
Part Number 83-0902036A002 Rev A

Version Date 25 June 1997

DTOS GENERALIZED SECURITY POLICY
SPECIFICATION

CONTRACT NO. MDA904-93-C-4209
CDRL SEQUENCE NO. A019

Prepared for:
Maryland Procurement Office

Prepared by:

Secure Computing Corporation
2675 Long Lake Road

Roseville, Minnesota 55113

Authenticated by Approved by
(Contracting Agency) (Contractor)

Date Date

Distribution limited to U.S. Government Agencies Only. This document contains NSA
information (25 June 1997). Request for the document must be referred to the Director, NSA.

Not releasable to the Defense Technical Information Center per DOD Instruction 3200.12.

c Copyright, 1994–1997, Secure Computing Corporation. All Rights Reserved. This material
may be reproduced by or for the U.S. Government pursuant to the copyright license under the

clause at DFARS 252.227-7013 (OCT.88).

CDRL

DTOS GENERALIZED SECURITY POLICY
SPECIFICATION

Secure Computing Corporation

Abstract

This report forms the basis for an analysis of the generality of the security policies that DTOS
can support.

Part Number 83-0902036A002 Rev A
Created 25 June 1997
Revised 25 June 1997
Done for Maryland Procurement Office
Distribution SCC Internal
CM /home/cmt/rev/dtos/docs/genpolicy/RCS/report.vdd,v 1.7 25 June 1997

This document was produced using the TEX document formatting system and the LATEX style macros.

LOCKserverTM, LOCKstationTM, NETCourierTM, Security That Strikes BackTM, SidewinderTM, and
Type EnforcementTM are trademarks of Secure Computing Corporation.

LOCKR, LOCKguardR, LOCKixR, LOCKoutR, and the padlock logo are registered trademarks of Secure
Computing Corporation.

All other trademarks, trade names, service marks, service names, product names and images mentioned
and/or used herein belong to their respective owners.

c Copyright, 1994–1997, Secure Computing Corporation. All Rights Reserved. This material may be
reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS
252.227-7013 (OCT.88).

CDRL A019
Generalized Security Policy i

Contents

1 Scope 1
1.1 Identification : 1
1.2 System Overview : 1
1.3 Document Overview : 1

2 Applicable Documents 3

3 Generalized Security Policy Overview 4

4 Security Policy Survey 6
4.1 MLS : 6
4.2 Integrity : 7
4.3 Type Enforcement : 8
4.4 IBAC : 8
4.5 ORCON : 10
4.6 Capabilities : 10
4.7 Chinese Wall : 11
4.8 Combinations of Policies : 11
4.9 Information Flow : 11

5 Generic Framework 13
5.1 Shared State : 14
5.2 Manager : 17

5.2.1 State : 17
5.2.2 Operations : 22
5.2.3 Manager as a Component : 28
5.2.4 Properties : 30

5.3 Security Server : 32
5.3.1 State : 32
5.3.2 Operations : 33
5.3.3 Security Server as a Component : 36
5.3.4 Properties : 37

5.4 Composing the Generic Manager and Security Server : : : : : : : : : : : : : : : 38
5.5 Complete System : 44

6 Security Policy Lattice 49
6.1 Security Policy Characteristics : 49
6.2 Classification of Some Well-Known Policies : 52

6.2.1 Type Enforcement : 52
6.2.2 IBAC : 52
6.2.3 MLS and Biba : 54
6.2.4 Clark-Wilson : 55
6.2.5 Dynamic N -Person : 56
6.2.6 ORCON : 57
6.2.7 Chinese Wall : 57

6.3 Classification of the DTOS Kernel : 59

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

ii
CDRL A019

CONTENTS

6.4 History Sensitivity and Implementation Methods : : : : : : : : : : : : : : : : : : : 61
6.5 The Lattice : 62
6.6 Formal Description of Policy Characteristics : 64

