product Support

This appendix describes the product support that is available for the
DTOS prototype and how to access this support.

DTOS Support Staff

Please use the following two addresses to contact the DTOS Support
Staff.

For Support Requests

Please use this mail address for DTOS prototype support requests:

dtos-request@sctc.com

C-2 Appendix C - Getting Product Support - 30 September 1996

Discussion Mailing List

The following mailing list is monitored by the DTOS Support Staff:

dtos-discuss@sctc.com

To subscribe to the mailing list, please send a request to:

dtos-request@sctc.com

To Submit Bug Reports/Enhancement Requests

Please use the following script to submit a bug report or enhancement
request:

~dtos/tools/scripts/dtos-help

This script will prompt you for required information and will mail a
correctly formatted message to dtos-support@sctc.com.

30 September 1996 Bibliography-1

Bibliography

1. Secure Computing Corporation. DTOS Formal Security Policy Model (FSPM).
Technical report, Secure Computing Corporation, 2675 Long Lake Road,
Roseville, Minnesota 55113-2536, November 1994. DTOS CDRL A004.
(Located in ~dtos/docs/assurance_documents/fspm-driver*.ps)

2. Secure Computing Corporation. DTOS Formal Top-Level Specification
(FTLS). Technical report, Secure Computing Corporation, 2675 Long Lake
Road, Roseville, Minnesota 55113-2536, December 1994. DTOS CDRL A005.
(Located in ~dtos/docs/assurance_documents/ftls-27Dec94.ps)

3. Secure Computing Corporation. DTOS Kernel and Security Server Software
Design Document. Technical report, Secure Computing Corporation, 2675
Long Lake Road, Roseville, Minnesota 55113-2536, January 1994. DTOS
CDRL A002.
(Located in ~dtos/docs/design_documents/kernel-secserver-sdd-Jul95.ps.gz)

4. Secure Computing Corporation. DTOS Kernel Interfaces Document. Technical
report, Secure Computing Corporation, 2675 Long Lake Road, Roseville,
Minnesota 55113-2536, January 1994. DTOS CDRL A003.
(Located in ~dtos/docs/design_documents/kernel-interface-19Jul95.ps.gz)

5. Secure Computing Corporation. DTOS Demonstration Software Design
Document. Technical report, Secure Computing Corporation, 2675 Long Lake
Road, Roseville, Minnesota 55113-2536, January 1994.
(Located in ~dtos/docs/design_documents/demo-sdd-19Jul95.ps.gz)

Bibliography-2 30 September 1996

6. Secure Computing Corporation. Providing Policy Control Over Object
Operations in a Mach Based System. 1995 Usenix Unix Security Symposium
Conference Paper, Secure Computing Corporation, 2675 Long Lake Road,
Roseville, Minnesota 55113-2536, April 1995.
(Located in ~dtos/docs/papers/dtos-usenix-paper.ps.gz)

7. D.J. Thomsen. The Security and Integrity of Type Enforcement and Set UID:
Integrity Issues in Secure Systems. Master’s Thesis. May 1991.
(Located in ~dtos/docs/papers/int-issues.ps.gz)

8. D.J. Thomsen and J.T. Haigh. A Comparison of Type Enforcement and Unix
Set UID Implementation of Well Formed Transactions. Proceedings of the
1990 Computer Security Applications Conference, pp. 304-312. 1990.
(Located in ~dtos/docs/papers/te-cw-setuid.ps.gz)

9. Todd Fine and Spencer E. Minear. Assuring Distributed Trusted Mach.
Proceedings of the IEEE Computer Society Symposium on Research in
Security and Privacy. May 1993.
(Located in ~dtos/docs/papers/assuring_dtmach.ps.gz)

10. Keith Loepere. OSF Mach Kernel Principles. Open Software Foundation and
Carnegie Mellon University, final draft edition, May 1993.
(Located in ~dtos/docs/papers/kernel-principles.ps.gz)

11. R. O’Brien and C. Rogers. Developing Applications on LOCK. Proceedings of
the 14th National Computer Security Conference. NIST/NCSC, pp. 147-156,
October 1991.
(Located in ~dtos/docs/papers/LOCK-apps.ps.gz)

12. D.J. Thomsen, Sidewinder: Enhanced Security for a Unix Firewall, ACSAC
1995 conference, June 1995.
(Located in ~dtos/docs/papers/sw-enhanced-security.ps.gz)

