
DTOS Mach Kernel
Interfaces

Secure Computing Corporation

Derived from the OSF Mach 3.0 Kernel
Interfaces Document, Edited by Keith Loepere

DTOS-MK01: December 28, 1993

This work is derived from the Mach 3 Kernel Interfaces book is in the Open Software Foundation Mach 3
series.

Books in the OSF Mach 3 series:

Mach 3 Kernel Principles

Mach 3 Kernel Interfaces

Mach 3 Server Writer’s Guide

Mach 3 Server Library Interfaces

Revision History:

Revision 2 MK67: January 7, 1992 OSF / Mach release
Revision 2.2 NORMA-MK12: July 15, 1992
Revision 2.3 NORMA-MK14: November 20, 1992

Revision 1.0 DTOS-MK01:December 28, 1993

Change bars indicate changes since NORMA-MK14:

Copyright 1992 by the Open Software Foundation, Inc. and Carnegie Mellon University.

Copyright 1997 by Secure Computing Corporation.

All rights reserved.

This document is derived from the OSF Revision 2.3 document. The following notations are provided un-
changed from that OSF baseline.

Permission to reproduce this document without fee is herebygranted, provided that the copies are not made
or distributedfor direct commercial advantage, and the copyright notice andthis permission notice appear in
all copies, derivative works or modified versions.

This document is partially derived from earlier Mach documents written by Robert V. Baron, Joseph S. Bar-
rera, David Black, William Bolosky, Jonathan Chew, Richard P. Draves, Alessandro Forin, David B. Golub,
Richard F. Rashid, Mary R. Thompson, Avadis Tevanian, Jr. and Michael W. Young.

Mach 3 Kernel Interfaces iii

Contents

CHAPTER 1 Introduction . 1
Interface Descriptions . 1
Interface Types. 2
Special Forms. 3
Parameter Types. 3
Error Return Values . 4
Security Controls . 5

CHAPTER 2 IPC Interface . 7
mach_msg/mach_msg_secure . 8
mach_msg_receive. 26
mach_msg_send. 27

CHAPTER 3 Port Manipulation Interface . 29
do_mach_notify_dead_name . 30
do_mach_notify_msg_accepted. 32
do_mach_notify_no_senders . 34
do_mach_notify_port_deleted . 36
do_mach_notify_port_destroyed 38
do_mach_notify_send_once . 40
mach_port_allocate/mach_port_allocate_secure 41
mach_port_allocate_name/
mach_port_allocate_name_secure 44
mach_port_deallocate . 47
mach_port_destroy. 48
mach_port_extract_right . 50
mach_port_get_receive_status. 52
mach_port_get_refs . 54
mach_port_get_set_status . 56
mach_port_insert_right . 58
mach_port_mod_refs . 60
mach_port_move_member . 62
mach_port_names . 64
mach_port_rename. 66
mach_port_request_notification. 68
mach_port_set_mscount . 71
mach_port_set_qlimit . 73
mach_port_set_seqno. 75

iv Mach 3 Kernel Interfaces

mach_port_type/mach_port_type_secure 77
mach_reply_port . 79

CHAPTER 4 Virtual Memory Interface . 81
vm_allocate/vm_allocate_secure 82
vm_copy. 85
vm_deallocate . 87
vm_inherit . 89
vm_machine_attribute . 91
vm_map . 93
vm_protect . 97
vm_read . 99
vm_region/vm_region_secure 101
vm_statistics. 104
vm_wire . 105
vm_write . 107

CHAPTER 5 External Memory Management Interface. 109
memory_object_change_attributes 110
memory_object_change_completed 112
memory_object_copy. 114
memory_object_data_error . 117
memory_object_data_provided 119
memory_object_data_request 121
memory_object_data_return . 123
memory_object_data_supply . 125
memory_object_data_unavailable 128
memory_object_data_unlock. 130
memory_object_data_write . 132
memory_object_destroy. 134
memory_object_get_attributes. 136
memory_object_init . 138
memory_object_lock_completed. 141
memory_object_lock_request 143
memory_object_ready . 146
memory_object_set_attributes 148
memory_object_supply_completed 151
memory_object_terminate . 153

CHAPTER 6 Thread Interface . 155
catch_exception_raise . 156

Mach 3 Kernel Interfaces v

mach_thread_self . 159
receive_samples . 160
swtch . 161
swtch_pri . 162
thread_abort . 164
thread_create/thread_create_secure 166
thread_depress_abort . 168
thread_get_special_port . 169
thread_get_state . 171
thread_info . 173
thread_resume/thread_resume_secure 175
thread_sample . 176
thread_set_special_port . 178
thread_set_state/thread_set_state_secure. 180
thread_suspend. 182
thread_switch . 183
thread_terminate . 185
thread_wire . 186

CHAPTER 7 Task Interface. 189
mach_ports_lookup . 190
mach_ports_register. 191
mach_task_self. 193
task_change_sid . 194
task_create/task_create_secure 195
task_get_emulation_vector . 198
task_get_special_port. 200
task_info. 202
task_resume . 204
task_sample . 205
task_set_emulation. 207
task_set_emulation_vector. 209
task_set_special_port . 211
task_suspend . 213
task_terminate . 214
task_threads . 215

CHAPTER 8 Host Interface. 217
host_adjust_time . 218
host_get_boot_info . 219
host_get_special_port . 220

vi Mach 3 Kernel Interfaces

host_get_time. 222
host_info . 223
host_kernel_version . 225
host_reboot. 226
host_set_special_port. 227
host_set_time . 229
mach_host_self . 230

CHAPTER 9 Processor Management and Scheduling Interface . 231
host_processor_set_priv. 232
host_processor_sets . 233
host_processors . 235
processor_assign . 236
processor_control. 238
processor_exit . 240
processor_get_assignment . 241
processor_info . 242
processor_set_create . 244
processor_set_default. 246
processor_set_destroy . 247
processor_set_info . 248
processor_set_max_priority. 250
processor_set_policy_disable 252
processor_set_policy_enable . 254
processor_set_tasks . 255
processor_set_threads . 256
processor_start . 257
task_assign . 258
task_assign_default . 260
task_get_assignment . 262
task_priority . 263
thread_assign . 265
thread_assign_default . 266
thread_get_assignment. 267
thread_max_priority. 268
thread_policy . 270
thread_priority . 271

CHAPTER 10 Kernel Device Interface. 273
device_close. 274
device_get_status . 275

Mach 3 Kernel Interfaces vii

device_map . 277
device_open . 279
device_read . 282
device_read_inband . 285
device_set_filter . 288
device_set_status . 292
device_write. 294
device_write_inband . 297
evc_wait . 300

CHAPTER 11 Security Server Interface . 303
avc_cache_control, avc_cache_control_trap 304
extract_aid . 306
extract_mid . 307
make_sid . 308
SSI_compute_access_vector . 309
SSI_context_to_mid. 312
SSI_load_security_policy . 314
SSI_record_name_server . 315
SSI_register_caching_server . 316
SSI_short_context_to_mid. 318
SSI_mid_to_context. 320
SSI_mid_to_short_context. 322
SSI_transfer_security_server_ports 324
SSI_transition_domain. 326

APPENDIX A MIG Server Routines. 329
device_reply_server . 330
exc_server . 332
memory_object_default_server 334
memory_object_server. 336
notify_server . 338
prof_server . 340
seqnos_memory_object_default_server. 341
seqnos_memory_object_server 343
seqnos_notify_server . 345

APPENDIX B Default Memory Management Interface. 347
default_pager_info . 348
default_pager_object_create . 350

viii Mach 3 Kernel Interfaces

memory_object_create. 352
memory_object_data_initialize 355
vm_set_default_memory_manager 357

APPENDIX C Multicomputer Support . 359
norma_get_special_port. 360
norma_port_location_hint . 363
norma_set_special_port . 364
norma_task_clone . 367
norma_task_create . 369
task_set_child_node. 371

APPENDIX D Intel 386 Support . 373
i386_get_ldt . 376
i386_io_port_add . 378
i386_io_port_list . 379
i386_io_port_remove. 380
i386_set_ldt . 381

APPENDIX E Data Structures . 383
host_basic_info . 384
host_load_info . 385
host_sched_info . 386
mach_access_vector. 387
mach_device_services . 390
mach_generic_services . 391
mach_kernel_reply_port_services 392
mach_host_priv_services. 393
mach_host_services . 394
mach_mem_obj_services. 396
mach_mem_ctrl_services. 397
mach_msg_header . 399
mach_msg_type . 402
mach_msg_type_long . 405
mach_port_status . 407
mach_proc_services. 409
mach_proc_set_services . 410
mach_services . 411
mach_task_services . 413
mach_thread_services . 415
mapped_time_value . 417

Mach 3 Kernel Interfaces ix

processor_basic_info . 418
processor_set_basic_info . 419
processor_set_sched_info . 420
sampled_pc . 421
security_id_t. 422
task_basic_info . 423
task_basic_secure_info . 424
task_thread_times_info . 426
thread_basic_info. 427
thread_sched_info . 429
time_value . 431
vm_statistics. 432

APPENDIX F Error Return Values . 435
Error Code Format . 435
MIG Stub Errors . 436
Base IPC Status . 436
IPC Send Errors . 437
IPC Receive Errors . 438
Generic Kernel Errors . 439
Port Manipulation Errors . 440
Virtual Memory Manipulation Errors 441
Random Kernel Errors . 441
Kernel Device Errors . 442

APPENDIX G Permission Definitions. 445
Device Port Permissions . 445
Host Priviledge Port Permissions 446
Host Port Permissions . 447
Kernel Reply Port Permissions 449
Memory Object Permissions . 449
Memory Control Port Permissions 449
Processor Port Permissions . 451
Processor Set Permissions . 451
Task Port Permissions . 452
Thread Port Permissions . 457
IPC Permissions. 459

x Mach 3 Kernel Interfaces

APPENDIX H Object Index . 463

APPENDIX I Interface and Structure Index 471

Mach 3 Kernel Interfaces 1

CHAPTER 1 Introduction

This book documents the various interfaces to the DTOS variant of the Mach 3 kernel.
The text generally describes each interface to the kernel in isolation. Entries that have a
special security relevant variant are described together to avoid redundancy. The relation-
ship of interfaces to one another, and the way that interfaces are combined to write user
servers is the subject of companion volumes.

The organization of this book is such that it follows the organization of the kernel into its
major functional areas. Although the kernel interface is itself not object oriented, the divi-
sion of interfaces into areas is largely done according to the significant object utilized or
manipulated by the interfaces. Each such object receives its own chapter. Of course, the
assignment of interfaces into these chapters is a difficult and highly subjective process.
An interface that requires rights for two ports of two different types could be grouped
with the set of interfaces associated with either object type. Each interface, though, ap-
pears only once in this book.

Appendices give a description of the structures and fields used by these interfaces, a list
of possible error return values from the kernel, an alphabetical index by object type and
one by function and data structure name.

Interface Descriptions

Each interface is listed separately, each starting on its own page. For each interface,
some or all of the following features are presented:

• The name of the interface

• A brief description

2 Mach 3 Kernel Interfaces

Introduction

• The pertinent library. All functions in this volume are contained inlibmach_sa.a
(and, by implication,libmach.a) unless otherwise noted. Also listed is the header file
that provides the function prototype or defines the data structure (if notmach.h).

• A synopsis of the interface, in C form

• Any macro or special forms of the call

• An extended description of the function performed by the call

• Identification of the request specific security permissions that must be held to make
the request

• A description of each parameter to the call

• Additional notes on the use of the interface

• Cautions relating to the interface use

• An explanation of the significant return values

• References to related interfaces or data structures

Interface Types

Most of the interfaces in this book are MIG generated interfaces. That is, they are stub
routines generated from MIG interface description files. Calling these interfaces will ac-
tually result in a Mach IPC message being sent to the port that is the first argument in the
call. This has three important effects.

• These calls may fail for various MIG or IPC related reasons. The list of error returns
for these calls should always be considered to also include the IPC related errors
(MACH_MSG_..., MACH_SEND_... and MACH_RCV_...) and the MIG related er-
rors (MIG_...).

• These calls may fail because required security permissions are not held by the request-
ing task. The list of error returns for these calls should always be considered to also
include the security related error, KERN_INSUFFICIENT_PERMISSION.

• These calls only invoke their expected effect when the acting port is indeed a port of
the specified type. That is, if a call expects a port that names a task (a kernel task
port) and the port is instead a port managed by a task, the MIG stub routine will still
happily generate the appropriate Mach message and send it to that task. What the tar-
get task will do with the message is up to it. Note that it is this effect that allows the
Net Message server to transparently redirect messages.

A few of these interfaces are actually system calls (traps). In general, the system calls
(with the obvious exception of themach_msg call) work only on the current task or
thread. (Some functions are a hybrid; they first try the system call, and, failing that, they
try sending a Mach message. This is an optimization for some interfaces for which the
target is usually the invoking task or thread.) Any routine not documented as a system
call is a MIG stub routine.

Most of these interfaces are of the typeFunction. This means that there is actually a C
callable function (most likely inlibmach_sa.a) that has the calling sequence listed and
that when called invokes some kernel or kernel related service. If the interface is a sys-
tem trap instead of a message, it will be listed as aSystem Trap.

Mach 3 Kernel Interfaces 3

Special Forms

Some interfaces have the typeServer Interface. Such a description applies to interfaces
that are called in server tasks on behalf of messages sent from the kernel. That is, it is as-
sumed that some task is listening (probably withmach_msg_server) on a port to which
the kernel is to send messages. A received message will be passed to a MIG generated
server routine (service_server) which will call an appropriate server target function. It is
these server target functions, one for each different message that the kernel generates,
that are listed asServer Interfaces. For any given kernel message, there are any number
of possible server interface calling sequences that can be generated, by permuting the or-
der of the data provided in the message, omitting some data elements or including or
omitting various header field elements (such as sequence numbers). In most cases, a sin-
gle server interface calling sequence has been chosen with a given MIG generated server
message de-multiplexing routine that calls these interfaces. In some cases, there are more
than one MIG generated server routines which call upon different server interfaces asso-
ciated with that MIG service routine. In any event, allServer Interfaces contain within
their documentation the name of the MIG generated server routine that invokes the inter-
face.

Special Forms

There are various special interface forms defined in this volume.

• The Macro form specifies macros (typically defined inmach.h) that provide short-
hand equivalents for some variations of the longer function call.

• TheSequence Number form of aServer Interface defines an additional MIG gener-
ated interface that supplies the sequence number from the message causing the server
interface to be invoked. The existence of such a form implies the existence of an alter-
nate MIG generated message de-multiplexing routine that invokes this special inter-
face form.

• The Asynchronous form defines a MIG generated version of aFunction that allows
the function to be invoked asynchronously. Such a version requires an additional pa-
rameter to specify the reply port to which the reply is sent. The return value from the
asynchronous function is the return status from themach_msg call sending the re-
quest, not the resulting status of the kernel operation. The asynchronous interface also
requires a matchingServer Interface that defines the reply message containing data
that would have been output values from the normal function, as well as the resulting
status from the kernel operation.

Parameter Types

Each interface description supplies the C type of the various parameters. The parameter
descriptions then indicate whether these parameters are input (“in”), output (“out”) or
both (“in/out”). This information appears in square brackets before the parameter descrip-
tion. Additional information also appears within these brackets for special or non-obvi-
ous parameter conventions.

4 Mach 3 Kernel Interfaces

Introduction

The most common notation is “scalar”, which means that the parameter somehow de-
rives from anint type. Port types are scalar types but are marked specifically as to the
type of port named by the parameter.

If the notation says “structure”, the parameter is a direct structure type whose layout is
described in APPENDIX E.

The notation “pointer to in array/structure/scalar” means that the caller supplies a pointer
to the data. Arrays always have this property following from C language rules. If not so
noted, input parameters are passed by value.

Output parameters are always passed by reference following C language rules. Hence the
notation “out array/structure/scalar” actually means that the caller must supply a pointer
to the storage to receive the output value. If a parameter is in/out, the notation “pointer to
in/out array/structure/scalar” will appear. Since the parameter is also an output parame-
ter, it must be passed by reference, hence it appears as a “pointer to in array/structure/sca-
lar” when used as an input parameter.

In contrast, the notation “out pointer to dynamic array” means that the kernel will allo-
cate space for returned data (as if byvm_allocate) and will modify the pointer named by
the output parameter (that is, the parameter to the function is a pointer to a pointer) to
point to this allocated memory. The task shouldvm_deallocate this space when done ref-
erencing it.

For a Server Interface, the corresponding version of the above is “in pointer to dynamic
array”. This indicates that the kernel has allocated space for the data (as if by
vm_allocate) and is supplying a pointer to the data as the input parameter to the server
interface routine. It is the job of the server interface routine to arrange for this data to be
vm_deallocated when the data is no longer needed.

An “unbounded out in-line array” specifies the variable in-line/out-of-line (referred to as
unbounded in-line) array feature of MIG described in theServer Writer’s Guide. The call-
er supplies a pointer to a pointer whose value contains the address of an array whose size
is specified in some other parameter (or known implicitly). Upon return, if this target
pointer no longer points to the caller’s array (most likely because the caller’s array was
not sufficiently large to hold the return data), then the kernel allocated space (as if by
vm_allocate) into which the data was placed; otherwise, the data was placed into the sup-
plied array.

Error Return Values

APPENDIX F documents the various error return values defined by the kernel. However,
since the kernel interfaces are actually MIG generated stubs that send IPC messages, the
set of errors that is possible for any given interface is quite extensive although few possi-
bilities are seen in practice.

Mach 3 Kernel Interfaces 5

Security Controls

The various functions described in this volume (with the exception of the system traps)
are MIG generated stub subroutines. As such, if the number of parameters or their sizes
is incorrect, the stub may fail in a machine dependent way as would any other subroutine.

Assuming the correct number and size of the parameters, the MIG stub will simply mar-
shall these values, making no consistency checks. The stub then attempts to send this
message usingmach_msg. As such, the various IPC errors (MACH_SEND_...) are possi-
ble. In particular, if the destination port is completely bogus, the caller will receive
MACH_SEND_INVALID_DEST. Note that most errors involving invalid rights or out-
of-line memory addresses will be detected as IPC errors.

If the destination port is valid but names a port whose receive right is held by a task, the
stub generated message will be sent to that task; what the task will do is up to it. Assum-
ing that the destination port does name a kernel object, the message will go to the kernel.
If the message is not one that object accepts, the caller will get
KERN_INVALID_ARGUMENT. For operations that bind two objects (such as
task_assign), this error is returned if either object is of the wrong type. However, when
an additional right is sent for the purposes of asserting privilege, or when the additional
right itself is being manipulated, specific error return values are generated if the “privi-
lege” port is of the wrong type.

Invalid non-port parameter values return the error KERN_INVALID_VALUE if their val-
ue is inherently ill-formed or out of range, but return specific error values if the value is
not permitted at this point in time (such as a port name that is a valid name, but does not
currently name a valid right).

Each kernel subsystem defines its own interesting set of errors which are listed for the
relevant interfaces. Generic messaging and security errors are not listed for each inter-
face, only those specific to that interface’s functioning.

A return value of KERN_SUCCESS (or any other equivalent value) indicates that the re-
quested operation was performed and any return values returned.

Security Controls

All of the MIG generated and the hybrid MIG/system call interfaces are subject the fol-
lowing general control rules.

• The requesting task must haveav_send permission to the first port in the parameter
list.

• The requesting task must also haveav_transfer_send andav_set_reply permission to
the reply port provided in the MIG generated request message.

• All IPC permission checks are applied to MIG generated interfaces. ie if a port is giv-
en as an output parameter, the client must haveav_hold_send, andav_can_send per-
missions.

Thus the respective security sections of each interface description, only describes the
control issues specific to that interface.

6 Mach 3 Kernel Interfaces

Introduction

In the case of the “pure” system call interfaces only the interface specific control check is
made. In this case the check is made against the implicit task or thread port as is appropri-
ate for the interface.

Mach 3 Kernel Interfaces 7

CHAPTER 2 IPC Interface

This chapter discusses the specifics of the kernel’s inter-”process” communication (IPC)
interfaces. The interfaces discussed are only the interfaces directly involved in sending
and receiving IPC messages.

8 Mach 3 Kernel Interfaces

IPC Interface

mach_msg/mach_msg_secure

System Trap / Function — Sends and receives a message using the same mes-
sage buffer

SYNOPSIS

mach_msg_return_tmach_msg
(mach_msg_header_t* msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_t notify);

mach_msg_return_tmach_msg_secure
(mach_msg_header_t* msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_t notify,
security_id_t* rec_subj_sid,
security_id_t* sender_subj_sid,
int av_buf_size,
mach_access_vector_t* av_buf);

DESCRIPTION
The mach_msg and mach_msg_secure system calls send and receive Mach
messages. Mach messages contain typed data, which can include port rights and
addresses of large regions of memory.

If the option argument contains MACH_SEND_MSG, it sends a message. The
send_size argument specifies the size of the message to send. The
msgh_remote_port field of the message header specifies the destination of the
message.

If the option argument contains MACH_RCV_MSG, it receives a message. The
rcv_size argument specifies the size of the message buffer that will receive the
message; messages larger thanrcv_sizeare not received. Thercv_name argu-
ment specifies the port or port set from which to receive.

If the option argument contains both MACH_SEND_MSG and
MACH_RCV_MSG, thenmach_msg andmach_msg_secure do both send and
receive operations. If the send operation encounters an error (any return code
other than MACH_MSG_SUCCESS), then the call returns immediately without

Mach 3 Kernel Interfaces 9

mach_msg/mach_msg_secure

attempting the receive operation. Semantically the combined call is equivalent
to separate send and receive calls, but it saves a system call and enables other in-
ternal optimizations.

If the option argument specifies neither MACH_SEND_MSG nor
MACH_RCV_MSG, thenmach_msg andmach_msg_secure do nothing.

Some options, like MACH_SEND_TIMEOUT and MACH_RCV_TIMEOUT,
share a supporting argument. If these options are used together, they make inde-
pendent use of the supporting argument’s value.

SECURITY
The DTOS kernel provides controls beyond those of the Mach capability mecha-
nism described in the NOTES section below. The kernel security mechanisms
enforce the permissions described in themach_access_vector_t structure de-
fined in APPENDIX E. In addition to the appropriate rights, the following ac-
cess permissions control message operations.

Sending Message
The sending task must haveav_can_send permission to the destination
port. If a reply port is used, the sending task must haveav_set_reply
permission to the reply port.

Receiving Message
The receiving task must haveav_can_receive permission to the port in-
dicated byrcv_name. Messages will be received from a port in a port
set only if the requesting task hasav_can_receive permission to the
port. When a task uses a port as a reply port for an RPC type of opera-
tion, the requesting task must also haveav_can_send permission to
that port.

Passing SEND, SEND_ONCE or RECEIVE Right
Passing of rights is done by sending a message to a port P1 where the
body of the message contains a port right to port P2. The task sending
the message must have respectively, av_transfer_send,
av_transfer_send_once or av_transfer_receivepermission to port P2,
depending on whether the right is a send, send_once or receive. In addi-
tion the sending task must haveav_transfer_right to the destination
port P1, in order to transfer any right in the body of the message.

Upon receipt of a right the receiving task must have respectively,
av_hold_send, av_hold_send_once or av_hold_receivepermission to
the port associated with the right in the message body.

Passing Out Of Line data
To pass out of line data in a message the sending task must have
av_transfer_ool permission to the destination port. In addition, if the
out-of-line data contains a port right, the permission requirements

10 Mach 3 Kernel Interfaces

IPC Interface

descibed in the above section on “Passing SEND, SEND_ONCE or RE-
CEIVE Right” also apply.

The security aspects of mach_msgand mach_msg_secure include the follow-
ing additional control issues.

• On a receive, the receiving task must haveav_interpose permission to re-
ceive messages designated to subject security identifiers other than that of
the receiving task.

The security aspects of mach_msg_secure include the following additional con-
trol issues.

• On a send the sending task must haveav_specifypermission to the destina-
tion port in order to specify the message sender’s subject security identifier
to be associated with the message.

• On a send the sending task must have av_specify permission to the destina-
tion port in order to specify any of the values in theav_buf.

If the sending task does not specify or does not haveav_specifypermission to
the destination port the DTOS kernel provides the security identifier of the send-
ing task. In all cases the DTOS Kernel associates the access vector describing
the sending tasks permission to the destination port with the message.

In-line and out-of-line data are currently handled differently with respect to the
security identifier assigned to the data. In-line data is assigned a security identifi-
er corresponding to the security identifier of the memory region where it is
placed. Out-of-line data may retains the security identifier assigned to the mem-
ory region from which the data came if so requested.

PARAMETERS

msg
[pointer to in/out structure containing random and reply ports] A mes-
sage buffer. This should be aligned on a long-word boundary.

option
[in scalar] Message options are bit values, combined with bitwise-or.
One or both of MACH_SEND_MSG and MACH_RCV_MSG should
be used. Other options act as modifiers.

send_size
[in scalar] When sending a message, specifies the size of the message
buffer. Otherwise zero should be supplied.

rcv_size
[in scalar] When receiving a message, specifies the size of the message
buffer. Otherwise zero should be supplied.

Mach 3 Kernel Interfaces 11

mach_msg/mach_msg_secure

rcv_name
[in random port] When receiving a message, specifies the port or port
set. Otherwise MACH_PORT_NULL should be supplied.

timeout
[in scalar] When using the MACH_SEND_TIMEOUT and
MACH_RCV_TIMEOUT options, specifies the time in milliseconds
to wait before giving up. Otherwise MACH_MSG_TIMEOUT_NONE
should be supplied.

notify
[in notify port] When using the MACH_SEND_NOTIFY,
MACH_SEND_CANCEL, and MACH_RCV_NOTIFY options, speci-
fies the port used for the notification. Otherwise MACH_PORT_NULL
should be supplied.

rec_subj_sid
[pointer to in/out security id] When sending a message this parameter
specifies the subject security identifier of the tasks that will be allowed
to receive the message. Set to the address of a location that contains
SEC_NULL_SID to indicate that there is no receiver restriction on the
message.

When receiving a message this parameter contains the subject security
identifier which the sender specified as the intended message receiver.
Returns the address of a location containing SEC_NULL_SID if no in-
tended recipient was supplied.

sender_subj_sid
[pointer to in/out security id]When sending a message this parameter
specifies the subject security identifier to be provided as the message’s
effective sender. The sender must haveav_specifyaccess to the port for
the value to be used. Set to the address of a location containing
SEC_NULL_SID to indicate that the sending task’s subject security
identifier is to be used. When receiving a message this parameter con-
tains theeffective subject security identifier of the message sender.

av_buf_size
The size of the subsequent structure av_buf in bytes. If this size is set
to zero, it is assumed that av_buf is not specified.

av_buf
[pointer to in/out access vector array structure] When receiving a mes-
sage, this parameter points to a buffer that will contain the access vec-
tor describing the effective sender’s permission to the port providing
the message, the notify vector, the override vector, and the cache con-
trol vector.

12 Mach 3 Kernel Interfaces

IPC Interface

When sending a message, this parameter points to a buffer to the ac-
cess vector, the notify vector, the override vector, and the cache control
vector that the receiver will receive. The sender must haveav_specify
access to the port for the value to be used. Set to MACH_NO_LABEL
to indicate that the effective sender’s permission is to be provided to
the receiver.

NOTES
The Mach kernel provides message-oriented, capability-based inter-process
communication. The inter-process communication (IPC) primitives efficiently
support many different styles of interaction, including remote procedure calls,
object-oriented distributed programming, streaming of data, and sending very
large amounts of data.

Major Concepts
The IPC primitives operate on three abstractions: messages, ports, and port sets.
User tasks access all other kernel services and abstractions via the IPC primi-
tives.

The message primitives let tasks send and receive messages. Tasks send messag-
es to ports. Messages sent to a port are delivered reliably (messages may not be
lost) and are received in the order in which they were sent. Messages contain a
fixed-size header and a variable amount of typed data following the header. The
header describes the destination and size of the message.

The IPC implementation makes use of the VM system to efficiently transfer
large amounts of data. The message body can contain an address of a region of
the sender’s address space which should be transferred as part of the message.
When a task receives a message containing an out-of-line region of data, the
data appears in an unused portion of the receiver’s address space. This transmis-
sion of out-of-line data is optimized so that sender and receiver share the physi-
cal pages of data copy-on-write, and no actual data copy occurs unless the
pages are written. Regions of memory up to the size of a full address space may
be sent in this manner.

Ports hold a queue of messages. Tasks operate on a port to send and receive
messages by exercising capabilities (rights) for the port. Multiple tasks can hold
send rights for a port. Tasks can also hold send-once rights, which grant the abil-
ity to send a single message. Only one task can hold the receive capability (re-
ceive right) for a port. Port rights can be transferred between tasks via
messages. The sender of a message can specify in the message body that the
message contains a port right. If a message contains a receive right for a port,
then the receive right is removed from the sender of the message and the right is
transferred to the receiver of the message. While the receive right is in transit,
tasks holding send rights can still send messages to the port, and they are
queued until a task acquires the receive right and uses it to receive the messages.

Mach 3 Kernel Interfaces 13

mach_msg/mach_msg_secure

Tasks can receive messages from ports and port sets. The port set abstraction al-
lows a single thread to wait for a message from any of several ports. Tasks ma-
nipulate port sets with a port set name, which is taken from the same name
space as are the port rights. The port-set name may not be transferred in a mes-
sage. A port set holds receive rights, and a receive operation on a port set blocks
waiting for a message sent to any of the constituent ports. A port may not be-
long to more than one port set, and if a port is a member of a port set, the holder
of the receive right can’t receive directly from the port.

Port rights are a secure, location-independent way of naming ports. The port
queue is a protected data structure, only accessible via the kernel’s exported
message primitives. Rights are also protected by the kernel; there is no way for
a malicious user task to guess a port’s internal name and send a message to a
port to which it shouldn’t have access. Port rights do not carry any location in-
formation. When a receive right for a port moves from task to task, and even be-
tween tasks on different machines, the send rights for the port remain
unchanged and continue to function.

Port Rights
Each task has its own space of port rights. Port rights are named with positive
integers. Except for the reserved values MACH_PORT_NULL (0) and
MACH_PORT_DEAD (-1), this is a full 32-bit name space. When the kernel
chooses a name for a new right, it is free to pick any unused name (one which
denotes no right) in the space.

There are three basic kinds of rights: receive rights, send rights and send-once
rights. A port name can name any of these types of rights, a port-set, be a dead
name, or name nothing. Dead names are not capabilities. They act as place-hold-
ers to prevent a name from being otherwise used.

A port is destroyed, or dies, when its receive right is de-allocated. When a port
dies, send and send-once rights for the port turn into dead names. Any messages
queued at the port are destroyed, which de-allocates the port rights and out-of-
line memory in the messages.

Tasks may hold multiple user-references for send rights and dead names. When
a task receives a send right which it already holds, the kernel increments the
right’s user-reference count. When a task de-allocates a send right, the kernel
decrements its user-reference count, and the task only loses the send right when
the count goes to zero.

Send-once rights always have a user-reference count of one, although a port can
have multiple send-once rights, because each send-once right held by a task has
a different name. In contrast, when a task holds send rights or a receive right for
a port, the rights share a single name.

Each send-once right generated guarantees the receipt of a single message, ei-
ther a message sent to that send-once right or, if the send-once right is in any
way destroyed, a send-once notification.

14 Mach 3 Kernel Interfaces

IPC Interface

A message body can carry port rights; themsgt_name (msgtl_name) field in a
type descriptor specifies the type of port right and how the port right is to be ex-
tracted from the caller. The values MACH_PORT_NULL and
MACH_PORT_DEAD are always valid in place of a port right in a message
body.

In a sent message, the followingmsgt_namevalues denote port rights:

MACH_MSG_TYPE_MAKE_SEND
The message will carry a send right, but the caller must supply a re-
ceive right. The send right is created from the receive right, and the re-
ceive right’s make-send count is incremented.

MACH_MSG_TYPE_COPY_SEND
The message will carry a send right, and the caller should supply a
send right. The user reference count for the supplied send right is not
changed. The caller may also supply a dead name and the receiving
task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MOVE_SEND
The message will carry a send right, and the caller should supply a
send right. The user reference count for the supplied send right is decre-
mented, and the right is destroyed if the count becomes zero. Unless a
receive right remains, the name becomes available for recycling. The
caller may also supply a dead name, which loses a user reference, and
the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MAKE_SEND_ONCE
The message will carry a send-once right, but the caller must supply a
receive right. The send-once right is created from the receive right.
Note that send once rights can only be created from the receive right.

MACH_MSG_TYPE_MOVE_SEND_ONCE
The message will carry a send-once right, and the caller should supply
a send-once right. The caller loses the supplied send-once right. The
caller may also supply a dead name, which loses a user reference, and
the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MOVE_RECEIVE
The message will carry a receive right, and the caller should supply a
receive right. The caller loses the supplied receive right, but retains
any send rights with the same name.

If a message carries a send or send-once right, and the port dies while the mes-
sage is in transit, then the receiving task will get MACH_PORT_DEAD instead
of a right.

The following msgt_name values in a received message indicate that it carries
port rights:

Mach 3 Kernel Interfaces 15

mach_msg/mach_msg_secure

MACH_MSG_TYPE_PORT_SEND
This value is an alias for MACH_MSG_TYPE_MOVE_SEND. The
message carried a send right. If the receiving task already has send and/
or receive rights for the port, then that name for the port will be reused.
Otherwise, the new right will have a new, previously unused, name. If
the task already has send rights, it gains a user reference for the right
(unless this would cause the user-reference count to overflow). Other-
wise, it acquires send rights, with a user-reference count of one.

MACH_MSG_TYPE_PORT_SEND_ONCE
This value is an alias for
MACH_MSG_TYPE_MOVE_SEND_ONCE. The message carried a
send-once right. The right will have a new, previously unused, name.

MACH_MSG_TYPE_PORT_RECEIVE
This value is an alias for MACH_MSG_TYPE_MOVE_RECEIVE.
The message carried a receive right. If the receiving task already has
send rights for the port, then that name for the port will be reused. Oth-
erwise, the right will have a new, previously unused, name. The make-
send count and sequence number of the receive right are reset to zero,
but the port retains other attributes like queued messages, extant send
and send-once rights, and requests for port-destroyed and no-senders
notifications. (Note: It is currently planned to remove port-destroyed
notifications from the kernel interface and to define no-senders notifica-
tions as being canceled when a receive right is moved.)

Memory
A message body can contain an address of a region of the sender’s address
space which should be transferred as part of the message. The message carries a
logical copy of the memory, but the kernel uses VM techniques to defer any ac-
tual page copies. Unless the sender or the receiver modifies the data, the physi-
cal pages remain shared.

An out-of-line transfer occurs when the data’s type descriptor specifies
msgt_inline as FALSE. The address of the memory region should follow the
type descriptor in the message body. The type descriptor and the address con-
tribute to the message’s size (send_size, msgh_size). The out-of-line data does
not contribute to the message’s size.

The name, size, and number fields in the type descriptor describe the type and
length of the out-of-line data, not the address. Out-of-line memory frequently re-
quires long type descriptors (mach_msg_type_long_t), because the
msgt_number field is too small to describe a page of 4K bytes.

Out-of-line memory arrives somewhere in the receiver’s address space as new
memory. It has the same inheritance and protection attributes as newly
vm_allocate’ed memory. The receiver has the responsibility of de-allocating
(with vm_deallocate) the memory when it is no longer needed. Security-con-
scious receivers should exercise caution when dealing with out-of-line memory

16 Mach 3 Kernel Interfaces

IPC Interface

from un-trustworthy sources, because the memory may be backed by an unreli-
able memory manager.

Null out-of-line memory is legal. If the out-of-line region size is zero (for exam-
ple, becausemsgtl_number is zero), then the region’s specified address is ig-
nored. A received null out-of-line memory region always has a zero address.

Unaligned addresses and region sizes that are not page multiples are legal. A re-
ceived message can also contain regions with unaligned addresses and funny
sizes. In the general case, the first and last pages in the new memory region in
the receiver do not contain data from the sender, but are partly zero. The re-
ceived address points into the middle of the first page. This possibility doesn’t
complicate de-allocation, becausevm_deallocatedoes the right thing, rounding
the start address down and the end address up to de-allocate all arrived pages.

Out-of-line memory has a de-allocate option, controlled by themsgt_deallocate
bit. If it is TRUE and the out-of-line memory region is not null, then the region
is implicitly de-allocated from the sender, as if byvm_deallocate. In particular,
the start and end addresses are rounded so that every page overlapped by the
memory region is de-allocated. The use ofmsgt_deallocate effectively changes
the memory copy into a memory movement. In a received message,
msgt_deallocate is TRUE in type descriptors for out-of-line memory.

Out-of-line memory can carry port rights.

Message Send
The send operation queues a message to a port. The message carries a copy of
the caller’s data. After the send, the caller can freely modify the message buffer
or the out-of-line memory regions and the message contents will remain un-
changed.

Message delivery is reliable and sequenced. Messages are not lost, and messag-
es sent to a port from a single thread are received in the order in which they
were sent.

If the destination port’s queue is full, then several things can happen. If the mes-
sage is sent to a send-once right (msgh_remote_port carries a send-once right),
then the kernel ignores the queue limit and delivers the message. Otherwise the
caller blocks until there is room in the queue, unless the
MACH_SEND_TIMEOUT or MACH_SEND_NOTIFY options are used. If a
port has several blocked senders, then any of them may queue the next message
when space in the queue becomes available, with the proviso that a blocked
sender will not be indefinitely starved.

These options modify MACH_SEND_MSG. If MACH_SEND_MSG is not
also specified, they are ignored.

Mach 3 Kernel Interfaces 17

mach_msg/mach_msg_secure

MACH_SEND_TIMEOUT
The timeout argument should specify a maximum time (in millisec-
onds) for the call to block before giving up. If the message can’t be
queued before the timeout interval elapses, then the call returns
MACH_SEND_TIMED_OUT. A zero timeout is legitimate.

MACH_SEND_NOTIFY
The notify argument should specify a receive right for a notify port. If
the send were to block, then instead the message is queued,
MACH_SEND_WILL_NOTIFY is returned, and a msg-accepted noti-
fication is requested. If MACH_SEND_TIMEOUT is also specified,
then MACH_SEND_NOTIFY doesn’t take effect until the timeout in-
terval elapses.

Only one message at a time can be forcibly queued to a send right with
MACH_SEND_NOTIFY. A msg-accepted notification is sent to the no-
tify port when another message can be forcibly queued. If an attempt is
made to use MACH_SEND_NOTIFY before then, the call returns a
MACH_SEND_NOTIFY_IN_PROGRESS error.

The msg-accepted notification carries the name of the send right. If the
send right is de-allocated before the msg-accepted notification is gener-
ated, then the msg-accepted notification carries the value
MACH_PORT_NULL. If the destination port is destroyed before the
notification is generated, then a send-once notification is generated in-
stead.

(Note: It is currently planned that this option will be deleted, as well as
the provision of the corresponding notification.)

MACH_SEND_INTERRUPT
If specified, the mach_msg call will return
MACH_SEND_INTERRUPTED if a software interrupt aborts the call.
Otherwise, the send operation will be retried.

MACH_SEND_CANCEL
The notify argument should specify a receive right for a notify port. If
the send operation removes the destination port right from the caller,
and the removed right had a dead-name request registered for it, and
notify is the notify port for the dead-name request, then the dead-name
request may be silently canceled (instead of resulting in what would
have been a port-deleted notification).

This option is typically used to cancel a dead-name request made with
the MACH_RCV_NOTIFY option. It should only be used as an opti-
mization.

Some return codes, like MACH_SEND_TIMED_OUT, imply that the message
was almost sent, but could not be queued. In these situations, the kernel tries to

18 Mach 3 Kernel Interfaces

IPC Interface

return the message contents to the caller with a pseudo-receive operation. This
prevents the loss of port rights or memory which only exist in the message. For
example, a receive right which was moved into the message, or out-of-line
memory sent with the de-allocate bit.

The pseudo-receive operation is very similar to a normal receive operation. The
pseudo-receive handles the port rights in the message header as if they were in
the message body. They are not reversed (as is the appearance in a normal re-
ceived message). After the pseudo-receive, the message is ready to be resent. If
the message is not resent, note that out-of-line memory regions may have
moved and some port rights may have changed names.

The pseudo-receive operation may encounter resource shortages. This is similar
to a MACH_RCV_BODY_ERROR return code from a receive operation.
When this happens, the normal send return codes are augmented with the
MACH_MSG_IPC_SPACE, MACH_MSG_VM_SPACE,
MACH_MSG_IPC_KERNEL, and MACH_MSG_VM_KERNEL bits to indi-
cate the nature of the resource shortage.

The queueing of a message carrying receive rights may create a circular loop of
receive rights and messages, which can never be received. For example, a mes-
sage carrying a receive right can be sent to that receive right. This situation is
not an error, but the kernel will garbage-collect such loops, destroying the mes-
sages.

Message Receive
The receive operation de-queues a message from a port. The receiving task ac-
quires the port rights and out-of-line memory regions carried in the message.

The rcv_name argument specifies a port or port set from which to receive. If a
port is specified, the caller must possess the receive right for the port and the
port must not be a member of a port set. If no message is present, then the call
blocks, subject to the MACH_RCV_TIMEOUT option.

If a port set is specified, the call will receive a message sent to any of the mem-
ber ports. It is permissible for the port set to have no member ports, and ports
may be added and removed while a receive from the port set is in progress. The
received message can come from any of the member ports which have messag-
es, with the proviso that a member port with messages will not be indefinitely
starved. Themsgh_local_port field in the received message header specifies
from which port in the port set the message came.

The rcv_size argument specifies the size of the caller’s message buffer. The
mach_msg call will not receive a message larger thanrcv_size. Messages that
are too large are destroyed, unless the MACH_RCV_LARGE option is used.

The destination and reply ports are reversed in a received message header. The
msgh_local_port field carries the name of the destination port, from which the
message was received, and themsgh_remote_port field carries the reply port

Mach 3 Kernel Interfaces 19

mach_msg/mach_msg_secure

right. The bits in msgh_bits are also reversed. The
MACH_MSGH_BITS_LOCAL bits have the value
MACH_MSG_TYPE_PORT_SEND if the message was sent to a send right,
and the value MACH_MSG_TYPE_PORT_SEND_ONCE if was sent to a send-
once right. The MACH_MSGH_BITS_REMOTE bits describe the reply port
right.

Received messages are stamped with a sequence number, taken from the port
from which the message was received. (Messages received from a port set are
stamped with a sequence number from the appropriate member port.) Newly
created ports start with a zero sequence number, and the sequence number is re-
set to zero whenever the port's receive right moves between tasks. When a mes-
sage is de-queued from the port, it is stamped with the port's sequence number
and the port's sequence number is then incremented. The de-queue and incre-
ment operations are atomic, so that multiple threads receiving messages from a
port can use themsgh_seqno field to reconstruct the original order of the mes-
sages.

A received message can contain port rights and out-of-line memory. The
msgh_local_port field does not carry a port right; the act of receiving the mes-
sage destroys the send or send-once right for the destination port. The
msgh_remote_port field does carry a port right, and the message body can carry
port rights and memory if MACH_MSGH_BITS_COMPLEX is present in
msgh_bits. Received port rights and memory should be consumed or de-allocat-
ed in some fashion.

In almost all cases,msgh_local_port will specify the name of a receive right, ei-
ther rcv_name, or, if rcv_name is a port set, a member of rcv_name. If other
threads are concurrently manipulating the receive right, the situation is more
complicated. If the receive right is renamed during the call, then
msgh_local_port specifies the right’s new name. If the caller loses the receive
right after the message was de-queued from it, thenmach_msg will proceed in-
stead of returning MACH_RCV_PORT_DIED. If the receive right was de-
stroyed, thenmsgh_local_port specifies MACH_PORT_DEAD. If the receive
right still exists, but isn’t held by the caller, then msgh_local_port specifies
MACH_PORT_NULL.

These options modify MACH_RCV_MSG. If MACH_RCV_MSG is not also
specified, they are ignored.

MACH_RCV_TIMEOUT
The timeout argument should specify a maximum time (in millisec-
onds) for the call to block before giving up. If no message arrives be-
fore the timeout interval elapses, then the call returns
MACH_RCV_TIMED_OUT. A zero timeout is legitimate.

MACH_RCV_NOTIFY
The notify argument should specify a receive right for a notify port. If
receiving the reply port creates a new port right in the caller, then the

20 Mach 3 Kernel Interfaces

IPC Interface

notify port is used to request a dead-name notification for the new port
right.

MACH_RCV_INTERRUPT
If specified, the mach_msg call will return
MACH_RCV_INTERRUPTED if a software interrupt aborts the call.
Otherwise, the receive operation will be retried.

MACH_RCV_LARGE
If the message is larger than rcv_size, then the message remains
queued instead of being destroyed. The call returns
MACH_RCV_TOO_LARGE and the actual size of the message is re-
turned in themsgh_size field of the message header. If this option is
not specified, messages too large will be de-queued and then de-
stroyed; the caller receives the message's header, with all fields correct,
including the destination port but excepting the reply port, which is
MACH_PORT_NULL.

If a resource shortage prevents the reception of a port right, the port right is de-
stroyed and the caller sees the name MACH_PORT_NULL. If a resource short-
age prevents the reception of an out-of-line memory region, the region is
destroyed and the caller sees a zero address. In addition, themsgt_size
(msgtl_size) field in the region’s type descriptor is changed to zero. If a resource
shortage prevents the reception of out-of-line memory carrying port rights, then
the port rights are always destroyed if the memory region can not be received.
A task never receives port rights or memory for which it is not told.

The MACH_RCV_HEADER_ERROR return code indicates a resource short-
age in the reception of the message’s header. The reply port and all port rights
and memory in the message body are destroyed. The caller receives the mes-
sage’s header, with all fields correct except for the reply port.

The MACH_RCV_BODY_ERROR return code indicates a resource shortage in
the reception of the message’s body. The message header, including the reply
port, is correct. The kernel attempts to transfer all port rights and memory re-
gions in the body, and only destroys those that can’t be transferred.

Atomicity
The mach_msg call handles port rights in a message header atomically. Port
rights and out-of-line memory in a message body do not enjoy this atomicity
guarantee. The message body may be processed front-to-back, back-to-front,
first out-of-line memory then port rights, in some random order, or even atomi-
cally.

For example, consider sending a message with the destination port specified as
MACH_MSG_TYPE_MOVE_SEND and the reply port specified as
MACH_MSG_TYPE_COPY_SEND. The same send right, with one user-refer-
ence, is supplied for both themsgh_remote_portand msgh_local_port fields.
Becausemach_msg processes the message header atomically, this succeeds. If

Mach 3 Kernel Interfaces 21

mach_msg/mach_msg_secure

msgh_remote_portwere processed beforemsgh_local_port, then mach_msg
would return MACH_SEND_INVALID_REPLY in this situation.

On the other hand, suppose the destination and reply port are both specified as
MACH_MSG_TYPE_MOVE_SEND, and again the same send right with one
user-reference is supplied for both. Now the send operation fails, but because it
processes the header atomically, mach_msg can return either
MACH_SEND_INVALID_DEST or MACH_SEND_INVALID_REPLY.

For example, consider receiving a message at the same time another thread is
de-allocating the destination receive right. Suppose the reply port field carries a
send right for the destination port. If the de-allocation happens before the de-
queuing, then the receiver gets MACH_RCV_PORT_DIED. If the de-allocation
happens after the receive, then themsgh_local_port and themsgh_remote_port
fields both specify the same right, which becomes a dead name when the re-
ceive right is de-allocated. If the de-allocation happens between the de-queue
and the receive, then themsgh_local_port and msgh_remote_port fields both
specify MACH_PORT_DEAD. Because the header is processed atomically, it is
not possible for just one of the two fields to hold MACH_PORT_DEAD.

The MACH_RCV_NOTIFY option provides a more likely example. Suppose a
message carrying a send-once right reply port is received with
MACH_RCV_NOTIFY at the same time the reply port is destroyed. If the reply
port is destroyed first, thenmsgh_remote_portspecifies MACH_PORT_DEAD
and the kernel does not generate a dead-name notification. If the reply port is de-
stroyed after it is received, thenmsgh_remote_port specifies a dead name for
which the kernel generates a dead-name notification. It is not possible to receive
the reply port right and have it turn into a dead name before the dead-name noti-
fication is requested; as part of the message header the reply port is received
atomically.

Implementation
mach_msg and mach_msg_secure are wrappers for system calls. These rou-
tines have the responsibility for repeating the interrupted system call.

CAUTIONS
Sending out-of-line memory with a non-page-aligned address, or a size which is
not a page multiple, works but with a caveat. The extra bytes in the first and last
page of the received memory are not zeroed, so the receiver can peek at more
data than the sender intended to transfer. This might be a security problem for
the sender.

If MACH_RCV_TIMEOUT is used without MACH_RCV_INTERRUPT, then
the timeout duration might not be accurate. When the call is interrupted and au-
tomatically retried, the original timeout is used. If interrupts occur frequently
enough, the timeout interval might never expire. MACH_SEND_TIMEOUT
without MACH_SEND_INTERRUPT suffers from the same problem.

22 Mach 3 Kernel Interfaces

IPC Interface

RETURN VALUE
The send operation can generate the following return codes. These return codes
imply that the call did nothing:

MACH_SEND_MSG_TOO_SMALL
The specified send_size was smaller than the minimum size for a mes-
sage.

MACH_SEND_NO_BUFFER
A resource shortage prevented the kernel from allocating a message
buffer.

MACH_SEND_INVALID_DATA
The supplied message buffer was not readable.

MACH_SEND_INVALID_HEADER
Themsgh_bits value was invalid.

MACH_SEND_INVALID_DEST
Themsgh_remote_port value was invalid.

MACH_SEND_INVALID_REPLY
Themsgh_local_port value was invalid.

MACH_SEND_INVALID_NOTIFY
When using MACH_SEND_CANCEL, thenotify argument did not de-
note a valid receive right.

These return codes imply that some or all of the message was destroyed:

MACH_SEND_INVALID_MEMORY
The message body specified out-of-line data that was not readable.

MACH_SEND_INVALID_RIGHT
The message body specified a port right which the caller didn’t possess.

MACH_SEND_INVALID_TYPE
A type descriptor was invalid.

MACH_SEND_MSG_TOO_SMALL
The last data item in the message ran over the end of the message.

These return codes imply that the message was returned to the caller with a
pseudo-receive operation:

MACH_SEND_TIMED_OUT
Thetimeout interval expired.

Mach 3 Kernel Interfaces 23

mach_msg/mach_msg_secure

MACH_SEND_INTERRUPTED
A software interrupt occurred.

MACH_SEND_INVALID_NOTIFY
When using MACH_SEND_NOTIFY, thenotify argument did not de-
note a valid receive right.