6.6.1 Input : 64
6.6.2 Sensitivity : 64
6.6.3 Retraction : 68
6.6.4 Transitivity : 69

7 DTOS Microkernel 71
7.1 Instantiation of Generic Types : 71
7.2 DTOS State : 77
7.3 DTOS Operations : 81
7.4 Component Specification : 84

8 MLS/TE Policy 87
8.1 Formal MLS/TE Definition : 88
8.2 MLS/TE Objects and the Kernel : 92
8.3 MLS/TE Security Server : 93

8.3.1 Security Database : 93
8.3.2 Permission Requirements : 96
8.3.3 Security Server State : 97

8.4 Operations : 97
8.5 Component Specification : 98
8.6 Composing DTOS and MLS/TE : 99

9 Clark-Wilson Policy 104
9.1 Formal Clark-Wilson Definition : 104
9.2 Clark-Wilson Objects and the Kernel : 110
9.3 Clark-Wilson Security Server : 111

9.3.1 Security Database : 111
9.3.2 Permission Requirements : 113
9.3.3 Security Server State : 117

9.4 Operations : 117
9.5 Component Specification : 119
9.6 Composing DTOS and Clark-Wilson : 121

10 ORCON Policy 128
10.1 Formal ORCON Definition : 129
10.2 ORCON Objects and the Kernel : 131
10.3 ORCON Security Server : 135

10.3.1 Security Database : 136
10.3.2 Permission Requirements : 138
10.3.3 Security Server State : 139

10.4 Operations : 139
10.5 Component Specification : 146
10.6 Composing DTOS and ORCON : 148

11 Conclusion 152

12 Notes 153
12.1 Acronyms : 153

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy iii

12.2 Glossary : 153
12.3 Open Issues : 154

A Bibliography 156

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

iv
CDRL A019

CONTENTS

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 1

Section 1
Scope

1.1 Identification

This Generalized Security Policy Specification surveys security policies, provides a framework
for their inclusion in a microkernel design, and provides an analysis of three example policies
as part of the Distributed Trusted Operating System (DTOS) program, contract MDA904-93-
C-4209.

1.2 System Overview

The DTOS design is an enhanced version of the CMU Mach 3.0 kernel that provides support
for a wide variety of security policies by enforcing access decisions provided to it by asecurity
server. By using appropriately developed security servers, the DTOS kernel can support a wide
range of policies, including MLS (Multi-Level Security), Identity Based Access Control (IBAC),
and type enforcement. A security server that allows all accesses causes the DTOS kernel
to behave essentially the same as the CMU Mach 3.0 kernel, which, although uninteresting
from a security standpoint, demonstrates the compatibility of DTOS with Mach 3.0. The first
security server planned for development is one that enforces a combination of MLS and type
enforcement.

1.3 Document Overview

The report is structured as follows:

Section 1, Scope, defines the scope and this overview of the document.

Section 2, Applicable Documents, lists other documents that are relevant to this report.

Section 3, Generalized Security Policy Overview, provides motivation for investigat-
ing the degree to which DTOS supports various security policies.

Section 4, Security Policy Survey, is a survey of security policies that have been pro-
posed in the literature.

Section 5, Generic Framework, is a framework for the possible interactions between an
object manager that enforces a policy and a Security Server that makes policy decisions.
It is used as the basis for specifying the DTOS microkernel and each example security
server.

Section 6, Security Policy Lattice, defines a set of policy characteristics from which a
lattice of security policy types is derived. A number of policies are classified in the lattice
based upon the characteristics they hold. The DTOS kernel is also classified based upon
the characteristics it can support.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

2
CDRL A019

Scope

Section 7, DTOS Microkernel, defines the DTOS microkernel as an instance of the
generic manager framework.

Section 8, MLS/TE Policy, defines an instance of the generic security server framework
that implements MLS with Type Enforcement.

Section 9, Clark-Wilson Policy, defines an instance of the generic security server frame-
work that implements the Clark Wilson integrity policy.

Section 10, ORCON Policy, defines an instance of the generic security server framework
that implements the ORCON confidentiality policy.

Section 11, Conclusion, summarizes the results of this work, including the benefits of
the formalism and the limitations on implementing security policies in DTOS.