MACH_SEND_NO_NOTIFY
A resource shortage prevented the kernel from setting up a msg-accept-
ed notification.

MACH_SEND_NOTIFY_IN_PROGRESS
A msg-accepted notification was already requested, and hasn’t yet
been generated.

These return codes imply that the message was queued:

MACH_SEND_WILL_NOTIFY
The message was forcibly queued, and a msg-accepted notification was
requested.

MACH_MSG_SUCCESS
The message was queued.

The receive operation can generate the following return codes. These return
codes imply that the call did not de-queue a message:

MACH_RCV_INVALID_NAME
The specifiedrcv_name was invalid.

MACH_RCV_IN_SET
The specified port was a member of a port set.

MACH_RCV_TIMED_OUT
Thetimeout interval expired.

MACH_RCV_INTERRUPTED
A software interrupt occurred.

MACH_RCV_PORT_DIED
The caller lost the rights specified byrcv_name.

MACH_RCV_PORT_CHANGED
rcv_name specified a receive right which was moved into a port set dur-
ing the call.

24 Mach 3 Kernel Interfaces

IPC Interface

MACH_RCV_TOO_LARGE
When using MACH_RCV_LARGE, and the message was larger than
rcv_size. The message is left queued, and its actual size is returned in
themsgh_size field of the message buffer.

These return codes imply that a message was de-queued and destroyed:

MACH_RCV_HEADER_ERROR
A resource shortage prevented the reception of the port rights in the
message header.

MACH_RCV_INVALID_NOTIFY
When using MACH_RCV_NOTIFY, the notify argument did not de-
note a valid receive right.

MACH_RCV_TOO_LARGE
When not using MACH_RCV_LARGE, a message larger than
rcv_size was de-queued and destroyed.

These return codes imply that a message was received:

MACH_RCV_BODY_ERROR
A resource shortage prevented the reception of a port right or out-of-
line memory region in the message body.

MACH_RCV_INVALID_DATA
The specified message buffer was not writable. The calling task did
successfully receive the port rights and out-of-line memory regions in
the message.

MACH_MSG_SUCCESS
A message was received.

Resource shortages can occur after a message is de-queued, while transferring
port rights and out-of-line memory regions to the receiving task. In this situa-
tion, mach_msg and mach_msg_secure return
MACH_RCV_HEADER_ERROR or MACH_RCV_BODY_ERROR. These re-
turn codes always carry extra bits (bitwise-or’ed) that indicate the nature of the
resource shortage:

MACH_MSG_IPC_SPACE
There was no room in the task’s IPC name space for another port name.

MACH_MSG_VM_SPACE
There was no room in the task’s VM address space for an out-of-line
memory region.

MACH_MSG_IPC_KERNEL
A kernel resource shortage prevented the reception of a port right.

Mach 3 Kernel Interfaces 25

mach_msg/mach_msg_secure

MACH_MSG_VM_KERNEL
A kernel resource shortage prevented the reception of an out-of-line
memory region.

MACH_MSG_INSUFFICIENT_PERMISSION
A permission check failure prevented the reception of a port right.

RELATED INFORMATION
Functions:mach_msg_receive, mach_msg_send.

Data Structures:mach_msg_header, mach_msg_type, mach_msg_type_long,
mach_msg_accepted_notification, mach_send_once_notification.

26 Mach 3 Kernel Interfaces

IPC Interface

mach_msg_receive

Function — Receives a message from a port or port set

LIBRARY
Not declared anywhere.

SYNOPSIS

mach_msg_return_tmach_msg_receive
(mach_msg_header_t* header);

DESCRIPTION
Themach_msg_receive function is a shorthand for the following call:

mach_msg(header, MACH_RCV_MSG, 0,header→msgh_size,
header→msgh_local_port, MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

SECURITY
The receiving task must haveav_can_receive permission to the port indicated
by rcv_name. Messages will be received from a port in a port set only if the re-
questing task hasav_can_receive permission to the port. When a task uses a
port as a reply port for an RPC type of operation, the requesting task must also
haveav_can_send permission to that port.

PARAMETERS

header
[pointer to in/out structure containing random port] The address of the
buffer that is to receive the message. Themsgh_local_port and
msgh_size fields inheader must be set.

RETURN VALUE
Refer tomach_msg for a description of the various receive errors.

RELATED INFORMATION
Functions:mach_msg, mach_msg_send.

Data Structures:mach_msg_header, mach_msg_type, mach_msg_type_long.

Mach 3 Kernel Interfaces 27

mach_msg_send

mach_msg_send

Function — Sends a message to a port

LIBRARY
Not declared anywhere.

SYNOPSIS

mach_msg_return_tmach_msg_send
(mach_msg_header_t* header);

DESCRIPTION
Themach_msg_send function is a shorthand for the following call:

mach_msg(header, MACH_SEND_MSG,header→msgh_size, 0,
MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

SECURITY
The sending task must haveav_can_send permission to the destination port. If a
reply port is used, the sending task must haveav_set_reply permission to the re-
ply port.

PARAMETERS

header
[pointer to in structure containing random and reply ports] The address
of the buffer that contains the message to be sent.

RETURN VALUE
Refer tomach_msg for a description of the send errors.

RELATED INFORMATION
Functions:mach_msg, mach_msg_receive.

Data Structures:mach_msg_header, mach_msg_type, mach_msg_type_long.

28 Mach 3 Kernel Interfaces

IPC Interface

Mach 3 Kernel Interfaces 29

CHAPTER 3 Port Manipulation
Interface

This chapter discusses the specifics of the kernel’s port manipulation interfaces. This in-
cludes port, port set and port right related functions. Also included are interfaces that re-
turn port related status information that applies to a single task.

30 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_dead_name

Server Interface — Handles the occurrence of a dead-name notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_dead_name
(notify_port_t notify,
mach_port_name_t name);

do_seqnos_mach_notify_dead_name
Sequence Number form

kern_return_t do_seqnos_mach_notify_dead_name
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_name_t name);

DESCRIPTION
A do_mach_notify_dead_namefunction is called bynotify_server as the re-
sult of a kernel message indicating that the port name is now dead as the result
of the associated receive right having died. In contrast, a port-deleted notifica-
tion indicates that the port name is no longer usable (that is, it no longer names
a valid right), typically as a result of the right so named being consumed or
moved. notify is the port named viamach_port_request_notification or
mach_msg.

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

name
[in scalar] The dead name.

Mach 3 Kernel Interfaces 31

do_mach_notify_dead_name

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE
Irrelevant.

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_msg_accepted, do_mach_notify_no_senders,
do_mach_notify_port_deleted, do_mach_notify_port_destroyed,
do_mach_notify_send_once.

32 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_msg_accepted

Server Interface — Handles the occurrence of a message accepted notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_msg_accepted
(notify_port_t notify,
mach_port_name_t name);

do_seqnos_mach_notify_msg_accepted
Sequence Number form

kern_return_t do_seqnos_mach_notify_msg_accepted
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_name_t name);

DESCRIPTION
A do_mach_notify_msg_acceptedfunction is called bynotify_server as the
result of a kernel message indicating that a message forcibly queued to a port
via MACH_NOTIFY_SEND was accepted.notify is the port named via
mach_msg.

(Note: This feature is current planned for deletion.)

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

name
[in scalar] The port whose message was accepted.

Mach 3 Kernel Interfaces 33

do_mach_notify_msg_accepted

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE
Irrelevant.

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_dead_name, do_mach_notify_no_senders,
do_mach_notify_port_deleted, do_mach_notify_port_destroyed,
do_mach_notify_send_once.

34 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_no_senders

Server Interface — Handles the occurrence of a no-more-senders notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_no_senders
(notify_port_t notify,
mach_port_mscount_t mscount);

do_seqnos_mach_notify_no_senders
Sequence Number form

kern_return_t do_seqnos_mach_notify_no_senders
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_mscount_t mscount);

DESCRIPTION
A do_mach_notify_no_sendersfunction is called bynotify_server as the re-
sult of a kernel message indicating that a receive right has no more senders.noti-
fy is the port named viamach_port_request_notification.

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

mscount
[in scalar] The value the port’s make-send count had when the notifica-
tion was generated.

RETURN VALUE
Irrelevant.

Mach 3 Kernel Interfaces 35

do_mach_notify_no_senders

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_msg_accepted, do_mach_notify_dead_name,
do_mach_notify_port_deleted, do_mach_notify_port_destroyed,
do_mach_notify_send_once.

36 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_port_deleted

Server Interface — Handles the occurrence of a port-deleted notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_port_deleted
(notify_port_t notify,
mach_port_name_t name);

do_seqnos_mach_notify_port_deleted
Sequence Number form

kern_return_t do_seqnos_mach_notify_port_deleted
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_name_t name);

DESCRIPTION
A do_mach_notify_port_deletedfunction is called bynotify_server as the re-
sult of a kernel message indicating that a port name is no longer usable (that is,
it no longer names a valid right), typically as a result of the right so named be-
ing consumed or moved. In contrast, a dead-name notification indicates that the
port name is now dead as the result of the associated receive right having died.
notify is the port named viamach_port_request_notification or mach_msg.

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

name
[in scalar] The invalid name.

Mach 3 Kernel Interfaces 37

do_mach_notify_port_deleted

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE
Irrelevant.

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_dead_name, do_mach_notify_msg_accepted,
do_mach_notify_no_senders, do_mach_notify_port_destroyed,
do_mach_notify_send_once.

38 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_port_destroyed

Server Interface — Handles the occurrence of a port destroyed notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_port_destroyed
(notify_port_t notify,
mach_port_receive_t rights);

do_seqnos_mach_notify_port_destroyed
Sequence Number form

kern_return_t do_seqnos_mach_notify_port_destroyed
(notify_port_t notify,
mach_port_seqno_t seqno,
mach_port_receive_t rights);

DESCRIPTION
A do_mach_notify_port_destroyedfunction is called bynotify_server as the
result of a kernel message indicating that a receive right would have been de-
stroyed.notify is the port named viamach_port_request_notification.

(Note: This feature is currently planned for deletion.)

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

rights
[in random port] The receive right that would have been destroyed.

RETURN VALUE
Irrelevant.

Mach 3 Kernel Interfaces 39

do_mach_notify_port_destroyed

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_msg_accepted, do_mach_notify_no_senders,
do_mach_notify_dead_name, do_mach_notify_port_deleted,
do_mach_notify_send_once.

40 Mach 3 Kernel Interfaces

Port Manipulation Interface

do_mach_notify_send_once

Server Interface — Handles the occurrence of a send-once notification

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t do_mach_notify_send_once
(notify_port_t notify);

do_seqnos_mach_notify_send_once
Sequence Number form

kern_return_t do_seqnos_mach_notify_send_once
(notify_port_t notify,
mach_port_seqno_t seqno);

DESCRIPTION
A do_mach_notify_send_oncefunction is called bynotify_server as the result
of a kernel message indicating that a send-once right was in any way destroyed.
notify is the port for which a send-once right was destroyed.

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

notify
[in notify port] The port to which the notification was sent.

seqno
[in scalar] The sequence number of this message relative to the notifica-
tion port.

RETURN VALUE
Irrelevant.

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_mach_notify_msg_accepted, do_mach_notify_no_senders,
do_mach_notify_port_deleted, do_mach_notify_port_destroyed,
do_mach_notify_dead_name.

Mach 3 Kernel Interfaces 41

mach_port_allocate/mach_port_allocate_secure

mach_port_allocate/mach_port_allocate_secure

Function — Creates a port right and optionally associates an object security
identifier with the port.

SYNOPSIS

kern_return_tmach_port_allocate
(mach_port_t task,
mach_port_right_t right,
mach_port_t* name);

kern_return_tmach_port_allocate_secure
(mach_port_t task,
mach_port_right_t right,
mach_port_t* name,
security_id_t obj_sid);

DESCRIPTION
Themach_port_allocate function creates a new right in the specified task. The
new right’s name is returned inname. The mach_port_allocate_securefunc-
tion creates a new right in the specified task with the specified object security
identifier.

SECURITY
The requesting task must holdtsv_add_namepermission to the task porttask.If
the request results in a new receive right being created fortask’s task, task must
haveav_hold_receive permission to the newly allocated port.

When using mach_port_allocate, the port is allocated with an object security
identifier derived fromtask’s subject security identifier. Refer to the Software
Design Document for further information on how SIDs are derived.

If mach_port_allocate_secure is given a SEC_NULL_SID as theobj_sid, then
its behavior is essentially the same asmach_port_allocate.

PARAMETERS

task
[in task port] The task acquiring the port right.

right
[in scalar] The kind of entity to be created. This is one of the following:

42 Mach 3 Kernel Interfaces

Port Manipulation Interface

MACH_PORT_RIGHT_RECEIVE
mach_port_allocate creates a port. The new port is not a
member of any port set. It doesn’t have any extant send or
send-once rights. Its make-send count is zero, its sequence
number is zero, its queue limit is
MACH_PORT_QLIMIT_DEFAULT, and it has no queued
messages.name denotes the receive right for the new port.

task does not hold send rights for the new port, only the re-
ceive right. mach_port_insert_right and
mach_port_extract_right can be used to convert the receive
right into a combined send/receive right.

MACH_PORT_RIGHT_PORT_SET
mach_port_allocate creates a port set. The new port set has
no members. An object security identifier cannot be associat-
ed with a port set, hence, if one is specified with
mach_port_allocate_secure, it will be ignored.

MACH_PORT_RIGHT_DEAD_NAME
mach_port_allocate creates a dead name. The new dead
name has one user reference. An object security identifier can-
not be associated with a dead name, hence, if one is specified
with mach_port_allocate_secure, it will be ignored.

name
[out scalar] The task’s name for the port right. This can be any name
that wasn’t in use.

obj_sid
[in security id] The object security identifier to be associated with the
created port. The interfaceSSI_context_to_mid can be used to obtain
a mandatory identifier from the Security Server. The mandatory identi-
fier and the authentication identifier can be combined into a security
identifier viamake_sid.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_NO_SPACE
There was no room intask’s IPC name space for another right.

Mach 3 Kernel Interfaces 43

mach_port_allocate/mach_port_allocate_secure

RELATED INFORMATION
Functions: mach_port_allocate_name, mach_port_allocate_name_secure,
mach_port_deallocate, mach_port_insert_right, mach_port_extract_right,
SSI_context_to_mid, make_sid.

44 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_allocate_name/
mach_port_allocate_name_secure

Function — Creates a port right with a given name and optionally associates an
object security identifier with the port.

SYNOPSIS

kern_return_tmach_port_allocate_name
(mach_port_t task,
mach_port_right_t right,
mach_port_t name);

kern_return_tmach_port_allocate_name_secure
(mach_port_t task,
mach_port_right_t right,
mach_port_t name,
security_id_t obj_sid);

DESCRIPTION
The mach_port_allocate_name function creates a new right in the specified
task, with a specified name for the new right. The
mach_port_allocate_name_secure function creates a new right in the specified
task, with a specified name and a specified object security identifier.

SECURITY
The requesting task must holdtsv_add_namepermission to the task porttask.If
the request results in a new receive right being created fortask’s task, task must
haveav_hold_receive permission to the newly allocated port.

When usingmach_port_allocate_name, the port is allocated with an object se-
curity identifier derived fromtask’s subject security identifier.

If mach_port_allocate_name_secure is given a SEC_NULL_SID as the
obj_sid, then its behavior is essentially the same asmach_port_allocate_name.

PARAMETERS

task
[in task port] The task acquiring the port right.

right
[in scalar] The kind of entity to be created. This is one of the following
values:

Mach 3 Kernel Interfaces 45

mach_port_allocate_name/mach_port_allocate_name_secure

MACH_PORT_RIGHT_RECEIVE
mach_port_allocate_name creates a port. The new port is
not a member of any port set. It doesn’t have any extant send
or send-once rights. Its make-send count is zero, its sequence
number is zero, its queue limit is
MACH_PORT_QLIMIT_DEFAULT, and it has no queued
messages.name denotes the receive right for the new port.

task does not hold send rights for the new port, only the re-
ceive right. mach_port_insert_right and
mach_port_extract_right can be used to convert the receive
right into a combined send/receive right.

MACH_PORT_RIGHT_PORT_SET
mach_port_allocate_name creates a port set. The new port
set has no members. An object security identifier cannot be as-
sociated with a port set, hence, if one is specified with
mach_port_allocate_name_secure, it will be ignored.

MACH_PORT_RIGHT_DEAD_NAME
mach_port_allocate_name creates a new dead name. The
new dead name has one user reference. An object security
identifier cannot be associated with dead name, hence, if one
is specified withmach_port_allocate_name_secure, it will
be ignored.

name
[in scalar] The task’s name for the port right.name must not already be
in use for some right, and it can’t be the reserved values
MACH_PORT_NULL and MACH_PORT_DEAD.

obj_sid
[in security id] The object security identifier to be associated with the
allocated port. The interfaceSSI_context_to_mid can be used to ob-
tain a mandatory identifier from the Security Server. The mandatory
identifier and the authentication identifier can be combined into a secu-
rity identifier viamake_sid.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_NAME_EXISTS
name was already in use for a port right.

46 Mach 3 Kernel Interfaces

Port Manipulation Interface

RELATED INFORMATION
Functions: mach_port_allocate, mach_port_allocate_secure,
mach_port_deallocate, mach_port_rename, SSI_context_to_mid, make_sid.

Mach 3 Kernel Interfaces 47

mach_port_deallocate

mach_port_deallocate

Function — Releases a user reference for a right

SYNOPSIS

kern_return_tmach_port_deallocate
(mach_port_t task,
mach_port_t name);

DESCRIPTION
The mach_port_deallocate function releases a user reference for a right. It is
an alternate form ofmach_port_mod_refs that allows a task to release a user
reference for a send or send-once right without failing if the port has died and
the right is now actually a dead name.

If name denotes a dead name, send right, or send-once right, then the right loses
one user reference. If it only had one user reference, then the right is destroyed.

SECURITY
The requesting task must holdtsv_remove_namepermission to the task port
task.

PARAMETERS

task
[in task port] The task holding the right.

name
[in scalar] The task’s name for the right.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_RIGHT
name denoted an invalid right.

RELATED INFORMATION
Functions: mach_port_allocate, mach_port_allocate_name,
mach_port_mod_refs.

48 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_destroy

Function — Removes a task’s rights for a name

SYNOPSIS

kern_return_tmach_port_destroy
(mach_port_t task;
mach_port_t name);

DESCRIPTION
The mach_port_destroy function de-allocates all rights denoted by a name.
The name becomes immediately available for reuse.

For most purposes,mach_port_mod_refsandmach_port_deallocate are pref-
erable.

If name denotes a port set, then all members of the port set are implicitly re-
moved from the port set.

If name denotes a receive right that is a member of a port set, the receive right
is implicitly removed from the port set. If there is a port-destroyed request regis-
tered for the port, then the receive right is not actually destroyed, but instead is
sent in a port-destroyed notification. (Note: Port destroyed notifications are cur-
rently planned for deletion.) If there is no registered port-destroyed request, re-
maining messages queued to the port are destroyed and extant send and send-
once rights turn into dead names. If those send and send-once rights have dead-
name requests registered, then dead-name notifications are generated for them.

If name denotes a send-once right, then the send-once right is used to produce a
send-once notification for the port.

If name denotes a send-once, send, and/or receive right, and it has a dead-name
request registered, then the registered send-once right is used to produce a port-
deleted notification for the name.

SECURITY
The requesting task must holdtsv_remove_namepermission to the task port
task.

PARAMETERS

task
[in task port] The task holding the right.

Mach 3 Kernel Interfaces 49

mach_port_destroy

name
[in scalar] The task’s name for the right.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

RELATED INFORMATION
Functions: mach_port_allocate, mach_port_allocate_name,
mach_port_mod_refs, mach_port_deallocate,
mach_port_request_notification.

50 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_extract_right

Function — Extracts a port right from a task

SYNOPSIS

kern_return_tmach_port_extract_right
(mach_port_t task,
mach_port_t name,
mach_msg_type_name_t desired_type,
mach_port_t* right,
mach_msg_type_name_t* acquired_type);

DESCRIPTION
The mach_port_extract_right function extracts a port right from the target
task and returns it to the caller as if the task sent the right voluntarily, using
desired_typeas the value ofmsgt_name. Seemach_msg.

The returned value of acquired_type will be
MACH_MSG_TYPE_PORT_SEND if a send right is extracted,
MACH_MSG_TYPE_PORT_RECEIVE if a receive right is extracted, and
MACH_MSG_TYPE_PORT_SEND_ONCE if a send-once right is extracted.

SECURITY
The requesting task must holdtsv_extract_rightpermission to the task port task.
The requesting task must also have permission to hold the port right extracted..

PARAMETERS

task
[in task port] The task holding the port right.

name
[in scalar] The task’s name for the port right.

desired_type
[in scalar] IPC type, specifying how the right should be extracted.

right
[out random port] The extracted right.

acquired_type
[out scalar] The type of the extracted right.

Mach 3 Kernel Interfaces 51

mach_port_extract_right

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted an invalid right.

RELATED INFORMATION
Functions:mach_port_insert_right, mach_msg.

52 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_get_receive_status

Function — Returns the status of a receive right

SYNOPSIS

kern_return_tmach_port_get_receive_status
(mach_port_t task,
mach_port_t name,
mach_port_status_t* status);

DESCRIPTION
The mach_port_get_receive_status function returns the current status of the
specified receive right.

SECURITY
The requesting task must holdtsv_observe_pns_infopermission to the task port
task.

PARAMETERS

task
[in task port] The task holding the receive right.

name
[in scalar] The task’s name for the receive right.

status
[out structure] The status information for the receive right.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not a receive right.

Mach 3 Kernel Interfaces 53

mach_port_get_receive_status

RELATED INFORMATION
Functions: mach_port_set_qlimit, mach_port_set_mscount,
mach_port_set_seqno.

Data Structures:mach_port_status.

54 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_get_refs

Function — Retrieves the number of user references for a right

SYNOPSIS

kern_return_tmach_port_get_refs
(mach_port_t task,
mach_port_t name,
mach_port_right_t right,
mach_port_urefs_t* refs);

DESCRIPTION
The mach_port_get_refs function returns the number of user references a task
has for a right.

If name denotes a right, but not the type of right specified, then zero is returned.
Otherwise a positive number of user references is returned. Note a name may si-
multaneously denote send and receive rights.

SECURITY
The requesting task must holdtsv_observe_pns_infopermission to the task port
task.

PARAMETERS

task
[in task port] The task holding the right.

name
[in scalar] The task’s name for the right.

right
[in scalar] The type of right / entity being examined:
MACH_PORT_RIGHT_SEND, MACH_PORT_RIGHT_RECEIVE,
MACH_PORT_RIGHT_SEND_ONCE,
MACH_PORT_RIGHT_PORT_SET or
MACH_PORT_RIGHT_DEAD_NAME.

refs
[out scalar] Number of user references.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

Mach 3 Kernel Interfaces 55

mach_port_get_refs

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

RELATED INFORMATION
Functions:mach_port_mod_refs.

56 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_get_set_status

Function — Returns the members of a port set

SYNOPSIS

kern_return_tmach_port_get_set_status
(mach_port_t task,
mach_port_t name,
mach_port_array_t* members,
mach_msg_type_number_t* count);

DESCRIPTION
The mach_port_get_set_status function returns the members of a port set.
members is an array that is automatically allocated when the reply message is re-
ceived.

SECURITY
The requesting task must holdtsv_observe_pns_infopermission to the task port
task.

PARAMETERS

task
[in task port] The task holding the port set.

name
[in scalar] The task’s name for the port set.

members
[out pointer to dynamic array ofmach_port_t] The task’s names for the
port set’s members.

count
[out scalar] The number of member names returned.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

Mach 3 Kernel Interfaces 57

mach_port_get_set_status

KERN_INVALID_RIGHT
name denoted a right, but not a port set.

RELATED INFORMATION
Functions:mach_port_move_member, vm_deallocate.

58 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_insert_right

Function — Inserts a port right into a task

SYNOPSIS

kern_return_tmach_port_insert_right
(mach_port_t task,
mach_port_t name,
mach_port_t right,
mach_msg_type_name_t right_type);

DESCRIPTION
The mach_port_insert_right function inserts intotask the caller’s right for a
port, using a specified name for the right in the target task.

The specifiedname can’t be one of the reserved values MACH_PORT_NULL
or MACH_PORT_DEAD. The right can’t be MACH_PORT_NULL or
MACH_PORT_DEAD.

The argument right_type specifies a right to be inserted and how that right
should be extracted from the caller. It should be a value appropriate for
msgt_name; seemach_msg.

If right_type is MACH_MSG_TYPE_MAKE_SEND,
MACH_MSG_TYPE_MOVE_SEND, or MACH_MSG_TYPE_COPY_SEND,
then a send right is inserted. If the target already holds send or receive rights for
the port, thenname should denote those rights in the target. Otherwise,name
should be unused in the target. If the target already has send rights, then those
send rights gain an additional user reference. Otherwise, the target gains a send
right, with a user reference count of one.

If right_type is MACH_MSG_TYPE_MAKE_SEND_ONCE or
MACH_MSG_TYPE_MOVE_SEND_ONCE, then a send-once right is insert-
ed. Thename should be unused in the target. The target gains a send-once right.

If right_type is MACH_MSG_TYPE_MOVE_RECEIVE, then a receive right is
inserted. If the target already holds send rights for the port, thenname should de-
note those rights in the target. Otherwise,name should be unused in the target.
The receive right is moved into the target task.

SECURITY
The requesting task must holdtsv_add_namepermission to the task port task.
The task havingtask as it’s task port must also hold the appropriate
av_hold_receive, av_hold_send or av_hold_send_once permission to the port as-
sociatedwith name.

Mach 3 Kernel Interfaces 59

mach_port_insert_right

PARAMETERS

task
[in task port] The task which gets the caller’s right.

name
[in scalar] The name by whichtask will know the right.

right
[in random port] The port right.

right_type
[in scalar] IPC type of the sent right; e.g.,
MACH_MSG_TYPE_COPY_SEND or
MACH_MSG_TYPE_MOVE_RECEIVE.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_NAME_EXISTS
name already denoted a right.

KERN_INVALID_CAPABILITY
right was null or dead.

KERN_UREFS_OVERFLOW
Inserting the right would overflowname’s user-reference count.

KERN_RIGHT_EXISTS
task already had rights for the port, with a different name.

RELATED INFORMATION

Functions:mach_port_extract_right, mach_msg.

60 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_mod_refs

Function — Changes the number of user refs for a right

SYNOPSIS

kern_return_tmach_port_mod_refs
(mach_port_t task,
mach_port_t name,
mach_port_right_t right,
mach_port_delta_t delta);

DESCRIPTION
Themach_port_mod_refs function requests that the number of user references
a task has for a right be changed. This results in the right being destroyed, if the
number of user references is changed to zero.

The name should denote the specified right. The number of user references for
the right is changed by the amountdelta, subject to the following restrictions:
port sets, receive rights, and send-once rights may only have one user reference.
The resulting number of user references can’t be negative. If the resulting num-
ber of user references is zero, the effect is to de-allocate the right. For dead
names and send rights, there is an implementation-defined maximum number of
user references.

If the call destroys the right, then the effect is as described for
mach_port_destroy, with the exception thatmach_port_destroysimultaneous-
ly destroys all the rights denoted by a name, whilemach_port_mod_refs can
only destroy one right. The name will be available for reuse if it only denoted
the one right.

SECURITY
If the port is destroyed as a result of this request, the requesting task must hold
tsv_remove_namepermission to the task port task.

PARAMETERS

task
[in task port] The task holding the right.

name
[in scalar] The task’s name for the right.

right
[in scalar] The type of right / entity being modified:
MACH_PORT_RIGHT_SEND, MACH_PORT_RIGHT_RECEIVE,

Mach 3 Kernel Interfaces 61

mach_port_mod_refs

MACH_PORT_RIGHT_SEND_ONCE,
MACH_PORT_RIGHT_PORT_SET or
MACH_PORT_RIGHT_DEAD_NAME.

delta
[in scalar] Signed change to the number of user references.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not the specified right.

KERN_INVALID_VALUE
The user-reference count would become negative.

KERN_UREFS_OVERFLOW
The user-reference count would overflow.

RELATED INFORMATION
Functions:mach_port_destroy, mach_port_get_refs.

62 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_move_member

Function — Moves a receive right into/out of a port set

SYNOPSIS

kern_return_tmach_port_move_member
(mach_port_t task,
mach_port_t member,
mach_port_t after);

DESCRIPTION
The mach_port_move_member function moves a receive right into a port set.
If the receive right is already a member of another port set, it is removed from
that set first. If the port set is MACH_PORT_NULL, then the receive right is
not put into a port set, but removed from its current port set.

SECURITY
The requesting task must holdtsv_manipulate_port_setpermission to the task
port task.

PARAMETERS

task
[in task port] The task holding the port set and receive right.

member
[in scalar] The task’s name for the receive right.

after
[in scalar] The task’s name for the port set.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
member or after did not denote a right.

KERN_INVALID_RIGHT
member denoted a right, but not a receive right, orafter denoted a
right, but not a port set.

Mach 3 Kernel Interfaces 63

mach_port_move_member

KERN_NOT_IN_SET
after was MACH_PORT_NULL, but member wasn’t currently in a
port set.

RELATED INFORMATION
Functions:mach_port_get_set_status, mach_port_get_receive_status.

64 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_names

Function — Return information about a task’s port name space

SYNOPSIS

kern_return_tmach_port_names
(mach_port_t task,
mach_port_array_t* names,
mach_msg_type_number_t* ncount,
mach_port_type_array_t* types,
mach_msg_type_number_t* tcount);

DESCRIPTION
Themach_port_names returns information abouttask’s port name space. It re-
turnstask’s currently active names, which represent some port, port set, or dead
name right. For each name, it also returns what type of rightstask holds (the
same information returned bymach_port_type).

SECURITY
The requesting task must holdtsv_observe_pns_infopermission to the task port
task.

PARAMETERS

task
[in task port] The task whose port name space is queried.

names
[out pointer to dynamic array ofmach_port_t] The names of the ports,
port sets, and dead names in the task’s port name space, in no particu-
lar order.

ncount
[out scalar] The number of names returned.

types
[out pointer to dynamic array ofmach_port_type_t] The type of each
corresponding name. Indicates what kind of rights the task holds with
that name.

tcount
[out scalar] Should be the same asncount.

Mach 3 Kernel Interfaces 65

mach_port_names

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:mach_port_type, vm_deallocate.

66 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_rename

Function — Change a task’s name for a right

SYNOPSIS

kern_return_tmach_port_rename
(mach_port_t task,
mach_port_t old_name,
mach_port_t new_name);

DESCRIPTION
The mach_port_rename function changes the name by which a port, port set,
or dead name is known totask. new_name must not already be in use, and it
can’t be the distinguished values MACH_PORT_NULL and
MACH_PORT_DEAD.

SECURITY
The requesting task must holdtsv_port_renamepermission to the task port task.

PARAMETERS

task
[in task port] The task holding the port right.

old_name
[in scalar] The original name of the port right.

new_name
[in scalar] The new name for the port right.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
old_name did not denote a right.

KERN_NAME_EXISTS
new_name already denoted a right.

Mach 3 Kernel Interfaces 67

mach_port_rename

RELATED INFORMATION
Functions:mach_port_names.

68 Mach 3 Kernel Interfaces

Port Manipulation Interface

mach_port_request_notification

Function — Request a notification of a port event

SYNOPSIS

kern_return_tmach_port_request_notification
(mach_port_t task,
mach_port_t name,
mach_msg_id_t variant,
mach_port_mscount_t sync,
mach_port_t notify,
mach_msg_type_name_t notify_type,
mach_port_t* previous);

DESCRIPTION
Themach_port_request_notification function registers a request for a notifica-
tion and supplies a send-once right that the notification will use. It is an atomic
swap, returning the previously registered send-once right (or
MACH_PORT_NULL for none). A notification request may be cancelled by
providing MACH_PORT_NULL.

Thevariant argument takes the following values:

MACH_NOTIFY_PORT_DESTROYED
sync must be zero. Thename must specify a receive right, and the call
requests a port-destroyed notification for the receive right. If the re-
ceive right were to have been destroyed, say bymach_port_destroy,
then instead the receive right will be sent in a port-destroyed notifica-
tion to the registered send-once right.

(Note: This feature is currently planned for deletion.)

MACH_NOTIFY_DEAD_NAME
The call requests a dead-name notification.name specifies send, re-
ceive, or send-once rights for a port. If the port is destroyed (and the
right remains, becoming a dead name), then a dead-name notification
which carries the name of the right will be sent to the registered send-
once right. Ifsync is non-zero, thename may specify a dead name, and
a dead-name notification is immediately generated.

Whenever a dead-name notification is generated, the user reference
count of the dead name is incremented. For example, a send right with
two user refs has a registered dead-name request. If the port is de-
stroyed, the send right turns into a dead name with three user refs (in-
stead of two), and a dead-name notification is generated.

Mach 3 Kernel Interfaces 69

mach_port_request_notification

If the name is made available for reuse, perhaps because of
mach_port_destroy or mach_port_mod_refs, or the name denotes a
send-once right which has a message sent to it, then the registered send-
once right is used to generate a port-deleted notification instead.

MACH_NOTIFY_NO_SENDERS
The call requests a no-senders notification.name must specify a re-
ceive right. If the receive right’s make-send count is greater than or
equal to the sync value, and it has no extant send rights, than an imme-
diate no-senders notification is generated. Otherwise the notification is
generated when the receive right next loses its last extant send right. In
either case, any previously registered send-once right is returned.

The no-senders notification carries the value the port’s make-send
count had when it was generated. The make-send count is incremented
whenever MACH_MSG_TYPE_MAKE_SEND is used to create a
new send right from the receive right. The make-send count is reset to
zero when the receive right is carried in a message.

(Note: Currently, moving a receive right does not affect any extant no-
senders notifications. It is currently planned to change this so that no-
senders notifications are canceled, with a send-once notification sent to
indicate the cancelation.)

SECURITY
The requesting task must holdtsv_register_notificationpermission to the task
port task.

PARAMETERS

task
[in task port] The task holding the specified right.

name
[in scalar] The task’s name for the right.

variant
[in scalar] The type of notification.

sync
[in scalar] Some variants use this value to overcome race conditions.

notify
[in notify port] A send-once right, to which the notification will be sent.

70 Mach 3 Kernel Interfaces

Port Manipulation Interface

notify_type
[in scalar] IPC type of the sent right; either
MACH_MSG_TYPE_MAKE_SEND_ONCE or
MACH_MSG_TYPE_MOVE_SEND_ONCE.

previous
[out notify port] The previously registered send-once right.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted an invalid right.

KERN_INVALID_CAPABILITY
notify was invalid.

When using MACH_NOTIFY_DEAD_NAME:

KERN_UREFS_OVERFLOW
name denotes a dead name, but generating an immediate dead-name
notification would overflow the name’s user-reference count.

RELATED INFORMATION
Functions:mach_port_get_receive_status.

Mach 3 Kernel Interfaces 71

mach_port_set_mscount

mach_port_set_mscount

Function — Changes the make-send count of a port

SYNOPSIS

kern_return_tmach_port_set_mscount
(mach_port_t task,
mach_port_t name,
mach_port_mscount_t mscount);

DESCRIPTION
The mach_port_set_mscount function changes the make-send count oftask’s
receive right namedname. All values formscount are valid.

SECURITY
The requesting task must holdtsv_alter_pns_infopermission to the task port
task.

PARAMETERS

task
[in task port] The task owning the receive right.

name
[in scalar]task’s name for the receive right.

mscount
[in scalar] New value for the make-send count for the receive right.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not a receive right.

72 Mach 3 Kernel Interfaces

Port Manipulation Interface

RELATED INFORMATION
Functions:mach_port_get_receive_status, mach_port_set_qlimit.

Mach 3 Kernel Interfaces 73

mach_port_set_qlimit

mach_port_set_qlimit

Function — Changes the queue limit of a port

SYNOPSIS

kern_return_tmach_port_set_qlimit
(mach_port_t task,
mach_port_t name,
mach_port_msgcount_t qlimit);

DESCRIPTION
The mach_port_set_qlimit function changes the queue limit oftask’s receive
right named name. Valid values for qlimit are between zero and
MACH_PORT_QLIMIT_MAX (defined inmach.h), inclusive.

SECURITY
The requesting task must holdtsv_alter_pns_infopermission to the task port
task.

PARAMETERS

task
[in task port] The task owning the receive right.

name
[in scalar]task’s name for the receive right.

qlimit
[in scalar] The number of messages which may be queued to this port
without causing the sender to block.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not a receive right.

74 Mach 3 Kernel Interfaces

Port Manipulation Interface

RELATED INFORMATION
Functions:mach_port_get_receive_status, mach_port_set_mscount.

Mach 3 Kernel Interfaces 75

mach_port_set_seqno

mach_port_set_seqno

Function — Changes the sequence number of a port

SYNOPSIS

kern_return_tmach_port_set_seqno
(mach_port_t task,
mach_port_t name,
mach_port_seqno_t seqno);

DESCRIPTION
The mach_port_set_seqnofunction changes the sequence number oftask’s re-
ceive right namedname.

SECURITY
The requesting task must holdtsv_alter_pns_infopermission to the task port
task.

PARAMETERS

task
[in task port] The task owning the receive right.

name
[in scalar]task’s name for the receive right.

seqno
[in scalar] The sequence number that the next message received from
the port will have.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

KERN_INVALID_RIGHT
name denoted a right, but not a receive right.

76 Mach 3 Kernel Interfaces

Port Manipulation Interface

RELATED INFORMATION
Functions:mach_port_get_receive_status

Mach 3 Kernel Interfaces 77

mach_port_type/mach_port_type_secure

mach_port_type/mach_port_type_secure

Function — Return information about a task’s port name

SYNOPSIS

kern_return_tmach_port_type
(mach_port_t task,
mach_port_t name,
mach_port_type_t* ptype);

kern_return_tmach_port_type_secure
(mach_port_t task,
mach_port_t name,
mach_port_type_t* ptype,
security_id_t* obj_sid,
mach_access_vector_t av);

DESCRIPTION
Themach_port_type function returns information abouttask’s rights for a spe-
cific name in its port name space. Themach_port_type_secure function re-
turns information abouttask’s rights,task’s access, and the security id for the
port associated with a specific name in its port name space. The returnedptype
is a bit-mask indicating what rightstask holds with this name. The bit-mask is
composed of the following bits:

MACH_PORT_TYPE_SEND
The name denotes a send right.

MACH_PORT_TYPE_RECEIVE
The name denotes a receive right.

MACH_PORT_TYPE_SEND_ONCE
The name denotes a send-once right.

MACH_PORT_TYPE_PORT_SET
The name denotes a port set.

MACH_PORT_TYPE_DEAD_NAME
The name is a dead name.

MACH_PORT_TYPE_DNREQUEST
A dead-name request has been registered for the right.

MACH_PORT_TYPE_MAREQUEST
A msg-accepted request for the right is pending. (Note: This feature is
planned for deletion.)

78 Mach 3 Kernel Interfaces

Port Manipulation Interface

MACH_PORT_TYPE_COMPAT
The port right was created in the compatibility mode.

SECURITY
The requesting task must holdtsv_observe_pns_infopermissions to the task
port task.

PARAMETERS

task
[in task port] The task whose port name space is queried.

name
[in scalar] The name being queried.

ptype
[out scalar] The type of the name. Indicates what kind of right the task
holds for the port, port set, or dead name.

obj_sid
[out security id] The security identifier of the port associated with the
port right. SEC_NULL_SID ifname is a port set or a dead name.

av
[out access vector] The access vector indicatingtask’s allowed access-
es toname.

NOTES
This interface is machine word length specific because of the port name parame-
ter.

RETURN VALUE

KERN_INVALID_NAME
name did not denote a right.

RELATED INFORMATION
Functions: mach_port_names, mach_port_get_receive_status,
mach_port_get_set_status.

Mach 3 Kernel Interfaces 79

mach_reply_port

mach_reply_port

System Trap— Creates a port for the task

LIBRARY
#include <mach/mach_traps.h>

SYNOPSIS

mach_port_tmach_reply_port
();

DESCRIPTION
The mach_reply_port function creates a new port for the current task and re-
turns the name assigned by the kernel. The kernel records the name in the task’s
port name space and grants the task receive rights for the port. The new port is
not a member of any port set.

This function is an optimized version ofmach_port_allocate that uses no port
references. Its main purpose is to allocate a reply port for the task when the task
is starting— namely, before it has any ports to use as reply ports for any IPC
based system functions.

SECURITY
The requesting task must holdtsv_add_namepermission to its own task port.

PARAMETERS
None

CAUTIONS
Although the created port can be used for any purpose, the implementation may
optimize its use as a reply port.

RETURN VALUE

MACH_PORT_NULL
No port was allocated.

[reply port]
Any other value indicates success.

80 Mach 3 Kernel Interfaces

Port Manipulation Interface

RELATED INFORMATION
Functions:mach_port_allocate.

Mach 3 Kernel Interfaces 81

CHAPTER 4 Virtual Memory Interface

This chapter discusses the specifics of the kernel’s virtual memory interfaces. This in-
cludes memory status related functions associated with a single task. Functions that are
related to, or used by, external memory managers (pagers) are described in the next chap-
ter.

82 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_allocate/vm_allocate_secure

Function — Allocates a region of virtual memory

SYNOPSIS

kern_return_tvm_allocate
(mach_port_t target_task,
vm_address_t* address,
vm_size_t size,
boolean_t anywhere);

kern_return_tvm_allocate_secure
(mach_port_t target_task,
vm_address_t* address,
vm_size_t size,
boolean_t anywhere,
security_id_t obj_sid);

DESCRIPTION
Thevm_allocate andvm_allocate_secure functions allocate a region of virtual
memory in the specified task’s address space. A new region is always zero
filled. The physical memory is not allocated until an executing thread references
the new virtual memory. In addition to allocating a region of virtual memory,
vm_allocate_secure associates a specific object security identifier with the
memory region.

If anywhere is true, the returnedaddress will be at a page boundary; otherwise,
the region starts at the beginning of the virtual page containingaddress. size is
always rounded up to an integral number of pages. Because of this rounding to
virtual page boundaries, the amount of memory allocated may be greater than
size. Usevm_statistics to find the current virtual page size.

Use themach_task_self function to return the caller’s value fortarget_task.
This macro returns the task kernel port for the caller.

Initially, there are no access restrictions on any of the pages of the newly allocat-
ed region. Child tasks inherit the new region as a copy.

SECURITY

The requesting task must holdtsv_allocate_vm_region permission to
target_taskand mosv_map_vm_region to the object port of the memory object
backing the region for theaddress specified. Permissions to the memory are de-
termined by the permissions thattarget_taskhas to the memory object associat-
ed with the allocated memory.

Mach 3 Kernel Interfaces 83

vm_allocate/vm_allocate_secure

If no object security identifier is provided, the memory is allocated with an ob-
ject security identifier derived fromtarget_task’s subject security identifier.

PARAMETERS

target_task
[in task port] The port for the task in whose address space the region is
to be allocated.

address
[pointer to in/out scalar] The starting address for the region. If there is
not enough room following the address, the kernel does not allocate
the region. The kernel returns the starting address actually used for the
allocated region.

size
[in scalar] The number of bytes to allocate.

anywhere
[in scalar] Placement indicator. If false, the kernel allocates the region
starting ataddress. If true, the kernel allocates the region wherever
enough space is available within the address space. The kernel returns
the starting address actually used inaddress.

obj_sid
[in security id] The security identifier to be associated with the region
to be allocated.

NOTES
For languages other than C, use thevm_statistics and mach_task_self func-
tions to return the task’s kernel port (fortarget_task).

To establish different protections for the new region, use thevm_protect and
vm_inherit functions.

A task’s address space can contain both explicitly allocated memory and auto-
matically allocated memory. The vm_allocate function explicitly allocates
memory. The kernel automatically allocates memory to hold out-of-line data
passed in a message (and received withmach_msg). The kernel allocates mem-
ory for the passed data as an integral number of pages.

This interface is machine word length specific because of the virtual address pa-
rameter.

84 Mach 3 Kernel Interfaces

Virtual Memory Interface

RETURN VALUE

KERN_INVALID_ADDRESS
The specified address is illegal.

KERN_NO_SPACE
There is not enough space in the task’s address space to allocate the
new region.

RELATED INFORMATION
Functions: task_get_special_port, vm_deallocate, vm_inherit , vm_protect,
vm_region, vm_statistics.

Mach 3 Kernel Interfaces 85

vm_copy

vm_copy

Function — Copies a region in a task’s virtual memory

SYNOPSIS

kern_return_tvm_copy
(mach_port_t target_task,
vm_address_t source_address,
vm_size_t count,
vm_address_t dest_address);

DESCRIPTION
Thevm_copy function copies a source region to a destination region within the
same task’s virtual memory. It is semantically equivalent tovm_read followed
by vm_write. The destination region can overlap the source region.

The destination region must already be allocated. The source region must be
readable, and the destination region must be writable.

SECURITY

The requesting task must holdtsv_copy_vm permission totarget_task.

In the current implementation the data copied retains the security identifier as-
signed to the memory region from which the data came.

PARAMETERS

target_task
[in task port] The port for the task whose memory is to be copied.

source_address
[in scalar] The starting address for the source region. The address must
be on a page boundary.

count
[in scalar] The number of bytes in the source region. The number of
bytes must convert to an integral number of virtual pages.

dest_address
[in scalar] The starting address for the destination region. The address
must be on a page boundary.

86 Mach 3 Kernel Interfaces

Virtual Memory Interface

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_PROTECTION_FAILURE
The source region is protected against reading, or the destination re-
gion is protected against writing.

KERN_INVALID_ADDRESS
An address is illegal or specifies a non-allocated region, or there is not
enough memory following one of the addresses.

RELATED INFORMATION
Functions:vm_protect, vm_read, vm_write, vm_statistics.

Mach 3 Kernel Interfaces 87

vm_deallocate

vm_deallocate

Function — De-allocates a region of virtual memory

SYNOPSIS

kern_return_tvm_deallocate
(mach_port_t target_task,
vm_address_t address,
vm_size_t size);

DESCRIPTION
The vm_deallocate function de-allocates a region of virtual memory in the
specified task’s address space.

The region starts at the beginning of the virtual page containingaddress; it ends
at the end of the virtual page containingaddress + size - 1. Because of this
rounding to virtual page boundaries, the amount of memory de-allocated may
be greater thansize. Usevm_statistics to find the current virtual page size.

vm_deallocate affects onlytarget_task. Other tasks that have access to the de-
allocated memory can continue to reference it.

SECURITY

The requesting task must holdtsv_deallocate_vm_regionpermission to
target_task.

PARAMETERS

target_task
[in task port] The port for the task in whose address space the region is
to be de-allocated.

address
[in scalar] The starting address for the region.

size
[in scalar] The number of bytes to de-allocate.

NOTES
vm_deallocate can be used to de-allocate memory passed as out-of-line data in
a message.

88 Mach 3 Kernel Interfaces

Virtual Memory Interface

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functions:mach_msg, vm_allocate, vm_statistics.

Mach 3 Kernel Interfaces 89

vm_inherit

vm_inherit

Function — Sets the inheritance attribute for a region of virtual memory

SYNOPSIS

kern_return_tvm_inherit
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_inherit_t new_inheritance);

DESCRIPTION
The vm_inherit function sets the inheritance attribute for a region within the
specified task’s address space. The inheritance attribute determines the type of
access established for child tasks at task creation.

Because inheritance applies to virtual pages, the specified address and size are
rounded to page boundaries, as follows: the region starts at the beginning of the
virtual page containing address; it ends at the end of the virtual page containing
address + size - 1. Because of this rounding to virtual page boundaries, the
amount of memory affected may be greater than size. Use vm_statistics to find
the current virtual page size.

A parent and a child task can share the same physical memory only if the inher-
itance for the memory is set to VM_INHERIT_SHARE before the child task is
created. This is the only way that two tasks can share memory (other than
through the use of an external memory manager; seevm_map).

Note that all the threads within a task share the task’s memory.

SECURITY

The requesting task must holdtsv_set_vm_region_inheritpermission to
target_task.

PARAMETERS

target_task
[in task port] The port for the task whose address space contains the re-
gion.

address
[in scalar] The starting address for the region.

90 Mach 3 Kernel Interfaces

Virtual Memory Interface

size
[in scalar] The number of bytes in the region.

new_inheritance
[in scalar] The new inheritance attribute for the region. Valid values
are:

VM_INHERIT_SHARE
Allows child tasks to share the region.

VM_INHERIT_COPY
Gives child tasks a copy of the region.

VM_INHERIT_NONE
Provides no access to the region for child tasks.

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functions: task_create, vm_map, vm_region, norma_task_clone.

Mach 3 Kernel Interfaces 91

vm_machine_attribute

vm_machine_attribute

Function — Sets and gets special attributes of a memory region

SYNOPSIS

kern_return_tvm_machine_attribute
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_machine_attribute_t attribute,
vm_machine_attribute_val_t* value);

DESCRIPTION
The vm_machine_attribute function gets and sets special attributes of the
memory region implemented by the implementation’s underlyingpmap mod-
ule. These attributes are properties such as cachability, migrability and replica-
bility. The behavior of this function is machine dependent.

SECURITY

The requesting task must holdtsv_access_machine_attributepermission to
target_task.

PARAMETERS

target_task
[in task port] The port for the task in whose address space the memory
object is to be manipulated.

address
[in scalar] The starting address for the memory region. The granularity
of rounding of this value to page boundaries is implementation depen-
dent.

size
[in scalar] The number of bytes in the region. The granularity of round-
ing of this value to page boundaries is implementation dependent.

attribute
[in scalar] The name of the attribute to be get/set. Possible values are:

MATTR_CACHE
Cachability

92 Mach 3 Kernel Interfaces

Virtual Memory Interface

MATTR_MIGRATE
Migratability

MATTR_REPLICATE
Replicability

value
[pointer to in/out scalar] The new value for the attribute. The old value
is also returned in this variable.

MATTR_VAL_OFF
(generic) turn attribute off

MATTR_VAL_ON
(generic) turn attribute on

MATTR_VAL_GET
(generic) return current value

MATTR_VAL_CACHE_FLUSH
flush from all caches

MATTR_VAL_DCACHE_FLUSH
flush from data caches

MATTR_VAL_ICACHE_FLUSH
flush from instruction caches

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functions: vm_wire.

Mach 3 Kernel Interfaces 93

vm_map

vm_map

Function — Maps a memory object to a task’s address space

SYNOPSIS

kern_return_tvm_map
(mach_port_t target_task,
vm_address_t* address,
vm_size_t size,
vm_address_t mask,
boolean_t anywhere,
mach_port_t memory_object,
vm_offset_t offset,
boolean_t copy,
vm_prot_t cur_protection,
vm_prot_t max_protection,
vm_inherit_t inheritance);

DESCRIPTION
The vm_map function maps a portion of the specified memory object into the
virtual address space belonging totarget_task. The target task can be the calling
task or another task, identified by its task kernel port.

The portion of the memory object mapped is determined byoffset andsize. The
kernel mapsaddress to the offset, so that an access to the memory starts at the
offset in the object.

The mask parameter specifies additional alignment restrictions on the kernel’s
selection of the starting address. Uses for this mask include:

• Forcing the memory address alignment for a mapping to be the same as the
alignment within the memory object.

• Quickly finding the beginning of an allocated region by performing bit arith-
metic on an address known to be in the region.

• Emulating a larger virtual page size.

The cur_protection, max_protection, andinheritance parameters set the protec-
tion and inheritance attributes for the mapped object. As a rule, at least the maxi-
mum protection should be specified so that a server can make a restricted (for
example, read-only) mapping in a client atomically. The current protection and
inheritance parameters are provided for convenience so that the caller does not
have to callvm_inherit andvm_protect separately.

The same memory object can be mapped in more than once and by more than
one task. If an object is mapped by multiple tasks, the kernel maintains consis-
tency for all the mappings if they use the same page alignment foroffset and are
on the same host. In this case, the virtual memory to which the object is mapped

94 Mach 3 Kernel Interfaces

Virtual Memory Interface

is shared by all the tasks. Changes made by one task in its address space are visi-
ble to all the other tasks.

SECURITY

The requesting task must holdtsv_allocate_vm_regionpermission to
target_task and mosv_map_vm_region to the memoryobjects object port.
target_task’s access to the mapped memory is determined by its permission to
memory_object.

PARAMETERS

target_task
[in task port] The port for the task to whose address space the memory
object is to be mapped.

address
[pointer to in/out scalar] The starting address for the mapped object.
The mapped object will start at the beginning of the page containing
address. If there is not enough room following the address, the kernel
does not map the object. The kernel returns the starting address actual-
ly used for the mapped object.

size
[in scalar] The number of bytes to allocate for the object. The kernel
rounds this number up to an integral number of virtual pages.

mask
[in scalar] Alignment restrictions for starting address. Bits turned on in
the mask will not be turned on in the starting address.

anywhere
[in scalar] Placement indicator. If false, the kernel allocates the object’s
region starting ataddress. If true, the kernel allocates the region any-
where at or followingaddress that there is enough space available with-
in the address space. The kernel returns the starting address actually
used inaddress.

memory_object
[in abstract-memory-object port] The port naming the abstract memory
object. If MEMORY_OBJECT_NULL is specified, the kernel allo-
cates zero-filled memory, as withvm_allocate.

offset
[in scalar] An offset within the memory object, in bytes. The kernel
mapsaddress to the specified offset.

Mach 3 Kernel Interfaces 95

vm_map

copy
[in scalar] Copy indicator. If true, the kernel copies the region for the
memory object to the specified task’s address space. If false, the region
is mapped read-write.

cur_protection
[in scalar] The initial current protection for the region. Valid values are
obtained by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

max_protection
[in scalar] The maximum protection for the region. Values are the same
as forcur_protection.

inheritance
[in scalar] The initial inheritance attribute for the region. Valid values
are:

VM_INHERIT_SHARE
Allows child tasks to share the region.

VM_INHERIT_COPY
Gives child tasks a copy of the region.

VM_INHERIT_NONE
Provides no access to the region for child tasks.

NOTES
vm_map allocates a region in a task’s address space and maps the specified
memory object to this region.vm_allocate allocates a zero-filled temporary re-
gion in a task’s address space.

Before a memory object can be mapped, a port naming it must be acquired from
the memory manager serving it.

This interface is machine word length specific because of the virtual address pa-
rameter.

96 Mach 3 Kernel Interfaces

Virtual Memory Interface

CAUTIONS
Do not attempt to map a memory object unless it has been provided by a memo-
ry manager that implements the memory object interface. If another type of port
is specified, a thread that accesses the mapped virtual memory may become per-
manently hung or may receive a memory exception.

RETURN VALUE

KERN_NO_SPACE
There is not enough space in the task’s address space to allocate the
new region for the memory object.

RELATED INFORMATION
Functions:memory_object_init, vm_allocate.

Mach 3 Kernel Interfaces 97

vm_protect

vm_protect

Function — Sets access privileges for a region of virtual memory

SYNOPSIS

kern_return_tvm_protect
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
boolean_t set_maximum,
vm_prot_t new_protection);

DESCRIPTION
Thevm_protect function sets access privileges for a region within the specified
task’s address space.new_protection specifies a combination of read, write, and
execute accesses that are allowed (rather than prohibited).

The region starts at the beginning of the virtual page containing address; it ends
at the end of the virtual page containing address + size - 1. Because of this
rounding to virtual page boundaries, the amount of memory protected may be
greater than size. Use vm_statistics to find the current virtual page size.

The enforcement of virtual memory protection is machine-dependent. Nominal-
ly, read access requires VM_PROT_READ permission, write access requires
VM_PROT_WRITE permission, and execute access requires
VM_PROT_EXECUTE permission. However, some combinations of access
rights may not be supported. In particular, the kernel interface allows write ac-
cess to require VM_PROT_READ and VM_PROT_WRITE permission and ex-
ecute access to require VM_PROT_READ permission.

SECURITY

The requesting task must holdtsv_chg_vm_region_protpermission to
target_task.

PARAMETERS

target_task
[in task port] The port for the task whose address space contains the re-
gion.

address
[in scalar] The starting address for the region.

98 Mach 3 Kernel Interfaces

Virtual Memory Interface

size
[in scalar] The number of bytes in the region.

set_maximum
[in scalar] Maximum/current indicator. If true, the new protection sets
the maximum protection for the region. If false, the new protection sets
the current protection for the region. If the maximum protection is set
below the current protection, the current protection is reset to the new
maximum.

new_protection
[in scalar] The new protection for the region. Valid values are obtained
by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_PROTECTION_FAILURE
The new protection increased the current or maximum protection be-
yond the existing maximum protection.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functions:vm_inherit , vm_region.

Mach 3 Kernel Interfaces 99

vm_read

vm_read

Function — Reads a task’s virtual memory

SYNOPSIS

kern_return_tvm_read
(mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_offset_t* data,
mach_msg_type_number_t* data_count);

DESCRIPTION
Thevm_read function reads a portion of a task’s virtual memory. It allows one
task to read another task’s memory.

SECURITY

The requesting task must holdtsv_read_vm_regionpermission totarget_task.

In the current implementation the data read retains the security identifier as-
signed to the memory region from which the data came.

PARAMETERS

target_task
[in task port] The port for the task whose memory is to be read.

address
[in scalar] The address at which to start the read. This address must
name a page boundary.

size
[in scalar] The number of bytes to read.

data
[out pointer to dynamic array of bytes] The array of data returned by
the read.

data_count
[out scalar] The number of bytes in the returned array. The count con-
verts to an integral number of pages.

100 Mach 3 Kernel Interfaces

Virtual Memory Interface

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_NO_SPACE
There is not enough room in the calling task’s address space to allocate
the region for the returned data.

KERN_PROTECTION_FAILURE
The specified region in the target task is protected against reading.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region, or there are
less thansize bytes of data following the address.

RELATED INFORMATION
Functions:vm_copy, vm_deallocate, vm_write.

Mach 3 Kernel Interfaces 101

vm_region/vm_region_secure

vm_region/vm_region_secure

Function — Returns information on a region of virtual memory

SYNOPSIS

kern_return_tvm_region
(mach_port_t target_task,
vm_address_t* address,
vm_size_t* size,
vm_prot_t* mach_protection,
vm_prot_t* max_protection,
vm_inherit_t* inheritance,
boolean_t* shared,
mach_port_t* object_name,
vm_offset_t* offset);

kern_return_tvm_region_secure
(mach_port_t target_task,
vm_address_t* address,
vm_size_t* size,
vm_prot_t* mach_protection,
vm_prot_t* protection,
vm_prot_t* max_protection,
vm_inherit_t* inheritance,
boolean_t* shared,
mach_port_t* object_name,
vm_offset_t* offset,
security_id_t* obj_sid,
mach_access_vector_t av);

DESCRIPTION
The vm_region and vm_region_secure functions return information on a re-
gion within the specified task’s address space.vm_region_secure also returns
protection, which incorporatesmach_protectionand the memory protections
from the access vector;obj_sid, the security identifier for the region containing
the address; andav, target_task’s access vector for the region.

The function begins looking ataddress and continues until it finds an allocated
region. If the input address is within a region, the function uses the start of that
region. The starting address for the located region is returned inaddress.

SECURITY

The requesting task must holdtsv_get_vm_region_infopermission to
target_task.

102 Mach 3 Kernel Interfaces

Virtual Memory Interface

PARAMETERS

target_task
[in task port] The port for the task whose address space contains the re-
gion.

address
[pointer to in/out scalar] The address at which to start looking for a re-
gion. The function returns the starting address actually used.

size
[out scalar] The number of bytes in the located region. The number
converts to an integral number of virtual pages.

mach_protection
[out scalar] The current Mach protection for the region (i.e., the origi-
nalprotectionvalue).

protection
[out scalar] The current protection for the region which incorporates
mach_protection and the memory protections from the access vector,
av.

max_protection
[out scalar] The maximum protection allowed for the region.

inheritance
[out scalar] The inheritance attribute for the region.

shared
[out scalar] Shared indicator. If true, the region is shared by another
task. If false, the region is not shared.

object_name
[out memory-cache-name port] The name of a send right to the name
port for the memory object associated with the region. See
memory_object_init.

offset
[out scalar] The region’s offset into the memory object. The region be-
gins at this offset.

obj_sid
[out security id] The security identifier for the memory object associat-
ed with the memory region containingaddress.

av
[out access vector] The access vector indicatingtarget_task’s allowed
access to the region containingaddress.

Mach 3 Kernel Interfaces 103

vm_region/vm_region_secure

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_NO_SPACE
There is no region at or beyond the specified starting address.

RELATED INFORMATION
Functions: vm_allocate, vm_deallocate, vm_inherit , vm_protect,
memory_object_init, et al.

104 Mach 3 Kernel Interfaces

Virtual Memory Interface

vm_statistics

Function — Returns statistics on the kernel’s use of virtual memory

SYNOPSIS

kern_return_tvm_statistics
(mach_port_t target_task,
vm_statistics_data_t* vm_stats);

DESCRIPTION
Thevm_statistics function returns statistics on the kernel’s use of virtual memo-
ry from the time the kernel was booted.

Seevm_statistics for a description of the structure used.

For related information for a specific task, usetask_info.

SECURITY

The requesting task must holdtsv_get_vm_statisticspermission totarget_task.

PARAMETERS

target_task
[in task port] The task that is requesting the statistics.

vm_stats
[out structure] The structure in which the statistics will be returned.

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:task_info.

Data Structures:vm_statistics.

Mach 3 Kernel Interfaces 105

vm_wire

vm_wire

Function — Specifies the pageability of a region of virtual memory

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tvm_wire
(mach_port_t host_priv,
mach_port_t target_task,
vm_address_t address,
vm_size_t size,
vm_prot_t wired_access);

DESCRIPTION
The vm_wire function sets the pageability privileges for a region within the
specified task’s address space.wired_access specifies the types of accesses to
the memory region which must not suffer from (internal) faults of any kind after
this call returns. A page is wired into physical memory if any task accessing it
has a non-nullwired_access value for the page.

The region starts at the beginning of the virtual page containing address; it ends
at the end of the virtual page containing address + size - 1. Because of this
rounding to virtual page boundaries, the amount of memory affected may be
greater than size. Use vm_statistics to find the current virtual page size.

SECURITY

The requesting task must holdtsv_wire_vm_for_taskpermission totarget_task
andhpsv_wire_vmpermission tohost_priv.

PARAMETERS

host_priv
[in host-control port] The host control port for the host on which
target_task executes.

target_task
[in task port] The port for the task whose address space contains the re-
gion.

address
[in scalar] The starting address for the region.

106 Mach 3 Kernel Interfaces

Virtual Memory Interface

size
[in scalar] The number of bytes in the region.

wired_access
[in scalar] The pageability of the region. Valid values are:

VM_PROT_NONE
Un-wire (allow to be paged) the region of memory.

Any other value specifies that the region is to be wired and that the tar-
get task must have at least the specified amount of access to the region.

NOTES
This call requires the privileged host port on whichtarget_task executes be-
cause of the privileged nature of committing physical memory.

This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_INVALID_HOST
The privileged host port was not specified

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region.

RELATED INFORMATION
Functions:thread_wire.

Mach 3 Kernel Interfaces 107

vm_write

vm_write

Function — Writes data to a task’s virtual memory

SYNOPSIS

kern_return_tvm_write
(mach_port_t target_task,
vm_address_t address,
vm_offset_t data,
mach_msg_type_number_t data_count);

DESCRIPTION
Thevm_write function writes an array of data to a task’s virtual memory. It al-
lows one task to write to another task’s memory.

The result ofvm_write is as if target_task had directly written into the set of
pages. Hence,target_task must have write permission to the pages.

SECURITY

The requesting task must holdtsv_write_vm_regionpermission totarget_task.

The SID of memory region to which the data is written, is unaffected. If the
write results in creation of a new memory region, the SID assigned to that re-
gion will be the default memory object sid for thetarget_task.

PARAMETERS

target_task
[in task port] The port for the task whose memory is to be written.

address
[in scalar] The address at which to start the write. The starting address
must be on a page boundary.

data
[in pointer to page aligned array of bytes] An array of data to be writ-
ten.

data_count
[in scalar] The number of bytes in the array. The size of the array must
convert to an integral number of pages.

108 Mach 3 Kernel Interfaces

Virtual Memory Interface

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE

KERN_PROTECTION_FAILURE
The specified region in the target task is protected against writing.

KERN_INVALID_ADDRESS
The address is illegal or specifies a non-allocated region, or there are
less thandata_count bytes available following the address.

RELATED INFORMATION
Functions:vm_copy, vm_protect, vm_read, vm_statistics.

Mach 3 Kernel Interfaces 109

CHAPTER 5 External Memory
Management Interface

This chapter discusses the specifics of the kernel’s external memory management inter-
faces. Interfaces that relate to the basic use of virtual memory for a task appear in the pre-
vious chapter.

110 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_change_attributes

Function — Changes various performance related attributes

SYNOPSIS

kern_return_tmemory_object_change_attributes
(mach_port_t memory_control,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy,
mach_port_t reply_port);

DESCRIPTION
The memory_object_change_attributes function sets various performance-re-
lated attributes for the specified memory object, so as to:

• Retain data from a memory object even after all address space mappings
have been de-allocated (may_cache_object parameter).

• Perform optimizations for virtual memory copy operations (copy_strategy
parameter).

SECURITY

The requesting task must holdmcsv_set_attributes permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init call.

may_cache_object
[in scalar] Cache indicator. If true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object’s da-
ta. Normally, the kernel requests each page with read access,
copies the data, and then (optionally) flushes the data.

Mach 3 Kernel Interfaces 111

memory_object_change_attributes

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (viamemory_object_copy) be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This has the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

reply_port
[in reply port] A port to which a reply
(memory_object_change_completed) is to be sent indicating the com-
pletion of the attribute change. Such a reply would be useful if the
cache attribute is turned off, since such a change, if the memory object
is no longer mapped, may result in the object being terminated, or if
the copy strategy is changed, which may result in additional page re-
quests.

NOTES
Sharing cached data among all the clients of a memory object can have a major
impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-
gram images can be used regularly by different programs. By retaining the data
for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE
Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_change_completed, memory_object_copy,
memory_object_get_attributes, memory_object_ready,
memory_object_set_attributes (old form).

112 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_change_completed

Server Interface — Indicates completion of an attribute change call

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_change_completed
(mach_port_t reply_port,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy);

seqnos_memory_object_change_completed
Sequence Number form

kern_return_tseqnos_memory_object_change_completed
(mach_port_t reply_port,
mach_port_seqno_t seqno,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy);

DESCRIPTION
A memory_object_change_completed function is called as the result of a ker-
nel message confirming the kernel’s action in response to a
memory_object_change_attributescall from the memory manager.

When the kernel completes the requested changes, it calls
memory_object_change_completed (asynchronously) using the port explicitly
provided in thememory_object_change_attributes call. A response is generat-
ed so that the manager can synchronize with changes to the copy strategy
(which affects the manner in which pages will be requested) and a termination
message possibly resulting from un-cacheing a not-mapped object.

PARAMETERS

reply_port
[in reply port] The port named in the corresponding
memory_object_change_attributes call.

seqno
[in scalar] The sequence number of this message relative to the port
named in thememory_object_change_attributes call.

may_cache_object
[in scalar] The new cache attribute.

Mach 3 Kernel Interfaces 113

memory_object_change_completed

copy_strategy
[in scalar] The new copy strategy.

NOTES
No memory cache control port is supplied in this call because the attribute
change may cause termination of the object leading to what would be an invalid
cache port.

RETURN VALUE
Irrelevant.

RELATED INFORMATION
Functions: memory_object_change_attributes, memory_object_server,
seqnos_memory_object_server.

114 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_copy

Server Interface — Indicates that a memory object has been copied

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_copy
(mach_port_t old_memory_object,
memory_object_control_t old_memory_control,
vm_offset_t offset,
vm_size_t length,
mach_port_t new_memory_object);

seqnos_memory_object_copy
Sequence Number form

kern_return_tseqnos_memory_object_copy
(mach_port_t old_memory_object,
mach_port_seqno_t seqno,
memory_object_control_t old_memory_control,
vm_offset_t offset,
vm_size_t length,
mach_port_t new_memory_object);

DESCRIPTION
A memory_object_copy function is called as the result of a message from the
kernel indicating that the kernel has copied the specified region within the old
memory object.

This call includes only the new abstract memory object port itself. The kernel
will subsequently issue amemory_object_init call on the new abstract memory
object after it has prepared the currently cached pages of the old object. When
the memory manager receives thememory_object_init call, it is expected to re-
ply with the memory_object_ready call. The kernel uses the new abstract
memory object, memory cache control, and memory cache name ports to refer
to the new copy.

The kernel makes thememory_object_copy call only if:

• The memory manager had previously set the old object’s copy strategy at-
tribute to MEMORY_OBJECT_COPY_CALL (using
memory_object_change_attributes or memory_object_ready).

• A user of the old object has asked the kernel to copy it.

Mach 3 Kernel Interfaces 115

memory_object_copy

Cached pages from the old memory object at the time of the copy are handled
as follows:

• Readable pages may be copied to the new object without notification and
with all access permissions.

• Pages not copied are locked to prevent write access.

The memory manager should treat the new memory object as temporary. In oth-
er words, the memory manager should not change the new object’s contents or
allow it to be mapped in another client. The memory manager can use the
memory_object_data_unavailable call to indicate that the appropriate pages
of the old object can be used to fulfill a data request.

PARAMETERS

old_memory_object
[in abstract-memory-object port] The port that represents the old (cop-
ied from) abstract memory object.

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

old_memory_control
[in memory-cache-control port] The kernel memory cache control port
for the old memory object.

offset
[in scalar] The offset within the old memory object.

length
[in scalar] The number of bytes copied, starting atoffset. The number
converts to an integral number of virtual pages.

new_memory_object
[in abstract-memory-object port] The new abstract memory object cre-
ated by the kernel. The kernel provides all port rights (including the re-
ceive right) for the new memory object.

NOTES
It is possible for a memory manager to receive amemory_object_data_return
message for a page of the new memory object before receiving any other re-
quests for that data.

116 Mach 3 Kernel Interfaces

External Memory Management Interface

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY will cause
mach_msg_server to remove the old and new memory cache control port refer-
ences.

RELATED INFORMATION
Functions: memory_object_change_attributes,
memory_object_data_unavailable, memory_object_init,
memory_object_ready, memory_object_server,
seqnos_memory_object_server.

Mach 3 Kernel Interfaces 117

memory_object_data_error

memory_object_data_error

Function — Indicates no data for a memory object

SYNOPSIS

kern_return_tmemory_object_data_error
(mach_port_t memory_control,
vm_offset_t offset,
vm_size_t size,
kern_return_t reason);

DESCRIPTION
The memory_object_data_error function indicates that the memory manager
cannot provide the kernel with the data requested for the given region, specify-
ing a reason for the error.

When the kernel issues amemory_object_data_request call, the memory man-
ager can respond with amemory_object_data_error call to indicate that the
page cannot be retrieved, and that a memory failure exception should be raised
in any client threads that are waiting for the page. Clients are permitted to catch
these exceptions and retry their page faults. As a result, this call can be used to
report transient errors as well as permanent ones. A memory manager can use
this call for both hardware errors (for example, disk failures) and software er-
rors (for example, accessing data that does not exist or is protected).

SECURITY

The requesting task must holdmcsv_provide_data permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

size
[in scalar] The number of bytes of data (starting atoffset). The number
must convert to an integral number of memory object pages.

118 Mach 3 Kernel Interfaces

External Memory Management Interface

reason
[in scalar] Reason for the error. The value could be a POSIX error code
for a hardware error.

NOTES
If reason has a system code of err_kern, the kernel will substitute an error value
of KERN_MEMORY_ERROR.

RETURN VALUE
Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_data_request, memory_object_data_supply,
memory_object_data_unavailable.

Mach 3 Kernel Interfaces 119

memory_object_data_provided

memory_object_data_provided

Function — Supplies data for a region of a memory object (old form)

SYNOPSIS

kern_return_tmemory_object_data_provided
(mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count,
vm_prot_t lock_value);

DESCRIPTION
The memory_object_data_provided function supplies the kernel with a range
of data for the specified memory object. A memory manager can only provide
data that was requested by amemory_object_data_request call from the ker-
nel.

SECURITY

The requesting task must holdmcsv_provide_data permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

data
[pointer to page aligned in array of bytes] The address of the data be-
ing provided to the kernel.

data_count
[in scalar] The amount of data to be provided. The number must be an
integral number of memory object pages.

lock_value
[in scalar] One or more forms of accessnot permitted for the specified
data. Valid values are:

120 Mach 3 Kernel Interfaces

External Memory Management Interface

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted).

VM_PROT_READ
Prohibits read access.

VM_PROT_WRITE
Prohibits write access.

VM_PROT_EXECUTE
Prohibits execute access.

VM_PROT_ALL
Prohibits all forms of access.

NOTES
The kernel accepts only integral numbers of pages. It discards any partial pages
without notification.

memory_object_data_provided is the old form of
memory_object_data_supply.

CAUTIONS
A memory manager must be careful that it not attempt to provide data that has
not been explicitly requested. In particular, a memory manager must ensure that
it does not provide writable data again before it receives back modifications
from the kernel. This may require that the memory manager remember which
pages it has provided, or that it exercise other cache control functions (via
memory_object_lock_request) before proceeding. The kernel prohibits the
overwriting of live data pages and will not accept pages it has not requested

RETURN VALUE
Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_data_error, memory_object_data_request,
memory_object_data_supply, memory_object_data_unavailable,
memory_object_lock_request.

Mach 3 Kernel Interfaces 121

memory_object_data_request

memory_object_data_request

Server Interface — Requests data from a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_data_request
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_access);

seqnos_memory_object_data_request
Sequence Number form

kern_return_t seqnos_memory_object_data_request
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_access);

DESCRIPTION
A memory_object_data_request function is called as the result of a kernel
message requesting data from the specified memory object, for at least the ac-
cess specified.

The kernel issues this call after a cache miss (that is, a page fault for which the
kernel does not have the data). The kernel requests only amounts of data that
are multiples of the page size included in thememory_object_init call.

The memory manager is expected to usememory_object_data_supply to re-
turn at least the specified data, with as much access as it can allow. If the memo-
ry manager cannot provide the data (for example, because of a hardware error),
it can use thememory_object_data_error call. The memory manager can also
usememory_object_data_unavailable to tell the kernel to supply zero-filled
memory for the region.

122 Mach 3 Kernel Interfaces

External Memory Management Interface

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory manager. If the memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.

length
[in scalar] The number of bytes requested, starting atoffset. The num-
ber converts to an integral number of virtual pages.

desired_access
[in scalar] The memory access modes to be allowed for the cached da-
ta. Possible values are obtained by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY will cause
mach_msg_server to remove the memory cache control port reference.

RELATED INFORMATION
Functions: memory_object_data_error, memory_object_data_supply,
memory_object_data_unavailable, memory_object_server,
seqnos_memory_object_server.

Mach 3 Kernel Interfaces 123

memory_object_data_return

memory_object_data_return

Server Interface — Writes data back to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_data_return
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count,
boolean_t dirty,
boolean_t kernel_copy);

seqnos_memory_object_data_return
Sequence Number form

kern_return_tseqnos_memory_object_data_return
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count,
boolean_t dirty,
boolean_t kernel_copy);

DESCRIPTION
A memory_object_data_return function is called as the result of a kernel mes-
sage providing the memory manager with data that has been evicted from the
physical memory cache.

The kernel writes back only data that has been modified or is precious. When
the memory manager no longer needs the data (for example, after the data has
been written to permanent storage), it should usevm_deallocate to release the
memory resources.

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

124 Mach 3 Kernel Interfaces

External Memory Management Interface

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory manager. If the memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.

data
[in pointer to dynamic array of bytes] The data that has been evicted
from the physical memory cache.

data_count
[in scalar] The number of bytes to be written, starting atoffset. The
number converts to an integral number of memory object pages.

dirty
[in scalar] If TRUE, the pages returned have been modified.

kernel_copy
[in scalar] If TRUE, the kernel has kept a copy of the page.

NOTES
The kernel can flush clean (that is, un-modified) non-precious pages at its own
discretion. As a result, the memory manager cannot rely on the kernel to keep a
copy of its data or even to provide notification that its data has been discarded.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY will cause
mach_msg_server to remove the memory cache control port reference and to
de-allocate the returned data.

RELATED INFORMATION
Functions: memory_object_data_supply, memory_object_data_write (old
form), vm_deallocate, memory_object_server,
seqnos_memory_object_server.

Mach 3 Kernel Interfaces 125

memory_object_data_supply

memory_object_data_supply

Function — Supplies data for a region of a memory object

SYNOPSIS

kern_return_tmemory_object_data_supply
(mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
mach_msg_type_number_t data_count,
boolean_t deallocate,
vm_prot_t lock_value,
boolean_t precious,
mach_port_t reply_port);

DESCRIPTION
The memory_object_data_supply function supplies the kernel with a range of
data for the specified memory object. A memory manager can only provide data
that was requested by amemory_object_data_request call from the kernel.

SECURITY

The requesting task must hold mcsv_change_page_locks,
mcsv_make_page_precious and mcsv_provide_data permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init call.

offset
[in scalar] The offset within the memory object, in bytes.

data
[pointer to page aligned in array of bytes] The address of the data be-
ing provided to the kernel.

data_count
[in scalar] The amount of data to be provided. The number must be an
integral number of memory object pages.

126 Mach 3 Kernel Interfaces

External Memory Management Interface

deallocate
[in scalar] If TRUE, the pages to be copied (starting atdata) will be de-
allocated from the memory manager’s address space as a result of be-
ing copied into the message, allowing the pages to be moved into the
kernel instead of being physically copied.

lock_value
[in scalar] One or more forms of accessnot permitted for the specified
data. Valid values are:

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted).

VM_PROT_READ
Prohibits read access.

VM_PROT_WRITE
Prohibits write access.

VM_PROT_EXECUTE
Prohibits execute access.

VM_PROT_ALL
Prohibits all forms of access.

precious
[in scalar] If TRUE, the pages being supplied are “precious”, that is,
the memory manager is not (necessarily) retaining its own copy. These
pages must be returned to the manager when evicted from memory,
even if not modified.

reply_port
[in reply port] A port to which the kernel should send a
memory_object_supply_completed to indicate the status of the ac-
cepted data. MACH_PORT_NULL is allowed. The reply message indi-
cates which pages have been accepted.

NOTES
The kernel accepts only integral numbers of pages. It discards any partial pages
without notification.

CAUTIONS
A memory manager must be careful that it not attempt to provide data that has
not been explicitly requested. In particular, a memory manager must ensure that
it does not provide writable data again before it receives back modifications
from the kernel. This may require that the memory manager remember which
pages it has provided, or that it exercise other cache control functions (via

Mach 3 Kernel Interfaces 127

memory_object_data_supply

memory_object_lock_request) before proceeding. The kernel prohibits the
overwriting of live data pages and will not accept pages it has not requested

RETURN VALUE
Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION
Functions:memory_object_data_error, memory_object_data_provided (old
form), memory_object_data_request, memory_object_data_unavailable,
memory_object_lock_request, memory_object_supply_completed.

128 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_data_unavailable

Function — Indicates no data for a memory object

SYNOPSIS

kern_return_tmemory_object_data_unavailable
(mach_port_t memory_control,
vm_offset_t offset,
vm_size_t size);

DESCRIPTION
The memory_object_data_unavailable function indicates that the memory
manager cannot provide the kernel with the data requested for the given region.
Instead, the kernel should provide the data for this region.

A memory manager can use this call in any of the following situations:

• When the object was created by the kernel (viamemory_object_create)
and the kernel has not yet provided data for the region (via either
memory_object_data_initialize or memory_object_data_return). In this
case, the object is a temporary memory object; the memory manager is the
default memory manager; and the kernel should provide zero-filled pages for
the object.

• When the object was created by amemory_object_copy. In this case, the
kernel should copy the region from the original memory object.

• When the object is a normal user-created memory object. In this case, the
kernel should provide unlocked zero-filled pages for the region.

SECURITY

The requesting task must holdmcsv_provide_data permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init or a
memory_object_create call.

offset
[in scalar] The offset within the memory object, in bytes.

Mach 3 Kernel Interfaces 129

memory_object_data_unavailable

size
[in scalar] The number of bytes of data (starting atoffset). The number
must convert to an integral number of memory object pages.

RETURN VALUE
Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_copy, memory_object_create,
memory_object_data_error, memory_object_data_request,
memory_object_data_supply.

130 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_data_unlock

Server Interface — Requests access to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_data_unlock
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_access);

seqnos_memory_object_data_unlock
Sequence Number form

kern_return_tseqnos_memory_object_data_unlock
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
vm_prot_t desired_access);

DESCRIPTION
A memory_object_data_unlock function is called as the result of a kernel mes-
sage requesting the memory manager to permit at least the desired access to the
specified data cached by the kernel. The memory manager is expected to use the
memory_object_lock_request call in response.

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory manager. If the memory object has

Mach 3 Kernel Interfaces 131

memory_object_data_unlock

been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.

length
[in scalar] The number of bytes to which the access applies, starting at
offset. The number converts to an integral number of memory object
pages.

desired_access
[in scalar] The memory access modes requested for the cached data.
Possible values are obtained by or’ing together the following values:

VM_PROT_READ
Allows read access.

VM_PROT_WRITE
Allows write access.

VM_PROT_EXECUTE
Allows execute access.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY will cause
mach_msg_server to remove the memory cache control port reference.

RELATED INFORMATION
Functions: memory_object_lock_completed, memory_object_lock_request,
memory_object_server, seqnos_memory_object_server.

132 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_data_write

Server Interface — Writes changed data back to a memory object (old form)

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_data_write
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count);

seqnos_memory_object_data_write
Sequence Number form

kern_return_tseqnos_memory_object_data_write
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count);

DESCRIPTION
A memory_object_data_write function is called as the result of a kernel mes-
sage providing the memory manager with data that has been modified while
cached in physical memory. This old form is used if the memory manager
makes the object ready via the oldmemory_object_set_attributes instead of
memory_object_ready.

The kernel writes back only data that has been modified. When the memory
manager no longer needs the data (for example, after the data has been written
to permanent storage), it should usevm_deallocate to release the memory re-
sources.

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

Mach 3 Kernel Interfaces 133

memory_object_data_write

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory manager. If the memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.

data
[in pointer to dynamic array of bytes] The data that has been modified
while cached in physical memory.

data_count
[in scalar] The number of bytes to be written, starting atoffset. The
number converts to an integral number of memory object pages.

NOTES
The kernel can flush clean (that is, un-modified) pages at its own discretion. As
a result, the memory manager cannot rely on the kernel to keep a copy of its
data or even to provide notification that its data has been discarded.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY will cause
mach_msg_server to remove the memory cache control port reference and to
de-allocate the returned data.

RELATED INFORMATION
Functions: memory_object_data_return, memory_object_set_attributes,
vm_deallocate, memory_object_server, seqnos_memory_object_server.

134 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_destroy

Function — Shuts down a memory object

SYNOPSIS

kern_return_tmemory_object_destroy
(mach_port_t memory_control,
kern_return_t reason);

DESCRIPTION
The memory_object_destroy function tells the kernel to shut down the speci-
fied memory object. As a result of this call, the kernel no longer supports pag-
ing activity or any memory object calls on the memory object. The kernel issues
a memory_object_terminate call to pass to the memory manager all rights to
the memory object port, the memory control port, and the memory name port.

To ensure that any modified cached data is returned before the object is terminat-
ed, the memory manager should callmemory_object_lock_request with
should_flush set and a lock value of VM_PROT_WRITE before it makes the
memory_object_destroy call.

SECURITY

The requesting task must holdmcsv_destroy_objectpermission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init call.

reason
[in scalar] An error code indicating when the object must be destroyed.

NOTES
Thereason code is currently ignored by the kernel.

RETURN VALUE
Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

Mach 3 Kernel Interfaces 135

memory_object_destroy

RELATED INFORMATION
Functions:memory_object_lock_request, memory_object_terminate.

136 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_get_attributes

Function — Returns current attributes for a memory object

SYNOPSIS

kern_return_tmemory_object_get_attributes
(mach_port_t memory_control,
boolean_t* object_ready,
boolean_t* may_cache_object,
memory_object_copy_strategy_t* copy_strategy);

DESCRIPTION
Thememory_object_get_attributes function retrieves the current attributes for
the specified memory object.

SECURITY

The requesting task must holdmcsv_get_attributes permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init call.

object_ready
[out scalar] Ready indicator. If true, the kernel can issue new data and
unlock requests on the memory object.

may_cache_object
[out scalar] Cache indicator. If true, the kernel can cache data associat-
ed with the memory object, even if virtual memory references to it are
removed.

copy_strategy
[out scalar] How the kernel should handle copying of regions associat-
ed with the memory object. Possible values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object’s da-
ta. Normally, the kernel requests each page with read access,
copies the data, and then (optionally) flushes the data.

Mach 3 Kernel Interfaces 137

memory_object_get_attributes

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (viamemory_object_copy) be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: memory_object_change_attributes, memory_object_copy,
memory_object_ready.

138 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_init

Server Interface — Initializes a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_init
(mach_port_t memory_object,
mach_port_t memory_control,
mach_port_t memory_object_name,
vm_size_t memory_object_page_size);

seqnos_memory_object_init
Sequence Number form

kern_return_tseqnos_memory_object_init
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
mach_port_t memory_object_name,
vm_size_t memory_object_page_size);

DESCRIPTION
A memory_object_init function is called as the result of a kernel message noti-
fying a memory manager that the kernel has been asked to map the specified
memory object into a task’s virtual address space.

When asked to map a memory object for the first time, the kernel responds by
making amemory_object_init call on the abstract memory object. This call is
provided as a convenience to the memory manager, to allow it to initialize data
structures and prepare to receive other requests.

In addition to the abstract memory object port itself, the call provides the follow-
ing two ports:

• A memory cache control port that the memory manager can use to control
use of its data by the kernel. The memory manager gets send rights for this
port.

• A memory cache name port that the kernel will use to identify the memory
object to other tasks.

The kernel holds send rights for the abstract memory object port, and both send
and receive rights for the memory cache control and name ports.

Mach 3 Kernel Interfaces 139

memory_object_init

The call also supplies the virtual page size to be used for the memory mapping.
The memory manager can use this size to detect mappings that use different
data structures at initialization time, or to allocate buffers for use in reading data.

If a memory object is mapped into the address space of more than one task on
different hosts (with independent kernels), the memory manager will receive a
memory_object_init call from each kernel, containing a unique set of control
and name ports. Note that each kernel may also use a different page size.

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager. If the memory object has been supplied
to more than one kernel, this parameter identifies the kernel that is
making the call.

memory_object_name
[in memory-cache-name port] The memory cache name port used by
the kernel to refer to the memory object data in response tovm_region
calls.

memory_object_page_size
[in scalar] The page size used by the kernel. All calls involving this
kernel must use data sizes that are integral multiples of this page size.

NOTES
When the memory manager is ready to accept data requests for this memory ob-
ject, it must callmemory_object_ready. Otherwise, the kernel will not process
requests on this object.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY will cause
mach_msg_server to remove the memory cache control and name port refer-
ences.

140 Mach 3 Kernel Interfaces

External Memory Management Interface

RELATED INFORMATION
Functions: memory_object_ready, memory_object_terminate,
memory_object_server, seqnos_memory_object_server.

Mach 3 Kernel Interfaces 141

memory_object_lock_completed

memory_object_lock_completed

Server Interface — Indicates completion of a consistency control call

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_lock_completed
(mach_port_t reply_port,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length);

seqnos_memory_object_lock_completed
Sequence Number form

kern_return_tseqnos_memory_object_lock_completed
(mach_port_t reply_port,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length);

DESCRIPTION
A memory_object_lock_completed function is called as the result of a kernel
message confirming the kernel’s action in response to a
memory_object_lock_request call from the memory manager. The memory
manager can use thememory_object_lock_request call to:

• Alter access restrictions specified in thememory_object_data_supply call
or a previousmemory_object_lock_request call.

• Write back modifications made in memory.

• Invalidate its cached data.

When the kernel completes the requested actions, it calls
memory_object_lock_completed (asynchronously) using the port explicitly
provided in thememory_object_lock_request call. Because the memory man-
ager cannot know which pages have been modified, or even which pages remain
in the cache, it cannot know how many pages will be written back in response
to a memory_object_lock_request call. Receiving the
memory_object_lock_completed call is the only sure means of detecting com-
pletion. The completion call includes the offset and length values from the con-
sistency request to distinguish it from other consistency requests.

142 Mach 3 Kernel Interfaces

External Memory Management Interface

PARAMETERS

reply_port
[in reply port] The port named in the corresponding
memory_object_lock_request call.

seqno
[in scalar] The sequence number of this message relative to the port
named in thememory_object_lock_request message.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory manager. If the memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.

length
[in scalar] The number of bytes to which the call refers, starting atoff-
set. The number converts to an integral number of memory object pag-
es.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY will cause
mach_msg_server to remove the memory cache control port reference.

RELATED INFORMATION
Functions: memory_object_lock_request, memory_object_server,
seqnos_memory_object_server.

Mach 3 Kernel Interfaces 143

memory_object_lock_request

memory_object_lock_request

Function — Restricts access to memory object data

SYNOPSIS

kern_return_tmemory_object_lock_request
(mach_port_t memory_control,
vm_offset_t offset,
vm_size_t size,
memory_object_return_t should_return,
boolean_t should_flush,
vm_prot_t lock_value,
mach_port_t reply_port);

DESCRIPTION
The memory_object_lock_request function allows the memory manager to
make the following requests of the kernel:

• Clean the pages within the specified range by writing back all changed (that
is, dirty) and precious pages. The kernel uses the
memory_object_data_return call to write back the data. The
should_return parameter must be set to non-zero.

• Flush all cached data within the specified range. The kernel invalidates the
range of data and revokes all uses of that data. Theshould_flush parameter
must be set to true.

• Alter access restrictions specified in thememory_object_data_supply call
or a previousmemory_object_lock_request call. Thelock_value parameter
must specify the new access restrictions. Note that this parameter can be
used to unlock previously locked data.

Once the kernel performs all of the actions requested by this call, it issues a
memory_object_lock_completed call using thereply_port port.

SECURITY

The requesting task must holdmcsv_remove_page, mcsv_change_page_locks,
and mcsv_invoke_lock_requestpermission tomemory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init call.

144 Mach 3 Kernel Interfaces

External Memory Management Interface

offset
[in scalar] The offset within the memory object, in bytes.

size
[in scalar] The number of bytes of data (starting atoffset) to be affect-
ed. The number must convert to an integral number of memory object
pages.

should_return
[in scalar] Clean indicator. Values are:

MEMORY_OBJECT_RETURN_NONE
Don’t return any pages. Ifshould_flush is TRUE, pages will
be discarded.

MEMORY_OBJECT_RETURN_DIRTY
Return only dirty (modified) pages. Ifshould_flush is TRUE,
precious pages will be discarded; otherwise, the kernel main-
tains responsibility for precious pages.

MEMORY_OBJECT_RETURN_ALL
Both dirty and precious pages are returned. Ifshould_flush is
FALSE, the kernel maintains responsibility for the precious
pages.

should_flush
[in scalar] Flush indicator. If true, the kernel flushes all pages within
the range.

lock_value
[in scalar] One or more forms of accessnot permitted for the specified
data. Valid values are:

VM_PROT_NO_CHANGE
Do not change the protection of any pages.

VM_PROT_NONE
Prohibits no access (that is, all forms of access are permitted).

VM_PROT_READ
Prohibits read access.

VM_PROT_WRITE
Prohibits write access.

VM_PROT_EXECUTE
Prohibits execute access.

Mach 3 Kernel Interfaces 145

memory_object_lock_request

VM_PROT_ALL
Allows all forms of access.

reply_port
[in reply port] The response port to be used by the kernel on a call to
memory_object_lock_completed, or MACH_PORT_NULL if no re-
sponse is required.

NOTES
The memory_object_lock_request call affects only data that is cached at the
time of the call. Access restrictions cannot be applied to pages for which data
has not been provided.

When a running thread requires an access that is currently prohibited, the kernel
issues amemory_object_data_unlock call specifying the access required. The
memory manager can then usememory_object_lock_request to relax its ac-
cess restrictions on the data.

To indicate that an unlock request is invalid (that is, requires permission that
can never be granted), the memory manager must first flush the page. When the
kernel requests the data again with the higher permission, the memory manager
can indicate the error by responding with a call tomemory_object_data_error.

RETURN VALUE
Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_data_supply, memory_object_data_unlock,
memory_object_lock_completed.

146 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_ready

Function — Marks a memory object is ready to receive paging operations

SYNOPSIS

kern_return_tmemory_object_ready
(mach_port_t memory_control,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy);

DESCRIPTION
The memory_object_ready function informs the kernel that the manager is
ready to receive data or unlock requests on behalf of clients. Performance-relat-
ed attributes for the specified memory object can also be set at this time. These
attributes control whether the kernel is permitted to:

• Retain data from a memory object even after all address space mappings
have been de-allocated (may_cache_object parameter).

• Perform optimizations for virtual memory copy operations (copy_strategy
parameter).

SECURITY

The requesting task must holdmcsv_set_attributes permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init call.

may_cache_object
[in scalar] Cache indicator. If true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object’s da-
ta. Normally, the kernel requests each page with read access,
copies the data, and then (optionally) flushes the data.

Mach 3 Kernel Interfaces 147

memory_object_ready

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (viamemory_object_copy) be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

NOTES
Sharing cached data among all the clients of a memory object can have a major
impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-
gram images can be used regularly by different programs. By retaining the data
for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE
Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

RELATED INFORMATION
Functions: memory_object_change_attributes, memory_object_copy,
memory_object_get_attributes, memory_object_init,
memory_object_set_attributes (old form).

148 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_object_set_attributes

Function — Sets attributes for a memory object (old form)

SYNOPSIS

kern_return_tmemory_object_set_attributes
(mach_port_t memory_control,
boolean_t object_ready,
boolean_t may_cache_object,
memory_object_copy_strategy_t copy_strategy);

DESCRIPTION
The memory_object_set_attributes function allows the memory manager to
set performance-related attributes for the specified memory object. These at-
tributes control whether the kernel is permitted to:

• Make data or unlock requests on behalf of clients (object_ready parameter).

• Retain data from a memory object even after all address space mappings
have been de-allocated (may_cache_object parameter).

• Perform optimizations for virtual memory copy operations (copy_strategy
parameter).

SECURITY

The requesting task must holdmcsv_set_attributes permission to
memory_control.

PARAMETERS

memory_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager for cache management requests. This
port is provided by the kernel in amemory_object_init call.

object_ready
[in scalar] Ready indicator. If true, the kernel can issue new data and
unlock requests on the memory object.

may_cache_object
[in scalar] Cache indicator. If true, the kernel can cache data associated
with the memory object, even if virtual memory references to it are re-
moved.

copy_strategy
[in scalar] How the kernel should handle copying of regions associated
with the memory object. Valid values are:

Mach 3 Kernel Interfaces 149

memory_object_set_attributes

MEMORY_OBJECT_COPY_NONE
Use normal procedure when copying the memory object’s da-
ta. Normally, the kernel requests each page with read access,
copies the data, and then (optionally) flushes the data.

MEMORY_OBJECT_COPY_CALL
Notify the memory manager (viamemory_object_copy) be-
fore copying any data.

MEMORY_OBJECT_COPY_DELAY
Use copy-on-write technique. This strategy allows the kernel
to efficiently copy large amounts of data and guarantees that
the memory manager will not externally modify the data. It is
the most commonly used copy strategy.

MEMORY_OBJECT_COPY_TEMPORARY
Mark the object as temporary. This had the same effect as the
MEMORY_OBJECT_COPY_DELAY strategy and has the
additional attribute that when the last mapping of the memory
object is removed, the object is destroyed without returning
any in-memory pages.

NOTES
memory_object_set_attributes is the old form of
memory_object_change_attributes. When used to change the cache or copy
strategy attributes, it has the same effect (with the omission of a possible reply)
asmemory_object_change_attributes. The difference between these two calls
is theready attribute. The use of this old call with theready attribute set has the
same basic effect as the newmemory_object_ready call. However, the use of
this old call informs the kernel that this is an old form memory manager that ex-
pects memory_object_data_write messages instead of the new
memory_object_data_return messages implied bymemory_object_ready.
Changing a memory object to be not ready does not affect data and unlock re-
quests already in progress. Such requests will not be aborted or reissued.

Sharing cached data among all the clients of a memory object can have a major
impact on performance, especially if it can be extended across successive, as
well as concurrent, uses. For example, the memory objects that represent pro-
gram images can be used regularly by different programs. By retaining the data
for these memory objects in cache, the number of secondary storage accesses
can be reduced significantly.

RETURN VALUE
Since this function does not receive a reply message, it has no return value.
Only message transmission errors apply.

150 Mach 3 Kernel Interfaces

External Memory Management Interface

RELATED INFORMATION
Functions: memory_object_change_attributes, memory_object_copy,
memory_object_get_attributes, memory_object_init,
memory_object_ready.

Mach 3 Kernel Interfaces 151

memory_object_supply_completed

memory_object_supply_completed

Server Interface — Indicates completion of a data supply call

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_supply_completed
(mach_port_t reply_port,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
kern_return_t result,
vm_offset_t error_offset);

seqnos_memory_object_supply_completed
Sequence Number form

kern_return_tseqnos_memory_object_supply_completed
(mach_port_t reply_port,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_size_t length,
kern_return_t result,
vm_offset_t error_offset);

DESCRIPTION
A memory_object_supply_completed function is called as the result of a ker-
nel message confirming the kernel’s action in response to a
memory_object_data_supply call from the memory manager.

When the kernel accepts the pages, it callsmemory_object_supply_completed
(asynchronously) using the port explicitly provided in the
memory_object_data_supply call. Because the data supply call can provide
multiple pages, not all of which the kernel may necessarily accept and some of
which the kernel may have to return to the manager (if precious), the kernel pro-
vides this response. If the kernel does not accept all of the pages in the data sup-
ply message, it will indicate so in the completion response. If the pages not
accepted are precious, they will be returned (inmemory_object_data_return
messages) before it sends this completion message. The completion call in-
cludes the offset and length values from the supply request to distinguish it
from other supply requests.

152 Mach 3 Kernel Interfaces

External Memory Management Interface

PARAMETERS

reply_port
[in reply port] The port specified to the corresponding
memory_object_data_supply call.

seqno
[in scalar] The sequence number of this message relative to the port
named in thememory_object_data_supply call.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory manager. If the memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object from the corresponding
data supply call

length
[in scalar] The number of bytes accepted. The number converts to an
integral number of memory object pages.

result
[in scalar] A kernel return code indicating the result of the supply oper-
ation, possibly KERN_SUCCESS. KERN_MEMORY_PRESENT is
currently the only error returned; other errors (invalid arguments, for
example) abort the data supply operation.

error_offset
[in scalar] The offset within the memory object where the first error oc-
curred.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY will cause
mach_msg_server to remove the memory cache control port reference.

RELATED INFORMATION
Functions: memory_object_data_supply, memory_object_server,
seqnos_memory_object_server.

Mach 3 Kernel Interfaces 153

memory_object_terminate

memory_object_terminate

Server Interface — Relinquishes access to a memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_terminate
(mach_port_t memory_object,
mach_port_t memory_control,
mach_port_t memory_object_name);

seqnos_memory_object_terminate
Sequence Number form

kern_return_tseqnos_memory_object_terminate
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
mach_port_t memory_object_name);

DESCRIPTION
A memory_object_terminate function is called as the result of a kernel mes-
sage notifying a memory manager that no mappings of the specified memory ob-
ject remain. The kernel makes this call to allow the memory manager to clean
up data structures associated with the de-allocated mappings. The call provides
receive rights to the memory cache control and name ports so that the memory
manager can destroy the ports (viamach_port_deallocate). The kernel also re-
linquishes its send rights for all three ports.

The kernel terminates a memory object only after all address space mappings of
the object have been de-allocated, or upon explicit request by the memory man-
ager.

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied to the kernel in a
vm_map call.

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

154 Mach 3 Kernel Interfaces

External Memory Management Interface

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory manager. If the memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

memory_object_name
[in memory-cache-name port] The memory cache name port used by
the kernel to refer to the memory object data in response tovm_region
calls.

NOTES
If a client thread callsvm_map to map a memory object while the kernel is call-
ing memory_object_terminate for the same memory object, the
memory_object_init call may appear before thememory_object_terminate
call. This sequence is indistinguishable from the case where another kernel is is-
suing amemory_object_init call. In other words, the control and name ports in-
cluded in the initialization will be different from those included in the
termination. A memory manager must be aware that this sequence can occur
even when all mappings of a memory object take place on the same host.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY will cause
mach_msg_server to remove the memory cache control and name port refer-
ences.

RELATED INFORMATION
Functions: memory_object_destroy, memory_object_init,
mach_port_deallocate, memory_object_server,
seqnos_memory_object_server.

Mach 3 Kernel Interfaces 155

CHAPTER 6 Thread Interface

This chapter discusses the specifics of the kernel’s thread interfaces. This includes status
functions related to threads. Properties associated with threads, such as special ports, are
included here as well. Functions that apply to more than one thread appear in the task in-
terface chapter.