Section 12, Notes, contains a discussion of open issues, an acronym list, and a glossary.

Appendix A, Bibliography, gives citations for each referenced document.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 3

Section 2
Applicable Documents

DTOS Formal Security Policy Model (FSPM) [27, 28].

DTOS Formal Top Level Specification (FTLS) [29].

DTOS Composability Study [24].

DTOS Kernel and Security Server Software Design Document [30].

The Z Notation: A Reference Manual [32].

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

4
CDRL A019

Generalized Security Policy Overview

Section 3
Generalized Security Policy Overview

DTOS was designed for a wide variety of uses, both military and civilian. Each of these uses
has its own security requirements, and hence DTOS must be capable of supporting a wide
range of security policies. The Generalized Security Policy Specification investigates how well
that objective is met. It also helps identify ways in which the design might be modified to
support additional policies, allowing a decision to be made as to whether these additions are
important enough to warrant any increase in overhead to enforce them. As this document
evolved its purpose was further generalized to study the policy flexibility of not only the DTOS
microkernel but of all systems employing an architecture in which an object manager enforces
a security policy, and a separate security server makes policy decisions. Thus, this report
will hopefully be of interest not only to those familiar with DTOS, but to anyone interested in
policy flexibility in an architecture with separation of policy decision and enforcement. The
report identifies characteristics of object managers and their interfaces with security servers
that limit policy flexibility. This information may be of value to secure operating systems
implementors and to those developing policies for secure systems.1 No particular knowledge of
DTOS is required to read this document.

A major goal of the DTOS project is to mitigate some of the identified risks for the successful
implementation of a secure system built from a policy-independent object manager and a secu-
rity server that defines the policy. One such risk is that the design may rule out certain security
policies. Of particular concern are systems in which the security policy must change. The risk
is that security enforcement may not respond adequately to policy changes. Enforcement might
continue to be based on a previous policy, or, even worse, a combination of the old policy and
the new policy. This risk includes both the incremental changes present in a dynamic policy as
well as a wholesale change of policy. The purposes of this study are

to explore the degree to which the DTOS architecture mitigates this risk,

to identify the range of policies it can support, and

to learn what would be required to support additional policies.

We approach these questions as follows. We first identify a variety of example security policies
by performing a survey of security policies from the computer security literature including
dynamic policies that change over time. We then construct a framework that models the
interaction between an object manager that enforces policy decisions and a security server that
makes policy decisions. The DTOS microkernel is specified as an instance of the generic object
manager. For each of three selected security policies we specify an instance of the generic
security server that implements the decision making necessary to achieve that policy. For each
policy a composability analysis [24] is performed to determine whether the combination of the
security server with the DTOS microkernel implements the policy. Any weaknesses in the
ability of DTOS to support these policies are identified. Since the framework for specifying
object managers and security servers is very general, a wide variety of other manager/security
server combinations could be specified and analyzed within the framework.

1The sections that may be of the most interest outside the context of DTOS are Section 4 Security Policy Survey,
Section 6 Security Policy Lattice, and Section 11 Conclusion.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 5

The steps described above demonstrate how to define a security server for various policies and
help establish a lower-bound on policy flexibility. To better study the limits of policy flexibility
in DTOS, we have developed a lattice of security policies where each node identifies a set of
system characteristics required to support policies at that node. A policy is classified at the
lattice node that indicates all the characteristics that are required to support it. An object
manager is classified at the node indicating all the characteristics it can support. We have
classified the DTOS microkernel and a variety of policies in this lattice. Any policy classified at
a node that is not dominated by the node at which the DTOS microkernel is classified probably
cannot be supported.2 A policy classified at a dominated node can be supported assuming that
it only requires characteristics that have been used in constructing the lattice. This provides
a slightly more general approach to the determination of the policy flexibility of the DTOS
microkernel and any other manager.