156 Mach 3 Kernel Interfaces

Thread Interface

catch_exception_raise

Server Interface — Handles the occurrence of an exception within a thread

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t catch_exception_raise
(mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
int exception,
int code,
int subcode);

DESCRIPTION
A catch_exception_raisefunction is called byexc_server as the result of a ker-
nel message indicating that an exception occurred within a thread.
exception_port is the port named via thread_set_special_port or
task_set_special_port as the port that responds when the thread takes an excep-
tion.

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

exception_port
[in exception port] The port to which the exception notification was
sent.

thread
[in thread port] The port to the thread taking the exception.

task
[in task port] The port to the task containing the thread taking the ex-
ception.

exception
[in scalar] The type of the exception, as defined in<mach/excep-
tion.h>. The machine independent values raised by all implementa-
tions are:

Mach 3 Kernel Interfaces 157

catch_exception_raise

EXC_BAD_ACCESS
Could not access memory. code containskern_return_t de-
scribing error.subcode contains bad memory address.

EXC_BAD_INSTRUCTION
Instruction failed. Illegal or undefined instruction or operand.

EXC_ARITHMETIC
Arithmetic exception; exact nature of exception is in code
field.

EXC_EMULATION
Emulation instruction. Emulation support instruction encoun-
tered. Details in code and subcode fields.

EXC_SOFTWARE
Software generated exception; exact exception is in code
field. Codes 0 - 0xFFFF reserved to hardware; codes 0x10000
- 0x1FFFF reserved for OS emulation (Unix).

EXC_BREAKPOINT
Trace, breakpoint, etc. Details incode field.

code
[in scalar] A code indicating a particular instance ofexception.

subcode
[in scalar] A specific type ofcode.

NOTES
When an exception occurs in a thread, the thread sends an exception message to
its exception port, blocking in the kernel waiting for the receipt of a reply. It is
assumed that some task is listening (most likely withmach_msg_server) to this
port, using theexc_server function to decode the messages and then call the
linked in catch_exception_raise. It is the job ofcatch_exception_raise to han-
dle the exception and decide the course of action forthread. The state of the
blocked thread can be examined withthread_get_state.

If the thread should continue from the point of exception,
catch_exception_raise would return KERN_SUCCESS. This causes a reply
message to be sent to the kernel, which will allow the thread to continue from
the point of the exception.

If some other action should be taken bythread, the following actions should be
performed bycatch_exception_raise:

• thread_suspend. This keeps the thread from proceeding after the next step.

158 Mach 3 Kernel Interfaces

Thread Interface

• thread_abort. This aborts the message receive operation currently blocking
the thread.

• thread_set_state. Set the thread’s state so that it continues doing something
else.

• thread_resume. Let the thread start running from its new state.

• Return a value other than KERN_SUCCESS so that no reply message is
sent. (Actually, the kernel uses a send once right to send the exception mes-
sage, whichthread_abort destroys, so replying to the message is harmless.)

The thread can always be destroyed withthread_terminate.

A thread can have two exception ports active for it: its thread exception port
and the task exception port. If an exception message is sent to the thread excep-
tion port (if it exists), and a reply message contains a return value other than
KERN_SUCCESS, the kernel will then send the exception message to the task
exception port. If that exception message receives a reply message with other
than a return value of KERN_SUCCESS, the thread is terminated. Note that
this behavior cannot be obtained by using thecatch_exception_raiseinterface
called byexc_server andmach_msg_server, since those functions will either
return a reply message with a KERN_SUCCESS value, or none at all.

RETURN VALUE
A return value of KERN_SUCCESS indicates that the thread is to continue
from the point of exception. A return value of MIG_NO_REPLY indicates that
the exception was handled directly and the thread was restarted or terminated
by the exception handler. A return value of MIG_DESTROY_REQUEST caus-
es the kernel to try another exception handler (or terminate the thread). Any oth-
er value will causemach_msg_server to remove the task and thread port
references.

RELATED INFORMATION
Functions: exc_server, thread_abort, task_get_special_port,
thread_get_special_port, thread_get_state, thread_resume,
task_set_special_port, thread_set_special_port, thread_set_state,
thread_suspend, thread_terminate.

Mach 3 Kernel Interfaces 159

mach_thread_self

mach_thread_self

System Trap— Returns the thread self port

LIBRARY
#include <mach/mach_traps.h>

SYNOPSIS

mach_port_tmach_thread_self
();

DESCRIPTION
The mach_thread_selffunction returns send rights to the thread’s own kernel
port.

SECURITY

The requesting task must holdthsv_get_thread_kernel_portpermission to its
own thread port.

PARAMETERS
None

RETURN VALUE
[thread-self port] Send rights to the thread’s port.

RELATED INFORMATION
Functions:thread_info, thread_set_special_port.

160 Mach 3 Kernel Interfaces

Thread Interface

receive_samples

Server Interface — Handles the occurrence of a PC sampling message

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_t receive_samples
(mach_port_t sample_port,
sample_array_t samples,
mach_msg_type_number_t samplesCnt);

DESCRIPTION
A receive_samplesfunction is called byprof_server as the result of a kernel
message indicating that a set of program counter samples has been gathered.
sample_port is the port named viatask_sample or thread_sample.

SECURITY
There are no security limitations on this kernel outcall.

PARAMETERS

sample_port
[in sample port] The port to which the sample message was sent.

sample
[pointer to in array ofvm_address_t] An array of PC sample values.

sampleCnt
[in scalar] The number of values insample.

NOTES
This interface is machine word length specific because of the virtual addresses
in thesamples parameter.

RETURN VALUE
Irrelevant.

RELATED INFORMATION
Functions: task_sample, thread_sample, prof_server.‘

Mach 3 Kernel Interfaces 161

swtch

swtch

System Trap— Attempt a context switch

LIBRARY
Not declared anywhere.

SYNOPSIS

boolean_tswtch
();

DESCRIPTION
Theswtch function attempts to context switch the current thread off the proces-
sor.

This function is useful in user level lock management routines. If the current
thread cannot make progress because of some lock, it would execute theswtch
function. When this returns, the thread should once again try to make progress
by attempting to obtain its lock.

This function returns a flag indicating whether there is anything else for the pro-
cessor to do. If there is nothing else, the thread can spin waiting for its lock, in-
stead of continuing to callswtch.

SECURITY

The requesting task must holdthsv_can_swtchpermission to its own thread port

PARAMETERS
None

RETURN VALUE

TRUE
There are other threads that the processor could run.

FALSE
The processor has nothing better to do.

RELATED INFORMATION
Functions:swtch_pri, thread_abort, thread_switch.

162 Mach 3 Kernel Interfaces

Thread Interface

swtch_pri

System Trap— Attempt a context switch to low priority

LIBRARY
Not declared anywhere.

SYNOPSIS

boolean_tswtch_pri
(int priority);

DESCRIPTION
The swtch_pri function attempts to context switch the current thread off the
processor. The thread’s priority is lowered to the minimum possible value dur-
ing this time. The priority of the thread will be restored when it is awakened.

This function is useful in user level lock management routines. If the current
thread cannot make progress because of some lock, it would execute the
swtch_pri function. When this returns, the thread should once again try to
make progress by attempting to obtain its lock.

This function returns a flag indicating whether there is anything else for the pro-
cessor to do. If there is nothing else, the thread can spin waiting for its lock, in-
stead of continuing to callswtch_pri.

SECURITY

The requesting task must holdthsv_can_swtch_pripermission to its own thread
port.

PARAMETERS

priority
[in scalar] Currently not used.

RETURN VALUE

TRUE
There are other threads that the processor could run.

FALSE
The processor has nothing better to do.

Mach 3 Kernel Interfaces 163

swtch_pri

RELATED INFORMATION
Functions:swtch, thread_abort, thread_depress_abort, thread_switch.

164 Mach 3 Kernel Interfaces

Thread Interface

thread_abort

Function — Aborts a thread

SYNOPSIS

kern_return_tthread_abort
(mach_port_t target_thread);

DESCRIPTION
The thread_abort function aborts page faults and any message primitive calls
(mach_msg, mach_msg_receive, and mach_msg_send) in use by
target_thread. (Note, though, that the message calls retry interrupted message
operations unless MACH_SEND_INTERRUPT and
MACH_RCV_INTERRUPT are specified.) Priority depressions are also abort-
ed. The call returns a code indicating that it was interrupted. The call is inter-
rupted even if the thread (or the task containing it) is suspended. If it is
suspended, the thread receives the interrupt when it resumes.

If its state is not modified before it resumes, the thread will retry an aborted
page fault. The Mach message trap returns either
MACH_SEND_INTERRUPTED or MACH_RCV_INTERRUPTED, depend-
ing on whether the send or the receive side was interrupted. Note, though, that
the Mach message trap is contained within themach_msg library routine,
which, by default, retries interrupted message calls.

The basic purpose ofthread_abort is to let one thread cleanly stop another
thread (target_thread). The target thread is stopped in such a manner that its fu-
ture execution can be controlled in a predictable way.

SECURITY

The requesting task must holdthsv_abort_threadpermission totarget_thread.

PARAMETERS

target_thread
[in thread port] The thread to be aborted.

NOTES
By way of comparison, thethread_suspend function keeps the target thread
from executing any further instructions at the user level, including the return
from a system call. Thethread_get_state function returns the thread’s user
state, whilethread_set_state allows modification of the user state.

Mach 3 Kernel Interfaces 165

thread_abort

A problem occurs if a suspended thread had been executing within a system
call. In this case, the thread has, not only a user state, but an associated kernel
state. (The kernel state cannot be changed withthread_set_state.) As a result,
when the thread resumes, the system call can return, producing a change in the
user state and, possibly, user memory.

For a thread executing within a system call,thread_abort aborts the kernel call
from the thread’s point of view. Specifically, it resets the kernel state so that the
thread will resume execution at the system call return, with the return code val-
ue set to one of the interrupted codes. The system call itself may be completed
entirely, aborted entirely or be partially completed, depending on when the
abort is received. As a result, if the thread’s user state has been modified by
thread_set_state, it will not be altered un-predictably by any unexpected sys-
tem call side effects.

For example, to simulate a POSIX signal, use the following sequence of calls:

• thread_suspend — To stop the thread.

• thread_abort — To interrupt any system call in progress and set the return
value to “interrupted”. Because the thread is already stopped, it will not re-
turn to user code.

• thread_set_state — To modify the thread’s user state to simulate a proce-
dure call to the signal handler.

• thread_resume — To resume execution at the signal handler. If the thread’s
stack is set up correctly, the thread can return to the interrupted system call.
Note that the code to push an extra stack frame and change the registers is
highly machine dependent.

CAUTIONS
As a rule, do not usethread_abort on a non-suspended thread. This operation
is very risky because it is difficult to know which system trap, if any, is execut-
ing and whether an interrupt return will result in some useful action by the
thread.

thread_abort will abort any non-atomic operation (such as a multi-page
memory_object_data_supply) at an arbitrary point in a non-restartable way.
Such problems can be avoided by usingthread_abort_safely.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: mach_msg, thread_get_state, thread_info, thread_set_state,
thread_suspend, thread_terminate, thread_abort_safely.

166 Mach 3 Kernel Interfaces

Thread Interface

thread_create/thread_create_secure

Function — Creates a thread within a task

SYNOPSIS

kern_return_t thread_create
(mach_port_t parent_task,
mach_port_t* child_thread);

kern_return_t thread_create_secure
(mach_port_t parent_task,
mach_port_t* child_thread);

DESCRIPTION
The thread_create function creates a new thread withinparent_task. The new
thread has a suspend count of one and no processor state.

The new thread holds a send right for its thread kernel port. A send right for the
thread’s kernel port is also returned to the calling task or thread inchild_thread.
The new thread’s exception port is set to MACH_PORT_NULL.

The thread_create_secure function creates a new thread withinparent_task
only if the task had been created bytask_create_secureand theparent_task’s
task structure is in an EMPTY state. The state ofchild_thread’s task structure is
changed from EMPTY to THREAD_CREATED.

SECURITY
For the thread_create function, the requesting task must havetsv_add_thread
permission toparent_task. For thethread_create_secure function, the request-
ing task must havetsv_add_thread_secure permission toparent_task.

PARAMETERS

parent_task
[in task port] The port for the task that is to contain the new thread.

child_thread
[out thread port] The kernel-assigned name for the new thread.

NOTES
To get a new thread running, first usethread_set_state to set a processor state
for the thread. Then, usethread_resume to schedule the thread for execution.

Mach 3 Kernel Interfaces 167

thread_create/thread_create_secure

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_create, task_create_secure, task_threads,
thread_get_special_port, thread_get_state, thread_resume,
thread_resume_secure, thread_set_special_port, thread_set_state,
thread_set_state_secure, thread_suspend, thread_terminate.

168 Mach 3 Kernel Interfaces

Thread Interface

thread_depress_abort

Function — Cancel thread priority depression

SYNOPSIS

kern_return_tthread_depress_abort
(mach_port_t thread);

DESCRIPTION
The thread_depress_abortfunction cancels any priority depression effective
for thread caused by aswtch_pri or thread_switch call.

SECURITY

The requesting task must holdthsv_abort_thread_depresspermission tothread.

PARAMETERS

thread
[in thread port] Thread whose priority depression is canceled.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:swtch, swtch_pri, thread_abort, thread_switch.

Mach 3 Kernel Interfaces 169

thread_get_special_port

thread_get_special_port

Function — Returns a send right to a special port

SYNOPSIS

kern_return_tthread_get_special_port
(mach_port_t thread,
int which_port,
mach_port_t* special_port);

thread_get_exception_port
Macro form

kern_return_tthread_get_exception_port
(mach_port_t thread,
mach_port_t* special_port)

⇒ thread_get_special_port(thread, THREAD_EXCEPTION_PORT,
special_port)

thread_get_kernel_port
Macro form

kern_return_tthread_get_kernel_port
(mach_port_t thread,
mach_port_t* special_port)

⇒ thread_get_special_port (thread, THREAD_KERNEL_PORT,
special_port)

DESCRIPTION
The thread_get_special_port function returns a send right for a special port be-
longing tothread.

The thread kernel port is a port for which the kernel holds the receive right. The
kernel uses this port to identify the thread.

If one thread has a send right for the kernel port of another thread, it can use the
port to perform kernel operations for the other thread. Send rights for a kernel
port normally are held only by the thread to which the port belongs, or by the
task that contains the thread. Using themach_msg function, however, any
thread can pass a send right for its kernel port to another thread.

SECURITY

The requesting task must holdthsv_get_thread_exception_portor
thsv_get_thread_kernel_portpermission tothread to get, respectively, the ex-
ception port or the kernel port.

170 Mach 3 Kernel Interfaces

Thread Interface

PARAMETERS

thread
[in thread port] The thread for which to return the port’s send right.

which_port
[in scalar] The special port for which the send right is requested. Valid
values are:

THREAD_EXCEPTION_PORT
[exception port] The thread’s exception port. Used to receive
exception messages from the kernel.

THREAD_KERNEL_PORT
[thread-self port] The port used to name the thread. Used to in-
voke operations that affect the thread. This is the port returned
by mach_thread_self.

special_port
[out thread-special port] The returned value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:mach_thread_self, task_get_special_port, task_set_special_port,
thread_create, thread_set_special_port.

Mach 3 Kernel Interfaces 171

thread_get_state

thread_get_state

Function — Returns the execution state for a thread

SYNOPSIS

kern_return_tthread_get_state
(mach_port_t target_thread,
int flavor,
thread_state_t old_state,
mach_msg_type_number_t* old_stateCnt);

DESCRIPTION
The thread_get_state function returns the execution state (for example, the ma-
chine registers) fortarget_thread. flavor specifies the type of state information
returned.

The format of the data returned is machine specific; it is defined in <mach/
thread_status.h>.

SECURITY

The requesting task must holdthsv_get_thread_statepermission to
target_thread.

PARAMETERS

target_thread
[in thread port] The thread for which the execution state is to be re-
turned. The calling thread cannot specify itself.

flavor
[in scalar] The type of execution state to be returned. Valid values cor-
respond to supported machined architectures.

old_state
[out array ofint] Array of state information for the specified thread.

old_stateCnt
[pointer to in/out scalar] On input, the maximum size of the state array;
on output, the returned size of the state array (in units of sizeof (int)).
The maximum size is defined by THREAD_STATE_MAX.

RETURN VALUE
Only generic errors apply.

172 Mach 3 Kernel Interfaces

Thread Interface

RELATED INFORMATION
Functions:task_info, thread_info, thread_set_state.

Mach 3 Kernel Interfaces 173

thread_info

thread_info

Function — Returns information about a thread

SYNOPSIS

kern_return_tthread_info
(mach_port_t target_thread,
int flavor,
thread_info_t thread_info,
mach_msg_type_number_t* thread_infoCnt);

DESCRIPTION
Thethread_info function returns an information array of typeflavor.

SECURITY

The requesting task must holdthsv_get_thread_infopermission totarget_thread.

PARAMETERS

target_thread
[in thread port] The thread for which the information is to be returned.

flavor
[in scalar] The type of information to be returned. Valid values are:

THREAD_BASIC_INFO
Returns basic information about the thread, such as the
thread’s run state and suspend count. The returned structure is
thread_basic_info of size
THREAD_BASIC_INFO_COUNT.

THREAD_SCHED_INFO
Returns scheduling information about the thread, such as pri-
ority and scheduling policy. The returned structure is
thread_sched_info of size THREAD_SCHED_INFO_SIZE.

thread_info
[out array ofint] Information about the specified thread.

thread_infoCnt
[pointer to in/out scalar] On input, the size of the info buffer; on out-
put, the returned size of the information structure (in units of sizeof
(int)). The maximum size is defined by THREAD_INFO_MAX.

174 Mach 3 Kernel Interfaces

Thread Interface

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_info, task_threads, thread_get_special_port,
thread_get_state, thread_set_special_port, thread_set_state.

Data Structures:thread_basic_info, thread_sched_info.

Mach 3 Kernel Interfaces 175

thread_resume/thread_resume_secure

thread_resume/thread_resume_secure

Function — Resumes a thread

SYNOPSIS

kern_return_tthread_resume
(mach_port_t target_thread);

kern_return_tthread_resume_secure
(mach_port_t target_thread);

DESCRIPTION
The thread_resume function decrements the suspend count fortarget_thread
by one. The thread is resumed if its suspend count goes to zero. If the suspend
count is still positive,thread_resume must be repeated until the count reaches
zero.

The thread_resume_secure function decrements the suspend count for
target_thread by one. The state oftarget_thread’s associated task structure is
changed from THREAD_STATE_SET to TASK_READY state.

SECURITY
The thread_resume function requires that the requesting task hold
thsv_resume_threadpermission totarget_thread. The thread_resume_secure
function requires that the requesting task holdthsv_resume_threadand
thsv_initiate_securepermission totarget_thread and target_thread’s associated
thread structure must be in the THREAD_STATE_SET state.

PARAMETERS

target_thread
[in thread port] The thread to be resumed.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_resume, task_suspend, thread_create,
thread_create_secure, thread_info, thread_suspend, thread_terminate.

176 Mach 3 Kernel Interfaces

Thread Interface

thread_sample

Function — Perform periodic PC sampling for a thread

SYNOPSIS

kern_return_t thread_enable_pc_sampling
(mach_port_t thread,
int * ticks;
sampled_pc_flavor_t flavor);

kern_return_t thread_disable_pc_sampling
(mach_port_t thread,
int *sample_cnt;
sampled_pc_flavor_t flavor);

kern_return_t thread_get_sampled_pcs
(mach_port_t thread,
unsigned *seqno;
sampled_pc_t sampled_pcs[],
int *sample_cnt);

DESCRIPTION
These functions cause the program counter (PC) of the specifiedthread to be
sampled periodically (whenever the thread happens to be running at the time of
the kernel’s “hardclock” interrupt). The set of PC sample values obtained are
saved in buffers.

SECURITY
These functions require that the requesting task holdthsv_sample_threadper-
mission tothread.

PARAMETERS

thread
[in thread port] Thread whose PC is to be sampled.

ticks
[out scalar] The kernel’s idea of clock granularity (ticks per second).
Don’t trust this.

flavor
[in structure] The sampling flavor, which can be any of the following
flavors defined in pc_sample.h.

SAMPLED_PC_PERIODIC,
SAMPLED_PC_VM_ZFILL_FAULTS,

Mach 3 Kernel Interfaces 177

thread_sample

SAMPLED_PC_VM_REACTIVATION_FAULTS,
SAMPLED_PC_VM_PAGIN_FAULTS,
SAMPLED_PC_VM_COM_FAULTS,
SAMPLED_PC_VM_FAUTLS_ANY,
SAMPLED_PC_VM_FAULTS.

seqno
[out scalar] The sequence number of the sampled PC’s. This is useful
for determining when a collector thread has missed a sample.

sampled_pcs
[out structure] The sampled PCs forthread. A sample contains three
fields: a thread-specific unique identifier, a PC value and the type of
sample as per flavor.

sample_cnt
[out scaler] The number of sample elements in the kernel for the
named task or thread.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_enable_pc_sampling, task_disable_pc_sampling,
task_get_sampled_pcs.

178 Mach 3 Kernel Interfaces

Thread Interface

thread_set_special_port

Function — Sets a special port for a thread

SYNOPSIS

kern_return_tthread_set_special_port
(mach_port_t thread,
int which_port,
mach_port_t special_port);

thread_set_exception_port
Macro form

kern_return_tthread_set_exception_port
(mach_port_t thread,
mach_port_t special_port)

⇒ thread_set_special_port (thread, THREAD_EXCEPTION_PORT,
special_port)

thread_set_kernel_port
Macro form

kern_return_tthread_set_kernel_port
(mach_port_t thread,
mach_port_t special_port)

⇒ thread_set_special_port (thread, THREAD_KERNEL_PORT,special_port)

DESCRIPTION
Thethread_set_special_port function sets a special port belonging tothread.

SECURITY

The requesting task must holdthsv_set_thread_exception_portor
thsv_set_thread_kernel_portpermission to thread to set, respectively, the
thread’s exception port or kernel port.

PARAMETERS

thread
[in thread port] The thread for which to set the port.

which_port
[in scalar] The special port to be set. Valid values are:

Mach 3 Kernel Interfaces 179

thread_set_special_port

THREAD_EXCEPTION_PORT
[exception port] The thread’s exception port. Used to receive
exception messages from the kernel.

THREAD_KERNEL_PORT
[thread-self port] The thread’s kernel port. Used by the kernel
to receive messages from the thread.

special_port
[in thread-special port] The value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:mach_thread_self, task_get_special_port, task_set_special_port,
thread_create, thread_get_special_port.

180 Mach 3 Kernel Interfaces

Thread Interface

thread_set_state/thread_set_state_secure

Function — Sets the execution state for a thread

SYNOPSIS

kern_return_tthread_set_state
(mach_port_t target_thread,
int flavor,
thread_state_t new_state,
mach_msg_type_number_t new_stateCnt);

kern_return_tthread_set_state_secure
(mach_port_t target_thread,
int flavor,
thread_state_t new_state,
mach_msg_type_number_t new_stateCnt);

DESCRIPTION
The thread_set_state function sets the execution state (for example, the ma-
chine registers) fortarget_thread. flavor specifies the type of state to set. The
thread_set_state_secure function changes the state oftarget_thread’s associat-
ed task structure from THREAD_CREATED to THREAD_STATE_SET.

The format of the state to set is machine specific; it is defined in <mach/
thread_status.h>. For thread_set_state_secure the state may be limited to en-
sure that the new child task is started at a valid entry point.

SECURITY
For thread_set_state the requesting task must holdthsv_set_thread_stateper-
mission totarget_thread. For thread_set_state_securethe requesting task must
hold thsv_set_thread_state and tsv_initiate_securepermission totarget_thread
and target_thread’s associated thread structure must be in the
THREAD_CREATED state.

PARAMETERS

target_thread
[in thread port] The thread for which to set the execution state. The
calling thread cannot specify itself.

flavor
[in scalar] The type of state to set. Valid values correspond to support-
ed machine architecture features.

Mach 3 Kernel Interfaces 181

thread_set_state/thread_set_state_secure

new_state
[pointer to in array ofint] Array of state information for the specified
thread.

new_stateCnt
[in scalar] The size of the state array (in units of sizeof (int)). The maxi-
mum size is defined by THREAD_STATE_MAX.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:task_info, thread_get_state, thread_info.

182 Mach 3 Kernel Interfaces

Thread Interface

thread_suspend

Function — Suspends a thread

SYNOPSIS

kern_return_tthread_suspend
(mach_port_t target_thread);

DESCRIPTION
The thread_suspend function increments the suspend count fortarget_thread
and prevents the thread from executing any more user-level instructions.

In this context, a user-level instruction can be either a machine instruction exe-
cuted in user mode or a system trap instruction, including a page fault. If a
thread is currently executing within a system trap, the kernel code may continue
to execute until it reaches the system return code or it may suspend within the
kernel code. In either case, the system trap returns when the thread resumes.

To resume a suspended thread, use thread_resume. If the suspend count is
greater than one,thread_resume must be repeated that number of times.

SECURITY

The requesting task must holdthsv_suspend_threadpermission totarget_thread.

PARAMETERS

target_thread
[in thread port] The thread to be suspended.

CAUTIONS
Unpredictable results may occur if a program suspends a thread and alters its
user state so that its direction is changed upon resuming. Note that the
thread_abort function allows a system call to be aborted only if it is progress-
ing in a predictable way.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_resume, task_suspend, thread_abort, thread_get_state,
thread_info, thread_resume, thread_set_state, thread_terminate.

Mach 3 Kernel Interfaces 183

thread_switch

thread_switch

System Trap— Cause context switch with options

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tthread_switch
(mach_port_t new_thread,
int option,
int time);

DESCRIPTION
The thread_switch function provides low-level access to the scheduler’s con-
text switching code.new_thread is a hint that implements hand-off scheduling.
The operating system will attempt to switch directly to the new thread (bypass-
ing the normal logic that selects the next thread to run) if possible. Since this is
a hint, it may be incorrect; it is ignored if it doesn’t specify a thread on the same
host as the current thread or if the scheduler cannot switch to that thread (i.e.,
not runable or already running on another processor). In this case, the normal
logic to select the next thread to run is used; the current thread may continue
running if there is no other appropriate thread to run.

The option argument specifies the interpretation and use oftime. The possible
values (from<mach/thread_switch.h>) are:

SWITCH_OPTION_NONE
The time argument is ignored.

SWITCH_OPTION_WAIT
The thread is blocked for the specifiedtime. This wait cannot be can-
celed by thread_resume; only thread_abort can terminate this wait.

SWITCH_OPTION_DEPRESS
The thread’s priority is depressed to the lowest possible value fortime.
The priority depression is aborted whentime has passed, when the cur-
rent thread is next run (either via hand-off scheduling or because the
processor set has nothing better to do), or whenthread_abort or
thread_depress_abort is applied to the current thread. Changing the
thread’s priority (viathread_priority) will not affect this depression.

The minimum time and units of time can be obtained as themin_timeout value
from the HOST_SCHED_INFO flavor ofhost_info.

184 Mach 3 Kernel Interfaces

Thread Interface

SECURITY

The requesting task must holdthsv_switch_threadandthsv_depress_pri permis-
sion tonew_thread.

PARAMETERS

new_thread
[in thread port] Thread to which the processor should switch context.

option
[in scalar] Options applicable to the context switch.

time
[in scalar] Time duration during which the thread should be affected by
option.

NOTES
thread_switch is often called when the current thread can proceed no further
for some reason; the various options and arguments allow information about
this reason to be transmitted to the kernel. Thenew_thread argument (hand-off
scheduling) is useful when the identity of the thread that must make progress be-
fore the current thread runs again is known. The SWITCH_OPTION_WAIT op-
tion is used when the amount of time that the current thread must wait before it
can do anything useful can be estimated and is fairly short, especially when the
identity of the thread for which this thread must wait is not known.

CAUTIONS
Users should beware of callingthread_switch with an invalid hint (e.g.,
THREAD_NULL) and no option. Because the time-sharing scheduler varies the
priority of threads based on usage, this may result in a waste of CPU time if the
thread that must be run is of lower priority. The use of the
SWITCH_OPTION_DEPRESS option in this situation is highly recommended.

thread_switch ignores policies. Users relying on the preemption semantics of a
fixed time policy should be aware thatthread_switch ignores these semantics;
it will run the specifiednew_thread independent of its priority and the priority
of any threads that could run instead.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:swtch, swtch_pri, thread_abort, thread_depress_abort.

Mach 3 Kernel Interfaces 185

thread_terminate

thread_terminate

Function — Destroys a thread

SYNOPSIS

kern_return_tthread_terminate
(mach_port_t target_thread);

DESCRIPTION
Thethread_terminate function kills createstarget_thread.

SECURITY

The requesting task must holdthsv_terminate_threadpermission to
target_thread.

PARAMETERS

target_thread
[in thread port] The thread to be destroyed.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_terminate, task_threads, thread_create, thread_resume,
thread_suspend.

186 Mach 3 Kernel Interfaces

Thread Interface

thread_wire

Function — Marks the thread as privileged with respect to kernel resources

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tthread_wire
(mach_port_t host_priv,
mach_port_t thread,
boolean_t wired);

DESCRIPTION
The thread_wire function marks the thread as “wired”. A “wired” thread is al-
ways eligible to be scheduled and can consume physical memory even when
free memory is scarce. This property should be assigned to threads in the de-
fault page-out path. Threads not in the default page-out path should not have
this property to prevent the kernel’s free list of pages from being exhausted.

SECURITY

The requesting task must holdhpsv_wire_threadpermission tohost_priv and
thsv_wire_thread_into_memoryto thread.

PARAMETERS

host_priv
[in host-control port] The privileged control port for the host on which
the thread executes.

thread
[in thread port] The thread to be wired.

wired
[in scalar] TRUE if the thread is to be wired.

RETURN VALUE

KERN_INVALID_HOST
host_priv is not the control port for the host on whichthread executes.

Mach 3 Kernel Interfaces 187

thread_wire

RELATED INFORMATION
Functions:vm_wire.

188 Mach 3 Kernel Interfaces

Thread Interface

Mach 3 Kernel Interfaces 189

CHAPTER 7 Task Interface

This chapter discusses the specifics of the kernel’s task interfaces. This includes func-
tions that return status information for a task. Also included are functions that operate
upon all or a set of threads within a task.

190 Mach 3 Kernel Interfaces

Task Interface

mach_ports_lookup

Function — Returns an array of well-known system ports.

SYNOPSIS

kern_return_tmach_ports_lookup
(mach_port_t target_task,
mach_port_array_t* init_port_set,
mach_msg_type_number_t* init_port_count);

DESCRIPTION
The mach_ports_lookup function returns an array of the well-known system
ports that are currently registered for the specified task. Note that the task holds
only send rights for the ports.

Registered ports are those ports that are used by the run-time system to initialize
a task. To register system ports for a task, use themach_ports_register func-
tion.

SECURITY
The requesting task must hold tsv_lookup_ports permission totarget_task.

PARAMETERS

target_task
[in task port] The task whose currently registered ports are to be re-
turned.

init_port_set
[out pointer to dynamic array of registered ports] The returned array of
ports.

init_port_count
[out scalar] The number of returned port rights.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:mach_ports_register.

Mach 3 Kernel Interfaces 191

mach_ports_register

mach_ports_register

Function — Registers an array of well-known system ports

SYNOPSIS

kern_return_tmach_ports_register
(mach_port_t target_task,
mach_port_array_t init_port_set,
mach_msg_type_number_t init_port_array_count);

DESCRIPTION
The mach_ports_register function registers an array of well-known system
ports for the specified task. The task holds only send rights for the registered
ports. The valid well-known system ports are:

• The port for the Network Name Server.

• The port for the Environment Manager.

• The port for the Service server.

Each port must be placed in a specific slot in the array. The slot numbers are de-
fined (in mach.h) by the global constants NAME_SERVER_SLOT,
ENVIRONMENT_SLOT, and SERVICE_SLOT.

A task can retrieve the currently registered ports by using the
mach_ports_lookup function.

SECURITY
The requesting task must hold tsv_register_portspermission totarget_task.

PARAMETERS

target_task
[in task port] The task for which the ports are to be registered.

init_port_set
[in pointer to array of registered ports] The array of ports to register.

init_port_array_count
[in scalar] The number of ports in the array. Note that while this is a
variable, the kernel accepts only a limited number of ports. The maxi-
mum number of ports is defined by the global constant
TASK_PORT_REGISTER_MAX.

192 Mach 3 Kernel Interfaces

Task Interface

NOTES
When a new task is created (withtask_create), the child task can inherit the par-
ent’s registered ports. Note that child tasks do not automatically acquire rights
to these ports. They must usemach_ports_lookup to get them. It is intended
that port registration be used only for task initialization, and then only by run-
time support modules.

A parent task has three choices when passing registered ports to child tasks:

• The parent task can do nothing. In this case, all child tasks inherit access to
the same ports that the parent has.

• The parent task can usemach_ports_register to modify its set of registered
ports before creating child tasks. In this case, the child tasks get access to the
modified set of ports. After creating its child tasks, the parent can use
mach_ports_register again to reset its registered ports.

• The parent task can first create a specific child task and then use
mach_ports_register to modify the child’s inherited set of ports, before
starting the child’s thread(s). The parent must specify the child’s task port,
rather than its own, on the call tomach_ports_register.

Tasks other than the Network Name Server and the Environment Manager
should not need access to the Service port. The Network Name Server port is
the same for all tasks on a given machine. The Environment port is the only
port likely to have different values for different tasks.

Registered ports are restricted to those ports that are used by the run-time sys-
tem to initialize a task. A parent task can pass other ports to its child tasks
through:

• An initial message (seemach_msg).

• The Network Name Server, for public ports.

• The Environment Manager, for private ports.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:mach_msg, mach_ports_lookup.

Mach 3 Kernel Interfaces 193

mach_task_self

mach_task_self

System Trap— Returns the task self port

LIBRARY
#include <mach/mach_traps.h>

SYNOPSIS

mach_port_tmach_task_self
();

DESCRIPTION
Themach_task_selffunction returns send rights to the task’s kernel port.

SECURITY
The requesting task must hold tsv_get_task_kernel_portpermission to the re-
questing task’s task port.

PARAMETERS
None

NOTES
The include file<mach_init.h> included by<mach.h> redefines this function
call to simply return the valuemach_task_self_, cached by the Mach run-time.

RETURN VALUE
[task-self port] Send rights to the task’s port.

RELATED INFORMATION
Functions:task_info.

194 Mach 3 Kernel Interfaces

Task Interface

task_change_sid

Function — Changes the SID of a task

SYNOPSIS

kern_return_ttask_change_sid
(mach_port_t target_task,
security_id_t new_sid);

DESCRIPTION
The task_change_sid function changes the security identifier (SID) of
target_task to new_sid. Currently, only the authentication identifier (AID) por-
tion of the SID is allowed to change. Hence the mandatory identifier (MID)
field of new_sid must be either 0 or the same as the MID field of the
target_task’s SID.

SECURITY
The following permissions are required:

• the requesting task must holdtsv_change_sid permission to target_task’s
task port

• the requesting task must holdtsv_make_sid permission tonew_sid.

• Thetarget_task must holdtsv_transition_sid to new_sid.

PARAMETERS

target_task
[in task port] The port for the task whose SID is being changed.

new_sid
[in security id] The new SID with whichtarget_task will be labeled.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION
Functions: None

Mach 3 Kernel Interfaces 195

task_create/task_create_secure

task_create/task_create_secure

Function — Creates a task

SYNOPSIS

kern_return_ttask_create
(mach_port_t parent_task,
boolean_t inherit_memory,
mach_port_t* child_task);

kern_return_ttask_create_secure
(mach_port_t parent_task,
boolean_t inherit_memory,
mach_port_t* child_task,
security_id_t subj_sid);

DESCRIPTION
The task_create and task_create_secure functions create a new task from
parent_task and return the name of the new task inchild_task. The child task ac-
quires shared or copied parts of the parent’s address space (seevm_inherit).
The child task initially contains no threads.

The child task receives the three following special ports, which are created or
copied for it at task creation:

• task_kernel_port — The port by which the kernel knows the new child
task. The child task holds a send right for this port. The port name is also re-
turned to the calling task.

• task_bootstrap_port — The port to which the child task can send a mes-
sage requesting return of any system service ports that it needs (for example,
a port to the Network Name Server or the Environment Manager). The child
task inherits a send right for this port from the parent task. The child task
can usetask_set_special_port to change this port.

• task_exception_port — A default exception port for the child task, inherit-
ed from the parent task. The exception port is the port to which the kernel
sends exception messages. Exceptions are synchronous interruptions to the
normal flow of program control caused by the program itself. Some excep-
tions are handled transparently by the kernel, but others must be reported to
the program. The child task, or any one of its threads, can change the default
exception port to take an active role in exception handling (see
task_set_special_port or thread_set_special_port).

The child task also inherits the following ports:

• [sample port] The port to which PC sampling messages are to be sent.

• [registered ports] Ports to system services.

196 Mach 3 Kernel Interfaces

Task Interface

In addition to creatinga new task,task_create_secure assigns the specified se-
curity identifier to the new task. Because of the necessity to control what the
parent task may do to the child task viachild_task the newly created task struc-
ture state is set to EMPTY to ensure thatthread_create, thread_set_state and
thread_resume sequence uses the secure variants of these requests. This as-
sures the proper start up sequence upon a cross context task creation.
task_create sets the created task structure state to TASK_READY and does not
require special permissions to or processing sequences for the parent task to ini-
tiate processing in the child task.

SECURITY
For task_create the requesting task must hold tsv_create_task permission to
parent_task. Fortask_create_secure the following permissions are required:

• the requesting task must holdtsv_create_task_secure permission to
parent_task’s task port and

• the requesting task must holdtsv_cross_context_create to child_task’s task
port.

• The parent_task must hold tsv_cross_context_inherit to child_task’s task
port.

The permission to inherited memory in tasks created with the use of
task_create_secure is as determined by the system’s security policy. It will be
based on the relationship between the new task’s security identity and the securi-
ty identifier associated with the memory.

For task_create and for the case where no subject security identifier is provided
on atask_create_secure, the child task is created with a subject security identi-
fier that is the same asparent_task’s subject security identifier.

PARAMETERS

parent_task
[in task port] The port for the task from which to draw the child task’s
port rights, resource limits, and address space.

inherit_memory
[in scalar] Address space inheritance indicator. If true, the child task in-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_task
[out task port] The kernel-assigned port name for the new task.

subj_sid
[in security id] The security identifier to be associated with the child
task.

Mach 3 Kernel Interfaces 197

task_create/task_create_secure

RETURN VALUE
Generic errors apply.

RELATED INFORMATION
Functions: task_get_special_port, task_resume, task_set_special_port,
task_suspend, task_terminate, task_threads, thread_create,
thread_create_secure, thread_resume, thread_resume_secure,
thr ead_set_state, thread_set_state_secure, vm_inherit, task_sample,
norma_task_create.

198 Mach 3 Kernel Interfaces

Task Interface

task_get_emulation_vector

Function — Return user-level handlers for system calls.

SYNOPSIS

kern_return_ttask_get_emulation_vector
(mach_port_t task,
int* vector_start,
emulation_vector_t* emulation_vector,
mach_msg_type_number_t* emulation_vector_count);

DESCRIPTION
The task_get_emulation_vectorfunction returns the user-level syscall handler
entrypoint addresses.

SECURITY
The requesting task must hold tsv_get_emulationpermission totask.

PARAMETERS

task
[in task port] The port for the task for which the system call handler ad-
dresses are desired.

vector_start
[out scalar] The syscall number corresponding to the first element of
emulation_vector.

emulation_vector
[out pointer to dynamic array ofvm_offset_t] Pointer to the returned ar-
ray of routine entrypoints for the system calls starting with syscall
numbervector_start.

emulation_vector_count
[out scalar] The number of entries filled by the kernel.

NOTES
This interface is machine word length specific because of the virtual addresses
in theemulation_vector parameter

RETURN VALUE
Only generic errors apply.

Mach 3 Kernel Interfaces 199

task_get_emulation_vector

RELATED INFORMATION
Functions: task_set_emulation, task_set_emulation_vector.

200 Mach 3 Kernel Interfaces

Task Interface

task_get_special_port

Function — Returns a send right to a special port

SYNOPSIS

kern_return_ttask_get_special_port
(mach_port_t task,
int which_port,
mach_port_t* special_port);

task_get_bootstrap_port
Macro form

kern_return_ttask_get_bootstrap_port
(mach_port_t task,
mach_port_t* special_port)

⇒ task_get_special_port (task, TASK_BOOTSTRAP_PORT,special_port)

task_get_exception_port
Macro form

kern_return_ttask_get_exception_port
(mach_port_t task,
mach_port_t* special_port)

⇒ task_get_special_port (task, TASK_EXCEPTION_PORT,special_port)

task_get_kernel_port
Macro form

kern_return_ttask_get_kernel_port
(mach_port_t task,
mach_port_t* special_port)

⇒ task_get_special_port (task, TASK_KERNEL_PORT,special_port)

DESCRIPTION
The task_get_special_port function returns a send right for a special port be-
longing totask.

If one task has a send right for the kernel port of another task, it can use the port
to perform kernel operations for the other task. Send rights for a kernel port nor-
mally are held only by the task to which the port belongs, or by the task’s parent
task. Using themach_msg function, however, any task can pass a send right for
its kernel port to another task.

Mach 3 Kernel Interfaces 201

task_get_special_port

SECURITY
The requesting task must hold tsv_get_task_boot_port,
tsv_get_task_exception_portor tsv_get_task_kernel_portpermission totask to
get, respectively, the target task’s boot port, exception port or kernel port.

PARAMETERS

task
[in task port] The port for the task for which to return the port’s send
right.

which_port
[in scalar] The special port for which the send right is requested. Valid
values are:

TASK_KERNEL_PORT
[task-self port] The port used to control this task. Used to
send messages that affect the task. This is the port returned by
mach_task_self.

TASK_BOOTSTRAP_PORT
[bootstrap port] The task’s bootstrap port. Used to send mes-
sages requesting return of other system service ports.

TASK_EXCEPTION_PORT
[exception port] The task’s exception port. Used to receive ex-
ception messages from the kernel.

special_port
[out task-special port] The returned value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: mach_task_self, task_create, task_set_special_port,
thread_get_special_port, thread_set_special_port, mach_task_self.

202 Mach 3 Kernel Interfaces

Task Interface

task_info

Function — Returns information about a task

SYNOPSIS

kern_return_ttask_info
(mach_port_t target_task,
int flavor,
task_info_t task_info,
mach_msg_type_number_t* task_infoCnt);

DESCRIPTION
Thetask_info function returns an information array of typeflavor.

SECURITY
The requesting task must holdtsv_get_task_info permission totarget_task.

PARAMETERS

target_task
[in task port] The port for the task for which the information is to be re-
turned.

flavor
[in scalar] The type of information to be returned. Valid values are:

TASK_BASIC_INFO
Returns basic information about the task, such as the task’s
suspend count and number of resident pages. The structure re-
turned is task_basic_info, whose size is given by
TASK_BASIC_INFO_COUNT.

TASK_SECURE_INFO
Returns basic information about the task, such as the task’s
suspend count, number of resident pages and security identifi-
er. The structure returned istask_basic_secure_info, whose
size is given by TASK_BASIC_SECURE_INFO_COUNT.

TASK_THREAD_TIMES_INFO
Returns system and user space run-times for live threads. The
structure returned istask_thread_times_info, whose size is
given by TASK_THREAD_TIMES_INFO_COUNT.

task_info
[out array ofint] Information about the specified task.

Mach 3 Kernel Interfaces 203

task_info

task_infoCnt
[pointer to in/out scalar] On input, the maximum size of the info buff-
er; on output, the returned size of the information structure (in units of
sizeof (int)). The maximum size is defined by TASK_INFO_MAX.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_get_special_port, task_set_special_port, task_threads,
thread_info, thread_get_state, thread_set_state.

Data Structures:task_basic_info, task_thread_times_info.

204 Mach 3 Kernel Interfaces

Task Interface

task_resume

Function — Resume a task

SYNOPSIS

kern_return_ttask_resume
(mach_port_t task);

DESCRIPTION
The task_resume function decrements the suspend count fortask. If the task’s
suspend count goes to zero, the function resumes any suspended threads within
the task. To resume a given thread, the thread’s own suspend count must also be
zero.

SECURITY
The requesting task must holdtsv_resume_task permission totask.

PARAMETERS

task
[in task port] The port for the task to be resumed.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_create, task_info, task_suspend, task_terminate,
thread_info, thread_resume, thread_suspend.

Mach 3 Kernel Interfaces 205

task_sample

task_sample

Function — Perform periodic PC sampling for a task

SYNOPSIS

kern_return_t task_enable_pc_sampling
(mach_port_t task,
int * ticks;
sampled_pc_flavor_t flavor);

kern_return_t task_disable_pc_sampling
(mach_port_t task,
int *sample_cnt;
sampled_pc_flavor_t flavor);

kern_return_t task_get_sampled_pcs
(mach_port_t task,
unsigned *seqno;
sampled_pc_t sampled_pcs[],
int *sample_cnt);

DESCRIPTION
These functions cause the program counter (PC) of the specifiedtask to be sam-
pled periodically (whenever one of the task’s threads happens to be running at
the time of the kernel’s “hardclock” interrupt). The set of PC sample values ob-
tained are saved in buffers.

SECURITY
These functions require that the requesting task holdtsv_sample_taskpermis-
sion totask.

PARAMETERS

thread
[in thread port] Thread whose PC is to be sampled

ticks
[out scalar] the kernel’s idea of clock granularity (ticks per second).
Don’t trust this.

flavor
[in structure] The sampling flavor, which can be any of the following
flavors defined in pc_sample.h.

SAMPLED_PC_PERIODIC,
SAMPLED_PC_VM_ZFILL_FAULTS,

206 Mach 3 Kernel Interfaces

Task Interface

SAMPLED_PC_VM_REACTIVATION_FAULTS,
SAMPLED_PC_VM_PAGIN_FAULTS,
SAMPLED_PC_VM_COM_FAULTS,
SAMPLED_PC_VM_FAUTLS_ANY,
SAMPLED_PC_VM_FAULTS.

seqno
[out scalar] The sequence number of the sampled PC’s. This is useful
for determining when a collector thread has missed a sample.

sampled_pcs
[out structure] The sampled PCs for threads intask. A sample contains
three fields: a thread-specific unique identifier, a PC value and the type
of sample as per flavor.

sample_cnt
[out scaler] The number of sample elements in the kernel for the
named task or thread.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: thread_enable_pc_sampling, thread_disable_pc_sampling,
thread_get_sampled_pcs.

Mach 3 Kernel Interfaces 207

task_set_emulation

task_set_emulation

Function — Establish a user-level handler for a system call.

SYNOPSIS

kern_return_ttask_set_emulation
(mach_port_t task,
vm_address_t routine_entry_pt,
int syscall_number);

DESCRIPTION
The task_set_emulationfunction establishes a handler within the task for a par-
ticular system call. When a thread executes a system call with this particular
number, the system call will be redirected to the specified routine within the
task’s address space. This is expected to be an address within the transparent
emulation library.

These emulation handler addresses are inherited by child processes.

SECURITY
The requesting task must holdtsv_set_emulationpermission totask.

PARAMETERS

task
[in task port] The port for the task for which to establish the system
call handler.

routine_entry_pt
[in scalar] The address within the task of the handler for this particular
system call.

syscall_number
[in scalar] The number of the system call to be handled by this handler.

NOTES
This interface is machine word length specific because of the virtual address pa-
rameter.

RETURN VALUE
Only generic errors apply.

208 Mach 3 Kernel Interfaces

Task Interface

RELATED INFORMATION
Functions: task_set_emulation_vector, task_get_emulation_vector.

Mach 3 Kernel Interfaces 209

task_set_emulation_vector

task_set_emulation_vector

Function — Establishes user-level handlers for system calls.

SYNOPSIS

kern_return_ttask_set_emulation_vector
(mach_port_t task,
int vector_start,
emulation_vector_t emulation_vector,
mach_msg_type_number_t emulation_vector_count);

DESCRIPTION
The task_set_emulation_vectorfunction establishes a handler within the task
for a set of system calls. When a thread executes a system call with one of these
numbers, the system call will be redirected to the corresponding routine within
the task’s address space. This is expected to be an address within the transparent
emulation library.

These emulation handler addresses are inherited by child processes.

SECURITY
The requesting task must holdtsv_set_emulation permission totask.

PARAMETERS

task
[in task port] The port for the task for which to establish the system
call handler.

vector_start
[in scalar] The syscall number corresponding to the first element of
emulation_vector.

emulation_vector
[in pointer to array ofvm_offset_t] An array of routine entrypoints for
the system calls starting with syscall numbervector_start.

emulation_vector_count
[in scalar] The number of elements inemulation_vector.

NOTES
This interface is machine word length specific because of the virtual addresses
in theemulation_vector parameter.

210 Mach 3 Kernel Interfaces

Task Interface

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_set_emulation, task_get_emulation_vector.

Mach 3 Kernel Interfaces 211

task_set_special_port

task_set_special_port

Function — Sets a special port for a task

SYNOPSIS

kern_return_ttask_set_special_port
(mach_port_t task,
int which_port,
mach_port_t special_port);

task_set_bootstrap_port
Macro form

kern_return_ttask_set_bootstrap_port
(mach_port_t task,
mach_port_t special_port)

⇒ task_set_special_port (task, TASK_BOOTSTRAP_PORT,special_port)

task_set_exception_port
Macro form

kern_return_ttask_set_exception_port
(mach_port_t task,
mach_port_t special_port)

⇒ task_set_special_port (task, TASK_EXCEPTION_PORT,special_port).

task_set_kernel_port
Macro form

kern_return_ttask_set_kernel_port
(mach_port_t task,
mach_port_t special_port)

⇒ task_set_special_port (task, TASK_KERNEL_PORT,special_port)

DESCRIPTION
Thetask_set_special_port function sets a special port belonging totask.

SECURITY
The requesting task must hold tsv_set_task_boot_port,
tsv_set_task_exception_portor tsv_set_task_kernel_portpermission totask to
set, respectively,task’s boot port, exception port or kernel port.

PARAMETERS

task
[in task port] The task for which to set the port.

212 Mach 3 Kernel Interfaces

Task Interface

which_port
[in scalar] The special port to be set. Valid values are:

TASK_BOOTSTRAP_PORT
[bootstrap port] The task’s bootstrap port. Used to send mes-
sages requesting return of other system service ports.

TASK_EXCEPTION_PORT
[exception port] The task’s exception port. Used to receive ex-
ception messages from the kernel.

TASK_KERNEL_PORT
[task-self port] The task’s kernel port. Used by the kernel to
receive messages from the task. This is the port returned by
mach_task_self.

special_port
[in task-special port] The value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_create, task_get_special_port, exception_raise,
mach_task_self, thread_get_special_port, thread_set_special_port.

Mach 3 Kernel Interfaces 213

task_suspend

task_suspend

Function — Suspends a task

SYNOPSIS

kern_return_ttask_suspend
(mach_port_t task);

DESCRIPTION
The task_suspend function increments the suspend count fortask and stops all
threads within the task. As long as the suspend count is positive, no newly-creat-
ed threads can execute. The function does not return until all of the task’s
threads have been suspended.

SECURITY
The requesting task must holdtsv_suspend_task permission totask.

PARAMETERS

task
[in task port] The port for the task to be suspended.

NOTES
To resume a suspended task and its threads, usetask_resume. If the suspend
count is greater than one, you must issuetask_resume that number of times.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_create, task_info, task_resume, task_terminate,
thread_suspend.

214 Mach 3 Kernel Interfaces

Task Interface

task_terminate

Function — Destroys a task

SYNOPSIS

kern_return_ttask_terminate
(mach_port_t task);

DESCRIPTION
The task_terminate function kills task and all its threads, if any. The kernel
frees all resources that are in use by the task. The kernel destroys any port for
which the task holds the receive right.

SECURITY
The requesting task must holdtsv_terminate_task permission totask.

PARAMETERS

task
[in task port] The port for the task to be destroyed.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_create, task_suspend, task_resume, thread_terminate,
thread_suspend.

Mach 3 Kernel Interfaces 215

task_threads

task_threads

Function — Returns a list of the threads within a task

SYNOPSIS

kern_return_ttask_threads
(mach_port_t task,
thread_array_t* thread_list,
mach_msg_type_number_t* thread_count);

DESCRIPTION
The task_threads function returns a list of the threads withintask. The calling
task or thread also receives a send right to the kernel port for each listed thread.

SECURITY
The requesting task must holdtsv_get_task_threads permission totask.

PARAMETERS

task
[in task port] The port for the task for which the thread list is to be re-
turned.

thread_list
[out pointer to dynamic array of thread ports] The returned list of
threads withintask, in no particular order.

thread_count
[out scalar] The returned count of threads inthread_list.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:thread_create, thread_terminate, thread_suspend.

216 Mach 3 Kernel Interfaces

Task Interface

Mach 3 Kernel Interfaces 217

CHAPTER 8 Host Interface

This chapter discusses the specifics of the kernel’s host interfaces. Included are functions
that return status information for a host, such as kernel statistics.

Note that hosts are named both by a name port, which allows the holder to request infor-
mation about the host, and a control port, which provides full control access. The control
port for a host is provided to the bootstrap task for that host.

218 Mach 3 Kernel Interfaces

Host Interface

host_adjust_time

Function —Gradually change the time

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_adjust_time
(mach_port_t host_priv,
time_value_t new_adjustment,
time_value_t* old_adjustment);

DESCRIPTION
The host_adjust_time function arranges for the time on a specified host to be
gradually changed by an adjustment value.

SECURITY
The requesting task must holdhpsv_set_time permission tohost_priv.

PARAMETERS

host_priv
[in host-control port] The control port the host for which the time is to
be set.

new_adjustment
[in structure] New adjustment value.

old_adjustment
[out structure] Old adjustment value.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:host_get_time, host_set_time.

Data Structures:time_value.

Mach 3 Kernel Interfaces 219

host_get_boot_info

host_get_boot_info

Function — Return operator boot information

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_get_boot_info
(mach_port_t priv_host,
kernel_boot_info_t boot_info);

DESCRIPTION
The host_get_boot_infofunction returns the boot-time information string sup-
plied by the operator whenpriv_host was initialized. The constant
KERNEL_BOOT_INFO_MAX (in mach/host_info.h) should be used to di-
mension storage for the returned string.

SECURITY
The requesting task must holdhpsv_get_boot_info permission topriv_host.

PARAMETERS

priv_host
[in host-control port] The control port for the host for which informa-
tion is to be obtained.

boot_info
[out array ofchar] Character string providing the operator boot info

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:host_info.

220 Mach 3 Kernel Interfaces

Host Interface

host_get_special_port

Function — Return a send right to a special port

LIBRARY
#include <mach.h>

SYNOPSIS

kern_return_thost_get_special_port
(mach_port_t host,
int port_label,
mach_port_t* special_port);

DESCRIPTION
The host_get_special_portfunction returns a send right tospecial_port as re-
quested inport_label.

SECURITY
The requesting task must have hsv_get_special_portto host. Depending on the
value ofport_label, the requesting task must also hold one of the following per-
missions tohost:

• hsv_get_audit_port

• hsv_get_authentication_port

• hsv_get_crypto_port

• hsv_get_host_control_port

• hsv_get_negotiation_server_port

• hsv_get_network_server_port

• hsv_get_security_master_port

• hsv_get_security_client_port

hsv_get_host_control_port is also used to control access to the master device
port.

PARAMETERS

host_name_port
[in host-name port] The host name port to which the request is sent.

port_label
[in scalar] Specifies which special port the function should return. This
parameter can take on one of the following values:

Mach 3 Kernel Interfaces 221

host_get_special_port

• AUDIT_SERVER_PORT

• AUTHENTICATION_SERVER_PORT

• CRYPTO_SERVER_PORT

• HOST_CONTROL_PORT

• MASTER_DEVICE_PORT

• NEGOTIATION_SERVER_PORT

• NETWORK_SECURITY_SERVER_PORT

• SECURITY_SERVER_CLIENT_PORT

• SECURITY_SERVER_MASTER_PORT

special_port
[out port] A send right to the requested port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:host_set_special_port.

222 Mach 3 Kernel Interfaces

Host Interface

host_get_time

Function —Return the current time.

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_get_time
(mach_port_t host,
time_value_t* current_time);

DESCRIPTION
Thehost_get_timefunction returns the current time as seen by that host.

SECURITY
The requesting task must holdhsv_get_time permission tohost.

PARAMETERS

host
[in host-name port] The name port of the host from which the time is
to be obtained.

current_time
[out structure] Returned time value.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:host_adjust_time, host_set_time.

Data Structures:time_value.

Mach 3 Kernel Interfaces 223

host_info

host_info

Function — Returns information about a host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_info
(mach_port_t host,
int flavor,
host_info_t host_info,
mach_msg_type_number_t* host_infoCnt);

DESCRIPTION
The host_info function returns selected information about a host, as specified
by flavor.

SECURITY
The requesting task must holdhsv_get_host_info permission tohost.

PARAMETERS

host
[in host-name port] The name port for the host for which information
is to be obtained.

flavor
[in scalar] The type of statistics desired.

HOST_BASIC_INFO
Basic information (number of processors, amount of memo-
ry). The returned structure ishost_basic_info of size
HOST_BASIC_INFO_COUNT.

HOST_LOAD_INFO
Scheduling statistics. The returned structure is
host_load_info of size HOST_LOAD_INFO_COUNT.

HOST_PROCESSOR_SLOTS
An array of the processor slot numbers (natural-sized units)
for active processors.

224 Mach 3 Kernel Interfaces

Host Interface

HOST_SCHED_INFO
Basic restrictions of the kernel’s scheduling, minimum quan-
tum and time-out value. The returned structure is
host_sched_info of size HOST_SCHED_INFO_COUNT

host_info
[out array ofint] Statistics about the specified host.

host_infoCnt
[pointer to in/out scalar] On input, the maximum size of the info buff-
er; on output, the size of the information structure (in units of sizeof
(int)).

NOTES
This interface is machine word length specific because of the memory size re-
turned by HOST_BASIC_INFO.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: host_get_boot_info, host_kernel_version, host_processors,
processor_info.

Data Structures:host_basic_info, host_load_info, host_sched_info

Mach 3 Kernel Interfaces 225

host_kernel_version

host_kernel_version

Function — Returns kernel version information for a host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_kernel_version
(mach_port_t host,
kernel_version_t version);

DESCRIPTION
The host_kernel_version function returns the version string compiled into the
kernel executing onhost at the time it was built. This describes the version of
the kernel. The constant KERNEL_VERSION_MAX (inmach/host_info.h)
should be used to dimension storage for the returned string if the
kernel_version_t declaration is not used.

SECURITY
The requesting task must holdhsv_get_host_versionpermission tohost.

PARAMETERS

host
[in host-name port] The name port for the host for which information
is to be obtained.

version
[out array ofchar] Character string describing the kernel version exe-
cuting onhost

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:host_info.

226 Mach 3 Kernel Interfaces

Host Interface

host_reboot

Function — Reboot this host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_reboot
(mach_port_t host_priv,
int options);

DESCRIPTION
Thehost_rebootfunction reboots the specified host.

SECURITY
The requesting task must holdhpsv_reboot _hostpermission tohost_priv.

PARAMETERS

host_priv
[in host-control port] The control port the host to be re-booted.

options
[in scalar] Reboot options. See<sys/reboot.h> for details.

NOTES
If successful, this call will not return.

RETURN VALUE
Only generic errors apply.

Mach 3 Kernel Interfaces 227

host_set_special_port

host_set_special_port

Function — Sets special kernel ports

LIBRARY
#include <mach.h>

SYNOPSIS

kern_return_thost_set_special_port
(mach_port_t host,
int port_label,
mach_port_t port_value);

DESCRIPTION
Thehost_set_special_portfunction supplies a port to the specified host for use
as the port selected by theport_label.

SECURITY
The requesting task must have hsv_set_special_portto host. Depending on the
value of port_label, the requesting task must also hold one of the following per-
missions tohost:

• hsv_set_audit_port

• hsv_set_authentication_port

• hsv_set_crypto_port

• hsv_set_negotiation_port

• hsv_set_network_ss_port

• hsv_set_security_master_port

• hsv_set_security_client_port

PARAMETERS

host
[in host-name port] The name port for the host for which the specified
port will be set.

port_label
[in scalar] A label for which the special port will be set. This parameter
can take on one of the following values:

• AUDIT_SERVER_PORT

• AUTHENTICATION_SERVER_PORT

• CRYPTO_SERVER_PORT

228 Mach 3 Kernel Interfaces

Host Interface

• NEGOTIATION_SERVER_PORT

• NETWORK_SECURITY_SERVER_PORT

• SECURITY_SERVER_MASTER_PORT

• SECURITY_SERVER_CLIENT_PORT

port_value
[in port] A port for the kernel to use for the selected operation.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:host_get_special_port

Mach 3 Kernel Interfaces 229

host_set_time

host_set_time

Function — Sets the time

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_set_time
(mach_port_t host_priv,
time_value_t new_time);

DESCRIPTION
Thehost_set_timefunction establishes the time on the specified host.

SECURITY
The requesting task must holdhpsv_set_time permission tohost_priv.

PARAMETERS

host_priv
[in host-control port] The control port for the host for which the time is
to be set.

new_time
[in structure] Time to be set.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:host_adjust_time, host_get_time.

Data Structures:time_value.

230 Mach 3 Kernel Interfaces

Host Interface

mach_host_self

System Trap— Returns the host self port

LIBRARY
#include <mach/mach_traps.h>

SYNOPSIS

mach_port_tmach_host_self
();

SECURITY
The requesting task must holdhsv_get_host_namepermission to the processor’s
host name port.

DESCRIPTION
Themach_host_selffunction returns send rights to the current host’s name port.

PARAMETERS
None

RETURN VALUE
[host-name port] Send rights to the host’s name port.

RELATED INFORMATION
Functions:host_info.

Mach 3 Kernel Interfaces 231

CHAPTER 9 Processor Management
and Scheduling Interface

This chapter discusses the specifics of the kernel’s processor and processor set interfaces.
This includes functions to control processors, change their assignments, assign tasks and
threads to processors, and processor status returning functions.

Note that processor sets have two ports that name them: a name port which allows infor-
mation to be requested about them, and a control port which allows full access. The con-
trol port for a processor set is provided to the creator of the set.

Processors have only a single port that names them. The host control port is needed to ob-
tain these processor ports.

232 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

host_processor_set_priv

Function — Translates a processor set name port into a processor set control
port

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_processor_set_priv
(mach_port_t host_priv,
mach_port_t set_name,
mach_port_t* processor_set);

DESCRIPTION
The host_processor_set_privfunction returns send rights for the control port
for a specified processor set currently existing onhost_priv.

SECURITY
The requesting task must holdhpsv_pset_ctrl_portpermission tohost_priv.

PARAMETERS

host_priv
[in host-control port] The control port for the host for which the proces-
sor set is desired.

set_name
[in processor-set-name port] The name port for the processor set de-
sired.

processor_set
[out processor-set-control port] The returned processor set control port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: host_processor_sets, processor_set_create, processor_set_tasks,
processor_set_threads.

Mach 3 Kernel Interfaces 233

host_processor_sets

host_processor_sets

Function — Returns processor set ports for a host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_processor_sets
(mach_port_t host,
processor_set_name_array_t* processor_set_list,
mach_msg_type_number_t* processor_set_count);

DESCRIPTION
The host_processor_setsfunction returns send rights for the name ports for
each processor set currently existing onhost.

SECURITY
The requesting task must holdhsv_pset_namespermission tohost.

PARAMETERS

host
[in host-name port] The name port for the host for which the processor
sets are desired.

processor_set_list
[out pointer to dynamic array of processor-set-name ports] The set of
processor set name ports for those currently existing on host; no partic-
ular order is guaranteed.

processor_set_count
[out scalar] The number of processor set names returned.

NOTES
If control ports to the processor sets are needed, usehost_processor_set_priv.

processor_set_list is automatically allocated by the kernel, as if by
vm_allocate. It is good practice tovm_deallocate this space when it is no long-
er needed.

234 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: host_processor_set_priv, processor_set_create,
processor_set_tasks, processor_set_threads.

Mach 3 Kernel Interfaces 235

host_processors

host_processors

Function — Gets processor ports for a host

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_thost_processors
(mach_port_t host_priv,
processor_array_t* processor_list,
mach_msg_type_number_t* processor_count);

DESCRIPTION
The host_processorsfunction returns an array of send right ports for each pro-
cessor existing onhost_priv.

SECURITY
The requesting task must holdhpsv_get_host_processorspermission to
host_priv.

PARAMETERS

host_priv
[in host-control port] The control port for the desired host.

processor_list
[out pointer to dynamic array of processor ports] The set of processors
existing onhost_priv; no particular order is guaranteed.

processor_count
[out scalar] The number of ports returned inprocessor_list.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: processor_start, processor_exit, processor_info,
processor_control.

236 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_assign

Function — Assign a processor to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_assign
(mach_port_t processor,
mach_port_t new_set,
boolean_t wait);

DESCRIPTION
The processor_assignfunction assignsprocessor to the setnew_set. After the
assignment is completed, the processor only executes threads that are assigned
to that processor set. Any previous assignment of the processor is nullified. The
master processor cannot be reassigned.

The wait argument indicates whether the caller should wait for the assignment
to be completed or should return immediately. Dedicated kernel threads are
used to perform processor assignment, so settingwait to FALSE allows assign-
ment requests to be queued and performed quicker, especially if the kernel has
more than one dedicated internal thread for processor assignment.

All processors take clock interrupts at all times. Redirection of other device in-
terrupts away from processors assigned to other than the default processor set is
machine dependent.

SECURITY
The requesting task must holdpsv_assign_processor_to_setpermission topro-
cessor andpssv_assign_processor to new_set.

PARAMETERS

processor
[in processor port] The processor to be assigned.

new_set
[in processor-set-control port] The control port for the processor set
into which the processor is to be assigned.

Mach 3 Kernel Interfaces 237

processor_assign

wait
[in scalar] True if the call should wait for the completion of the assign-
ment.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: processor_set_create, processor_set_info, task_assign,
thread_assign.

238 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_control

Function — Do something to a processor

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_control
(mach_port_t processor,
processor_info_t cmd,
mach_msg_type_number_t count);

DESCRIPTION
The processor_controlfunction allows privileged software to control a proces-
sor in a multi-processor that so allows it. The interpretation ofcmd is machine
dependent.

SECURITY
The requesting task must holdpsv_may_control_processorpermission topro-
cessor.

PARAMETERS

processor
[in processor port] The processor to be controlled.

cmd
[pointer to in array ofint] An array containing the command to be ap-
plied to the processor.

count
[in scalar] The size of thecmd array.

NOTES
These operations are machine dependent. They may do nothing.

RETURN VALUE

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

Mach 3 Kernel Interfaces 239

processor_control

RELATED INFORMATION
Functions: processor_start, processor_exit, processor_info, host_processors.

240 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_exit

Function — Exit a processor

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_exit
(mach_port_t processor);

DESCRIPTION
The processor_exitfunction allows privileged software to exit a processor in a
multi-processor that so allows it. An exited processor is removed from the pro-
cessor set to which it was assigned and ceases to be active. The interpretation of
this operation is machine dependent.

SECURITY
The requesting task must holdpsv_may_control_processorpermission topro-
cessor.

PARAMETERS

processor
[in processor port] The processor to be controlled.

NOTES
This operation is machine dependent. It may do nothing.

CAUTIONS
The ability to restart an exited processor is machine dependent.

RETURN VALUE

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

RELATED INFORMATION
Functions: processor_control, processor_start, processor_info,
host_processors.

Mach 3 Kernel Interfaces 241

processor_get_assignment

processor_get_assignment

Function — Get current assignment for a processor

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_get_assignment
(mach_port_t processor,
mach_port_t* assigned_set);

DESCRIPTION
The processor_get_assignmentfunction returns the name port for the proces-
sor set to which a desired processor is currently assigned.

SECURITY
The requesting task must holdpsv_get_processor_assignmentpermission topro-
cessor.

PARAMETERS

processor
[in processor port] The processor whose assignment is desired.

new_set
[out processor-set-name port] The name port for the processor set to
whichprocessor is currently assigned.

RETURN VALUE

KERN_FAILURE
processoris either shut down or off-line.

RELATED INFORMATION
Functions: processor_assign, processor_set_create, processor_info,
task_assign, thread_assign.

242 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_info

Function — Returns information about a processor.

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_info
(mach_port_t processor,
int flavor,
mach_port_t* host,
processor_info_t processor_info,
mach_msg_type_number_t* processor_infoCnt);

DESCRIPTION
The processor_infofunction returns selected information for a processor as an
array, as specified byflavor.

SECURITY
The requesting task must holdpsv_get_processor_infopermission toprocessor.

PARAMETERS

processor
[in processor port] A processor port for which information is desired.

flavor
[in scalar] The type of information requested.

PROCESSOR_BASIC_INFO
Basic information, slot number, running status, etc. The re-
turned structure is processor_basic_info of size
PROCESSOR_BASIC_INFO_COUNT.

host
[out host-name port] The host on which the processor resides. This is
the host name port.

processor_info
[out array ofint] Information about the processor.

Mach 3 Kernel Interfaces 243

processor_info

processor_infoCnt
[pointer to in/out scalar] On input, the maximum size of the info buff-
er; on output, the returned size of the info structure (in units of sizeof
(int)).

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: processor_start, processor_exit, processor_control,
host_processors.

Data Structures:processor_basic_info.

244 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_set_create

Function — Creates a new processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_set_create
(mach_port_t host_name,
mach_port_t* new_set,
mach_port_t* new_name);

DESCRIPTION
The processor_set_createfunction creates a new processor set and returns the
two ports associated with it. The port returned innew_set is the control port rep-
resenting the set. It is used to perform operations such as assigning processors,
tasks or threads. The port returned innew_name is the name port which identi-
fies the set, and is used to obtain information about the set.

SECURITY
The requesting task must holdhsv_create_psetpermission tohost_name.

PARAMETERS

host_name
[in host-name port] The name port for the host on which the set is to be
created.

new_set
[out processor-set-control port] Control port used for performing opera-
tions on the new set.

new_name
[out processor-set-name port] Name port used to identify the new set
and obtain information about it.

RETURN VALUE
Only generic errors apply.

Mach 3 Kernel Interfaces 245

processor_set_create

RELATED INFORMATION
Functions: processor_set_destroy, processor_set_info, processor_assign,
task_assign, thread_assign.

246 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_set_default

Function — Returns the default processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_set_default
(mach_port_t host,
mach_port_t* default_set_name);

DESCRIPTION
The processor_set_defaultfunction returns the name port for the default pro-
cessor set for the specified host. The default processor set is used by all threads,
tasks and processors that are not explicitly assigned to other sets.

SECURITY
The requesting task must holdpsv_get_default_pset_namepermission tohost.

PARAMETERS

host
[in host-name port] The name port for the host for which the default
processor set is desired.

default_set_name
[out processor-set-name port] The returned name port for the default
processor set.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: processor_set_info, thread_assign, task_assign.

Mach 3 Kernel Interfaces 247

processor_set_destroy

processor_set_destroy

Function — Destroys a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_set_destroy
(mach_port_t processor_set);

DESCRIPTION
The processor_set_destroyfunction destroys the specified processor set. Any
assigned processors, tasks or threads are re-assigned to the default set. The ob-
ject port (not the name port) for the processor set is required.

SECURITY
The requesting task must holdpssv_destroy_psetpermission toprocessor_set.

PARAMETERS

processor_set
[in processor-set-control port] The control port for the processor set to
be destroyed.

RETURN VALUE

KERN_FAILURE
An attempt was made to destroy the default processor set.

RELATED INFORMATION
Functions: processor_set_create, processor_assign, task_assign,
thread_assign.

248 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_set_info

Function — Returns information about a processor set.

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_set_info
(mach_port_t processor_set_name,
int flavor,
mach_port_t* host,
processor_set_info_t processor_set_info,
mach_msg_type_number_t* infoCnt);

DESCRIPTION
The processor_set_infofunction returns selected information for a processor
set as an array, as specified byflavor.

SECURITY
The requesting task must holdpssv_get_pset_info permission to
processor_set_name.

PARAMETERS

processor_set_name
[in processor-set-control port] A processor set control port for which
information is desired.

flavor
[in scalar] The type of information requested.

PROCESSOR_SET_BASIC_INFO
Basic information concerning the processor set. The returned
structure is defined byprocessor_set_basic_info, whose size
is defined by PROCESSOR_SET_BASIC_INFO_COUNT.

PROCESSOR_SET_SCHED_INFO
Scheduling information. The returned structure is defined by
processor_set_sched_info, whose size is defined by
PROCESSOR_SET_SCHED_INFO_COUNT.

Mach 3 Kernel Interfaces 249

processor_set_info

host
[out host-name port] The name port for the host on which the proces-
sor resides.

processor_set_info
[out array ofint] Information about the processor set.

infoCnt
[pointer to in/out scalar] On input, the maximum size of the info buff-
er; on output, the returned size of the info structure (in units of sizeof
(int)).

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: processor_set_create, processor_set_default, processor_assign,
task_assign, thread_assign.

Data Structures:processor_set_basic_info, processor_set_sched_info.

250 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_set_max_priority

Function — Sets the maximum scheduling priority for a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_set_max_priority
(mach_port_t processor_set,
int priority,
boolean_t change_threads);

DESCRIPTION
Theprocessor_set_max_priorityfunction sets the maximum scheduling priori-
ty for processor_set. The maximum priority of a processor set is used only
when creating new threads. A new thread’s maximum priority is set to that of its
assigned processor set. When assigned to a processor set, a thread’s maximum
priority is reduced, if necessary, to that of its new processor set; its current prior-
ity is also reduced, as needed. Changing the maximum priority of a processor
set does not affect the priority of the currently assigned threads unless
change_threads is TRUE. If this priority change violates the maximum priority
of some threads, their maximum priorities will be reduced to match.

SECURITY
The requesting task must holdpssv_chg_pset_max_pripermission to
processor_set.

PARAMETERS

processor_set
[in processor-set-control port] The control port for the processor set
whose maximum scheduling priority is to be set.

priority
[in scalar] The new priority for the processor set.

change_threads
[in scalar] True if the maximum priority of existing threads assigned to
this processor set should also be changed.

RETURN VALUE
Only generic errors apply.

Mach 3 Kernel Interfaces 251

processor_set_max_priority

RELATED INFORMATION
Functions:thread_max_priority, thread_priority, thread_assign.

252 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_set_policy_disable

Function — Disables a scheduling policy for a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_set_policy_disable
(mach_port_t processor_set,
int policy,
boolean_t change_threads);

DESCRIPTION
The processor_set_policy_disablefunction restricts the set of scheduling poli-
cies allowed forprocessor_set. The set of scheduling policies allowed for a pro-
cessor set is the set of policies allowed to be set for threads assigned to that
processor set. The current set of permitted policies can be obtained from
processor_set_info. Timesharing may not be forbidden for any processor set.
This is a compromise to reduce the complexity of the assign operation; any
thread whose policy is forbidden by its target processor set has its policy reset
to timesharing. Disabling a scheduling policy for a processor set has no effect
on threads currently assigned to that processor set unlesschange_threads is
TRUE, in which case their policies will be reset to timesharing.

SECURITY
The requesting task must holdpssv_invalidate_scheduling_policypermission to
processor_set.

PARAMETERS

processor_set
[in processor-set-control port] The control port for the processor set for
which a scheduling policy is to be disabled.

policy
[in scalar] Policy to be disabled. The values currently defined are
POLICY_TIMESHARE and POLICY_FIXEDPRI.

change_threads
[in scalar] If true, causes the scheduling policy for all threads currently
running withpolicy to POLICY_TIMESHARE.

Mach 3 Kernel Interfaces 253

processor_set_policy_disable

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: processor_set_policy_enable, thread_policy.

254 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_set_policy_enable

Function — Enables a scheduling policy for a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_set_policy_enable
(mach_port_t processor_set,
int policy);

DESCRIPTION
The processor_set_policy_enablefunction extends the set of scheduling poli-
cies allowed forprocessor_set. The set of scheduling policies allowed for a pro-
cessor set is the set of policies allowed to be set for threads assigned to that
processor set. The current set of permitted policies can be obtained from
processor_set_info.

SECURITY
The requesting task must holdpssv_define_new_scheduling_policypermission
to processor_set.

PARAMETERS

processor_set
[in processor-set-control port] The control port for the processor set for
which a scheduling policy is to be enabled.

policy
[in scalar] Policy to be enabled. The values currently defined are
POLICY_TIMESHARE and POLICY_FIXEDPRI.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: processor_set_policy_disable, thread_policy.

Mach 3 Kernel Interfaces 255

processor_set_tasks

processor_set_tasks

Function — Returns a list of tasks assigned to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_set_tasks
(mach_port_t processor_set,
task_array_t* task_list,
mach_msg_type_number_t* task_count);

DESCRIPTION
The processor_set_tasksfunction returns send rights to the kernel ports for
each task currently assigned toprocessor_set.

SECURITY
The requesting task must holdpssv_observe_pset_processespermission to
processor_set.

PARAMETERS

processor_set
[in processor-set-control port] A processor set control port for which
information is desired.

task_list
[out pointer to dynamic array of task ports] The returned set of port
rights naming the tasks currently assigned toprocessor_set.

task_count
[out scalar] The number of tasks returned intask_list.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: processor_set_threads, task_assign, thread_assign.

256 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

processor_set_threads

Function — Returns a list of threads assigned to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_set_threads
(mach_port_t processor_set,
thread_array_t* thread_list,
mach_msg_type_number_t* thread_count);

DESCRIPTION
The processor_set_threadsfunction returns send rights to the kernel ports for
each thread currently assigned toprocessor_set.

SECURITY
The requesting task must holdpssv_observe_pset_processespermission to
processor_set.

PARAMETERS

processor_set
[in processor-set-control port] A processor set control port for which
information is desired.

thread_list
[out pointer to dynamic array of thread ports] The returned set of ports
naming the threads currently assigned toprocessor_set.

thread_count
[out scalar] The number of threads returned inthread_list.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: processor_set_tasks, task_assign, thread_assign.

Mach 3 Kernel Interfaces 257

processor_start

processor_start

Function — Start a processor

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tprocessor_start
(mach_port_t processor);

DESCRIPTION
The processor_startfunction allows privileged software to start a processor in
a multi-processor that so allows it. A newly started processor is assigned to the
default processor set. The interpretation of this operation is machine dependent.

SECURITY
The requesting task must holdpsv_may_control_processorpermission topro-
cessor.

PARAMETERS

processor
[in processor port] The processor to be controlled.

NOTES
This operation is machine dependent. It may do nothing.

CAUTIONS
The ability to restart an exited processor is machine dependent.

RETURN VALUE

KERN_FAILURE
The operation was not performed. A likely reason is that it is not sup-
ported on this processor.

RELATED INFORMATION
Functions: processor_control, processor_exit, processor_info,
host_processors.

258 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

task_assign

Function — Assign a task to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_ttask_assign
(mach_port_t task,
mach_port_t processor_set,
boolean_t assign_threads);

DESCRIPTION
The task_assignfunction assignstaskto the setprocessor_set. After the assign-
ment is completed, newly created threads within this task will be assigned to
this processor set. Any previous assignment of the task is nullified.

If assign_threads is TRUE, existing threads within the task will also be as-
signed to the processor set.

SECURITY
The requesting task must holdtsv_assign_task_to_psetpermission totask and
pssv_assign_task to processor_set.

PARAMETERS

task
[in task port] The port for the task to be assigned.

processor_set
[in processor-set-control port] The control port for the processor set
into which the task is to be assigned.

assign_threads
[in scalar] True if this assignment should apply as well to the threads
within the task.

RETURN VALUE
Only generic errors apply.

Mach 3 Kernel Interfaces 259

task_assign

RELATED INFORMATION
Functions: task_assign_default, task_get_assignment, processor_set_create,
processor_set_info, processor_assign, thread_assign.

260 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

task_assign_default

Function — Assign a task to the default processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_ttask_assign_default
(mach_port_t task,
boolean_t assign_threads);

DESCRIPTION
The task_assign_defaultfunction assignstask to the default processor set. Af-
ter the assignment is completed, newly created threads within this task will be
assigned to this processor set. Any previous assignment of the task is nullified.

If assign_threads is TRUE, existing threads within the task will also be as-
signed to the processor set.

SECURITY
The requesting task must hold tsv_assign_task_to_pset permission to task and
pssv_assign_task permission to the default processor set.

PARAMETERS

task
[in task port] The port for the task to be assigned.

assign_threads
[in scalar] True if this assignment should apply as well to the threads
within the task.

NOTES
This variant oftask_assign exists because the control port for the default pro-
cessor set is privileged, and therefore not available to most tasks.

RETURN VALUE
Only generic errors apply.

Mach 3 Kernel Interfaces 261

task_assign_default

RELATED INFORMATION
Functions: task_assign, task_get_assignment, processor_set_create,
processor_set_info, thread_assign, processor_assign.

262 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

task_get_assignment

Function — Returns the processor set to which a task is assigned

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_ttask_get_assignment
(mach_port_t task,
mach_port_t* processor_set);

DESCRIPTION
The task_get_assignmentfunction returns the name port to the processor set to
which task is currently assigned. This port can only be used to obtain informa-
tion about the processor set.

SECURITY
The requesting task must holdtsv_get_task_assignmnetpermission totask.

PARAMETERS

task
[in task port] The port for the task whose assignment is desired.

processor_set
[out processor-set-name port] The name port for the processor set into
which the task is assigned.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_assign, task_assign_default, processor_set_create,
processor_set_info, thread_assign, processor_assign.

Mach 3 Kernel Interfaces 263

task_priority

task_priority

Function — Sets the scheduling priority for a task

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_ttask_priority
(mach_port_t task,
int priority,
boolean_t change_threads);

DESCRIPTION
The task_priority function sets the scheduling priority for task. The priority of
a task is used only when creating new threads. A new thread’s priority is set to
that of the enclosing task’s priority. Changing the priority of a task does not af-
fect the priority of the enclosed threads unlesschange_threads is TRUE. If this
priority change violates the maximum priority of some threads, as many threads
as possible will be changed and an error code will be returned.

SECURITY
The requesting task must holdtsv_chg_task_prioritypermission totask.

PARAMETERS

task
[in task port] The task whose scheduling priority is to be set.

priority
[in scalar] The new priority for the task.

change_threads
[in scalar] True if priority of existing threads within the task should
also be changed.

RETURN VALUE

KERN_FAILURE
change_threads was TRUE and the attempt to change the priority of
some existing thread within the task failed because the new priority
would violate that thread’s maximum priority.

264 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

RELATED INFORMATION
Functions: thread_max_priority , thread_priority,
processor_set_max_priority.

Mach 3 Kernel Interfaces 265

thread_assign

thread_assign

Function — Assign a thread to a processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tthread_assign
(mach_port_t thread,
mach_port_t processor_set);

DESCRIPTION
The thread_assignfunction assignsthread to the setprocessor_set. After the
assignment is completed, the thread executes only on processors that are as-
signed to that processor set. Any previous assignment of the thread is nullified.

SECURITY
The requesting task must holdthsv_assign_thread_to_psetpermission tothread
andpssv_assign_thread to processor_set.

PARAMETERS

thread
[in thread port] The thread to be assigned.

processor_set
[in processor-set-control port] The control port for the processor set
into which the thread is to be assigned.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: thr ead_assign_default, thread_get_assignment,
processor_set_create, processor_set_info, task_assign, processor_assign.

266 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

thread_assign_default

Function — Assign a thread to the default processor set

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tthread_assign_default
(mach_port_t thread);

DESCRIPTION
The thread_assign_defaultfunction assignsthreadto the default processor set.
After the assignment is completed, the thread executes only on processors that
are assigned to that processor set. Any previous assignment of the thread is nul-
lified.

SECURITY
The requesting task must holdthsv_assign_thread_to_psetpermission tothread
andpssv_assign_threadpermission to the default processor set.

PARAMETERS

thread
[in thread port] The thread to be assigned.

NOTES
This variant ofthread_assign exists because the control port for the default pro-
cessor set is privileged, and therefore not available to most tasks.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: thr ead_assign, thread_get_assignment, processor_set_create,
processor_set_info, task_assign, processor_assign.

Mach 3 Kernel Interfaces 267

thread_get_assignment

thread_get_assignment

Function — Returns the processor set to which a thread is assigned

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tthread_get_assignment
(mach_port_t thread,
mach_port_t* processor_set);

DESCRIPTION
The thread_get_assignmentfunction returns the name port to the processor set
to which thread is currently assigned. This port can only be used to obtain infor-
mation about the processor set.

SECURITY
The requesting task must holdthsv_get_thread_assignmentpermission to
thread.

PARAMETERS

thread
[in thread port] The thread whose assignment is desired.

processor_set
[out processor-set-name port] The name port for the processor set into
which the thread is assigned.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: thr ead_assign, thread_assign_default, processor_set_create,
processor_set_info, task_assign, processor_assign.

268 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

thread_max_priority

Function — Sets the maximum scheduling priority for a thread

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tthread_max_priority
(mach_port_t thread,
mach_port_t processor_set,
int priority);

DESCRIPTION
The thread_max_priority function sets the maximum scheduling priority for
thread.

Threads have three priorities associated with them by the system:

• A priority value which can be set by the thread to any value up to a maxi-
mum priority. Newly created threads obtain their priority from their task.

• A maximum priority value which can be raised only via privileged operation
so that users may not unfairly compete with other users in their processor
set. Newly created threads obtain their maximum priority from that of their
assigned processor set.

• A scheduled priority value which is used to make scheduling decisions for
the thread. This value is determined on the basis of the user priority value by
the scheduling policy (for timesharing, this means adding an increment de-
rived from CPU usage).

This function changes the maximum priority for the thread. Because this func-
tion requires the presentation of the corresponding processor set control port,
this call can reset the maximum priority to any legal value.

SECURITY
The requesting task must holdthsv_set_max_thread_prioritypermission to
thread.

PARAMETERS

thread
[in thread port] The thread whose maximum scheduling priority is to
be set.

Mach 3 Kernel Interfaces 269

thread_max_priority

processor_set
[in processor-set-control port] The control port for the processor set to
which the thread is currently assigned.

priority
[in scalar] The new maximum priority for the thread.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: thread_priority , thread_policy, task_priority ,
processor_set_max_priority.

270 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

thread_policy

Function — Sets the scheduling policy to apply to a thread

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tthread_policy
(mach_port_t thread,
int policy,
int data);

DESCRIPTION
Thethread_policy function sets the scheduling policy to be applied tothread.

SECURITY
The requesting task must holdthsv_set_thread_policypermission tothread.

PARAMETERS

thread
[in thread port] The thread scheduling policy is to be set.

policy
[in scalar] Policy to be set. The values currently defined are
POLICY_TIMESHARE and POLICY_FIXEDPRI.

data
[in scalar] Policy specific data. Currently, this value is used only for
POLICY_FIXEDPRI, in which case it is the quantum to be used (in
milliseconds); to be meaningful, this value must be a multiple of the
basic system quantum (which can be obtained fromhost_info).

RETURN VALUE

KERN_FAILURE
The processor set to whichthread is currently assigned does not permit
policy.

RELATED INFORMATION
Functions: processor_set_policy_enable, processor_set_policy_disable.

Mach 3 Kernel Interfaces 271

thread_priority

thread_priority

Function — Sets the scheduling priority for a thread

LIBRARY
#include <mach/mach_host.h>

SYNOPSIS

kern_return_tthread_priority
(mach_port_t thread,
int priority,
boolean_t set_max);

DESCRIPTION
Thethread_priority function sets the scheduling priority forthread.

SECURITY
The requesting task must holdthsv_set_thread_priority to thread.If set_max is
true, the requesting task must also holdthsv_set_max_thread_priority to thread.

PARAMETERS

thread
[in thread port] The thread whose scheduling priority is to be set.

priority
[in scalar] The new priority for the thread.

set_max
[in scalar] True if the thread’s maximum priority should also be set.

NOTES
Threads have three priorities associated with them by the system:

• A priority value which can be set by the thread to any value up to a maxi-
mum priority. Newly created threads obtain their priority from their task.

• A maximum priority value which can be raised only via privileged operation
so that users may not unfairly compete with other users in their processor
set. Newly created threads obtain their maximum priority from that of their
assigned processor set.

• A scheduled priority value which is used to make scheduling decisions for
the thread. This value is determined on the basis of the user priority value by

272 Mach 3 Kernel Interfaces

Processor Management and Scheduling Interface

the scheduling policy (for timesharing, this means adding an increment de-
rived from CPU usage).

This function changes the priority and optionally the maximum priority (if
set_max is TRUE) forthread. Priorities range from 0 to 31, where lower num-
bers denote higher priorities. If the new priority is higher than the priority of the
current thread, preemption may occur as a result of this call. This call will fail if
priority is greater than the current maximum priority of the thread. As a result,
this call can only lower the value of a thread’s maximum priority.

RETURN VALUE

KERN_FAILURE
The requested operation would violate the thread’s maximum priority.

RELATED INFORMATION
Functions: thread_max_priority , thread_policy, task_priority ,
processor_set_max_priority.

Mach 3 Kernel Interfaces 273

CHAPTER 10 Kernel Device Interface

This chapter discusses the specifics of the device interfaces to in-kernel device drivers.
These interfaces provide read, write and status interfaces to devices.

274 Mach 3 Kernel Interfaces

Kernel Device Interface

device_close

Function — De-establish a connection to a device.

LIBRARY
#include <device/device.h>

SYNOPSIS

kern_return_tdevice_close
(mach_port_t device);

DESCRIPTION
The device_closefunction decrements the open count for the named device. If
this count reaches zero, the close operation of the device driver is invoked, clos-
ing the device.

SECURITY
The requesting task must holddsv_close_devicepermission todevice.

PARAMETERS

device
[in device port] A device port to the device to be closed.

RETURN VALUE

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

RELATED INFORMATION
Functions:device_open.

Mach 3 Kernel Interfaces 275

device_get_status

device_get_status

Function — Return the current device status

LIBRARY
#include <device/device.h>

SYNOPSIS

kern_return_tdevice_get_status
(mach_port_t device,
int flavor,
dev_status_t status,
mach_msg_type_number_t* status_count);

DESCRIPTION
Thedevice_get_status function returns status information pertaining to an open
device. The possible values forflavor as well as the meaning of the returned sta-
tus information is device dependent.

SECURITY
The requesting task must holddsv_get_device_statuspermission todevice.

PARAMETERS

device
[in device port] A device port to the device to be interrogated.

flavor
[in scalar] The type of status information requested.

status
[out array ofint] The returned device status.

status_count
[pointer to in/out scalar] On input, the reserved size ofstatus; on out-
put, the size of the returned device status.

RETURN VALUE

D_DEVICE_DOWN
Device has been shut down

276 Mach 3 Kernel Interfaces

Kernel Device Interface

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

RELATED INFORMATION
Functions:device_set_status.

Mach 3 Kernel Interfaces 277

device_map

device_map

Function — Establish a memory manager representing a device

LIBRARY
#include <device/device.h>

SYNOPSIS

kern_return_tdevice_map
(mach_port_t device,
vm_prot_t prot,
vm_offset_t offset,
vm_size_t size,
mach_port_t* pager,
int unmap);

DESCRIPTION
Thedevice_map function establishes a memory manager that presents a memo-
ry object representing a device. The resulting port is suitable for use as the mem-
ory manager port in avm_map call. This call is device dependent.

SECURITY
The requesting task must holddsv_map_devicepermission todevice.

PARAMETERS

device
[in device port] A device port to the device to be mapped.

prot
[in scalar] Protection for the device memory.

offset
[in scalar] An offset within the device memory object, in bytes.

size
[in scalar] The size of the device memory object.

pager
[out abstract-memory-object port] The returned abstract memory ob-
ject port to a memory manager that represents the device.

unmap
[in scalar] Unused.

278 Mach 3 Kernel Interfaces

Kernel Device Interface

NOTES
Port rights are maintained as follows:

Abstract memory object port:
The device pager has all rights.

Memory cache control port:
The device pager has only send rights.

Memory cache name port:
The device pager has only send rights. The name port is not even re-
corded.

Regardless of how the object is created, the control and name ports are created
by the kernel and passed through the memory management interface.

CAUTIONS
The device memory manager assumes that access to its memory objects will not
be propagated to more that one host, and therefore provides no consistency guar-
antees beyond those made by the kernel.

In the event that more than one host attempts to use a device memory object,
the device pager will only record the last set of port names. [This can happen
with only one host if a new mapping is being established while termination of
all previous mappings is taking place.] Currently, the device pager assumes that
its clients adhere to the initialization and termination protocols in the memory
management interface; otherwise, port rights or out-of-line memory from erro-
neous messages may be allowed to accumulate.

RETURN VALUE

D_DEVICE_DOWN
Device has been shut down

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_READ_ONLY
Data cannot be written to this device.

RELATED INFORMATION
Functions:vm_map, evc_wait.

Mach 3 Kernel Interfaces 279

device_open

device_open

Function — Establish a connection to a device.

LIBRARY
#include <device/device.h> (device_open)

#include <device/device_request.h> (device_open_request)

#include <device/device_reply.h> (ds_device_open_reply)

SYNOPSIS

kern_return_tdevice_open
(mach_port_t master_port,
dev_mode_t mode,
dev_name_t name,
mach_port_t* device);

device_open_request
Asynchronous Function form — Asynchronously request a connection to a de-
vice

kern_return_tdevice_open_request
(mach_port_t master_port,
mach_port_t reply_port,
dev_mode_t mode,
dev_name_t name);

ds_device_open_reply
Asynchronous Server Interface form — Receive the reply from an asynchro-
nous open

kern_return_tds_device_open_reply
(mach_port_t reply_port,
kern_return_t return_code,
mach_port_t device);

DESCRIPTION
Thedevice_open function opens a device object. The open operation of the de-
vice is invoked, if the device is not already open. The open count for the device
is incremented.

SECURITY
The requesting task must holddsv_open_devicepermission tomaster_port.

280 Mach 3 Kernel Interfaces

Kernel Device Interface

PARAMETERS

master_port
[in device-master port] The master device port. This port is provided to
the bootstrap task.

reply_port
[in reply port] The port to which a reply is to be sent when the device
is open.

mode
[in scalar] Opening mode. This is the bit-wise OR of the following val-
ues:

D_READ
Read access

D_WRITE
Write access

D_NODELAY
Do not delay on open

name
[pointer to in array ofchar] Name of the device to open.

return_code
[in scalar] Status of the open.

device
[out device port] The returned device port.

RETURN VALUE
device_open_request returns only message transmission errors. The return val-
ue supplied tods_device_open_reply is irrelevant. Thereturn_code returned
by ds_device_open_reply or the error return fromdevice_open is one of the
following:

D_WOULD_BLOCK
The device is busy, but D_NOWAIT was specified inmode.

D_ALREADY_OPEN
The device is already open in a mode incompatible withmode.

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

Mach 3 Kernel Interfaces 281

device_open

D_DEVICE_DOWN
The device has been shut down.

D_READ_ONLY
Data cannot be written to this device.

RELATED INFORMATION
Functions:device_close, device_reply_server.

282 Mach 3 Kernel Interfaces

Kernel Device Interface

device_read

Function — Read a sequence of bytes from a device object.

LIBRARY
#include <device/device.h> (device_read)

#include <device/device_request.h> (device_read_request)

#include <device/device_reply.h> (ds_device_read_reply)

SYNOPSIS

kern_return_tdevice_read
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
int bytes_wanted,
io_buf_ptr_t* data,
mach_msg_type_number_t* data_count);

device_read_request
Asynchronous Function form — Asynchronously read data

kern_return_tdevice_read_request
(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
int bytes_wanted);

ds_device_read_reply
Asynchronous Server Interface form — Receive the reply from an asynchro-
nous read

kern_return_tds_device_read_reply
(mach_port_t reply_port,
kern_return_t return_code,
io_buf_ptr_t data,
mach_msg_type_number_t data_count);

DESCRIPTION
The device_readfunction reads a sequence of bytes from a device object. The
meaning ofrecnum as well as the specific operation performed is device depen-
dent.

SECURITY
The requesting task must holddsv_read_devicepermission todevice.

Mach 3 Kernel Interfaces 283

device_read

PARAMETERS

device
[in device port] A device port to the device to be read.

reply_port
[in reply port] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait if data is unavailable.

recnum
[in scalar] Record number to be read.

bytes_wanted
[in scalar] Size of data transfer.

return_code
[in scalar] The return status code from the read.

data
[out pointer to dynamic array of bytes] Returned data bytes.

data_count
[out scalar] Number of returned data bytes.

RETURN VALUE
device_read_request returns only message transmission errors. A return value
supplied to ds_device_read_reply other than KERN_SUCCESS or
MIG_NO_REPLY will causemach_msg_server to de-allocate the returned da-
ta. Thereturn_code returned byds_device_read_reply or the error return from
device_read is one of the following:

D_DEVICE_DOWN
Device has been shut down.

D_INVALID_RECNUM
Invalid record (block) number.

D_INVALID_SIZE
Invalid IO size.

D_IO_ERROR
Hardware IO error.

284 Mach 3 Kernel Interfaces

Kernel Device Interface

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C).

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set.

RELATED INFORMATION
Functions:device_read_inband, device_reply_server.

Mach 3 Kernel Interfaces 285

device_read_inband

device_read_inband

Function — Read a sequence of bytes “inband” from a device object.

LIBRARY
#include <device/device.h> (device_read_inband)

#include <device/device_request.h> (device_read_request_inband)

#include <device/device_reply.h> (ds_device_read_reply_inband)

SYNOPSIS

kern_return_tdevice_read_inband
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
int bytes_wanted,
io_buf_ptr_inband_t* data,
mach_msg_type_number_t* data_count);

device_read_request_inband
Asynchronous Function form — Asynchronously read data

kern_return_tdevice_read_request_inband
(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
int bytes_wanted);

ds_device_read_reply_inband
Asynchronous Server Interface form — Receive the reply from an asynchro-
nous read

kern_return_tds_device_read_reply_inband
(mach_port_t reply_port,
kern_return_t return_code,
io_buf_ptr_inband_t data,
mach_msg_type_number_t data_count);

DESCRIPTION
The device_readfunction reads a sequence of bytes from a device object. The
meaning ofrecnum as well as the specific operation performed is device depen-
dent. This call differs fromdevice_read in that the returned bytes are returned
“inband” in the reply IPC message.

286 Mach 3 Kernel Interfaces

Kernel Device Interface

SECURITY
The requesting task must holddsv_read_devicepermission todevice.

PARAMETERS

device
[in device port] A device port to the device to be read.

reply_port
[in reply port] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait if data is unavailable.

recnum
[in scalar] Record number to be read.

bytes_wanted
[in scalar] Size of data transfer.

return_code
[in scalar] The return status code from the read.

data
[out array of bytes] Returned data bytes.

data_count
[out scalar] Number of returned data bytes.

RETURN VALUE
device_read_request_inband returns only message transmission errors. The re-
turn value supplied tods_device_read_reply_inband is irrelevant. The
return_code returned byds_device_read_reply_inband or the error return
from device_read_inband is one of the following:

D_DEVICE_DOWN
Device has been shut down

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid IO size

Mach 3 Kernel Interfaces 287

device_read_inband

D_IO_ERROR
Hardware IO error

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set

RELATED INFORMATION
Functions:device_read, device_reply_server.

288 Mach 3 Kernel Interfaces

Kernel Device Interface

device_set_filter

Function — Names an input filter for a device

LIBRARY
#include <device/device.h>

#include <device/net_status.h>

SYNOPSIS

kern_return_tdevice_set_filter
(mach_port_t device,
mach_port_t receive_port,
mach_msg_type_name_t receive_port_type,
int priority,
filter_array_t filter,
mach_msg_type_number_t filter_count);

DESCRIPTION
Thedevice_set_filterfunction provides a means by which selected data appear-
ing at a device interface can be selected and routed to a port.

The filter command list consists of an array of up to NET_MAX_FILTER (16-
bit) values to be applied to incoming messages to determine if those messages
should be given to a particular input filter.

Each filter command list specifies a sequences of actions which leave a boolean
value on the top of an internal stack. Each 16-bit value of the command list
specifies a data (push) operation (high order NETF_NBPO bits) as well as a bi-
nary operator (low order NETF_NBPA bits).

The value to be pushed onto the stack is chosen as follows.

NETF_PUSHLIT
Use the next 16-bit value of the filter as the value.

NETF_PUSHZERO
Use 0 as the value.

NETF_PUSHWORD+N
Use 16-bit valueN of the “data” portion of the message as the value.

NETF_PUSHHDR+N
Use 16-bit valueN of the “header” portion of the message as the value.

Mach 3 Kernel Interfaces 289

device_set_filter

NETF_PUSHIND
Pops the top 32-bit value from the stack and then uses it as an index to
the 16-bit value of the “data” portion of the message to be used as the
value.

NETF_PUSHHDRIND
Pops the top 32-bit value from the stack and then uses it as an index to
the 16-bit value of the “header” portion of the message to be used as
the value.

NETF_PUSHSTK+N
Use 32-bit valueN of the stack (where the top of stack is value 0) as
the value.

NETF_NOPUSH
Don’t push a value.

The unsigned value so chosen is promoted to a 32-bit value before being pushed.