2It is difficult to say with certainty that a particular policycannot be supported since there may be many possible
ways to implement the policy on the system. One would need to argue that no implementation can exist.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

6
CDRL A019

Security Policy Survey

Section 4
Security Policy Survey

A computing system used in a variety of commercial and military environments must have a
security policy general enough to handle the needs of each of those environments. We have
surveyed many of the policies discussed in the security literature, including those for both
military and commercial systems, from which three have been selected for use in testing the
generality of our proposed security architecture and determining the range of security policies
that can be supported. Policies surveyed include those based on lattices of levels, those defined
in terms of some user identity (including roles and groups), those defined in terms of execution
environments (including Type Enforcement and capability systems), and those that maintain
well-formed transactions (integrity models).

A security policy is “the set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information” [21]. For a computer system, the
security policy must define what information is to be protected, the accesses that the various
processes in the system are permitted to make to that information, and how these permissions
may be modified. The system must also have a protection mechanism that enforces the policy.
In this report our primary focus will be on access control policies which are stated in terms of
the accesses that processes may make to the information on the system.3

The accesses permitted by a security policy can generally be described using anaccess control
matrix with a row for each principal that requests accesses, and a column for each object to
which access is controlled [13]. Each entry in the matrix is the set of the accesses that are
permitted from a principal to an object. Policies differ in how a process is mapped to a principal,
the objects that are protected, the accesses in the matrix, and how the matrix can be modified.
Each row in the matrix is a list of (object, permitted access set) pairs and is called an execution
environment [15]. Similarly, each column is a list of (principal, permitted access set) pairs and
is called an Access Control List (ACL) [13]. The set of objects depends on the system and may
include such things as memory, files, message buffers, and processes.

4.1 MLS

A MultiLevel Secure (MLS) policy is defined using a lattice of levels [10]. Level a is said to
dominate, or be greater than, level b if a is higher than or the same as b in the lattice. In
many cases, a level consists of two parts: an element of an ordered sequence of sensitivities
(i.e. unclassified, confidential, secret, top secret) and a set of compartments identifying the
subject matter of the information; however, a level need not have this structure. Each subject
is assigned a level representing its level of trust and each object is assigned a level representing
the sensitivity of the information that it contains. In the matrix model, each row represents a
level from the lattice; the environment of a subject is the row that represents its level. Each
access is classified as a read and/or a write.

The Bell-LaPadula version of MLS policies [3] allows a process to perform a read access only
if its level dominates that of the object, and a write access only if its level is dominated by
that of the object. Thus, read is included in those matrix entries for which the level of the row

3Section 4.9 briefly describes another family of policies, the information flow policies.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 7

dominates the level of the column, and write is included in those matrix entries for which the
level of the column dominates that of the row. More restrictive policies can be used for special
purposes. For example to achieve non-bypassability of a filter, we could allow a read access
only if the process and the object have the same level.

With an MLS policy, a process’s environment can change if its level changes, if the level of
some object changes, if an object is created or destroyed, or if the lattice of levels changes.
Some policies prohibit changes to the level of processes and objects; however, level changes can
possibly be simulated by creating a duplicate process or object at the new level. Other policies
allow the level of an object to reflect the current sensitivity of its contents, or to be modified by
the security administrator. For example, in a High-Water-Mark policy a high-level process is
allowed to write to an object at a lower level, but the level of the object is then raised to that of
the writer.

4.2 Integrity

One class of security policies is concerned with data quality, or integrity, rather than controlling
its disclosure. Issues related to integrity include: who created or modified the data, what code
was used to do so, what is the integrity of the inputs that were used, and how has the data
been tested. For example, the integrity of a compiled program depends on the integrity of the
source code (how experienced are the programmers, was it formally verified), the integrity of
the compiler, and how thoroughly it has been tested. Data from sources known to be reliable
have greater integrity than rumors. Integrity policies proposed by Biba [4] and by Clark and
Wilson [8] have been especially well studied.