Once a value is pushed (except for the case of NETF_NOPUSH), the top two
32-bit values of the stack are popped and a binary operator applied to them
(with the old top of stack as the second operand). The result of the operator is
pushed on the stack. These operators are:

NETF_NOP
Don’t pop off any values and do no operation.

NETF_EQ
Perform an equal comparison.

NETF_LT
Perform a less than comparison.

NETF_LE
Perform a less than or equal comparison.

NETF_GT
Perform a greater than comparison.

NETF_GE
Perform a greater than or equal comparison.

NETF_AND
Perform a bit-wise boolean AND operation.

NETF_OR
Perform a bit-wise boolean inclusive OR operation.

290 Mach 3 Kernel Interfaces

Kernel Device Interface

NETF_XOR
Perform a bit-wise boolean exclusive OR operation.

NETF_NEQ
Perform a not equal comparison.

NETF_LSH
Perform a left shift operation.

NETF_RSH
Perform a right shift operation.

NETF_ADD
Perform an addition.

NETF_SUB
Perform a subtraction.

NETF_COR
Perform an equal comparison. If the comparison is TRUE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

NETF_CAND
Perform an equal comparison. If the comparison is FALSE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

NETF_CNOR
Perform a not equal comparison. If the comparison is FALSE, termi-
nate the filter list. Otherwise, pop the result of the comparison off the
stack.

NETF_CNAND
Perform a not equal comparison. If the comparison is TRUE, terminate
the filter list. Otherwise, pop the result of the comparison off the stack.

The scan of the filter list terminates when the filter list is emptied, or a
NETF_C... operation terminates the list. At this time, if the final value of the top
of the stack is TRUE, then the message is accepted for the filter.

SECURITY
The requesting task must holddsv_set_device_filterpermission todevice.

PARAMETERS

device
[in device port] A device port

Mach 3 Kernel Interfaces 291

device_set_filter

receive_port
[in filter port] The port to receive the input data that is selected by the
filter.

receive_port_type
[in scalar] IPC type of the send right provided to the device; either
MACH_MSG_TYPE_MAKE_SEND,
MACH_MSG_TYPE_MOVE_SEND or
MACH_MSG_TYPE_COPY_SEND.

priority
[in scalar] Used to order multiple receivers.

filter
[pointer to in array offilter_t] The address of an array of filter values.

filter_count
[in scalar] The size of thefilter array (in 16-bit values).

RETURN VALUE

D_DEVICE_DOWN
Device has been shut down

D_INVALID_OPERATION
No filter port was supplied.

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

292 Mach 3 Kernel Interfaces

Kernel Device Interface

device_set_status

Function — Sets device status.

LIBRARY
#include <device/device.h>

SYNOPSIS

kern_return_tdevice_set_status
(mach_port_t device,
int flavor,
dev_status_t status,
mach_msg_type_number_t status_count);

DESCRIPTION
Thedevice_set_status function sets device status. The possible values offlavor
as well as the corresponding meanings are device dependent.

SECURITY
The requesting task must holddsv_set_device_statuspermission todevice.

PARAMETERS

device
[in device port] A device port to the device to be manipulated.

flavor
[in scalar] The type of status information to set.

status
[pointer to in array ofint] The status information to set.

status_count
[in scalar] The size of the status information.

RETURN VALUE

D_DEVICE_DOWN
Device has been shut down

D_IO_ERROR
Hardware IO error

Mach 3 Kernel Interfaces 293

device_set_status

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

RELATED INFORMATION
Functions:device_get_status.

294 Mach 3 Kernel Interfaces

Kernel Device Interface

device_write

Function — Write a sequence of bytes to a device object.

LIBRARY
#include <device/device.h> (device_write)

#include <device/device_request.h> (device_write_request)

#include <device/device_reply.h> (ds_device_write_reply)

SYNOPSIS

kern_return_tdevice_write
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
io_buf_ptr_t data,
mach_msg_type_number_t data_count,
int* bytes_written);

device_write_request
Asynchronous Function form — Asynchronously write data

kern_return_tdevice_write_request
(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
io_buf_ptr_t data,
mach_msg_type_number_t data_count);

ds_device_write_reply
Asynchronous Server Interface form — Receive the reply from an asynchro-
nous write

kern_return_tds_device_write_reply
(mach_port_t reply_port,
kern_return_t return_code,
int bytes_written);

DESCRIPTION
The device_write function writes a sequence of bytes to a device object. The
meaning ofrecnum as well as the specific operation performed is device depen-
dent.

SECURITY
The requesting task must holddsv_write_devicepermission todevice.

Mach 3 Kernel Interfaces 295

device_write

PARAMETERS

device
[in device port] A device port to the device to be written.

reply_port
[in reply port] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait for I/O completion.

recnum
[in scalar] Record number to be written.

data
[pointer to in array of bytes] Data bytes to be written.

data_count
[in scalar] Number of data bytes to be written.

return_code
[in scalar] The return status code from the write.

bytes_written
[out scalar] Size of data transfer.

RETURN VALUE
device_write_request returns only message transmission errors. The return val-
ue supplied tods_device_write_reply is irrelevant. Thereturn_code returned
by ds_device_write_reply or the error return fromdevice_write is one of the
following:

D_DEVICE_DOWN
Device has been shut down

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid IO size

D_IO_ERROR
Hardware IO error

296 Mach 3 Kernel Interfaces

Kernel Device Interface

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set

RELATED INFORMATION
Functions:device_write_inband, device_reply_server.

Mach 3 Kernel Interfaces 297

device_write_inband

device_write_inband

Function — Write a sequence of bytes “inband” to a device object.

LIBRARY
#include <device/device.h> (device_write_inband)

#include <device/device_request.h> (device_write_request_inband)

#include <device/device_reply.h> (ds_device_write_reply_inband)

SYNOPSIS

kern_return_tdevice_write_inband
(mach_port_t device,
dev_mode_t mode,
recnum_t recnum,
io_buf_ptr_inband_t data,
mach_msg_type_number_t data_count,
int* bytes_written);

device_write_request_inband
Asynchronous Function form — Asynchronously write data

kern_return_tdevice_write_request_inband
(mach_port_t device,
mach_port_t reply_port,
dev_mode_t mode,
recnum_t recnum,
io_buf_ptr_inband_t data,
mach_msg_type_number_t data_count);

ds_device_write_reply_inband
Asynchronous Server Interface form — Receive the reply from an asynchro-
nous write

kern_return_tds_device_write_reply_inband
(mach_port_t reply_port,
kern_return_t return_code,
int bytes_written);

DESCRIPTION
The device_write_inband function writes a sequence of bytes to a device ob-
ject. The meaning ofrecnum as well as the specific operation performed is de-
vice dependent. This call differs from device_write in that the bytes to be
written are sent “inband” in the request IPC message.

298 Mach 3 Kernel Interfaces

Kernel Device Interface

SECURITY
The requesting task must holddsv_write_devicepermission todevice.

PARAMETERS

device
[in device port] A device port to the device to be written.

reply_port
[in reply port] The port to which the reply message is to be sent.

mode
[in scalar] I/O mode value. Meaningful options are:

D_NOWAIT
Do not wait for I/O completion.

recnum
[in scalar] Record number to be written.

data
[pointer to in array of bytes] Data bytes to be written.

data_count
[in scalar] Number of data bytes to be written.

return_code
[in scalar] The return status code from the write.

bytes_written
[out scalar] Size of data transfer.

RETURN VALUE
device_write_request_inband returns only message transmission errors. The
return value supplied tods_device_write_reply_inband is irrelevant. The
return_code returned byds_device_write_reply_inband or the error return
from device_write_inband is one of the following:

D_DEVICE_DOWN
Device has been shut down

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid IO size

Mach 3 Kernel Interfaces 299

device_write_inband

D_IO_ERROR
Hardware IO error

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set

RELATED INFORMATION
Functions:device_write, device_reply_server.

300 Mach 3 Kernel Interfaces

Kernel Device Interface

evc_wait

System Trap— Wait for a kernel (device) signalled event

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tevc_wait
(unsigned int event);

DESCRIPTION
Theevc_wait function causes the invoking thread to wait until the specified ker-
nel (device) generated event occurs. Device drivers (typically mapped devices
intended to be supported by user space drivers) may supply an event service.

The event service defines one or more event objects, named by task local event
IDs. Each of these event objects has an associated event count, initially zero.
Whenever the associated event occurs (typically a device interrupt), the event
count is incremented. If this count is zero whenevc_wait is called, the calling
thread waits for the next event to occur. Only one thread may be waiting for the
event to occur. If the count is non-zero whenevc_wait is called, the count is
simply decremented without causing the thread to wait. The event count guaran-
tees that no events are lost.

SECURITY
No restrictions defined.

PARAMETERS

event
[in scalar] The task local event ID of the kernel event object.

NOTES
The typical use of this service is within user space device drivers. When a de-
vice interrupt occurs, the (in this case, simple) kernel device driver would place
device status in a shared (with the user device driver) memory window (estab-
lished bydevice_map) and signal the associated event. The user space device
driver would normally be waiting withevc_wait. The user thread then wakes,
processes the device status, typically interacting with the device via its shared
memory window, then waits for the next interrupt.

Mach 3 Kernel Interfaces 301

evc_wait

RETURN VALUE

KERN_NO_SPACE
There is already a thread waiting for this event.

RELATED INFORMATION
Functions:device_map.

302 Mach 3 Kernel Interfaces

Kernel Device Interface

Mach 3 Kernel Interfaces 303

CHAPTER 11 Security Server Interface

This chapter discusses the specifics of the interface between the DTOS kernel and the Se-
curity Server. Interfaces labeled asFunction are kernel interfaces, where interfaces la-
beled asServer Interfaceare interfaces to the security server.

304 Mach 3 Kernel Interfaces

Security Server Interface

avc_cache_control, avc_cache_control_trap

Function — provides interface to the kernel access vector cache for flushing
and preloading the cache.

LIBRARY
#include <mach/mach_interface.h>
#include <sys/security.h>

SYNOPSIS

kern_return_tavc_cache_control
(mach_port_t HostName,
int ControlWord,
int PolicyID,
vector_table_t VectorTable,
int VectorTableSize,
aid_relevance_table_t AidvTable,
int AidvTableSize);

kern_return_tavc_cache_control_trap
(int ControlWord,
int PolicyID,
vector_table_t VectorTable,
int VectorTableSize,
aid_relevance_table_t AidvTable,
int AidvTableSize);

DESCRIPTION
The avc_cache_control function is called by the Security Server whenever it
needs to flush the access vector cache or to load required permissions into the
access vector cache. One example is when the Security Server switches poli-
cies. Theavc_cache_control_trap function is a system call version of the
avc_cache_control function. It is used to circumvent some limitations in the
MIG messaging scheme with regards to in-line data of greater than 1 (4k) page
in length.

SECURITY
The client must holdflush_permissionpermission to theHostName port.

PARAMETERS

HostName
[in mach_port_t] The host name port.

Mach 3 Kernel Interfaces 305

avc_cache_control, avc_cache_control_trap

ControlWord
[in int] The control word that describes the operations to be performed
by this invocation ofavc_cache_control. The control word format is
defined in sys/security.h It is a bit mask with the following functions:

AVC_FLUSH_CACHE: to flush the avc vector cache.

AVC_CLEAR_CACHE: to remove all cache entries (including wired)

AVC_RELOAD_INITIAL_STATE: reinitialize cache to initial state
values.

AVC_VECTOR_TABLE: the vector table is present.

AVC_AIDV_TABLE: the aid relevance table is present.

PolicyId
[in int] The new policy ID. ThePolicyId will be incremented with
each flush or clear of the avc cache. It may be used to verify that securi-
ty computations apply to the current policy.

VectorTable
[in vector_table_t] The table that contains an array of pairs with associ-
ated access vectors to load into, or flush from, the cache.

VectorTableSize
[in int] The size (in int’s) of theVectorTable.

AidvTable
[in aid_relevance_table_t] The aid relevance table that the kernel will
use.

AidvTableSize
[in int] The size of the aid relevance table specified by theAidvTable
parameter.

RETURN VALUE

0 - The operation was successful.

1 - The operation was not successful.

RELATED INFORMATION
none

306 Mach 3 Kernel Interfaces

Security Server Interface

extract_aid

Macro—Returns the authentication identifier field of the security identifier.

LIBRARY
#include <sys/security.h>

SYNOPSIS

authentication_id_textract_aid
(security_id_t sid);

DESCRIPTION
The extract_aid macro returns the authentication identifier field of the security
identifiersid.

SECURITY
None.

PARAMETERS

sid
[in security_id] The input security identifier.

RETURN VALUE
Authentication identifier.

RELATED INFORMATION
Functions:extract_mid, make_sid.

Mach 3 Kernel Interfaces 307

extract_mid

extract_mid

Macro—Returns the mandatory identifier field of the security identifier.

LIBRARY
#include <sys/security.h>

SYNOPSIS

authentication_id_textract_mid
(security_id_t sid);

DESCRIPTION
The extract_mid macro returns the mandatory identifier field of the security
identifiersid.

SECURITY
None.

PARAMETERS

sid
[in security_id] The input security identifier.

RETURN VALUE
Mandatory identifier.

RELATED INFORMATION
Functions:extract_aid, make_sid.

308 Mach 3 Kernel Interfaces

Security Server Interface

make_sid

Macro—Builds a security identifier using a mandatory identifier and an authen-
tication identifier.

LIBRARY
#include <sys/security.h>

SYNOPSIS

security_id_tmake_sid
(mandatory_id_t mid,
authentication_id_t aid);

DESCRIPTION
The make_sid macro returns a security identifier whose MID and AID fields
have the values given inmid andaid.

SECURITY
None.

PARAMETERS

mid
[in mandatory_id] The input mandatory identifier.

aid
[in authentication_id] The input authentication identifier.

RETURN VALUE
Security identifier.

RELATED INFORMATION
Functions:extract_mid, extract_aid.

Mach 3 Kernel Interfaces 309

SSI_compute_access_vector

SSI_compute_access_vector

Server Interface— Requests an access vector for a source sid to a target sid

LIBRARY
#include <sys/security.h>

SYNOPSIS

kern_return_tSSI_compute access vector
(mach_port_t SSPort,
security_id_t SourceSID,
security_id_t TargetSID,
int Permission,
int * RequestID,
mach_access_vector_data_t * AccessVector,
mach_access_vector_data_t * CacheControlVector,
mach_access_vector_data_t * NotificationVector,
mach_access_vector_data_t * AIDRelevanceVector,
unsigned int * Timeout,
unsigned int * PolicyId,
int * Status);

DESCRIPTION
The SSI_compute_access_vector function is called by a client (possibly the
Kernel), when a security fault has occurred. The Security Server uses the provid-
ed security identifiers to compute the associated permission information. The re-
quest may also be made by any task that has access to the Security Server’s
general service port.

The decision logic used to compute the permissions between SourceSID to Tar-
getSID is determined by the system’s specific security policy.

SECURITY
The client must hold the service permissionss_kern_compute_avor
ss_gen_compute_av respectively toSSPort depending on whether it is the client
or master Security Server port. The Security Server must have
krpsv_provide_permissionto the reply port of this request.

PARAMETERS

SSPort
[in port] The port from which the Security Server accepts service re-
quests. This is either the client or master Security Server port.

310 Mach 3 Kernel Interfaces

Security Server Interface

SourceSID
[in security_id_t] The security identifier of the subject which is at-
tempting to make an access.

Target_SID
[in security_id_t] The security identifier of the object to which the ac-
cess is being made.

Permission
[in int] The permission to be checked.

RequestID
[in/out int *] A request identifier returned by the Security Server. Not
used.

AccessVector
[out mach_access_vector_data_t *] The access vector which describes
the permissions of theSourceSID <-> TargetSID pair.

CacheControlVector
[out mach_access_vector_data_t *] An access vector describing the
way the access vector cache is to be controlled. Each non-zero bit in
the CacheControlVector indicates that the corresponding permission
bit in theAccessVector can be cached.

NotificationVector
[out mach_access_vector_data_t *] An access vector used to control
generation of audit information. Each non-zero bit indicates that when-
ever the corresponding permission bit in theAccessVector is used, a au-
dit event will be generated.

AIDRelevanceVector
[out mach_access_vector_data_t *] An access vector describing which
permission bits require authentication identifier (AID) verification.
Each non-zero bit in this vector indicates that the corresponding per-
mission bit in theAccessVector requires cross-AID checks. This output
parameter is used by the Kernel to update its internal AID relevance ta-
ble and keep it consistent with the security policy.

Timeout
[out unsigned int *] The absolute clock value at which time the access
vector will expire from the cache.

PolicyId

[out unsigned int *] A number representing the current revision of the
security policy in force. This number will increment everytime a
load_security_policy, swap_security_server, or avc_cache_control
with AVC_FLUSH_CACHE bit set is performed.

Mach 3 Kernel Interfaces 311

SSI_compute_access_vector

Status
[out int *] Used to return status information for a security request. Not
used.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION

Functions:sec_access_provided.

312 Mach 3 Kernel Interfaces

Security Server Interface

SSI_context_to_mid

Server Interface— Returns the mandatory identifier associated with a security
context.

LIBRARY
#include <sys/security.h>

SYNOPSIS

kern_return_tSSI_context_to_mid
(mach_port_t SSPort,
mach_sec_context_t SecurityContext,
int SecurityContextLength,
mandatory_id_t * MID);

DESCRIPTION
The SSI_context_to_mid function is called by a client when there is a need to
get the security identifier that is related to a particular security context. Please
refer toSSI_mid_to_context for a description of the full security context.

SECURITY
The client must holdss_gen_context_to_sid permission toSSPort.

PARAMETERS

SSPort
[in mach_port_t] The port on which the security server receives re-
quests.

SecurityContext
[in mach_sec_context_t] The security context to convert. It must be ful-
ly specified.

SecurityContextLength
[in int] The length of the security context in bytes + 1. The maximum
value is 256.

MID
[out mandatory_id_t *] The fully specified mandatory identifier associ-
ated with the provided security context.

RETURN VALUE
Generic errors apply.

Mach 3 Kernel Interfaces 313

SSI_context_to_mid

RELATED INFORMATION
Functions: SSI_short_context_to_mid, SSI_mid_to_context,
SSI_mid_to_short_context.

314 Mach 3 Kernel Interfaces

Security Server Interface

SSI_load_security_policy

Server Interface—Loads the security policy.

LIBRARY
#include <sys/security.h>

SYNOPSIS

kern_return_tSSI_load_security_policy
(mach_port_t SSPort,
char * SecurityPolicyDir,,
int NameLength);

DESCRIPTION
The SSI_load_security_policy function loads the security policy found in the
directory SecurityPolicyDir. The database file must be named “database_file”
and the permissions file must be named “permissions_file”. If more than one set
of policies is desired, then files describing the policy must be placed in separate
directories.

SECURITY
The client must holdss_gen_load_policy permission toSSPort.

PARAMETERS

SSPort
[in security_id_t] The port on which the security server receives re-
quests.

SecurityPolicyDir
[in char *] The name of the directory which holds the security policy.

NameLength
[in in] The length of theSecurityPolicyName in bytes + 1. The maxi-
mum value is 1024.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION
Functions: SSI_transfer_security_server_ports.

Mach 3 Kernel Interfaces 315

SSI_record_name_server

SSI_record_name_server

Server Interface—Provides the name server port right to the security server.

LIBRARY
#include <sys/security.h>

SYNOPSIS

void SSI_record_name_server
(mach_port_t SSPort,
(mach_port_t NameServerPort);

DESCRIPTION
The SSI_record_name_server function gives the Security Server access to the
NameServerPort. The Security Server then registers its client port with the
name server. This allows clients to look up the port with the name server using
the “security_server_port” keyword.

SECURITY
The client must holdss_kern_record_name_server permission toSSPort.

PARAMETERS

SSPort
[in mach_port_t] The port on which the Security Server receives re-
quests.

NameServerPort
[in mach_port_t] The port on which the name server receives requests.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION.
Functions:netname_lookup.

316 Mach 3 Kernel Interfaces

Security Server Interface

SSI_register_caching_server

Server Interface— Provide a means for programs caching security information
to be notified of a flush event.

LIBRARY

#include <sys/security.h>

SYNOPSIS

void SSI_register_caching_server
(mach_port_t SSPort,
mach_port_t FlushNotificationPort);

DESCRIPTION

The SSI_register_caching_server function provides an interface that may be
used by other servers caching security information that wish to be notified of a
security cache flush event. The supplied port will receive a message containing
the policy ID, upon the security server requesting a flush cache. The message
format is defined as follows:

simpleroutine flush_notify
(SSPort :mach_port_t;
PolicyId :int);

SECURITY

The client must holdss_gen_register permission to the security server client
port.

PARAMETERS

SSPort
[in mach_port_t] The port on which the Security Server receives client
requests.

FlushNotificationPort
[in mach_port_t] The port to which the Security Server sends a mes-
sage when a flush event occurs.

RETURN VALUE

Generic errors apply.

Mach 3 Kernel Interfaces 317

SSI_register_caching_server

RELATED INFORMATION.
None.

318 Mach 3 Kernel Interfaces

Security Server Interface

SSI_short_context_to_mid

Server Interface— Returns the mandatory identifier (MID) associated with a
security context specified in the short format.

LIBRARY
#include <sys/security.h>

SYNOPSIS

kern_return_tSSI_short_context_to_mid
(mach_port_t SSPort,
mach_sec_context_t SecurityContext,
int SecurityContextLength,
mandatory_id_t ParentMID,
mandatory_id_t * MID);

DESCRIPTION
The SSI_short_context_to_mid function is called by a client when there is a
need to get the mandatory identifier that is related to a particular security con-
text. This function differs from SSI_context_to_midin that it accepts the short
format of the security context and returns a MID whose classifier field is unspec-
ified. This allows “smart” servers to manage this field in a consistent manner
with the Security Server. Please refer to SSI_mid_to_short_context for a de-
scription of the short security context format.

SECURITY
The client must holdss_gen_context_to_sid permission toSSPort.

PARAMETERS

SSPort
[in mach_port_t] The port on which the Security Server receives re-
quests.

SecurityContext
[in mach_sec_context_t] The short security context to convert.

SecurityContextLength
[in int] The length of the security context in bytes + 1. The maximum
value is 256.

Mach 3 Kernel Interfaces 319

SSI_short_context_to_mid

ParentMID
[in mandatory_id_t] If theSecurityContext contains fields that are un-
specified, then the corresponding values are inherited from the context
associated with theParentMID.

MID
[out mandatory_id_t *] The mandatory identifier associated with the
provided security context.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION
Functions: SSI_context_to_mid, SSI_short_mid_to_context,
SSI_mid_to_context.

320 Mach 3 Kernel Interfaces

Security Server Interface

SSI_mid_to_context

Server Interface—Returns the security context associated with a mandatory
identifier.

LIBRARY
#include <sys/security.h>

SYNOPSIS

kern_return_tSSI_mid_to_context
(mach_port_t SSPort,
mandatory_id_t MID,
mach_sec_context_t * SecurityContext,
int * SecurityContextLength);

DESCRIPTION
The SSI_mid_to_context function is called by a client when there is a need to
get the security context that is related to a particular mandatory identifier. The
security context is fully specified following the format “Domain/Type : Level :
Categories : Classifier”. The Domain/Type field contains either a domain name
or a type name. The Level, Categories and Classifier fields have the level name,
the comma separated list of category names and the classifier name, respectively.

SECURITY
The client must holdss_gen_sid_to_context permission toSSPort.

PARAMETERS

SSPort
[in mach_port_t] The port on which the Security Server receives re-
quests.

MID
[in mandatory_id_t] The mandatory identifier to convert. It must be ful-
ly specified.

SecurityContext
[out mach_sec_context_t *] The full security context associated with
the provided security identifier.

SecurityContextLength
[in/out int *] The length of the security context in bytes + 1. On input,
the variable has the maximum length that the security context can be

Mach 3 Kernel Interfaces 321

SSI_mid_to_context

(256). On output, it contains the actual length of the security context +
1.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION.
Functions: SSI_context_to_mid, SSI_short_context_to_mid,
SSI_mid_to_short_context.

322 Mach 3 Kernel Interfaces

Security Server Interface

SSI_mid_to_short_context

Server Interface—Returns the short format of the security context associated
with a mandatory identifier (MID).

LIBRARY
#include <sys/security.h>

SYNOPSIS

kern_return_tSSI_mid_to_short_context
(mach_port_t SSPort,
mandatory_id_t MID,
mach_sec_context_t * SecurityContext,
int * SecurityContextLength);

DESCRIPTION
The SSI_mid_to_short_context function is called by a client when there is a
need to get the short format of the security context that is related to a particular
mandatory identifier. This function differs from SSI_mid_to_context in that
the classifier field of theMID need not be specified. The short security context
format is “Domain/Type : Level : Categories” where the “:” is a field separator.
The Domain/Type field can contain either a domain name or a type name. The
Level and Categories fields have the security level name and a list of comma
separated category names, respectively. Note that the short security context dif-
fers from the full context in that it does not have a classifier field, therefore, the
corresponding field in theMID is not necessary.

SECURITY
The client must holdss_gen_sid_to_context permission toSSPort.

PARAMETERS

SSPort
[in mach_port_t] The port on which the Security Server receives re-
quests.

MID
[in mandatory_id_t] The mandatory identifier to convert. The classifier
field may be unspecified.

SecurityContext
[out mach_sec_context_t *] The short security context associated with
the provided mandatory identifier.

Mach 3 Kernel Interfaces 323

SSI_mid_to_short_context

SecurityContextLength
[in/out int *] The length of the security context in bytes + 1. On input,
the variable has the maximum length that the security context can be
(256). On output, it contains the actual length of the security context +
1.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION.
Functions: SSI_context_to_mid, SSI_short_context_to_mid,
SSI_mid_to_context.

324 Mach 3 Kernel Interfaces

Security Server Interface

SSI_transfer_security_server_ports

Server Interface—Request to transfer Security Server funtions to a new pro-
gram.

LIBRARY
#include <sys/security.h>

SYNOPSIS

kern_return_tSSI_transfer_security_server_ports
(mach_port_t SSPort,
mach_port_t * Master_port,
mach_port_t * Client_port,
int * Policy_id,
mach_port_array_t Caching_control_ports[],
int * Caching_control_port_count.
mach_opaque_table_t opaque_table[],
int * opaque_table_count,
mandatory_id_t last_opaque);

DESCRIPTION
The SSI_transfer_security_server_portsfunction wrests control of security
services from the current security server, and returns the receive rights for the
security services to the calling program.

SECURITY
The client must holdss_gen_transfer permission toSSPort.

PARAMETERS

SSPort
[in mach_port_t] The port on which the Security Server receives re-
quests.

Master_port
[out mach_port_t *] The Security Server master (kernel) port receive
right.

Client_port
[out mach_port_t *] The Security Server client port receive right.

Policy_id
[out int *] The current policy ID.

Mach 3 Kernel Interfaces 325

SSI_transfer_security_server_ports

Caching_control_ports
[out mach_port_array_t *] Array of send rights to ports representing
other servers in the system that need to be notified of cache flush
events.

Caching_control_port_count
[out int*] The number ofcaching_control_ports passed in the array.

opaque_table
[out mach_opaque_table_t *] Array of internal MID to opaque MID
translations. This table is used to give the new security server knowl-
edge of the existing opaque MIDs running in the system. The table con-
sists of an array, with each element in the array containing the pairing
of an opaque and internal MID.

opaque_table_count
[out int *] The number of internal<->opaque translations.

last_opaque
[out mandatory_id_t *] The last assigned opaque MID. This is the last
opaque MID that had been assigned by the old Security Server.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION.
Functions:SSI_load_security_policy.

326 Mach 3 Kernel Interfaces

Security Server Interface

SSI_transition_domain

Server Interface—Returns a subject SID and an object SID based on the transi-
tion domain and MLS level of the input object SID and subject SID, respective-
ly.

LIBRARY
#include <sys/security.h>

SYNOPSIS

kern_return_tSSI_transition_domain
(mach_port_t SSPort,
security_id_t InSSID,
security_id_t InOSID,
security_id_t * OutSSID);

DESCRIPTION

The SSI_transition_domain function is called by a client to obtain a subject
SID that is of the appropriate domain and security level. If the security policy
provides a rule that associates an object type with a transition domain, then the
output subject SID corresponds to a security context that has this transition do-
main. The remaining security context data is the same as that associated with
the input subject SID. If no rule is provided by the security policy, the subject
SID returned is the same as the input subject SID.

Used in conjunction with the Unix system callexecve() or
execve_secure() , this feature allows a client to automatically transition to
a newdomain as a result of executing a file of a particulartype. For example,
the file /bin/passwd is labeled with the security contextpasswdTExec:un-
classified:none and /etc/passwd is labeled with passwdTFile:unclassi-
fied:none. The security policy database indicates that:

• When a subject executes a file labeledpasswdTExec, it will transi-
tion topasswdD domain

• Only passwdD subjects can write topasswdTFile files

• passwdD subjects can only accesspasswdTExec memory

• user subjects cannot write topasswdTExec memory or files

A process labeled with the security contextuser:unclassified:none invokes ex-
ecve() on the file /bin/passwd . The Unix server calls
SSI_context_to_mid() to convert the input security contextsuser:unclassi-
fied:none and passwdTExec:unclassified:none into the corresponding subject
and object SIDs, respectively. It then callsSSI_transition_domain() on these
two SIDs to obtain the new transition SID. Finally, the Unix server starts the

Mach 3 Kernel Interfaces 327

SSI_transition_domain

new process labeled with the output subject SID. This new process labeled as
passwdD can write to/etc/passwd which is labeled aspasswdTFile.

Another process labeled asuser:unclassified:none tries to call
execve_secure() on vi with a context of passwdTExec:unclassi-
fied:none, attempting to bypass/bin/passwd and perform arbitrary edits on
/etc/passwd . The resulting subject security context ispasswdTExec:unclas-
sified:none, as expected. However, the executable’s object security context is
based onvi , which isuser:unclassified:none. The new process cannot read its
own text segment and dies.

SECURITY
The client must holdss_gen_transition permission toSSPort.

PARAMETERS

SSPort
[in mach_port_t] The port on which the Security Server receives re-
quests.

InSSID
[in security_id_t] The input subject security identifier.

InOSID
[in security_id_t] The input object security identifier.

OutSSID
[out security_id_t *] The output subject security identifier.

RETURN VALUE
Generic errors apply.

RELATED INFORMATION.
None.

328 Mach 3 Kernel Interfaces

Security Server Interface

Mach 3 Kernel Interfaces 329

APPENDIX A MIG Server Routines

This appendix describes server message de-multiplexing routines generated by MIG
from the kernel interface definitions of use to a server in handling messages sent from
the kernel.

330 Mach 3 Kernel Interfaces

MIG Server Routines

device_reply_server

Function — Handles messages from a kernel device driver

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

boolean_tdevice_reply_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The device_reply_server function is the MIG generated server handling func-
tion to handle messages from kernel device drivers. Such messages were sent in
response to the variousdevice_..._request... calls. It is assumed when using
those calls that some task is listening for reply messages on the port named as a
reply port to those calls. Thedevice_reply_server function performs all neces-
sary argument handling for a kernel message and calls one of the device server
functions to interpret the message.

PARAMETERS

in_msg
[pointer to in structure] The device driver message received from the
kernel.

out_msg
[out structure] A reply message. No messages from a device driver ex-
pect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this device handler interface and no other
action was taken.

Mach 3 Kernel Interfaces 331

device_reply_server

RELATED INFORMATION
Functions: ds_device_open_reply, ds_device_write_reply,
ds_device_write_reply_inband, ds_device_read_reply,
ds_device_read_reply_inband.

332 Mach 3 Kernel Interfaces

MIG Server Routines

exc_server

Function — Handles kernel messages for an exception handler

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

boolean_texc_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The exc_server function is the MIG generated server handling function to han-
dle messages from the kernel relating to the occurrence of an exception in a
thread. Such messages are delivered to the exception port set via
thread_set_special_port or task_set_special_port. When an exception occurs
in a thread, the thread sends an exception message to its exception port, block-
ing in the kernel waiting for the receipt of a reply. Theexc_server function per-
forms all necessary argument handling for this kernel message and calls
catch_exception_raise, which should handle the exception. If
catch_exception_raise returns KERN_SUCCESS, a reply message will be
sent, allowing the thread to continue from the point of the exception; otherwise,
no reply message is sent andcatch_exception_raise must have dealt with the
exception thread directly.

PARAMETERS

in_msg
[pointer to in structure] The exception message received from the ker-
nel.

out_msg
[out structure] A reply message.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the exception mechanism and no other
action was taken.

Mach 3 Kernel Interfaces 333

exc_server

RELATED INFORMATION
Functions: thread_set_special_port, task_set_special_port,
catch_exception_raise.

334 Mach 3 Kernel Interfaces

MIG Server Routines

memory_object_default_server

Function — Handles kernel messages for the default memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_tmemory_object_default_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
Thememory_object_default_server function is the MIG generated server han-
dling function to handle messages from the kernel targeted to the default memo-
ry manager. This server function only handles messages unique to the default
memory manager. Messages that are common to all memory managers are han-
dled bymemory_object_server.

A memory manager is a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
memory_object_default_server function performs all necessary argument han-
dling for a kernel message and calls one of the default memory manager func-
tions.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

Mach 3 Kernel Interfaces 335

memory_object_default_server

RELATED INFORMATION
Functions: seqnos_memory_object_default_server, memory_object_server,
memory_object_create, memory_object_data_initialize,
default_pager_info, default_pager_object_create.

336 Mach 3 Kernel Interfaces

MIG Server Routines

memory_object_server

Function — Handles kernel messages for a memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_tmemory_object_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The memory_object_server function is the MIG generated server handling
function to handle messages from the kernel targeted to a memory manager.

A memory manager is a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
memory_object_server function performs all necessary argument handling for
a kernel message and calls one of the memory manager functions to interpret
the message.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

Mach 3 Kernel Interfaces 337

memory_object_server

RELATED INFORMATION
Functions: memory_object_default_server, memory_object_copy,
memory_object_data_request, memory_object_data_unlock,
memory_object_data_write, memory_object_data_return,
memory_object_init, memory_object_lock_completed,
memory_object_change_completed, memory_object_terminate,
seqnos_memory_object_server.

338 Mach 3 Kernel Interfaces

MIG Server Routines

notify_server

Function — Handle kernel generated IPC notifications

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_tnotify_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The notify_server function is the MIG generated server handling function to
handle messages from the kernel corresponding to IPC notifications. Such mes-
sages are delivered to the notification port named in amach_msg or
mach_port_request_notification call. Thenotify_server function performs all
necessary argument handling for this kernel message and calls the appropriate
handling function. These functions must be supplied by the caller.

PARAMETERS

in_msg
[pointer to in structure] The notification message received from the ker-
nel.

out_msg
[out structure] Not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the notification mechanism and no other
action was taken.

RELATED INFORMATION
Functions: seqnos_notify_server, mach_msg,
mach_port_request_notification, do_mach_notify_dead_name,
do_mach_notify_msg_accepted, do_mach_notify_no_senders,

Mach 3 Kernel Interfaces 339

notify_server

do_mach_notify_port_deleted, do_mach_notify_port_destroyed,
do_mach_notify_send_once.

340 Mach 3 Kernel Interfaces

MIG Server Routines

prof_server

Function — Handle kernel generated PC sample messages

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_tprof_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
Theprof_server function is the MIG generated server handling function to han-
dle messages from the kernel corresponding to program counter (profiling) sam-
ples. Such messages are delivered to the task or thread sample port set by
task_sampleor thread_sample. Theprof_server function performs all neces-
sary argument handling for this kernel message and calls the appropriate han-
dling function. These functions must be supplied by the caller.

PARAMETERS

in_msg
[pointer to in structure] The sample message received from the kernel.

out_msg
[out structure] Not used.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the sample mechanism and no other ac-
tion was taken.

RELATED INFORMATION
Functions:receive_samples.

Mach 3 Kernel Interfaces 341

seqnos_memory_object_default_server

seqnos_memory_object_default_server

Function — Handles kernel messages for the default memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_tseqnos_memory_object_default_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
The seqnos_memory_object_default_server function is the MIG generated
server handling function to handle messages from the kernel targeted to the de-
fault memory manager. This server function only handles messages unique to
the default memory manager. Messages that are common to all memory manag-
ers are handled byseqnos_memory_object_server.

A memory manager is a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
seqnos_memory_object_default_server function performs all necessary argu-
ment handling for a kernel message and calls one of the default memory manag-
er functions.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

NOTES
seqnos_memory_object_default_server differs from
memory_object_default_server in that it supplies message sequence numbers
to the server interfaces it calls.

342 Mach 3 Kernel Interfaces

MIG Server Routines

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to this memory management interface and
no other action was taken.

RELATED INFORMATION
Functions: memory_object_default_server, seqnos_memory_object_server,
seqnos_memory_object_create, seqnos_memory_object_data_initialize,
seqnos_default_pager_info, seqnos_default_pager_object_create.

Mach 3 Kernel Interfaces 343

seqnos_memory_object_server

seqnos_memory_object_server

Function — Handles kernel messages for a memory manager

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_tseqnos_memory_object_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
Theseqnos_memory_object_server function is the MIG generated server han-
dling function to handle messages from the kernel targeted to a memory manag-
er.

A memory manager is a server task that responds to specific messages from the
kernel in order to handle memory management functions for the kernel. The
seqnos_memory_object_server function performs all necessary argument han-
dling for a kernel message and calls one of the memory manager functions to in-
terpret the message.

PARAMETERS

in_msg
[pointer to in structure] The memory manager message received from
the kernel.

out_msg
[out structure] A reply message. No messages to a memory manager
expect a direct reply, so this field is not used.

NOTES
seqnos_memory_object_server differs frommemory_object_server in that it
supplies message sequence numbers to the server interfaces.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

344 Mach 3 Kernel Interfaces

MIG Server Routines

FALSE
The message did not apply to this memory management interface and
no other action was taken.

RELATED INFORMATION
Functions: seqnos_memory_object_default_server,
seqnos_memory_object_copy, seqnos_memory_object_data_request,
seqnos_memory_object_data_unlock, seqnos_memory_object_data_write,
seqnos_memory_object_data_return, seqnos_memory_object_init,
seqnos_memory_object_lock_completed,
seqnos_seqnos_memory_object_change_completed,
seqnos_memory_object_terminate, memory_object_server.

Mach 3 Kernel Interfaces 345

seqnos_notify_server

seqnos_notify_server

Function — Handle kernel generated IPC notifications

LIBRARY
libmach.a only

Not declared anywhere.

SYNOPSIS

boolean_tseqnos_notify_server
(mach_msg_header_t* in_msg,
mach_msg_header_t* out_msg);

DESCRIPTION
Theseqnos_notify_server function is the MIG generated server handling func-
tion to handle messages from the kernel corresponding to IPC notifications.
Such messages are delivered to the notification port named in amach_msgor
mach_port_request_notification call. Theseqnos_notify_server function per-
forms all necessary argument handling for this kernel message and calls the ap-
propriate handling function. These functions must be supplied by the caller.

PARAMETERS

in_msg
[pointer to in structure] The notification message received from the ker-
nel.

out_msg
[out structure] Not used.

NOTES
seqnos_notify_server differs fromnotify_server in that it supplies message se-
quence numbers to the server interfaces.

RETURN VALUE

TRUE
The message was handled and the appropriate function was called.

FALSE
The message did not apply to the notification mechanism and no other
action was taken.

346 Mach 3 Kernel Interfaces

MIG Server Routines

RELATED INFORMATION
Functions: notify_server, mach_msg, mach_port_request_notification,
do_seqnos_mach_notify_dead_name,
do_seqnos_mach_notify_msg_accepted,
do_seqnos_mach_notify_no_senders,
do_seqnos_mach_notify_port_deleted,
do_seqnos_mach_notify_port_destroyed,
do_seqnos_mach_notify_send_once.

Mach 3 Kernel Interfaces 347

APPENDIX B Default Memory
Management Interface

In general, the default memory manager is just like any other memory manager, except
that it is “trusted” to respond promptly to paging requests in as much as that it is the
memory manager of last resort. There are a few special requests issued to the default
memory manager having to do with the creation and management of anonymous memo-
ry.

348 Mach 3 Kernel Interfaces

Default Memory Management Interface

default_pager_info

Server Interface—Return default partition information

LIBRARY
libmach.a only

#include <mach/default_pager_object.h>

SYNOPSIS

kern_return_tdefault_pager_info
(mach_port_t pager,
vm_size_t* total,
vm_size_t* free);

seqnos_default_pager_info
Sequence Number form

kern_return_tseqnos_default_pager_info
(mach_port_t pager,
mach_port_seqno_t seqno,
vm_size_t* total,
vm_size_t* free);

DESCRIPTION
A default_pager_info function is called as the result of a message requesting
that the default memory manager return information concerning the default pag-
er’s default paging partition. The kernel does not make this call itself (which is
why it can be a synchronous call); this request is only issued by (privileged)
tasks holding a default memory managed object port.

PARAMETERS

pager
[in default-pager port] A port to the default memory manager.

seqno
[in scalar] The sequence number of this message relative to the pager
port.

total
[out scalar] Total size of the default partition.

free
[out scalar] Free space in the default partition.

Mach 3 Kernel Interfaces 349

default_pager_info

RETURN VALUE
The default memory manager should return KERN_SUCCESS if it returns the
desired information and KERN_FAILURE if it does not support the operation.

RELATED INFORMATION
Functions: vm_set_default_memory_manager,
memory_object_default_server, seqnos_memory_object_default_server.

350 Mach 3 Kernel Interfaces

Default Memory Management Interface

default_pager_object_create

Server Interface— Create a memory object managed by the default pager

LIBRARY
libmach.a only

#include <mach/default_pager_object.h>

SYNOPSIS

kern_return_tdefault_pager_object_create
(mach_port_t pager,
memory_object_t* memory_object,
vm_size_t object_size);

seqnos_default_pager_object_create
Sequence Number form

kern_return_tseqnos_default_pager_object_create
(mach_port_t pager,
mach_port_seqno_t seqno,
memory_object_t* memory_object,
vm_size_t object_size);

DESCRIPTION
A default_pager_object_create function is called as the result of a message re-
questing that the default memory manager create and return a (shared) memory
object which is suitable for use withvm_map. This memory object has the
same properties as does a memory object provided byvm_allocate: its initial
contents are zero and the backing contents are temporary in that they do not per-
sist after the memory object is destroyed. The memory object is suitable for use
as non-permanent shared memory. The kernel does not make this call itself
(which is why it can be a synchronous call); this request is only issued by (privi-
leged) tasks holding a default memory managed object port. This call should be
contrasted with the kernel'smemory_object_create message, in which the
memory cache object is already created and the identity of the abstract memory
object is made known to the default manager.

PARAMETERS

pager
[in default-pager port] A port to the default memory manager.

seqno
[in scalar] The sequence number of this message relative to the pager
port.

Mach 3 Kernel Interfaces 351

default_pager_object_create

memory_object
[out abstract-memory-object port] The abstract memory object port for
the memory object.

object_size
[in scalar] The maximum size for the memory object.

RETURN VALUE
Return KERN_SUCCESS if the object was created.

RELATED INFORMATION
Functions: vm_map, vm_set_default_memory_manager,
memory_object_create, memory_object_default_server,
seqnos_memory_object_default_server.

352 Mach 3 Kernel Interfaces

Default Memory Management Interface

memory_object_create

Server Interface — Requests transfer of responsibility for a kernel-created
memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_create
(mach_port_t old_memory_object,
mach_port_t new_memory_object,
vm_size_t new_object_size,
mach_port_t new_control,
mach_port_t new_name,
vm_size_t new_page_size);

seqnos_memory_object_create
Sequence Number form

kern_return_tseqnos_memory_object_create
(mach_port_t old_memory_object,
mach_port_seqno_t seqno,
mach_port_t new_memory_object,
vm_size_t new_object_size,
mach_port_t new_control,
mach_port_t new_name,
vm_size_t new_page_size);

DESCRIPTION
A memory_object_create function is called as the result of a message from the
kernel requesting that the default memory manager accept responsibility for the
new memory object created by the kernel. The kernel makes this call only to the
system default memory manager.

The new memory object initially consists of zero-filled pages. Only memory
pages that are actually written are provided to the memory manager. When pro-
cessingmemory_object_data_request calls from the kernel, the default memo-
ry manager must usememory_object_data_unavailable for any pages that
have not been written previously.

The kernel does not expect a reply to this call. The kernel assumes that the de-
fault memory manager will be ready to handle data requests to this object and
does not need the confirmation of amemory_object_readycall.

Mach 3 Kernel Interfaces 353

memory_object_create

PARAMETERS

old_memory_object
[in default-pager port] An existing abstract memory object provided by
the default memory manager.

seqno
[in scalar] The sequence number of this message relative to the old ab-
stract memory object port.

new_memory_object
[in abstract-memory-object port] The port representing the new ab-
stract memory object created by the kernel. The kernel provides all
port rights (including the receive right) for the new memory object.

new_object_size
[in scalar] The expected size for the new object, in bytes.

new_control
[in memory-cache-control port] The memory cache control port to be
used by the memory manager when making cache management re-
quests for the new object.

new_name
[in memory-cache-name port] The memory cache name port used by
the kernel to refer to the new memory object data in response to
vm_region calls.

new_page_size
[in scalar] The page size used by the kernel. All calls involving this
kernel must use data sizes that are integral multiples of this page size.

NOTES
The kernel requires memory objects to provide temporary backing storage for
zero-filled memory created byvm_allocate calls, issued by both user tasks and
the kernel itself. The kernel allocates an abstract memory object port to repre-
sent the temporary backing storage and usesmemory_object_create to pass the
new memory object to the default memory manager, which provides the storage.

The default memory manager is a trusted system component that is identified to
the kernel at system initialization time. The default memory manager can also
be changed at run time using thevm_set_default_memory_manager call.

The contents of a kernel-created (as opposed to a user-created) memory object
can be modified only in main memory. The default memory manager must not
change the contents of a temporary memory object, or allow unrelated tasks to
access the memory object, control, or name port.

354 Mach 3 Kernel Interfaces

Default Memory Management Interface

The kernel provides the size of a temporary memory object based on the allocat-
ed size. Since the object is not mapped by other tasks, the object will not grow
by explicit action. However, the kernel may coalesce adjacent temporary ob-
jects in such a way that this object may appear to grow. As such, the supplied
object size is merely a hint as to the maximum size.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY causes
mach_msg_server to remove the abstract memory object, memory cache con-
trol and memory cache name port references.

RELATED INFORMATION
Functions: default_pager_object_create, memory_object_data_initialize,
memory_object_data_unavailable, memory_object_default_server,
seqnos_memory_object_default_server.

Mach 3 Kernel Interfaces 355

memory_object_data_initialize

memory_object_data_initialize

Server Interface — Writes initial data back to a temporary memory object

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tmemory_object_data_initialize
(mach_port_t memory_object,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count);

seqnos_memory_object_data_initialize
Sequence Number form

kern_return_tseqnos_memory_object_data_initialize
(mach_port_t memory_object,
mach_port_seqno_t seqno,
mach_port_t memory_control,
vm_offset_t offset,
vm_offset_t data,
vm_size_t data_count);

DESCRIPTION
A memory_object_data_initialize function is called as the result of a kernel
message providing the default memory manager with initial data for a kernel-
created memory object. If the memory manager already has supplied data (by a
previousmemory_object_data_initialize or memory_object_data_return), it
should ignore this call. Otherwise, the call behaves the same as the
memory_object_data_return call.

The kernel makes this call only to the default memory manager and only on tem-
porary memory objects that it has created withmemory_object_create. Note
that the kernel does not make this call on objects created via
memory_object_copy.

PARAMETERS

memory_object
[in abstract-memory-object port] The abstract memory object port that
represents the memory object data, as supplied by the kernel in a
memory_object_create call.

356 Mach 3 Kernel Interfaces

Default Memory Management Interface

seqno
[in scalar] The sequence number of this message relative to the ab-
stract memory object port.

memory_control
[in memory-cache-control port] The memory cache control port to be
used for a response by the memory manager. If the memory object has
been supplied to more than one kernel, this parameter identifies the ker-
nel that is making the call.

offset
[in scalar] The offset within the memory object.

data
[in pointer to dynamic array of bytes] The data that has been modified
while cached in physical memory.

data_count
[in scalar] The number of bytes to be written, starting atoffset. The
number converts to an integral number of memory object pages.

RETURN VALUE
Any return value other than KERN_SUCCESS or MIG_NO_REPLY causes
mach_msg_server to remove the memory cache control port reference and to
de-allocate the returned data.

RELATED INFORMATION
Functions: memory_object_create, memory_object_data_return,
memory_object_default_server, seqnos_memory_object_default_server.

Mach 3 Kernel Interfaces 357

vm_set_default_memory_manager

vm_set_default_memory_manager

Function — Sets the default memory manager.

SYNOPSIS

kern_return_tvm_set_default_memory_manager
(mach_port_t host_priv,
mach_port_t* default_manager);

DESCRIPTION
Thevm_set_default_memory_managerfunction establishes the default memo-
ry manager for a host.

SECURITY
The requesting task must holdhpsv_set_default_memory_mgrpermission to
host_priv.

PARAMETERS

host_priv
[in host-control port] The control port naming the host for which the
default memory manager is to be set.

default_manager
[pointer to in/out default-pager port] A memory manager port to the
new default memory manager. If this value is MACH_PORT_NULL,
the old memory manager is not changed. The old memory manager
port is returned in this variable.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions:memory_object_create, vm_allocate.

358 Mach 3 Kernel Interfaces

Default Memory Management Interface

Mach 3 Kernel Interfaces 359

APPENDIX C Multicomputer Support

Support for multicomputers is being added to the Mach kernel. This provides transparent
support for distributed, non-shared-memory environments. The current support does not
handle node failures and so is suitable to multicomputer environments but not yet to net-
worked workstation environments.

With this support, a single logical Mach kernel is formed that spans a set of computers.
This support transparently distributes Mach IPC and virtual memory. However, each host
(called anode) within the multicomputer maintains its identity (separate control and
name ports, processor sets, devices, etc.).

This appendix describes operations that apply to individual nodes in such a configuration.