The Biba policy is based on the premise that the integrity of the output from an execution can be
no better than the integrity of the inputs and of the code. A Biba integrity policy is equivalent
to Bell-LaPadula with high members of the lattice representing poor integrity instead of high
sensitivity. Thus, unreliable data with integrity levels high in the lattice cannot be used
by a reliable computation with an integrity level low in the lattice. Likewise, an unreliable
computation cannot produce reliable data. Related to this is a Low-Water-Mark policy [7] in
which the level of an object of lowered when it is written to that of the writer.

Another form of integrity policy was defined by Clark and Wilson [8]. These policies guarantee
that a protected object, known as a Constrained Data Item (CDI), can only be modified by
a well-formed transaction, known as a Transformation Procedure (TP). “The concept of the
well-formed transaction is that a user should not manipulate data arbitrarily, but only in
constrained ways that preserve or ensure the integrity of the data.” [8, p. 186] Each of these
TPs corresponds to an access and the set of TPs that may be applied to a particular CDI
defines its type. Another goal of some integrity policies is separation of duty in which different
subparts of an operation are executed by different processes. Separation of duty is equivalent
to the n-person policies discussed in [33] with each principal performing a different duty. In
Clark-Wilson policies, separation of duty is implemented by allowing each process to invoke
only some of the TPs. An example of this is discussed in [20] for the processing of an invoice in
a purchasing department. The TPs for this example are:

1. Record the arrival of an invoice.

2. Verify that the goods have been received.

3. Authorize payment.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

8
CDRL A019

Security Policy Survey

A 3-person policy would partition the processes into three groups, such as data entry clerks,
purchasing officers, and supervisors. Only a data entry clerk could record the arrival, only a
purchasing officer could verify receipt, and only a supervisor could authorize payment.

A special form of Clark-Wilson policy is the dynamic assignment of duties to principals [20].
These policies, called dynamic n-person policies, allow a principal to execute at most one of
several TPs on a CDI. In the purchasing department example, any of the processes could
record the arrival of an invoice. However, if a supervisor did so, it could not then also authorize
payment; another supervisor would have to do this.

4.3 Type Enforcement

Another form of access control policy is Type Enforcement [5, 22]. Allowed accesses are specified
with a Domain Definition Table (DDT), which is a coarse version of the access control matrix in
which objects that have equal access privileges are clustered into groups calledtypes and the
principals that have equal access privileges are clustered into groups calleddomains. Because
of the coarseness of specification, type enforcement is generally not used to control access to
particular objects, but rather to constrain the flow of information between groups of objects
(the types). A typical example of its use is for a guard between a group of sensitive objects and
the rest of the system. The only domain in the DDT that permits reading from the sensitive
object type and writing to objects of other types is the one in which the guard executes. Thus,
information may only move from sensitive objects to the rest of the system by passing through
a guard. Changes to the DDT potentially impact on many objects and therefore are usually
reserved for a very few trusted domains.

Type Enforcement may also be used to implement role-based access control and least privilege
which are discussed in the next section. Furthermore, although much of the work in these
areas has been within the context of discretionary control, Type Enforcement can implement
them in mandatory control.

4.4 IBAC

An Identity-Based Access Control (IBAC) policy [34] defines the allowed accesses to an object
according to the identity of the individual making the access. Each row in the matrix represents
the accesses allowed to processes operating on behalf of some particular individual, and the row
is named by that individual’s identity. A column in the matrix (i.e., an ACL) associates with each
identity a set of allowed accesses for the corresponding object. A process is permitted an access
to an object if the requested access is included in the set of allowed accesses associated with
the identity of the process by the ACL of the object. All processes that share an identity have
the same permissions (they all have the same environment). Changing the access controls can
be controlled by placing each ACL in an object (such as a directory) with its own ACL. Another
way to control changes is to include the ACL as part of the object and to make changing the
ACL one of the controlled accesses.