360 Mach 3 Kernel Interfaces

Multicomputer Support

norma_get_special_port

Function — Returns a send right to a node specific port

LIBRARY
#include <mach/norma_special_ports.h>

SYNOPSIS

kern_return_tnorma_get_special_port
(mach_port_t host_priv,
int node,
int which_port,
mach_port_t* special_port);

norma_get_device_port
Macro form

kern_return_tnorma_get_device_port
(mach_port_t host_priv,
int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node, NORMA_DEVICE_PORT,
special_port)

norma_get_host_paging_port
Macro form

kern_return_tnorma_get_host_paging_port
(mach_port_t host_priv,
int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node,
NORMA_HOST_PAGING_PORT,special_port)

norma_get_host_port
Macro form

kern_return_tnorma_get_host_port
(mach_port_t host_priv,
int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node, NORMA_HOST_PORT,
special_port)

norma_get_host_priv_port
Macro form

kern_return_tnorma_get_host_priv_port
(mach_port_t host_priv,

Mach 3 Kernel Interfaces 361

norma_get_special_port

int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node, NORMA_HOST_PRIV_PORT,
special_port)

norma_get_nameserver_port
Macro form

kern_return_tnorma_get_nameserver_port
(mach_port_t host_priv,
int node,
mach_port_t* special_port)

⇒ norma_get_special_port (host_priv, node,
NORMA_NAMESERVER_PORT,special_port)

DESCRIPTION
Thenorma_get_special_port function returns a send right for a special port be-
longing tonode onhost_priv.

Each node maintains a (small) set of node specific ports. The device master
port, host paging port, host name and host control port are maintained by the
kernel. The kernel also permits a small set of server specified node specific
ports; the name server port is an example and is given (by convention) an as-
signed special port index.

PARAMETERS

host_priv
[in host-control port] The control port for the host for which to return
the special port’s send right.

node
[in scalar] The index of the node for which the port is desired.

which_port
[in scalar] The index of the special port for which the send right is re-
quested. Valid values are:

NORMA_DEVICE_PORT
[device-master port] The device master port for the node.

NORMA_HOST_PAGING_PORT
[default-pager port] The default pager port for the node.

362 Mach 3 Kernel Interfaces

Multicomputer Support

NORMA_HOST_PORT
[host-name port] The host name port for the node. If the speci-
fied node is the current node, this value (unless otherwise set)
is the same as would be returned bymach_host_self.

NORMA_HOST_PRIV_PORT
[host-control port] The host control port for the node.

NORMA_NAMESERVER_PORT
[name-server port] The registered name server port for the
node.

special_port
[out norma-special port] The returned value for the port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: mach_host_self, norma_set_special_port,
vm_set_default_memory_manager.

Mach 3 Kernel Interfaces 363

norma_port_location_hint

norma_port_location_hint

Function — Guess a port’s current location

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tnorma_port_location_hint
(mach_port_t task,
mach_port_t port,
int* node);

DESCRIPTION
Thenorma_port_location_hint function returns the best guess ofport's current
location. The hint is guaranteed to be a node where the port once was; it is guar-
anteed to be accurate if port has never moved. This can be used to determine res-
idence node for hosts, tasks, threads, etc.

PARAMETERS

task
[in task port] Task reference (not currently used)

port
[in random port] Send right to the port to locate.

node
[out scalar] Port location hint

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_set_child_node, norma_task_create.

364 Mach 3 Kernel Interfaces

Multicomputer Support

norma_set_special_port

Function — Sets a node specific special port

LIBRARY
#include <mach/norma_special_ports.h>

SYNOPSIS

kern_return_tnorma_set_special_port
(mach_port_t host_priv,
int node,
int which_port,
mach_port_t special_port);

norma_set_device_port
Macro form

kern_return_tnorma_set_device_port
(mach_port_t host_priv,
int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node, NORMA_DEVICE_PORT,
special_port)

norma_set_host_paging_port
Macro form

kern_return_tnorma_set_host_paging_port
(mach_port_t host_priv,
int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node,
NORMA_HOST_PAGING_PORT,special_port)

norma_set_host_port
Macro form

kern_return_tnorma_set_host_port
(mach_port_t host_priv,
int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node, NORMA_HOST_PORT,
special_port)

norma_set_host_priv_port
Macro form

kern_return_tnorma_set_host_priv_port
(mach_port_t host_priv,

Mach 3 Kernel Interfaces 365

norma_set_special_port

int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node, NORMA_HOST_PRIV_PORT,
special_port)

norma_set_nameserver_port
Macro form

kern_return_tnorma_set_nameserver_port
(mach_port_t host_priv,
int node,
mach_port_t special_port)

⇒ norma_set_special_port (host_priv, node,
NORMA_NAMESERVER_PORT,special_port)

DESCRIPTION
The norma_set_special_port function sets the special port belonging tonode
onhost_priv.

Each node maintains a (small) set of node specific ports. The device master
port, host paging port, host name and host control port are maintained by the
kernel. The kernel also permits a small set of server specified node specific
ports; the name server port is an example and is given (by convention) an as-
signed special port index.

PARAMETERS

host_priv
[in host-control port] The host for which to set the special port. Cur-
rently, this must be the per-node host control port.

node
[in scalar] The index of the node for which the port is to be set.

which_port
[in scalar] The index of the special port to be set. Valid values are:

NORMA_DEVICE_PORT
[device-master port] The device master port for the node.

NORMA_HOST_PAGING_PORT
[default-pager port] The default pager port for the node.

NORMA_HOST_PORT
[host-name port] The host name port for the node.

366 Mach 3 Kernel Interfaces

Multicomputer Support

NORMA_HOST_PRIV_PORT
[host-control port] The host control port for the node.

NORMA_NAMESERVER_PORT
[name-server port] The registered name server port for the
node.

special_port
[in norma-special port] A send right to the new special port.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: mach_host_self, norma_get_special_port,
vm_set_default_memory_manager.

Mach 3 Kernel Interfaces 367

norma_task_clone

norma_task_clone

Function — “Clone” a task on a specified node

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tnorma_task_clone
(mach_port_t parent_task,
boolean_t inherit_memory,
int child_node,
mach_port_t* child_task);

DESCRIPTION
The norma_task_clone function “clones” a new task fromparent_task on the
specifiednode and returns the name of the new task inchild_task. The child
task acquires shared parts of the parent’s address space (seevm_inherit) regard-
less of the inheritance set for the parent’s memory regions, although the inherit-
ance for the child’s regions will be set to that of the parent’s regions. The child
task initially contains no threads.

By way of comparison, tasks created by the standardtask_create primitive are
created on the node last set bytask_set_child_node (by default the
parent_task’s node).

Other than being created on a different node, the new task has the same proper-
ties as if created bytask_create.

PARAMETERS

parent_task
[in task port] The port for the task from which to draw the child task’s
port rights, resource limits, and address space.

inherit_memory
[in scalar] Address space inheritance indicator. If true, the child task in-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_node
[in scalar] The node index of the node on which to create the child.

child_task
[out task port] The kernel-assigned port name for the new task.

368 Mach 3 Kernel Interfaces

Multicomputer Support

NOTES
This call differs fromnorma_task_create in that the inheritance set for the par-
ent’s memory regions is ignored; the child always shares memory with the par-
ent.

This call is intended to support process migration, where the inheritance seman-
tics of norma_task_create would break migrated programs that depended upon
sharing relationships remaining after migration.

This call is not a true task migration call, in that it does not migrate the port
space, threads, and other non-address-space attributes of the task.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_create, norma_task_create, task_set_child_node.

Mach 3 Kernel Interfaces 369

norma_task_create

norma_task_create

Function — Create a task on a specified node

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_tnorma_task_create
(mach_port_t parent_task,
boolean_t inherit_memory,
int child_node,
mach_port_t* child_task);

DESCRIPTION
The norma_task_create function creates a new task fromparent_task on the
specifiednode and returns the name of the new task inchild_task. The child
task acquires shared or copied parts of the parent’s address space (see
vm_inherit). The child task initially contains no threads.

By way of comparison, tasks created by the standardtask_create primitive are
created on the node last set bytask_set_child_node (by default the
parent_task’s node).

Other than being created on a different node, the new task has the same proper-
ties as if created bytask_create.

PARAMETERS

parent_task
[in task port] The port for the task from which to draw the child task’s
port rights, resource limits, and address space.

inherit_memory
[in scalar] Address space inheritance indicator. If true, the child task in-
herits the address space of the parent task. If false, the kernel assigns
the child task an empty address space.

child_node
[in scalar] The node index of the node on which to create the child.

child_task
[out task port] The kernel-assigned port name for the new task.

370 Mach 3 Kernel Interfaces

Multicomputer Support

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: task_create, norma_task_clone, task_set_child_node.SECURITY

The requesting task must hold hsv_get_host_name permission to the processor’s
host name port.

Mach 3 Kernel Interfaces 371

task_set_child_node

task_set_child_node

Function — Set the node upon which future child tasks will be created

LIBRARY
Not declared anywhere.

SYNOPSIS

kern_return_ttask_set_child_node
(mach_port_t task,
int child_node);

DESCRIPTION
The task_set_child_nodefunction specifies a node upon which child tasks will
be created. This call exists only to allow testing with unmodified servers. Server
developers should usenorma_task_create instead.

PARAMETERS

task
[in task port] The task who’s children are to be affected.

node
[in scalar] The index of the node upon which future children should be
created.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: norma_task_create, norma_task_clone.

372 Mach 3 Kernel Interfaces

Multicomputer Support

Mach 3 Kernel Interfaces 373

APPENDIX D Intel 386 Support

This appendix describes special kernel interfaces to support the special hardware features
of the Intel 386 processor and its successors.

Aside from the special functions listed here, the Intel 386 support also includes special
thread state “flavors” (Seemach/thread_status.h.).

• i386_THREAD_STATE—Basic machine thread state, except for segment and float-
ing registers.

• i386_REGS_SEGS_STATE—Same as i386_THREAD_STATE but also sets/gets seg-
ment registers.

• i386_FLOAT_STATE—Floating point registers.

• i386_V86_ASSIST_STATE—Virtual 8086 interrupt table.

(The i386_ISA_PORT_MAP_STATE flavor shown inmach/thread_status.h has been
disabled.)

IO Permission Bitmap
The 386 supports direct IO instructions. Generally speaking, these instructions are privi-
leged (sensitive to IOPL). Mach, in combination with the processor, allows threads to di-
rectly execute these instructions against hardware IO ports for which the thread has
permission (those named in its IO permission bitmap). (Note that this is a per-thread
property.) Thei386_io_port_add function enables IO to the port corresponding to the de-
vice port supplied to the call.i386_io_port_remove disables such IO;i386_io_port_list
lists the devices to which IO is permitted.

For the sake of supporting the DOS emulator, the kernel supports a special deviceiopl.
Access to this device implies access to the speaker, configuration CMOS, game port,

374 Mach 3 Kernel Interfaces

Intel 386 Support

sound blaster, printer and the VGA ports (devicekd0 or vga). Attempting to execute an
IO instruction against one of these devices when the task holds send rights to theiopl de-
vice automatically adds these devices to the IO permission bitmap.

Virtual 8086 Support
Virtual 8086 mode is supported by Mach, enabled when the EFL_VM (virtual machine)
flag in the thread state→efl is set. The various instructions sensitive to IOPL are simulat-
ed by the Mach kernel. This includes simulating an interrupt enabled flag and associated
instructions.

A virtual 8086 task receives simulated 8086 interrupts by setting an interrupt descriptor
table (in task space). This table is set with the i386_V86_ASSIST_STATE status flavor.

[1] struct i386_v86_assist_state
[2] {
[3] unsigned int int_table;
[4] int int_count;
[5] };
[6] #define i386_V86_ASSIST_STATE_COUNT

(sizeof (structi386_v86_assist_state)/sizeof(unsigned int))

The int_table field points to an interrupt table in task space. The table hasint_count en-
tries. Each entry of this table has the format shown below.

[1] structv86_interrupt_table
[2] {
[3] unsigned int count;
[4] unsigned short mask;
[5] unsigned short vec;
[6] };

When the 8086 task has an associated interrupt table and its simulated interrupt enable
flag is set, the kernel will scan the table looking for an entry whosecount is greater than
zero and whosemask value is not set. If found, the count will be decremented and the
task will take a simulated 8086 interrupt to the address given byvec. No other simulated
interrupts will be generated until the 8086 task executes aniret instruction and the (simu-
lated) interrupt enable flag is again set. The generation of the simulated interrupt will
turn off the hardware’s trace trap flag; executing theiret instruction will restore the trace
trap flag.

Local Descriptor Table
Although the 386 (and successors) view the address space as segmented, Mach provides
each task with a linear address space (32 bits for the Intel family). The various entries in
the system global descriptor table (GDT) are used for system use; in general the entries
map all of kernel memory. The thread’s local descriptor table (LDT) maps its task space.
Segment 2 of this table is used for task code accesses (it permits only read access); seg-
ment 3 is used for data accesses (it permits write access, subject to page level protec-
tions); both segments, though, map all of the task’s address space. Segment 1 of the table
is unused. Segment 0 is used as a call gate for system calls (traps).

Mach 3 Kernel Interfaces 375

Each thread may set entries in its LDT to describe various ranges of its underlying ad-
dress space. There is no way that this mechanism permits a thread to access any more vir-
tual memory than its address space permits; these LDT segment entries merely provide
different views of the address space. A segment may be thought of as an automatically re-
located portion of the address space; the beginning of a segment can be referenced as ad-
dress zero given the appropriately set 386 segment register. These local segment
descriptors are manipulated with thei386_set_ldt function and examined with the
i386_get_ldt function.

376 Mach 3 Kernel Interfaces

Intel 386 Support

i386_get_ldt

Function — Return per-thread segment descriptors

LIBRARY
#include <mach/i386/mach_i386.h>

SYNOPSIS
[1] structdescriptor
[2] {
[3] unsigned int low_word;
[4] unsigned int high_word;
[5] };
[6] typedef struct descriptor descriptor_t;
[7] typedef struct descriptor* descriptor_list_t;

kern_return_ti386_get_ldt
(mach_port_t thread,
int first_selector,
int desired_count,
descriptor_list_t* desc_list,
mach_msg_type_number_t* returned_count);

DESCRIPTION
The i386_get_ldt function returns per-thread segment descriptors from the
thread’s local descriptor table (LDT).

SECURITY
The requesting task must holdthsv_get_thread_infopermission tothread.

PARAMETERS

thread
[in thread port] Thread whose segment descriptors are to be returned

first_selector
[in scalar] Selector value (segment register value) corresponding to the
first segment whose descriptor is to be returned

desired_count
[in scalar] Number of returned descriptors desired

Mach 3 Kernel Interfaces 377

i386_get_ldt

desc_list
[unbounded out in-line array ofdescriptor_t] Array of segment descrip-
tors. The reserved size of this array is supplied as the input value for
returned_count.

returned_count
[pointer to in/out scalar] On input, the reserved size of the descriptor ar-
ray; on output, the number of descriptors returned

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: i386_set_ldt.

378 Mach 3 Kernel Interfaces

Intel 386 Support

i386_io_port_add

Function — Permit IO instructions to be performed against a device

LIBRARY
#include <mach/i386/mach_i386.h>

SYNOPSIS

kern_return_ti386_io_port_add
(mach_port_t thread,
mach_port_t device);

DESCRIPTION
The i386_io_port_add function adds a device to the IO permission bitmap for a
thread, thereby permitting the thread to execute IO instructions against the de-
vice.

SECURITY
The requesting task must holdthsv_set_thread_environmentpermission to
thread.

PARAMETERS

thread
[in thread port] Thread whose permission bitmap is to be set.

device
[in device port] The device to which IO instructions are to be permitted.

NOTES
Normally, the thread must have calledi386_io_port_add for all devices to
which it will execute IO instructions. However, possessing send rights to the
iopl device port will cause theiopl device to be automatically added to the
thread’s IO map upon first attempted access. This is a backward compatibility
feature for the DOS emulator.

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: i386_io_port_list, i386_io_port_remove.

Mach 3 Kernel Interfaces 379

i386_io_port_list

i386_io_port_list

Function — List devices permitting IO

LIBRARY
#include <mach/i386/mach_i386.h>

SYNOPSIS

kern_return_ti386_io_port_list
(mach_port_t thread,
device_list_t* list,
mach_msg_type_number_t* count);

DESCRIPTION
The i386_io_port_list function returns a list of the devices named in the
thread’s IO permission bitmap, namely those permitting IO instructions to be ex-
ecuted against them.

SECURITY
The requesting task must holdthsv_get_thread_infopermission tothread.

PARAMETERS

thread
[in thread port] Thread whose permission list is to be returned

list
[out pointer to dynamic array of device ports] Device ports permitting
IO

count
[out scalar] The number of ports returned

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: i386_io_port_add, i386_io_port_remove.

380 Mach 3 Kernel Interfaces

Intel 386 Support

i386_io_port_remove

Function — Disable IO instructions against a device

LIBRARY
#include <mach/i386/mach_i386.h>

SYNOPSIS

kern_return_ti386_io_port_remove
(mach_port_t thread,
mach_port_t device);

DESCRIPTION
The i386_io_port_remove function removes the specified device from the
thread’s IO permission bitmap, thereby prohibiting IO instructions being execut-
ed against the device.

SECURITY
The requesting task must holdthsv_set_thread_environmentpermission to
thread.

PARAMETERS

thread
[in thread port] Thread whose permission bitmap is to be cleared

device
[in device port] Device whose permission is to be revoked

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: i386_io_port_add, i386_io_port_list.

Mach 3 Kernel Interfaces 381

i386_set_ldt

i386_set_ldt

Function — Set per-thread segment descriptors

LIBRARY
#include <mach/i386/mach_i386.h>

SYNOPSIS
[1] structdescriptor
[2] {
[3] unsigned int low_word;
[4] unsigned int high_word;
[5] };
[6] typedef struct descriptor descriptor_t;
[7] typedef struct descriptor* descriptor_list_t;

kern_return_ti386_set_ldt
(mach_port_t thread,
int first_selector,
descriptor_list_t desc_list,
mach_msg_type_number_t count);

DESCRIPTION
The i386_set_ldt function allows a thread to have a private local descriptor ta-
ble (LDT) which allows its local segments to map various ranges of its address
space.

SECURITY
The requesting task must holdthsv_set_thread_environmentpermission to
thread.

PARAMETERS

thread
[in thread port] Thread whose segment descriptors are to be set

first_selector
[in scalar] Selector value (segment register value) corresponding to the
first segment whose descriptor is to be set

desc_list
[pointer to in array ofdescriptor_t] Array of segment descriptors. The
following forms are permitted:

382 Mach 3 Kernel Interfaces

Intel 386 Support

• Empty descriptor. The ACC_P flag (segment present) may or may
not be set.

• ACC_CALL_GATE — Converted into a system call gate. The
ACC_P flag must be set.

All other descriptors must have both the ACC_P flag set and specify
user mode access (ACC_PL_U).

• ACC_DATA

• ACC_DATA_W

• ACC_DATA_E

• ACC_DATA_EW

• ACC_CODE

• ACC_CODE_R

• ACC_CODE_C

• ACC_CODE_CR

• ACC_CALL_GATE_16

• ACC_CALL_GATE

count
[in scalar] Number of descriptors to be set

RETURN VALUE
Only generic errors apply.

RELATED INFORMATION
Functions: i386_get_ldt.

Mach 3 Kernel Interfaces 383

APPENDIX E Data Structures

This appendix discusses the specifics of the various structures used as a part of the ker-
nel’s various interfaces. This appendix does not discuss all of the various data types used
by the kernel’s interfaces, only the fields of the various structures used.

384 Mach 3 Kernel Interfaces

Data Structures

host_basic_info

Structure — Defines basic information about a host

SYNOPSIS
[1] structhost_basic_info
[2] {
[3] int max_cpus;
[4] int avail_cpus;
[5] vm_size_t memory_size;
[6] cpu_type_t cpu_type;
[7] cpu_subtype_t cpu_subtype;
[8] };
[9] typedef struct host_basic_info host_basic_info_data_t;

[10] typedef struct host_basic_info* host_basic_info_t;

DESCRIPTION
The host_basic_infostructure defines the basic information available about a
host.

FIELDS

max_cpus
Maximum possible CPUs for which kernel is configured

avail_cpus
Number of CPUs now available

memory_size
Size of memory, in bytes

cpu_type
CPU type

cpu_subtype
CPU sub-type

NOTES
This structure is machine word length specific because of the memory size re-
turned.

RELATED INFORMATION
Functions: host_info.

Data structures: host_load_info, host_sched_info.

Mach 3 Kernel Interfaces 385

host_load_info

host_load_info

Structure — Defines load information about a host

SYNOPSIS
[1] #defineCPU_STATE_USER 0
[2] #defineCPU_STATE_SYSTEM 1
[3] #defineCPU_STATE_IDLE 2
[4] structhost_load_info
[5] {
[6] long avenrun[3];
[7] long mach_factor[3];
[8] };
[9] typedef struct host_load_info host_load_info_data_t;

[10] typedef struct host_load_info* host_load_info_t;

DESCRIPTION
The host_load_infostructure defines the loading information available about a
host. The information returned is exponential averages over three periods of
time: 5, 30 and 60 seconds.

FIELDS

avenrun
load average—average number of runnable processes divided by num-
ber of CPUs

mach_factor
The processing resources available to a new thread—the number of
CPUs divided by (1 + the number of threads)

RELATED INFORMATION
Functions: host_info.

Data structures: host_basic_info, host_sched_info.

386 Mach 3 Kernel Interfaces

Data Structures

host_sched_info

Structure — Defines scheduling information about a host

SYNOPSIS
[1] structhost_sched_info
[2] {
[3] int min_timeout;
[4] int min_quantum;
[5] };
[6] typedef struct host_sched_info host_sched_info_data_t;
[7] typedef struct host_sched_info* host_sched_info_t;

DESCRIPTION
The host_sched_info structure defines the limiting scheduling information
available about a host.

FIELDS

min_timeout
Minimum time-out, in milliseconds

min_quantum
Minimum quantum (period for which a thread can be scheduled if unin-
terrupted), in milliseconds

RELATED INFORMATION
Functions: host_info.

Data structures: host_basic_info, host_load_info.

Mach 3 Kernel Interfaces 387

mach_access_vector

mach_access_vector

Structure — Defines the mach access vector which defines the privileges sup-
ported by the Mach kernel.

SYNOPSIS
[1] structmach_access_vector
[2] {
[3] /* permissions */
[4] unsigned char av_can_receive: 1,
[5] av_can_send: 1,
[6] av_hold_receive: 1,
[7] av_hold_send: 1,
[8] av_hold_send_once: 1,
[9] av_interpose: 1,

[10] av_specify: 1,
[11] av_transfer_receive: 1;
[12] unsigned char av_transfer_rights: 1,
[13] av_transfer_send: 1,
[14] av_transfer_send_once: 1;
[15] av_transfer_ool: 1,
[16] mosv_map_vm_region: 1;
[17] av_set_reply: 1;
[18] av_unused: 2;
[19] /* allowed operations */
[20] union mach_services av_service;
[21] };
[22] typedef struct mach_access_vector mach_access_vector_data_t;
[23] typedef struct mach_access_vector* mach_access_vector_t;

DESCRIPTION
The mach_access_vectorstructure defines the permissions that one security
identifier has to another security identifier. The Mach kernel IPC processing is
responsible for the enforcement of the permissions upon each attempted use of
a port right. In addition the Mach kernel service processing is responsible for
the enforcement of the services portion of an access vector before any service is
rendered. The general structure provides for 16 permissions and 48 operations.
In total it takes two 32 bit words.

FIELDS

av_can_receive
Indicates that the task has receive permission to the associated port
right.

388 Mach 3 Kernel Interfaces

Data Structures

av_can_send
Indicates that the task has permission to send on the associated port
right.

av_hold_receive
Indicates that the task has permission to hold aRECEIVE right.

av_hold_send
Indicates that the task has permission to hold aSEND right.

av_hold_send_once
Indicates that the task has permission to hold aSEND ONCE right.

av_interpose
Indicates that the task has permission to receive messages that were to
be received by another security identifier.

av_specify
Indicates that the task has permission to specify which security identity
is to be associated with a message.

av_transfer_receive
Indicates that the task has permission to transfer aRECEIVE right.

av_transfer_send
Indicates that the task has permission to transfer aSEND right.

av_transfer_send_once
Indicates that the task has permission to transfer aSEND ONCE right.

av_transfer_ool
Indicates that the task has permission to transfer out-of-line data in a
message to the target port.

mosv_map_vm_region
Controls default_pager_object_create, vm_allocate,
vm_allocate_secure, vm_map.

av_service
Defines the services that security policy allows the message receiver to
do for the message’s sender. The kernel interprets this portion of the ac-
cess vector if and if only the kernel is the receiver of the message.

NOTES
The contents of an access vector are computed by the Security Server in agree-
ment with a specific security policy and provided to the kernel via interaction
with the Security Server. The kernel may cache the access vectors to increase

Mach 3 Kernel Interfaces 389

mach_access_vector

performance. The kernel provides entries to ensure that the cached vectors may
be invalidated.

Functions:mach_msg_secure.

Data Structures:mach_services_t.

390 Mach 3 Kernel Interfaces

Data Structures

mach_device_services

Structure — Defines the services that a task is allowed to request of a device
on a kernel device port.

SYNOPSIS
[1] structmach_device_services
[2] {
[3] unsigned char dsv_close_device: 1,
[4] dsv_get_device_status: 1,
[5] dsv_map_device: 1,
[6] dsv_open_device: 1,
[7] dsv_read_device: 1,
[8] dsv_set_device_filter: 1,
[9] dsv_set_device_status: 1,

[10] dsv_write_device:1;
[11] unsigned char dsv_pager_ctrl: 1,
[12] dsv_pad: 7
[13] };
[14] typedef struct mach_device_services mach_device_services_data_t;
[15] typedef struct mach_device_services* mach_device_services_t;

DESCRIPTION
The mach_device_servicesstructure defines the services that a requesting task
is allowed to make to a kernel device port.

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each device directed kernel
request.

FIELDS
A TRUE value in a specific field indicates that requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structures:mach_access_vector_t, mach_services_t.

Mach 3 Kernel Interfaces 391

mach_generic_services

mach_generic_services

Structure — General data structure to set the maximum size of an allowed op-
erations vector.

SYNOPSIS
[1] structmach_generic_services
[2] {
[3] unsigned char ago_first_8_bits;
[4] unsigned char ago_second_8_bits;
[5] unsigned char ago_thrid_8_bits;
[6] unsigned char ago_forth_8_bits;
[7] unsigned char ago_fifth_8_bits;
[8] unsigned char ago_sixth_8_bits;
[9] };

[10] typedef struct mach_generic_services mach_generic_services_data_t;
[11] typedef struct mach_generic_services* mach_generic_services_t;

DESCRIPTION
Themach_generic_servicesstructure established the maximum size of the ser-
vice vectors. This must be taken into consideration when defining the security
database for any system built on the DTOS kernel.

SECURITY
Not Applicable.

FIELDS
The fields of instances of allowed operations vectors are specified by the system
security policy.

RELATED INFORMATION
Functions:

Data Structures:mach_access_vector_t, and mach_services_t.

392 Mach 3 Kernel Interfaces

Data Structures

mach_kernel_reply_port_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel host privilege port.

SYNOPSIS
[1] structmach_kernel_reply_port_services
[2] {
[3] unsigned char krpsv_provide_permission: 1,
[4] krpsv_pad: 7;
[5] };
[6] typedef struct mach_host_priv_services

mach_kernel_reply_port_services;
[7] typedef struct mach_host_priv_services*

mach_kernel_reply_port_services_t;

DESCRIPTION
The mach_kernel_reply_port_servicesstructure defines the services that a re-
questing task is allowed to make on a kernel reply_port.

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each reply port that it pro-
vides to an external server as a result of a kernel outcall request. The following
list indicates which kernel entries are controlled by each service bit.

krpsv_provide_permission
Controls reply to sec_access_providedservice request

FIELDS
A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structures:mach_access_vector_tand mach_services_t.

Mach 3 Kernel Interfaces 393

mach_host_priv_services

mach_host_priv_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel host privilege port.

SYNOPSIS
[1] structmach_host_priv_services
[2] {
[3] unsigned char hpsv_get_boot_info: 1,
[4] hpsv_get_host_processors: 1,
[5] hpsv_pset_ctrl_port: 1,
[6] hpsv_reboot_host: 1,
[7] hpsv_set_default_memory_mgr: 1,
[8] hpsv_set_time: 1;
[9] hpsv_wire_thread: 1,

[10] hpsv_wire_vm: 1;
[11] };
[12] typedef struct mach_host_priv_services mach_host_priv_services_data_t;
[13] typedef struct mach_host_priv_services*mach_host_priv_services_t;

DESCRIPTION
The mach_host_priv_servicesstructure defines the services that a requesting
task is allowed to make on a kernel host control port.

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each host privileged port di-
rected kernel request.

FIELDS
A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structures:mach_access_vector_tand mach_services_t.

394 Mach 3 Kernel Interfaces

Data Structures

mach_host_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel host name port.

SYNOPSIS
[1] structmach_host_services
[2] {
[3] unsigned char hsv_create_pset: 1,
[4] hsv_flush_permission: 1,
[5] hsv_get_default_pset_name: 1,
[6] hsv_get_host_info: 1,
[7] hsv_get_host_name: 1,
[8] hsv_get_host_version: 1,
[9] hsv_get_time: 1,

[10] hsv_pset_names: 1,
[11] unsigned char hsv_get_audit_port: 1,
[12] hsv_get_security_client_port: 1,
[13] hsv_get_security_master_port: 1,
[14] hsv_get_special_port: 1,
[15] hsv_set_audit_port: 1,
[16] hsv_set_security_client_port: 1,
[17] hsv_set_security_master_port: 1,
[18] hsv_set_special_port: 1,
[19] unsigned char hsv_get_crypto_port: 1,
[20] hsv_get_host_control_port: 1,
[21] hsv_get_negotiation_port: 1,
[22] hsv_set_crypto_port: 1,
[23] hsv_set_negotiation_port: 1,
[24] hsv_get_authentication_port: 1,
[25] hsv_set_authentication_port: 1,
[26] hsv_get_network_ss_port:1;
[27] unsigned char hsv_set_network_ss_port:1,
[28] hsv_pad:7;
[29] };
[30] typedef struct mach_host_services mach_host_services_data_t;
[31] typedef struct mach_host_services* mach_host_services_t;

DESCRIPTION
The mach_host_servicesstructure defines the services that a requesting task is
allowed to make on a kernel host name port.

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each host name port directed
kernel request.

Mach 3 Kernel Interfaces 395

mach_host_services

FIELDS
A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structures:mach_access_vector_tand mach_services_t.

396 Mach 3 Kernel Interfaces

Data Structures

mach_mem_obj_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on memory object ports.

SYNOPSIS
[1] structmach_mem_obj_services
[2] {
[3] unsigned char mosv_have_execute: 1,
[4] mosv_have_read: 1,
[5] mosv_have_write: 1,
[6] mosv_unused1: 1,
[7] mosv_page_vm_region: 1,
[8] mosv_pad: 3;
[9] };

[10] typedef struct mach_mem_obj_services mach_mem_obj_services_data_t;
[11] typedef struct mach_mem_obj_services*mach_mem_obj_services_t;

DESCRIPTION
The mach_mem_obj_servicesstructure defines the services that a requesting
task is allowed to make to a kernel processor port.

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each memory object directed
kernel request.

FIELDS
A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structures:mach_access_vector_t, mach_services_t.

Mach 3 Kernel Interfaces 397

mach_mem_ctrl_services

mach_mem_ctrl_services

Structure — Defines the services that a task is allowed to request on a kernel
host server on a memory control port.

SYNOPSIS
[1] structmach_mem_ctrl_services
[2] {
[3] unsigned char mcsv_change_page_locks: 1
[4] mcsv_destroy_object: 1,
[5] mcsv_get_attributes: 1,
[6] mcsv_invoke_lock_request: 1,
[7] mcsv_make_page_precious: 1,
[8] mcsv_provide_data: 1,
[9] mcsv_remove_page: 1,

[10] mcsv_revoke_ibac: 1;
[11] unsigned char mcsv_save_page: 1,
[12] mcsv_set_attributes: 1,
[13] mcsv_set_ibac_port: 1,
[14] mcsv_supply_ibac: 1,
[15] osv_pad: 4;
[16] };
[17] typedef struct mach_mem_ctrl_services mach_mem_ctrl_services_data_t;
[18] typedef struct mach_mem_ctrl_services*mach_mem_ctrl_services_t;

DESCRIPTION
The mach_mem_ctrl_servicesstructure defines the services that a requesting
task is allowed to make to a kernel memory control port.

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on memory control port directed
kernel request.

FIELDS
A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above

Data Structures:mach_access_vector_t, mach_services_t.

398 Mach 3 Kernel Interfaces

Data Structures

Mach 3 Kernel Interfaces 399

mach_msg_header

mach_msg_header

Structure — Defines the header portion for messages

SYNOPSIS
[1] typedef struct
[2] {
[3] mach_msg_bits_t msgh_bits;
[4] mach_msg_size_t msgh_size;
[5] mach_port_t msgh_remote_port;
[6] mach_port_t msgh_local_port;
[7] mach_port_seqno_t msgh_seqno;
[8] mach_msg_id_t msgh_id;
[9] } mach_msg_header_t;

DESCRIPTION
A Mach message consists of a fixed size message header, a
mach_msg_header_t, followed by zero or more data items. Data items are
typed. Each item has a type descriptor followed by the actual data (or an ad-
dress of the data, for out-of-line memory regions).

There are two forms of type descriptors, amach_msg_type_t and a
mach_msg_type_long_t. The mach_msg_type_long_t type descriptor allows
larger values for these fields. Themsgtl_header field in the long descriptor is
only used for its in-line, long-form, and de-allocate bits.

FIELDS

msgh_bits
This field specifies the following properties of the message:

MACH_MSGH_BITS_REMOTE_MASK
Encodesmach_msg_type_name_t values that specify the
port rights in themsgh_remote_portfield. The value must
specify a send or send-once right for the destination of the
message.

MACH_MSGH_BITS_LOCAL_MASK
Encodesmach_msg_type_name_t values that specify the
port rights in themsgh_local_port field. If the value doesn’t
specify a send or send-once right for the message’s reply port,
it must be zero and msgh_local_port must be
MACH_PORT_NULL.

400 Mach 3 Kernel Interfaces

Data Structures

MACH_MSGH_BITS_COMPLEX
The complex bit must be specified if the message body con-
tains port rights or out-of-line memory regions. If it is not
specified, then the message body carries no port rights or
memory, no matter what the type descriptors may seem to in-
dicate.

 MACH_MSGH_BITS_REMOTE(bits)
This macro returns the appropriatemach_msg_type_name_t
values, given amsgh_bits value.

MACH_MSGH_BITS_LOCAL(bits)
This macro returns the appropriatemach_msg_type_name_t
values, given amsgh_bits value.

MACH_MSGH_BITS (remote, local)
This macro constructs a value formsgh_bits, given two
mach_msg_type_name_t values.

msgh_size
In the header of a received message, this field contains the message's
size. The message size, a byte quantity, includes the message header,
type descriptors, and in-line data. For out-of-line memory regions, the
message size includes the size of the in-line address, not the size of the
actual data region. There are no arbitrary limits on the size of a Mach
message, the number of data items in a message, or the size of the data
items.

msgh_remote_port
When sending, specifies the destination port of the message. The field
must carry a legitimate send or send-once right for a port. When re-
ceived, this field is swapped withmsgh_local_port.

msgh_local_port
When sending, specifies an auxiliary port right, which is conventional-
ly used as a reply port by the recipient of the message. The field must
carry a send right, a send-once right, MACH_PORT_NULL, or
MACH_PORT_DEAD. When received, this field is swapped with
msgh_remote_port.

msgh_seqno
The sequence number of this message relative to the port from which it
is received. This field is ignored on sent messages.

msgh_id
Not set or read by themach_msg call. The conventional meaning is to
convey an operation or function id.

Mach 3 Kernel Interfaces 401

mach_msg_header

NOTES
Simple messages are provided to handle in-line data. The sender copies the in-
line data into the message structure, and the receiver usually copies it out.

Non-simple messages are provided to handle out-of-line data. Out-of-line data
allows for the sending of port information or data blocks that are very large or
of variable size. The kernel maps out-of-line data from the address space of the
sender to the address space of the receiver. The kernel copies the data only if
the sender or receiver subsequently modifies it. This is an example of copy-on-
write data sharing.

RELATED INFORMATION
Functions:mach_msg, mach_msg_receive, mach_msg_send.

Data Structures:mach_msg_type, mach_msg_type_long.

402 Mach 3 Kernel Interfaces

Data Structures

mach_msg_type

Structure — Defines the data descriptor for long data items in messages

SYNOPSIS
[1] typedef struct
[2] {
[3] unsigned int msgt_name: 8,
[4] msgt_size: 8,
[5] msgt_number: 12,
[6] msgt_inline: 1,
[7] msgt_longform: 1,
[8] msgt_deallocate: 1,
[9] msgt_unused: 1;

[10] } mach_msg_type_t;

DESCRIPTION
Each data item in a MACH IPC message has a type descriptor, a
mach_msg_type_t or a mach_msg_type_long_t. The
mach_msg_type_long_t type descriptor allows larger values for these fields.

FIELDS

msgt_name
Specifies the data's type. The following types are predefined:

MACH_MSG_TYPE_UNSTRUCTURED
un-interpreted data (32 bits)

MACH_MSG_TYPE_BIT
single bit

MACH_MSG_TYPE_BOOLEAN
boolean value (32 bits)

MACH_MSG_TYPE_INTEGER_16
16 bit integer

MACH_MSG_TYPE_INTEGER_32
32 bit integer

MACH_MSG_TYPE_CHAR
single character

MACH_MSG_TYPE_BYTE
8-bit byte

Mach 3 Kernel Interfaces 403

mach_msg_type

MACH_MSG_TYPE_INTEGER_8
8-bit integer

MACH_MSG_TYPE_REAL
floating value (32 bits)

MACH_MSG_TYPE_STRING
null terminated

MACH_MSG_TYPE_STRING_C
null terminated

MACH_MSG_TYPE_PORT_NAME
type of mach_port_t. This is the type of the name for a port,
not the type to specify if a port right is to be specified.

MACH_MSG_TYPE_MOVE_RECEIVE
move the name receive right

MACH_MSG_TYPE_MOVE_SEND
move the named send right

MACH_MSG_TYPE_MOVE_SEND_ONCE
move the named send-once right

MACH_MSG_TYPE_COPY_SEND
make a copy of the named send right

MACH_MSG_TYPE_MAKE_SEND
make a send right from the named receive right

MACH_MSG_TYPE_MAKE_SEND_ONCE
make a send-once right from the named send or receive right

The last six types specify port rights, and receive special treatment.
The type MACH_MSG_TYPE_PORT_NAME describes port right
names, when no rights are being transferred, but just names. For this
purpose, it should be used in preference to
MACH_MSG_TYPE_INTEGER_32.

msgt_size
Specifies the size of each datum, in bits. For example, themsgt_sizeof
MACH_MSG_TYPE_INTEGER_32 data is 32.

msgt_number
Specifies how many data elements comprise the data item. Zero is a le-
gitimate number. The total length specified by a type descriptor is
(msgt_size * msgt_number), rounded up to an integral number of
bytes. In-line data is then padded to an integral number of long-words.

404 Mach 3 Kernel Interfaces

Data Structures

This ensures that type descriptors always start on long-word bound-
aries. It implies that message sizes are always an integral multiple of a
long-word’s size.

msgt_inline
When FALSE, specifies that the data actually resides in an out-of-line
region. The address of the data region follows the type descriptor in
the message body. Themsgt_name, msgt_size, andmsgt_number fields
describe the data region, not the address.

msgt_longform
Specifies, when TRUE, that this type descriptor is a
mach_msg_type_long_t instead of amach_msg_type_t.

msgt_deallocate
Used with out-of-line regions. When TRUE, it specifies the data region
should be de-allocated from the sender’s address space (as if with
vm_deallocate) when the message is sent.

msgt_unused
Not used, should be zero.

RELATED INFORMATION
Functions:mach_msg, mach_msg_receive, mach_msg_send.

Data Structures:mach_msg_header, mach_msg_type_long.

Mach 3 Kernel Interfaces 405

mach_msg_type_long

mach_msg_type_long

Structure — Defines the data descriptor for long data items in messages

SYNOPSIS
[1] typedef struct
[2] {
[3] mach_msg_type_t msgtl_header;
[4] unsigned short msgtl_name;
[5] unsigned short msgtl_size;
[6] unsigned int msgtl_number;
[7] } mach_msg_type_long_t;

DESCRIPTION
Each data item has a type descriptor, a mach_msg_type_t or a
mach_msg_type_long_t. The mach_msg_type_long_t type descriptor allows
larger values for these fields. Themsgtl_header field in the long descriptor is
only used for its in-line, long-form, and de-allocate bits.

FIELDS

msgtl_header
A header in common with mach_msg_type_t. When the
msgt_longform bit in the header is TRUE, this type descriptor is a
mach_msg_type_long_t instead of a mach_msg_type_t. The
msgt_name, msgt_size, and msgt_number fields should be zero. In-
stead,mach_msg uses the following:msgtl_name, msgtl_size, and
msgtl_number fields.

msgtl_name
Specifies the data's type. The defined values are the same as those for
mach_msg_type.

msgtl_size
Specifies the size of each datum, in bits. For example, themsgtl_sizeof
MACH_MSG_TYPE_INTEGER_32 data is 32.

msgtl_number
Specifies how many data elements comprise the data item. Zero is a le-
gitimate number. The total length specified by a type descriptor is
(msgtl_size * msgtl_number), rounded up to an integral number of
bytes. In-line data is then padded to an integral number of long-words.
This ensures that type descriptors always start on long-word bound-
aries. It implies that message sizes are always an integral multiple of a
long-word’s size.

406 Mach 3 Kernel Interfaces

Data Structures

RELATED INFORMATION
Functions:mach_msg, mach_msg_receive, mach_msg_send.

Data Structures:mach_msg_header, mach_msg_type.

Mach 3 Kernel Interfaces 407

mach_port_status

mach_port_status

Structure — Defines information for a port

SYNOPSIS
[1] structmach_port_status
[2] {
[3] mach_port_t mps_pset;
[4] mach_port_seqno_t mps_seqno;
[5] mach_port_mscount_t mps_mscount;
[6] mach_port_msgcount_t mps_qlimit;
[7] mach_port_msgcount_t mps_msgcount;
[8] mach_port_rights_t mps_sorights;
[9] boolean_t mps_srights;

[10] boolean_t mps_pdrequest;
[11] boolean_t mps_nsrequest;
[12] };
[13] typedef struct mach_port_status mach_port_status_t;

DESCRIPTION
Themach_port_statusstructure defines information about a port.

FIELDS

mps_pset
Containing port set

mps_seqno
Current sequence number for the port.

mps_mscount
Make-send count

mps_qlimit
Queue limit

mps_msgcount
Number in the queue

mps_sorights
How many send-once rights

mps_srights
True if send rights exist

408 Mach 3 Kernel Interfaces

Data Structures

mps_pdrequest
True if there is a port-deleted requested

mps_nsrequest
True if no-senders requested

RELATED INFORMATION
Functions:mach_port_get_receive_status.

Mach 3 Kernel Interfaces 409

mach_proc_services

mach_proc_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel processor port.

SYNOPSIS
[1] structmach_proc_services
[2] {
[3] unsigned char psv_assign_processor_to_set: 1,
[4] psv_get_processor_assignment: 1,
[5] psv_get_processor_info: 1,
[6] psv_may_control_processor:1,
[7] psv_pad: 4;
[8] };
[9] typedef struct mach_proc_services mach_proc_services_data_t;

[10] typedef struct mach_proc_services* mach_proc_services_t;

DESCRIPTION
The mach_proc_servicesstructure defines the services that a requesting task is
allowed to make to a kernel processor self port.

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each processor port directed
kernel request.

FIELDS
A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structures:mach_access_vector_t, andmach_services_t.

410 Mach 3 Kernel Interfaces

Data Structures

mach_proc_set_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel processor set port.

SYNOPSIS
[1] structmach_proc_set_services
[2] {
[3] unsigned char pssv_assign_processor: 1,
[4] pssv_assign_task: 1,
[5] pssv_assign_thread: 1,
[6] pssv_chg_pset_max_pri: 1,
[7] pssv_define_new_scheduling_policy: 1,
[8] pssv_destroy_pset: 1,
[9] pssv_get_pset_info: 1,

[10] pssv_invalidate_scheduling_policy: 1,
[11] pssv_observe_pset_processes: 1,
[12] psv_pad: 5;
[13] };
[14] typedef struct mach_proc_set_services mach_proc_set_services_data_t;
[15] typedef struct mach_proc_set_services* mach_proc_set_services_t;

DESCRIPTION
The mach_proc_set_servicesstructure defines the services that a requesting
task is allowed to make to a kernel processor set port.

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each processor set directed
kernel request.

FIELDS
A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structures:mach_access_vector_t andmach_services_t.

Mach 3 Kernel Interfaces 411

mach_services

mach_services

Structure — Defines service vectors that control the services that task is al-
lowed to request on kernel ports.

SYNOPSIS
[1] unionmach_services
[2] {
[3] mach_device_services_data_t dev_sv;
[4] mach_host_priv_services_data_thost_priv_sv;
[5] mach_host_services_data_t host_sv;
[6] mach_mem_obj_services_data_tmem_obj_sv;
[7] mach_mem_ctrl_services_data_tmem_ctrl_sv;
[8] mach_proc_services_data_t proc_sv;
[9] mach_proc_set_services_data_tproc_set_sv;

[10] mach_task_services_data_t task_sv;
[11] mach_thread_services_data_t thread_sv;
[12]
[13] mach_generic_services_data_t gen_sv;
[14] };
[15]
[16] typedef union mach_services mach_services_data_t;
[17] typedef union mach_services *mach_services_t;

DESCRIPTION
Themach_servicesunion defines the classes of services that the kernel will en-
force as well as the general operation vector which may be used by non kernel
system servers. The interpretation of the fields of this vector are specified by the
system security policy and enforced by the receiver of the associated port.

SECURITY
The service field in the access vector allows the system security policy to speci-
fy which services a specific task may make to a particular port. It is the responsi-
bility of a port’s receiver to enforce the information provided in the allowed
operations portion of an access vector. This provides two levels of control over
operations. First it is possible to deny a task permission to send a message to a
port, and second it is possible to control which services will be allowed.

FIELDS

dev_sv
Bit vector indicating which device port directed service requests the re-
questing task is allowed to make.

412 Mach 3 Kernel Interfaces

Data Structures

host_priv_sv
Bit vector indicating which host priv port directed service requests the
requesting task is allowed to make.

host_sv
Bit vector indicating which host port directed service requests the re-
questing task is allowed to make.

mem_obj_sv
Bit vector indicating which object port directed service requests the re-
questing task is allowed to make.

mem_ctrl_sv
Bit vector indicating which memory control port directed service re-
quests the requesting task is allowed to make.

proc_sv
Bit vector indicating which processor port directed service requests the
requesting task is allowed to make.

proc_set_sv
Bit vector indicating which processor set port directed service requests
the requesting task is allowed to make.

task_sv
Bit vector indicating which task port directed service requests the re-
questing task is allowed to make.

thread_sv
Bit vector indicating which thread port directed service requests the re-
questing task is allowed to make.

gen_sv
A port specific bit vector indicating which services the requesting task
is allowed to make to the port. The purpose of this field is to determine
the maximum number of bits in a service vector.

RELATED INFORTION
Functions: None.

Data Structures: mach_device_services, mach_host_priv_services,
mach_host_services, mach_mem_obj_services, mach_mem_ctrl_services,
mach_proc_services, mach_proc_set_services, mach_task_servicesand
mach_thread_services.

Mach 3 Kernel Interfaces 413

mach_task_services

mach_task_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel task port.

SYNOPSIS
[1] structmach_task_services
[2] {
[3] unsigned char tsv_access_mach_nattribute: 1,
[4] tsv_add_name: 1,
[5] tsv_add_thread: 1,
[6] tsv_add_thread_secure: 1,
[7] tsv_allocate_vm_region: 1,
[8] tsv_alter_pns_info: 1,
[9] tsv_assign_task_to_pset: 1,

[10] tsv_chg_vm_region_prot: 1;
[11] unsigned char tsv_chg_task_priority: 1,
[12] tsv_copy_vm: 1,
[13] tsv_create_task: 1,
[14] tsv_create_task_secure: 1,
[15] tsv_deallocate_vm_region: 1,
[16] tsv_extract_right: 1,
[17] tsv_get_emulation: 1,
[18] tsv_get_task_assignment: 1;
[19] unsigned char tsv_get_task_boot_port: 1,
[20] tsv_get_task_exception_port: 1,
[21] tsv_get_task_info: 1,
[22] tsv_get_task_kernel_port: 1,
[23] tsv_get_task_threads: 1,
[24] tsv_get_vm_region_info: 1,
[25] tsv_get_vm_statistics: 1,
[26] tsv_lookup_ports: 1;
[27] unsigned char tsv_manipulate_port_set: 1,
[28] tsv_observe_pns_info: 1,
[29] tsv_port_rename: 1,
[30] tsv_read_vm_region: 1,
[31] tsv_register_notification: 1,
[32] tsv_register_ports: 1,
[33] tsv_remove_name: 1,
[34] tsv_resume_task: 1;
[35] unsigned char tsv_sample_task: 1,
[36] tsv_set_emulation: 1,
[37] tsv_set_vm_region_inherit: 1,
[38] tsv_set_ras: 1,
[39] tsv_set_task_boot_port: 1,
[40] tsv_set_task_exception_port: 1,
[41] tsv_set_task_kernel_port: 1,
[42] tsv_suspend_task: 1;

414 Mach 3 Kernel Interfaces

Data Structures

[43] unsigned char tsv_terminate_task: 1,
[44] tsv_wire_vm_for_task: 1,
[45] tsv_write_vm_region: 1,
[46] tsv_cross_context_create: 1,
[47] tsv_cross_context_inherit: 1,
[48] tsv_chg_sid: 1,
[49] tsv_make_sid: 1,
[50] tsv_transition_sid: 1,
[51] };
[52] typedef struct mach_task_services mach_task_services_data_t;
[53] typedef struct mach_task_services* mach_task_services_t;

DESCRIPTION
The mach_task_servicesstructure defines the services that a requesting task is
allowed to make on a kernel task port.

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each task directed kernel re-
quest.

FIELDS
A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structures:mach_access_vector_t andmach_services_t.

Mach 3 Kernel Interfaces 415

mach_thread_services

mach_thread_services

Structure — Defines the services that a task is allowed to request of a kernel
host server on a kernel thread port.

SYNOPSIS
[1] structmach_thread_services
[2] {
[3] unsigned char thsv_abort_thread: 1,
[4] thsv_abort_thread_depress: 1,
[5] thsv_assign_thread_to_pset: 1,
[6] thsv_can_swtch: 1,
[7] thsv_can_swtch_pri: 1,
[8] thsv_depress_pri: 1,
[9] thsv_get_thread_assignment: 1,

[10] thsv_get_thread_exception_port: 1;
[11] unsigned char thsv_get_thread_info: 1,
[12] thsv_get_thread_kernel_port: 1,
[13] thsv_get_thread_state:1,
[14] thsv_initate_secure:1,
[15] thsv_raise_exception: 1,
[16] thsv_resume_thread: 1,
[17] thsv_sample_thread: 1,
[18] thsv_set_max_thread_prioity: 1;
[19] unsigned char thsv_set_thread_exception_port: 1,
[20] thsv_set_thread_kernel_port: 1,
[21] thsv_set_thread_policy: 1,
[22] thsv_set_thread_priority: 1,
[23] thsv_set_thread_state: 1,
[24] thsv_suspend_thread: 1,
[25] thsv_switch_thread: 1,
[26] thsv_terminate_thread: 1;
[27] unsigned char thsv_wait_evc: 1;
[28] thsv_wire_thread_into_memory: 1;
[29] thsv_pad 6;
[30] };
[31] typedef struct mach_thread_services mach_thread_services_data_t;
[32] typedef struct mach_thread_services* mach_thread_services_t;

DESCRIPTION
The mach_thread_servicesstructure defines the services that a requesting task
is allowed to make on a kernel thread port.

416 Mach 3 Kernel Interfaces

Data Structures

SECURITY
The system security policy specifies the criteria for setting the fields in this vec-
tor. The kernel enforces the allowed operations on each thread port directed ker-
nel request.

FIELDS
A TRUE value in a specific field indicates that the requesting task is allowed to
make the request identified in the field.

RELATED INFORMATION
Functions: See list above.

Data Structures:mach_access_vector_t andmach_services_t.

Mach 3 Kernel Interfaces 417

mapped_time_value

mapped_time_value

Structure — Defines format of kernel maintained time in the mapped clock de-
vice

SYNOPSIS
[1] structmapped_time_value
[2] {
[3] long seconds;
[4] long microseconds;
[5] long check_seconds;
[6] };
[7] typedef struct mapped_time_value mapped_time_value_t;

DESCRIPTION
Themapped_time_valuestructure defines the format of the current-time struc-
ture maintained by the kernel and visible by mapping (device_map) the “time”
pseudo-device. The data in this structure is updated at every clock interrupt. It
contains the same value that would be returned byhost_get_time.

FIELDS

seconds
Seconds since system initialization

microseconds
Microseconds in the current second

check_seconds
A field used to synchronize with the kernel’s setting of the time.

NOTES
Because of the race between the referencing of these multiple fields and the ker-
nel’s setting them, they should be referenced as follows:

[1] do
[2] {
[3] secs = mtime→ seconds;
[4] usecs = mtime→ microseconds;
[5] } while (secs!= mtime→ check_seconds);

RELATED INFORMATION
Functions: device_map, host_adjust_time, host_get_time, host_set_time.

418 Mach 3 Kernel Interfaces

Data Structures

processor_basic_info

Structure — Defines the basic information about a processor.

SYNOPSIS
[1] structprocessor_basic_info
[2] {
[3] cpu_type_t cpu_type;
[4] cpu_subtype_t cpu_subtype;
[5] boolean_t running;
[6] int slot_num;
[7] boolean_t is_master;
[8] };
[9] typedef struct processor_basic_info* processor_basic_info_t;

DESCRIPTION
The processor_basic_infostructure defines the information available about a
processor slot.

FIELDS

cpu_type
Type of CPU

cpu_subtype
Sub-type of CPU

running
True if the CPU is running

slot_num
Slot number of the CPU

is_master
True if this is the master processor

RELATED INFORMATION
Functions:processor_info.

Mach 3 Kernel Interfaces 419

processor_set_basic_info

processor_set_basic_info

Structure — Defines the basic information about a processor set.

SYNOPSIS
[1] structprocessor_set_basic_info
[2] {
[3] int processor_count;
[4] int task_count;
[5] int thread_count;
[6] int load_average;
[7] int mach_factor;
[8] };
[9] typedef struct processor_set_basic_info*processor_set_basic_info_t;

DESCRIPTION
The processor_set_basic_infostructure defines the basic information available
about a processor set.

FIELDS

processor_count
Number of processors in this set

task_count
Number of tasks currently assigned to this processor set

thread_count
Number of threads currently assigned to this processor set

load_average
Average number of runnable processes divided by number of CPU

mach_factor
The processing resources available to a new thread — the number of
CPUs divided by (1 + the number of threads)

RELATED INFORMATION
Functions:processor_set_info.

Data Structures:processor_set_sched_info.

420 Mach 3 Kernel Interfaces

Data Structures

processor_set_sched_info

Structure — Defines the scheduling information about a processor set.

SYNOPSIS
[1] structprocessor_set_sched_info
[2] {
[3] int policies;
[4] int max_priority;
[5] };
[6] typedef struct processor_set_sched_info*processor_set_sched_info_t;

DESCRIPTION
Theprocessor_set_sched_infostructure defines the global scheduling informa-
tion available about a processor set.

FIELDS

policies
Number of Allowed policies.

max_priority
Maximum scheduling priority for new threads.

RELATED INFORMATION
Functions:processor_set_info.

Data Structures:processor_set_basic_info.

Mach 3 Kernel Interfaces 421

sampled_pc

sampled_pc

Structure — Defines PC sampling information

SYNOPSIS
[1] structsampled_pc
[2] {
[3] unsigned int id;
[4] vm_offset_t pc;
[5] sampled_pc_flavor_t sampletype;
[6] };
[7] typedef struct sampled_pc sampled_pc_t;
[8] typedef struct sampled_pc* sampled_pc_array_t;

DESCRIPTION
The sampled_pcstructure defines the information provided by the pc sampling
routines.

FIELDS

id
The sampled thread id.

pc
The sampled pc value.

sampletype
The sample flavor.

RELATED INFORMATION
Functions: task_disable_pc_sampling, task_enable_pc_sampling,
task_get_sampled_pc, thread_disable_pc_sampling,
thread_enable_pc_sampling, thread_get_sampled_pc.

Data Structures:sampled_pc_flavor_t

422 Mach 3 Kernel Interfaces

Data Structures

security_id_t

Structure — Defines the Security Identifier (SID) structure

SYNOPSIS
[1] structsecurity_id
[2] {
[3] mandatory_id_t mid;
[4] auth_id_t aid;
[5] };
[6] typedef struct security_id security_id_t;

DESCRIPTION
The security_id structure defines the label that is associated with subjects and
objects in the system.

FIELDS

mid
The mandatory identifier (MID) is a 64-bit field. Its 10 most significant
bits define the classifier and can be used by user applications to man-
age their own objects. The remaining 54 bits are reserved by the Securi-
ty Server and no structure can be assumed about them.

aid
The authentication identifier (AID) is a 32-bit field.

RELATED INFORMATION
Functions: SSI_compute_access_vector, SSI_context_to_mid,
SSI_short_context_to_mid, SSI_mid_to_context,
SSI_mid_to_short_context, task_change_sid,any function with _secure suf-
fix.

Mach 3 Kernel Interfaces 423

task_basic_info

task_basic_info

Structure — Defines basic information for tasks

SYNOPSIS
[1] structtask_basic_info
[2] {
[3] int suspend_count;
[4] int base_priority;
[5] vm_size_t virtual_size;
[6] vm_size_t resident_size;
[7] time_value_t user_time;
[8] time_value_t system_time;
[9] };

[10] typedef struct task_basic_info* task_basic_info_t;

DESCRIPTION
The task_basic_info structure defines the basic information array for tasks. The
task_info function returns this array for a specified task.

FIELDS

suspend_count
The current suspend count for the task.

base_priority
The base scheduling priority for the task.

virtual_size
The number of virtual pages for the task.

resident_size
The number of resident pages for the task

user_time
The total user run time for terminated threads within the task.

system_time
The total system run time for terminated threads within the task.

RELATED INFORMATION
Functions:task_info.

Data Structures:task_thread_times_info.

424 Mach 3 Kernel Interfaces

Data Structures

task_basic_secure_info

Structure — Defines basic information including security information for tasks.

SYNOPSIS
[1] structtask_basic_secure_info
[2] {
[3] int suspend_count;
[4] int base_priority;
[5] vm_size_t virtual_size;
[6] vm_size_t resident_size;
[7] time_value_t user_time;
[8] time_value_t system_time;
[9] security_id_t subj_sid;

[10] };
[11] typedef struct task_basic_secure_info* task_basic_secure_info_t;

DESCRIPTION
The task_basic_secure_info structure defines the basic information array, in-
cluding the task’s subj_sid, for a task. Thetask_info function returns this array
for a specified task.

FIELDS

suspend_count
The current suspend count for the task.

base_priority
The base scheduling priority for the task.

virtual_size
The number of virtual pages for the task.

resident_size
The number of resident pages for the task

user_time
The total user run time for terminated threads within the task.

system_time
The total system run time for terminated threads within the task.

subj_sid
The task’s associated security identifier.

Mach 3 Kernel Interfaces 425

task_basic_secure_info

RELATED INFORMATION
Functions:task_info.

Data Structures:task_thread_times_info.

426 Mach 3 Kernel Interfaces

Data Structures

task_thread_times_info

Structure — Defines thread execution times information for tasks

SYNOPSIS
[1] structtask_thread_times_info
[2] {
[3] time_value_t user_time;
[4] time_value_t system_time;
[5] };
[6] typedef struct task_thread_times_info* task_thread_times_info_t;

DESCRIPTION
The task_thread_times_info structure defines thread execution time statistics
for tasks. Thetask_info function returns these times for a specified task. The
thread_info function returns this information for a specific thread.

FIELDS

user_time
Total user run time for live threads.

system_time
Total system run time for live threads.

RELATED INFORMATION
Functions:task_info.

Data Structures:task_basic_info, thread_info.

Mach 3 Kernel Interfaces 427

thread_basic_info

thread_basic_info

Structure — Defines basic information for threads

SYNOPSIS
[1] structthread_basic_info
[2] {
[3] time_value_t user_time;
[4] time_value_t system_time;
[5] int cpu_usage;
[6] int base_priority;
[7] int cur_priority;
[8] int run_state;
[9] int flags;

[10] int suspend_count;
[11] long sleep_time;
[12] };
[13] typedef struct thread_basic_info* thread_basic_info_t;

DESCRIPTION
The thread_basic_info structure defines the basic information array for threads.
Thethread_info function returns this array for a specified thread.

FIELDS

user_time
The total user run time for the thread.

system_time
The total system run time for the thread.

cpu_usage
Scaled CPU usage percentage for the thread.

base_priority
The base scheduling priority for the thread.

cur_priority
The current scheduling priority for the thread.

run_state
The thread’s run state. Possible values are:

TH_STATE_RUNNING
The thread is running normally.

428 Mach 3 Kernel Interfaces

Data Structures

TH_STATE_STOPPED
The thread is stopped.

TH_STATE_WAITING
The thread is waiting normally.

TH_STATE_UNINTERRUPTIBLE
The thread is in an un-interruptible wait state.

TH_STATE_HALTED
The thread is halted at a clean point.

flags
Swap/idle flags for the thread. Possible values are:

TH_FLAGS_SWAPPED
The thread is swapped out.

TH_FLAGS_IDLE
The thread is an idle thread.

suspend_count
The current suspend count for the thread.

sleep_time
The number of seconds that the thread has been sleeping.

RELATED INFORMATION
Functions:thread_info.

Data Structures:thread_sched_info.

Mach 3 Kernel Interfaces 429

thread_sched_info

thread_sched_info

Structure — Defines scheduling information for threads

SYNOPSIS
[1] structthread_sched_info
[2] {
[3] int policy;
[4] int data;
[5] int base_priority;
[6] int max_priority;
[7] int cur_priority;
[8] boolean_t depressed;
[9] int depress_priority;

[10] };
[11] typedef struct thread_sched_info* thread_sched_info_t;

DESCRIPTION
The thread_sched_info structure defines the scheduling information array for
threads. Thethread_info function returns this array for a specified thread.

FIELDS

policy
Scheduling policy in effect

data
Associated data for the scheduling policy

base_priority
Base scheduling priority

max_priority
Maximum scheduling priority

cur_priority
Current scheduling priority

depressed
True if scheduling priority is depressed

depress_priority
Scheduling priority from which depressed

430 Mach 3 Kernel Interfaces

Data Structures

RELATED INFORMATION
Functions:thread_info.

Data Structures:thread_basic_info.

Mach 3 Kernel Interfaces 431

time_value

time_value

Structure — Defines format of system time values

SYNOPSIS
[1] structtime_value
[2] {
[3] long seconds;
[4] long microseconds;
[5] };
[6] typedef struct time_value time_value_t;

DESCRIPTION
The time_valuestructure defines the format of the time structure supplied to or
returned from the kernel.

FIELDS

seconds
Seconds since system initialization

microseconds
Microseconds in the current second

RELATED INFORMATION
Functions:host_adjust_time, host_get_time, host_set_time.

432 Mach 3 Kernel Interfaces

Data Structures

vm_statistics

Structure — Defines statistics for the kernel’s use of virtual memory

SYNOPSIS
[1] structvm_statistics
[2] {
[3] long pagesize;
[4] long free_count;
[5] long active_count;
[6] long inactive_count;
[7] long wire_count;
[8] long zero_fill_count;
[9] long reactivations;

[10] long pageins;
[11] long pageouts;
[12] long faults;
[13] long cow_faults;
[14] long lookups;
[15] long hits;
[16] };
[17] typedef struct vm_statistics* vm_statistics_t;

DESCRIPTION
Thevm_statistics structure defines the statistics available on the kernel’s use of
virtual memory. The statistics record virtual memory usage since the kernel was
booted.

You can also findpagesize by using the global variablevm_page_size. This vari-
able is set at task initialization and remains constant for the life of the task.

For related information for a specific task, see thetask_basic_info structure.

FIELDS

pagesize
The virtual page size, in bytes.

free_count
The total number of free pages in the system.

active_count
The total number of pages currently in use and pageable.

inactive_count
The number of inactive pages.

Mach 3 Kernel Interfaces 433

vm_statistics

wire_count
The number of pages that are wired in memory and cannot be paged
out.

zero_fill_count
The number of zero-fill pages.

reactivations
The number of reactivated pages.

pageins
The number of requests for pages from a pager (such as the i-node pag-
er).

pageouts
The number of pages that have been paged out.

faults
The number of times thevm_fault routine has been called.

cow_faults
The number of copy-on-write faults.

lookups
The number of object cache lookups.

hits
The number of object cache hits.

RELATED INFORMATION
Functions:task_info, vm_statistics.

Data Structures:task_basic_info.

434 Mach 3 Kernel Interfaces

Data Structures

Mach 3 Kernel Interfaces 435

APPENDIX F Error Return Values

This appendix lists the various kernel return values.

Error Code Format

An error code has the following format:

• system code (6 bits). Theerr_get_system (err) macro extracts this field.

• subsystem code (12 bits). Theerr_get_sub (err) macro extracts this field.

• error code (14 bits). Theerr_get_code (err) macro extracts this field.

The various system codes are:

• err_kern —kernel

• err_us — user space library

• err_server— user space servers

• err_mach_ipc — Mach-IPC errors

• err_local — user defined errors

A typical user error code definition would be:

#define SOMETHING_WRONGerr_local | err_sub (13) | 1

436 Mach 3 Kernel Interfaces

Error Return Values

MIG Stub Errors

MIG_ARRAY_TOO_LARGE
User specified array not large enough to hold returned array

MIG_BAD_ARGUMENTS
Message receiver found an invalid message size, invalid header fields or invalid
descriptors. This could only happen if an invalidly formatted message (i.e., one
that did not pass through Mach IPC) were passed to a MIG de-multiplexing rou-
tine.

MIG_BAD_ID
Bad message ID. This is only returned by MIG de-multiplexing routines when
the message ID in the supplied message is not handled by that routine.

MIG_REPLY_MISMATCH
The message ID in a reply message is not 100 more than the message ID of the
request message.

MIG_SERVER_DIED
Message recipient no longer exists, or the recipient destroyed the request mes-
sage without replying.

MIG_TYPE_ERROR
The wrong number or size of data or rights was received.

Base IPC Status

MACH_MSG_SUCCESS
Normal IPC success. This is the same value as KERN_SUCCESS.

MACH_MSG_IPC_KERNEL
(mask bit) Kernel resource shortage handling an IPC capability.

MACH_MSG_IPC_SPACE
(mask bit) No room in IPC name space for another capability name.

Mach 3 Kernel Interfaces 437

IPC Send Errors

MACH_MSG_VM_KERNEL
(mask bit) Kernel resource shortage handling out-of-line memory.

MACH_MSG_VM_SPACE
(mask bit) No room in VM address space for out-of-line memory.

MACH_MSG_INSUFFICIENT_PERMISSION
(mask bit) A permission check failure prevented the reception of a port right.

IPC Send Errors

The following errors can occur whenmach_msg is used with the MACH_SEND_MSG
option. This is also the case for all function interfaces.

MACH_SEND_INTERRUPTED
Message send interrupted.

MACH_SEND_INVALID_DATA
Message buffer is unreadable.

MACH_SEND_INVALID_DEST
The destination port name in the message is MACH_PORT_NULL,
MACH_PORT_DEAD, names a null or dead right, names a port set or is a right
whose type (receive, send or send-once) does not match the type specified.

MACH_SEND_INVALID_HEADER
A field in the message header had a bad value.

MACH_SEND_INVALID_MEMORY
An out-of-line memory region does not exist in the address space or is not read-
able.

MACH_SEND_INVALID_NOTIFY
The notify port name (MACH_SEND_CANCEL) specified tomach_msg is not
a receive right.

438 Mach 3 Kernel Interfaces

Error Return Values

MACH_SEND_INVALID_REPLY
The reply port name in the message is MACH_PORT_DEAD, names a null
right, names a port set or is a right whose type (receive, send or send-once) does
not match the type specified.

MACH_SEND_INVALID_RIGHT
A port name in the message body is MACH_PORT_DEAD, names a null right,
names a port set or is a right whose type (receive, send or send-once) does not
match the type specified.

MACH_SEND_INVALID_TYPE
Invalid message type specification.

MACH_SEND_MSG_TOO_SMALL
Message buffer doesn’t contain a complete message.

MACH_SEND_NO_BUFFER
No kernel message buffer is available.

MACH_SEND_NO_NOTIFY
Resource shortage; can’t request message-accepted notification.

MACH_SEND_NOTIFY_IN_PROGRESS
Message-accepted notification already pending.

MACH_SEND_TIMED_OUT
Message not sent before time-out expired.

MACH_SEND_WILL_NOTIFY
A message-accepted notification will be generated.

IPC Receive Errors

The following errors can be returned bymach_msg when used with the
MACH_RCV_MSG option. They can occur for kernel function interfaces.

MACH_RCV_BODY_ERROR
Error receiving kernel message body. See special bits.

Mach 3 Kernel Interfaces 439

Generic Kernel Errors

MACH_RCV_HEADER_ERROR
Error receiving message header. See special bits.

MACH_RCV_IN_SET
The receive port name specified tomach_msg is a member of a port set.

MACH_RCV_INTERRUPTED
A software interrupt occurred.

MACH_RCV_INVALID_DATA
The message buffer was not writable.

MACH_RCV_INVALID_NAME
The receive port name specified tomach_msg is MACH_PORT_NULL,
MACH_PORT_DEAD, names a null or dead right or is a right whose type (re-
ceive, send or send-once) does not match the type specified.

MACH_RCV_INVALID_NOTIFY
The notify port name (MACH_RCV_NOTIFY) specified tomach_msg is not a
receive right.

MACH_RCV_PORT_CHANGED
Receive right specified tomach_msg was moved into a set during the receive.

MACH_RCV_PORT_DIED
Receive right (or set) specified tomach_msg was sent away/died during receive.

MACH_RCV_TIMED_OUT
A message was not received within the time-out value.

MACH_RCV_TOO_LARGE
Message buffer is not large enough for the message.

Generic Kernel Errors

KERN_SUCCESS
Successful completion

440 Mach 3 Kernel Interfaces

Error Return Values

KERN_INSUFFICIENT_PERMISSION
The requesting task does not have sufficient permission to make the request.

KERN_INVALID_ARGUMENT
The function requested was not applicable to this type of object.

KERN_INVALID_CAPABILITY
The supplied right is dead, null or not of the proper type.

KERN_INVALID_VALUE
A parameter’s value was out of range (or possibly ill-formed). Specific error re-
turn values are returned if the parameter’s value is properly formed and in
range, but not a usable value at this time.

KERN_RESOURCE_SHORTAGE
A system resource could not be allocated to fulfill this request. This failure may
not be permanent.

Port Manipulation Errors

KERN_INVALID_NAME
The port name doesn’t denote a right in the task.

KERN_INVALID_RIGHT
The port name denotes a right, but not an appropriate right.

KERN_NAME_EXISTS
The port name already denotes a right in the task.

KERN_NO_SPACE
The task’s port name space is full.

KERN_NOT_IN_SET
The receive right is not a member of a port set.

KERN_RIGHT_EXISTS
The task already has send or receive rights for the port under another name.

Mach 3 Kernel Interfaces 441

Virtual Memory Manipulation Errors

KERN_UREFS_OVERFLOW
Operation would overflow limit on user-references.

Virtual Memory Manipulation Errors

KERN_INVALID_ADDRESS
Specified virtual address is not currently valid.

KERN_MEMORY_ERROR
During a page fault, the memory object indicated that the data could not be re-
turned. This failure may be temporary; future attempts to access this same data
may succeed, as defined by the memory object.

KERN_MEMORY_FAILURE
During a page fault, the target address refers to a memory object that has been
destroyed. This failure is permanent.

KERN_NO_SPACE
The task’s address space is full (not sufficient free space) or the specified ad-
dress range is already in use.

KERN_PROTECTION_FAILURE
Specified memory is valid, but does not permit the required forms of access or
the protection being requested exceeds that permitted.

Random Kernel Errors

EML_BAD_CNT
Invalid syscall number specified for an emulation vector entry

EML_BAD_TASK
Target of a syscall emulation vector manipulation call is not a task

KERN_ABORTED
The operation was aborted.

442 Mach 3 Kernel Interfaces

Error Return Values

KERN_FAILURE
A catch-all error for implementation dependent failures.

KERN_INVALID_HOST
An argument supplied to assert system privilege was not a host control port.

KERN_INVALID_TASK
Target task isn’t an active task.

Kernel Device Errors

D_SUCCESS
Normal device return. This is the same value as KERN_SUCCESS.

D_ALREADY_OPEN
Exclusive-use device already open

D_DEVICE_DOWN
Device has been shut down

D_INVALID_OPERATION
No filter port was specified.

D_INVALID_RECNUM
Invalid record (block) number

D_INVALID_SIZE
Invalid IO size

D_IO_ERROR
Hardware IO error

D_NO_SUCH_DEVICE
No device with that name, or the device is not operational.

Mach 3 Kernel Interfaces 443

Kernel Device Errors

D_OUT_OF_BAND
Out-of-band condition occurred on device (such as typing control-C)

D_READ_ONLY
Data cannot be written to this device.

D_WOULD_BLOCK
Operation would block, but D_NOWAIT set

444 Mach 3 Kernel Interfaces

Error Return Values

Mach 3 Kernel Interfaces 445

APPENDIX G Permission Definitions

This appendix lists the various permission definitions and their associated values. These
permission values are passed from the kernel to the security server to identify which per-
mission is being checked for the given pair. The permission value is also displayed in au-
dit logs, and kernel debugging messages.

Device Port Permissions

DSV_CLOSE_DEVICE
0x01000011

DSV_GET_DEVICE_STATUS
0x01000012

DSV_MAP_DEVICE
0x01000013

DSV_OPEN_DEVICE
0x01000014

DSV_READ_DEVICE
0x01000015

446 Mach 3 Kernel Interfaces

Permission Definitions

DSV_SET_DEVICE_FILTER
0x01000016

DSV_SET_DEVICE_STATUS
0x01000017

DSV_WRITE_DEVICE
0x01000018

DSV_PAGER_CTRL
0x01000019

Host Priviledge Port Permissions

HPSV_GET_BOOT_INFO
0x02000011

HPSV_GET_HOST_PROCESSORS
0x02000012

HPSV_PSET_CTL_PORT
0x02000013

HPSV_REBOOT_HOST
0x02000014

HPSV_SET_DEFAULT_MEMORY_MGR
0x02000015

HPSV_SET_TIME
0x02000016

HPSV_WIRE_THREAD
0x02000017

Mach 3 Kernel Interfaces 447

Host Port Permissions

HPSV_WIRE_VM
0x02000018

Host Port Permissions

HSV_CREATE_PSET
0x03000011

HSV_FLUSH_PERMISSION
0x03000012

HSV_GET_DEFAULT_PSET_NAME
0x03000013

HSV_GET_HOST_INFO

0x03000014

HSV_GET_HOST_NAME

0x03000015

HSV_GET_HOST_VERSION

0x03000016

HSV_GET_TIME

0x03000017

HSV_PSET_NAMES

0x03000018

HSV_GET_AUDIT_PORT

0x03000019

448 Mach 3 Kernel Interfaces

Permission Definitions

HSV_GET_SECURITY_CLIENT_PORT

0x0300001A

HSV_GET_SECURITY_MASTER_PORT

0x0300001B

HSV_GET_SPECIAL_PORT

0x0300001C

HSV_SET_AUDIT_PORT

0x0300001D

HSV_SET_SECURITY_CLIENT_PORT

0x0300001E

HSV_SET_SECURITY_MASTER_PORT

0x0300001F

HSV_SET_SPECIAL_PORT

0x03000020

HSV_GET_CRYPTO_PORT

0x03000021

HSV_GET_HOST_CONTROL_PORT

0x03000022

HSV_GET_NEGOTIATION_PORT

0x03000023

HSV_SET_CRYPTO_PORT

0x03000024

Mach 3 Kernel Interfaces 449

Kernel Reply Port Permissions

HSV_SET_NEGOTIAION_PORT

0x03000025

HSV_GET_AUTHENTICATION_PORT

0x03000026

HSV_SET_AUTHENTICATION_PORT

0x03000027

Kernel Reply Port Permissions

KRPSV_PROVIDE_PERMISSION
0x0B000011

Memory Object Permissions

MOSV_HAVE_EXECUTE
0x04000011

MOSV_HAVE_READ

0x04000012

MOSV_HAVE_WRITE

0x04000013

MOSV_PAGE_VM_REGION

0x04000015

Memory Control Port Permissions

MCSV_CHANGE_PAGE_LOCKS
0x05000011

450 Mach 3 Kernel Interfaces

Permission Definitions

MCSV_DESTROY_OBJECT

0x05000012

MCSV_GET_ATTRIBUTE

0x05000013

MCSV_INVOKE_LOCK_REQUEST

0x05000014

MCSV_MAKE_PAGE_PRECIOUS

0x05000015

MCSV_PROVIDE_DATA

0x05000016

MCSV_REMOVE_PAGE

0x05000017

MCSV_REVOKE_IBAC

0x05000018

MCSV_SAVE_PAGE

0x05000019

MCSV_SET_ATTRIBUTES

0x0500001a

MCSV_SET_IBAC_PORT

0x0500001b

MCSV_SUPPLY_IBAC

0x0500001c

Mach 3 Kernel Interfaces 451

Processor Port Permissions

Processor Port Permissions

PSV_ASSIGN_PROCESSOR_TO_SET

0x06000011

PSV_GET_PROCESSOR_ASSIGNMENT

0x06000012

PSV_GET_PROCESSOR_INFO

0x06000013

PSV_MAY_CONTROL_PROCESSOR

0x06000014

Processor Set Permissions

PSSV_ASSIGN_PROCESSOR

0x07000011

PSSV_ASSIGN_TASK

0x07000012

PSSV_ASSIGN_THREAD

0x07000013

PSSV_CHG_PSET_MAX_PRI

0x07000014

PSSV_DEFINE_NEW_SCHEDULING_POLICY

0x07000015

452 Mach 3 Kernel Interfaces

Permission Definitions

PSSV_DESTROY_PSET

0x07000016

PSSV_GET_PSET_INFO

0x07000017

PSSV_INVALIDATE_SCHEDULING_POLICY

0x07000018

PSSV_OBSERVE_PSET_PROCESSES

0x07000019

Task Port Permissions

TSV_ACCESS_MACHINE_ATTRIBUTE

0x08000011

TSV_ADD_NAME

0x08000012

TSV_ADD_THREAD

0x08000013

TSV_ADD_THREAD_SERVICE

0x08000014

TSV_ALLOCATE_VM_REGION

0x08000015

TSV_ALTER_PNS_INFO

0x08000016

Mach 3 Kernel Interfaces 453

Task Port Permissions

TSV_ASSIGN_TASK_TO_PSET

0x08000017

TSV_CHG_VM_REGION_PROT

0x08000018

TSV_CHG_TASK_PRIORITY

0x08000019

TSV_COPY_VM

0x0800001a

TSV_CREATE_TASK

0x0800001b

TSV_CREATE_TASK_SECURE

0x0800001c

TSV_DEALLOCATE_VM_REGION

0x0800001d

TSV_EXTRACT_RIGHT

0x0800001e

TSV_GET_EMULATION

0x0800001f

TSV_GET_TASK_ASSIGNMENT

0x08000020

454 Mach 3 Kernel Interfaces

Permission Definitions

TSV_GET_TASK_BOOT_PORT

0x08000021

TSV_GET_TASK_EXCEPTION_PORT

0x08000022

TSV_GET_TASK_INFO

0x08000023

TSV_GET_TASK_KERNEL_PORT

0x08000024

TSV_GET_TASK_THREADS

0x08000025

TSV_GET_VM_REGION_INFO

0x08000026

TSV_GET_VM_STATISTICS

0x08000027

TSV_LOOKUP_PORTS

0x08000028

TSV_MANIPULATE_PORT_SET

0x08000029

TSV_OBSERVE_PNS_INFO

0x0800002a

TSV_PORT_RENAME

0x0800002b

Mach 3 Kernel Interfaces 455

Task Port Permissions

TSV_READ_VM_REGION

0x0800002c

TSV_REGISTER_NOTIFICATION

0x0800002d

TSV_REGISTER_PORTS

0x0800002e

TSV_REMOVE_NAME

0x0800002f

TSV_RESUME_TASK

0x08000030

TSV_SAMPLE_TASK

0x08000031

TSV_SET_EMULATION

0x08000032

TSV_SET_VM_REGION_INHERIT

0x08000033

TSV_SET_RAS

0x08000034

TSV_SET_TASK_BOOT_PORT

0x08000035

456 Mach 3 Kernel Interfaces

Permission Definitions

TSV_SET_TASK_EXCEPTION_PORT

0x08000036

TSV_SET_TASK_KERNEL_PORT

0x08000037

TSV_SUSPEND_TASK

0x08000038

TSV_TERMINATE_TASK

0x08000039

TSV_WIRE_VM_FOR_TASK

0x0800003a

TSV_WRITE_VM_REGION

0x0800003b

TSV_CROSS_CONTEXT_CREATE

0x0800003c

TSV_CROSS_CONTEXT_INHERIT

0x0800003d

TSV_CHG_SID

0x0800003e

TSV_MAKE_SID

0x0800003f

TSV_TRANSITION_SID

0x08000040

Mach 3 Kernel Interfaces 457

Thread Port Permissions

Thread Port Permissions

THSV_ABORT_THREAD

0x09000011

THSV_ABORT_THREAD_DEPRESS

0x09000012

THSV_ASSIGN_THREAD_TO_PSET

0x09000013

THSV_CAN_SWTCH

0x09000014

THSV_CAN_SWTCH_PRI

0x09000015

THSV_DEPRESS_PRI

0x09000016

THSV_GET_THREAD_ASSIGNMENT

0x09000017

THSV_GET_THREAD_EXCEPTION_PORT

0x09000018

THSV_GET_THREAD_INFO

0x09000019

THSV_GET_THREAD_KERNEL_PORT

0x0900001a

458 Mach 3 Kernel Interfaces

Permission Definitions

THSV_GET_THREAD_STATE

0x0900001b

THSV_INITIATE_SECURE

0x0900001c

THSV_RAISE_EXCEPTION

0x0900001d

THSV_RESUME_THREAD

0x0900001e

THSV_SAMPLE_THREAD

0x0900001f

THSV_SET_MAX_THREAD_PRIORITY

0x09000020

THSV_SET_THREAD_EXCEPTION_PORT

0x09000021

THSV_SET_THREAD_KERNEL_PORT

0x09000022

THSV_SET_THREAD_POLICY

0x09000023

THSV_SET_THREAD_PRIORITY

0x09000024

THSV_SET_THREAD_STATE

0x09000025

Mach 3 Kernel Interfaces 459

IPC Permissions

THSV_SUSPEND_THREAD

0x09000026

THSV_SWITCH_THREAD

0x09000027

THSV_TERMINATE_THREAD

0x09000028

THSV_WAIT_EVC

0x09000029

THSV_WIRE_THREAD_INTO_MEMORY

0x0900002a

IPC Permissions

AV_CAN_RECEIVE

0x0a000001

AV_RECEIVE

0x0a000001

AV_CAN_SEND

0x0a000002

AV_SEND

0x0a000002

AV_HOLD_RECEIVE

0x0a000003

460 Mach 3 Kernel Interfaces

Permission Definitions

AV_HOLD_SEND

0x0a000004

AV_HOLD_SEND_ONCE

0x0a000005

AV_INTERPOSE

0x0a000006

AV_SPECIFY

0x0a000007

AV_TRANSFER_OOL

0x0a000008

AV_TRANSFER_RECEIVE

0x0a000009

AV_TRANSFER_SEND

0x0a00000a

AV_TRANSFER_SEND_ONCE

0x0a00000b

AV_TRANSFER_RIGHTS
0x0a00000c

MOSV_MAP_VM_REGION

0x0a00000d

AV_SET_REPLY

0x0a00000e

Mach 3 Kernel Interfaces 461

IPC Permissions

462 Mach 3 Kernel Interfaces

Permission Definitions

Mach 3 Kernel Interfaces 463

APPENDIX H Object Index

A
abstract memory object vm_map. 93

memory_object_copy . 114
memory_object_data_request . 121
memory_object_data_return . 123
memory_object_data_unlock . 130
memory_object_data_write. 132
memory_object_init . 138
memory_object_terminate . 153
device_map . 277
default_pager_object_create . 350
memory_object_create . 352
memory_object_data_initialize. 355

B
bootstrap task_create/task_create_secure . 195

task_get_special_port . 200
task_set_special_port . 211
norma_task_clone . 367
norma_task_create . 369

D
default pager default_pager_info . 348

default_pager_object_create . 350
memory_object_create . 352
vm_set_default_memory_manager. 357

464 Mach 3 Kernel Interfaces

Object Index

norma_get_special_port . 360
norma_set_special_port . 364

device device_close . 274
device_get_status . 275
device_map . 277
device_open . 279
device_read . 282
device_read_inband . 285
device_set_filter . 288
device_set_status. 292
device_write . 294
device_write_inband. 297
i386_io_port_add . 378
i386_io_port_list . 379
i386_io_port_remove . 380

device master device_open . 279
norma_get_special_port . 360
norma_set_special_port . 364

E
exception catch_exception_raise. 156

thread_get_special_port . 169
thread_set_special_port. 178
task_create/task_create_secure . 195
task_get_special_port . 200
task_set_special_port . 211
norma_task_clone . 367
norma_task_create . 369

F
filter device_set_filter . 288

H
host control vm_wire . 105

thread_wire . 186
host_adjust_time . 218
host_get_boot_info . 219
host_get_special_port . 220
host_reboot . 226
host_set_special_port . 227
host_set_time . 229
host_processor_set_priv . 232
host_processors . 235
vm_set_default_memory_manager. 357
norma_get_special_port . 360
norma_set_special_port . 364

Mach 3 Kernel Interfaces 465

host name host_get_time . 222
host_info . 223
host_kernel_version . 225
host_processor_sets. 233
processor_info. 242
processor_set_create . 244
processor_set_default . 246
processor_set_info . 248
norma_get_special_port . 360
norma_set_special_port . 364

host self mach_host_self . 230

M
memory cache control memory_object_change_attributes 110

memory_object_copy . 114
memory_object_data_error . 117
memory_object_data_provided. 119
memory_object_data_request . 121
memory_object_data_return . 123
memory_object_data_supply . 125
memory_object_data_unavailable 128
memory_object_data_unlock . 130
memory_object_data_write. 132
memory_object_destroy . 134
memory_object_get_attributes . 136
memory_object_init . 138
memory_object_lock_completed 141
memory_object_lock_request . 143
memory_object_ready. 146
memory_object_set_attributes . 148
memory_object_supply_completed 151
memory_object_terminate . 153
memory_object_create . 352
memory_object_data_initialize. 355

memory cache name vm_region/vm_region_secure 101
memory_object_init . 138
memory_object_terminate . 153
memory_object_create . 352

N
name server norma_get_special_port . 360

norma_set_special_port . 364
norma special norma_get_special_port . 360

norma_set_special_port . 364
notify mach_msg/mach_msg_secure. 8

mach_msg_receive . 26

466 Mach 3 Kernel Interfaces

Object Index

mach_msg_send . 27
do_mach_notify_dead_name . 30
do_mach_notify_msg_accepted . 32
do_mach_notify_no_senders . 34
do_mach_notify_port_deleted . 36
do_mach_notify_port_destroyed 38
do_mach_notify_send_once . 40
mach_port_request_notification . 68

P
processor host_processors . 235

processor_assign . 236
processor_control . 238
processor_exit . 240
processor_get_assignment . 241
processor_info. 242
processor_start . 257

processor set control host_processor_set_priv 232
processor_assign . 236
processor_set_create . 244
processor_set_destroy. 247
processor_set_info . 248
processor_set_max_priority . 250
processor_set_policy_disable . 252
processor_set_policy_enable . 254
processor_set_tasks. 255
processor_set_threads . 256
task_assign . 258
thread_assign. 265
thread_max_priority . 268

processor set namehost_processor_set_priv 232
host_processor_sets. 233
processor_get_assignment . 241
processor_set_create . 244
processor_set_default . 246
processor_set_info . 248
task_get_assignment . 262
thread_get_assignment . 267

R
random mach_msg/mach_msg_secure. 8

mach_msg_receive . 26
mach_msg_send . 27
do_mach_notify_port_destroyed 38
mach_port_extract_right . 50
mach_port_insert_right . 58

Mach 3 Kernel Interfaces 467

registered mach_ports_lookup. 190
mach_ports_register . 191
task_create/task_create_secure . 195
norma_task_clone . 367
norma_task_create . 369

reply mach_msg/mach_msg_secure. 8
mach_msg_receive . 26
mach_msg_send . 27
mach_reply_port . 79
memory_object_change_attributes 110
memory_object_change_completed 112
memory_object_data_supply . 125
memory_object_lock_completed 141
memory_object_lock_request . 143
memory_object_supply_completed 151
device_read . 282
device_read_inband . 285
device_write . 294
device_write_inband. 297

S
sample receive_samples . 160

thread_sample . 176
task_create/task_create_secure . 195
task_sample. 205
norma_task_clone . 367
norma_task_create . 369

T
task mach_port_allocate/mach_port_allocate_secure 41

mach_port_allocate_name/
mach_port_allocate_name_secure 44
mach_port_deallocate . 47
mach_port_destroy . 48
mach_port_extract_right . 50
mach_port_get_receive_status . 52
mach_port_get_refs. 54
mach_port_get_set_status. 56
mach_port_insert_right . 58
mach_port_mod_refs . 60
mach_port_move_member . 62
mach_port_names . 64
mach_port_rename . 66
mach_port_request_notification . 68
mach_port_set_mscount . 71
mach_port_set_qlimit . 73

468 Mach 3 Kernel Interfaces

Object Index

mach_port_set_seqno . 75
mach_port_type/mach_port_type_secure 77
vm_allocate/vm_allocate_secure 82
vm_copy . 85
vm_deallocate . 87
vm_inherit . 89
vm_machine_attribute. 91
vm_map. 93
vm_protect . 97
vm_read. 99
vm_region/vm_region_secure. 101
vm_statistics . 104
vm_wire . 105
vm_write . 107
catch_exception_raise. 156
thread_create/thread_create_secure 166
mach_ports_lookup. 190
mach_ports_register . 191
task_create/task_create_secure . 195
task_get_emulation_vector . 198
task_get_special_port . 200
task_info . 202
task_resume. 204
task_sample. 205
task_set_emulation . 207
task_set_emulation_vector . 209
task_set_special_port . 211
task_suspend . 213
task_terminate. 214
task_threads. 215
processor_set_tasks. 255
task_assign . 258
task_assign_default . 260
task_get_assignment . 262
task_priority . 263
norma_port_location_hint. 363
norma_task_clone . 367
norma_task_create . 369
task_set_child_node . 371

task self mach_task_self . 193
task_create/task_create_secure . 195
task_get_special_port . 200
task_set_special_port . 211
norma_task_clone . 367
norma_task_create . 369

Mach 3 Kernel Interfaces 469

task special task_get_special_port . 200
task_set_special_port . 211

thread catch_exception_raise. 156
thread_abort . 164
thread_create/thread_create_secure 166
thread_depress_abort . 168
thread_get_special_port . 169
thread_get_state . 171
thread_info . 173
thread_resume/thread_resume_secure 175
thread_sample . 176
thread_set_special_port. 178
thread_set_state/thread_set_state_secure 180
thread_suspend . 182
thread_switch . 183
thread_terminate . 185
thread_wire . 186
task_threads. 215
processor_set_threads . 256
thread_assign. 265
thread_assign_default . 266
thread_get_assignment . 267
thread_max_priority . 268
thread_policy. 270
thread_priority. 271
i386_get_ldt . 376
i386_io_port_add . 378
i386_io_port_list . 379
i386_io_port_remove . 380
i386_set_ldt. 381

thread self mach_thread_self . 159
thread_get_special_port . 169
thread_set_special_port. 178

thread special thread_get_special_port . 169
thread_set_special_port. 178

470 Mach 3 Kernel Interfaces

Object Index

Mach 3 Kernel Interfaces 471

APPENDIX I Interface and
Structure
Index

Base IPC Status. 436
Data Structures 383
Default Memory Management Interface

347
Device Port Permissions 445
Error Code Format 435
Error Return Values 4
Error Return Values 435
External Memory Management Inter-

face 109
Generic Kernel Errors 439
Host Interface 217
Host Port Permissions 447
Host Priviledge Port Permissions . . 446
IPC Interface . 7
IPC Permissions 459
IPC Receive Errors 438
IPC Send Errors 437
Intel 386 Support. 373
Interface Descriptions 1
Interface Types 2
Interface and Structure Index 471
Introduction. 1
Kernel Device Errors 442
Kernel Device Interface 273
Kernel Reply Port Permissions 449
MIG Server Routines 329
MIG Stub Errors 436

Memory Control Port Permissions . 449
Memory Object Permissions 449
Multicomputer Support 359
Object Index. 463
Parameter Types. 3
Permission Definitions. 445
Port Manipulation Errors 440
Port Manipulation Interface 29
Processor Management and Scheduling

Interface. 231
Processor Port Permissions 451
Processor Set Permissions 451
Random Kernel Errors 441
SSI_compute_access_vector 309
SSI_context_to_mid. 312
SSI_load_security_policy 314
SSI_mid_to_context. 320
SSI_mid_to_short_context. 322
SSI_record_name_server 315
SSI_register_caching_server 316
SSI_short_context_to_mid. 318
SSI_transfer_security_server_ports . 324
SSI_transition_domain. 326
Security Controls 5
Security Server Interface 303
Special Forms. 3
Task Interface. 189
Task Port Permissions 452

472 Mach 3 Kernel Interfaces

Interface and Structure Index

Thread Interface. 155
Thread Port Permissions 457
Virtual Memory Interface 81
Virtual Memory Manipulation Errors . .

441
avc_cache_control,

avc_cache_control_trap. . . 304
catch_exception_raise 156
default_pager_info 348
default_pager_object_create 350
device_close. 274
device_get_status 275
device_map 277
device_open 279
device_open_request 279
device_read 282
device_read_inband 285
device_read_request. 282
device_read_request_inband 285
device_reply_server 330
device_set_filter. 288
device_set_status 292
device_write. 294
device_write_inband 297
device_write_request 294
device_write_request_inband 297
do_mach_notify_dead_name 30
do_mach_notify_msg_accepted. 32
do_mach_notify_no_senders 34
do_mach_notify_port_deleted 36
do_mach_notify_port_destroyed 38
do_mach_notify_send_once 40
do_seqnos_mach_notify_dead_name 30
do_seqnos_mach_notify_msg_accepted

32
do_seqnos_mach_notify_no_senders 34
do_seqnos_mach_notify_port_deleted .

36
do_seqnos_mach_notify_port_destroye

d . 38
do_seqnos_mach_notify_send_once . 40
ds_device_open_reply 279
ds_device_read_reply 282
ds_device_read_reply_inband 285
ds_device_write_reply 294
ds_device_write_reply_inband 297
evc_wait . 300
exc_server . 332
extract_aid . 306
extract_mid 307
host_adjust_time 218
host_basic_info 384

host_get_boot_info219
host_get_special_port220
host_get_time222
host_info .223
host_kernel_version225
host_load_info 385
host_processor_set_priv232
host_processor_sets 233
host_processors.235
host_reboot .226
host_sched_info 386
host_set_special_port227
host_set_time 229
i386_get_ldt 376
i386_io_port_add378
i386_io_port_list.379
i386_io_port_remove380
i386_set_ldt.381
mach_access_vector387
mach_device_services 390
mach_generic_services391
mach_host_priv_services393
mach_host_self230
mach_host_services 394
mach_kernel_reply_port_services . .392
mach_mem_ctrl_services397
mach_mem_obj_services396
mach_msg/mach_msg_secure 8
mach_msg_header 399
mach_msg_receive26
mach_msg_send27
mach_msg_type 402
mach_msg_type_long.405
mach_port_allocate/

mach_port_allocate_secure .41
mach_port_allocate_name/

mach_port_allocate_name_sec
ure. .44

mach_port_deallocate47
mach_port_destroy48
mach_port_extract_right.50
mach_port_get_receive_status52
mach_port_get_refs 54
mach_port_get_set_status.56
mach_port_insert_right.58
mach_port_mod_refs 60
mach_port_move_member62
mach_port_names.64
mach_port_rename66
mach_port_request_notification68
mach_port_set_mscount71
mach_port_set_qlimit73

Mach 3 Kernel Interfaces 473

mach_port_set_seqno 75
mach_port_status 407
mach_port_type/

mach_port_type_secure . . . 77
mach_ports_lookup. 190
mach_ports_register 191
mach_proc_services 409
mach_proc_set_services 410
mach_reply_port 79
mach_services 411
mach_task_self 193
mach_task_services. 413
mach_thread_self 159
mach_thread_services 415
make_sid . 308
mapped_time_value 417
memory_object_change_attributes . 110
memory_object_change_completed 112
memory_object_copy 114
memory_object_create 352
memory_object_data_error 117
memory_object_data_initialize. . . . 355
memory_object_data_provided. . . . 119
memory_object_data_request 121
memory_object_data_return 123
memory_object_data_supply 125
memory_object_data_unavailable . 128
memory_object_data_unlock 130
memory_object_data_write. 132
memory_object_default_server. . . . 334
memory_object_destroy 134
memory_object_get_attributes 136
memory_object_init 138
memory_object_lock_completed . . 141
memory_object_lock_request 143
memory_object_ready. 146
memory_object_server 336
memory_object_set_attributes 148
memory_object_supply_completed 151
memory_object_terminate 153
norma_get_device_port. 360
norma_get_host_paging_port 360
norma_get_host_port 360
norma_get_host_priv_port 360
norma_get_nameserver_port. 361
norma_get_special_port 360
norma_port_location_hint 363
norma_set_device_port 364
norma_set_host_paging_port 364
norma_set_host_port 364
norma_set_host_priv_port 364
norma_set_nameserver_port 365

norma_set_special_port 364
norma_task_clone 367
norma_task_create 369
notify_server 338
processor_assign 236
processor_basic_info 418
processor_control. 238
processor_exit 240
processor_get_assignment 241
processor_info 242
processor_set_basic_info 419
processor_set_create 244
processor_set_default. 246
processor_set_destroy 247
processor_set_info 248
processor_set_max_priority. 250
processor_set_policy_disable 252
processor_set_policy_enable 254
processor_set_sched_info 420
processor_set_tasks 255
processor_set_threads 256
processor_start 257
prof_server . 340
receive_samples 160
sampled_pc 421
security_id_t. 422
seqnos_default_pager_info 348
seqnos_default_pager_object_create 350
seqnos_memory_object_change_compl

eted 112
seqnos_memory_object_copy 114
seqnos_memory_object_create 352
seqnos_memory_object_data_initialize.

355
seqnos_memory_object_data_request . .

121
seqnos_memory_object_data_return 123
seqnos_memory_object_data_unlock . .

130
seqnos_memory_object_data_write. 132
seqnos_memory_object_default_server.

341
seqnos_memory_object_init 138
seqnos_memory_object_lock_complete

d . 141
seqnos_memory_object_server 343
seqnos_memory_object_supply_comple

ted 151
seqnos_memory_object_terminate . 153
seqnos_notify_server 345
swtch . 161
swtch_pri . 162

474 Mach 3 Kernel Interfaces

Interface and Structure Index

task_assign . 258
task_assign_default 260
task_basic_info 423
task_basic_secure_info 424
task_change_sid 194
task_create/task_create_secure 195
task_get_assignment 262
task_get_bootstrap_port. 200
task_get_emulation_vector 198
task_get_exception_port 200
task_get_kernel_port 200
task_get_special_port. 200
task_info. 202
task_priority 263
task_resume 204
task_sample 205
task_set_bootstrap_port 211
task_set_child_node. 371
task_set_emulation. 207
task_set_emulation_vector. 209
task_set_exception_port. 211
task_set_kernel_port 211
task_set_special_port 211
task_suspend 213
task_terminate 214
task_thread_times_info 426
task_threads 215
thread_abort 164
thread_assign 265
thread_assign_default 266
thread_basic_info. 427
thread_create/thread_create_secure . 166
thread_depress_abort 168
thread_get_assignment. 267
thread_get_exception_port. 169
thread_get_kernel_port 169
thread_get_special_port 169
thread_get_state 171
thread_info . 173
thread_max_priority. 268
thread_policy 270
thread_priority 271
thread_resume/thread_resume_secure . .

175
thread_sample 176
thread_sched_info 429
thread_set_exception_port 178
thread_set_kernel_port. 178
thread_set_special_port 178
thread_set_state/

thread_set_state_secure . . . 180
thread_suspend. 182

thread_switch183
thread_terminate185
thread_wire .186
time_value. .431
vm_allocate/vm_allocate_secure82
vm_copy .85
vm_deallocate87
vm_inherit. .89
vm_machine_attribute 91
vm_map .93
vm_protect .97
vm_read .99
vm_region/vm_region_secure 101
vm_set_default_memory_manager. .357
vm_statistics104
vm_statistics432
vm_wire .105
vm_write .107