Variations to the IBAC policies include groups, roles, negative accesses, and delegation [1]. In
the simplest case, a group is a set of individuals and accesses are authorized for groups rather
than individuals. A process is associated with some collection of the groups that contain its
responsible individual, possibly including a group whose only element is that individual, and
its set of allowed accesses is the union of the sets of accesses for each of the groups to which
it is associated. The accesses allowed to a process can be restricted by not associating it with
all of the groups containing the individual. A principal is therefore a set of groups that share

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 9

a common member (under this definition, each group can be thought of as the principal whose
only member is that group). An environment in the matrix for a principal is the union of the
environments for each of the principal’s member groups. Thus, the set of accesses for a process
is the union of the accesses for each of the groups associated with that process. For example,
assume that there are groups:

W = fb; cg

X = fa; b; cg

Y = fag

Z = fa; bg

Assume that an object’s ACL indicates thatfW g has no permissions, fX g has execute permis-
sion, fY g has read permission, and fZg has write permission. One process of individual a
might be mapped to principal fX ;Y g and therefore has execute and read permission, while
another process of a might be further restricted to only execute permission by mapping it to
principal fX g. The advantage of using groups to define the IBAC policy is that the policy can be
changed just by changing membership in the groups. Thus,b might be given read permission
without changing any ACLs by adding it to group fY g. Groups are objects of the system so
that these changes can be controlled by the security policy. A more complex case is to allow a
group of groups. The allowed accesses for an interior group (one contained in other groups) is
the union of the accesses of each group in which it is contained.

When the principal to which a process is mapped contains only some of the groups that contain
the individual associated with the process, then the environment of the process might contain
only some of the permissions to which the responsible individual is entitled. This preserves
the principle of “least privilege” by allowing the process to operate with only those accesses
that it needs. Such a principal is referred to as a role. Assumption of a role by a process can
be controlled by treating roles as system objects with accessesassume, create process in, and
delegate (see below) [23].

Another variation of IBAC is to allow negative accesses to an object by some groups. The set of
accesses permitted to a process is the union of the positive accesses for each of its associated
groups, minus the union of the negative accesses for those groups. Usually, permissions granted
(denied) a group override permissions denied (granted) a containing group (specificity takes
precedence over generality).

Delegation is the ability for a process to allow another to act on its behalf. For example, a
client on one node of a distributed system that needs to use a service on another node might
delegate its permissions for the service to a network server that will make requests on its
behalf. Sometimes, the delegated permissions may even be greater than the original ones, as
in the case of a virtual memory manager. A client of the memory manager may only have
execute permission for a file, but the memory manager will need to read the file in order for
the client to execute it. This facility is provided using principals ‘B for A’, where B and A are
principals. The ability to become this principal is restricted toB and requires the permission
of A. Also, delegated permissions should expire after some time limit, possibly defined when
the delegation occurs.

Abadi et al. [1] have created an access control calculus that includes groups, roles, and del-
egation. It also allows for operations that require permission from multiple principals. The
calculus controls commands of the form A says s, where A is a principal and s is a statement,
possibly a request for an operation to be performed on an object. The calculus has the following
elements:

A) B : principal A is stronger than principal B (if B is allowed to say s, so is A).

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

10
CDRL A019

Security Policy Survey

A ^ B : principal A and principal B together make a statement (this can be generalized to n
principals to represent an n-person policy).

A j B : principal A quoting principal B (A says B says s).

4.5 ORCON

In an IBAC policy, processes that are able to read information from an object can usually make
that information available to other processes at their discretion. This discretionary aspect of
an IBAC policy can be eliminated by using an Originator Controlled (ORCON) policy [2]. With
an ORCON policy [14, 16], the allowed accesses for an object are used to determine the allowed
accesses for any object derived from it (shared memory segments must be treated as objects in
this policy). In the simplest version, each process has a Propagated Access Control List (PACL).
Whenever a process reads an object, the intersection of the allowed accesses for the object and
the process’s PACL form a new PACL. The allowed accesses for any object written by a process
must be a subset of its PACL. For example, assume that

a process b reads from two objects m and n,

only a and b have read permission to m, and

only b and c have read permission to n.

The only process that can have read permission to any object that b subsequently writes is
b itself. Alternatively, a process’s PACL or an object’s ACL can be replaced by an ACL and
a set of pointers to the inherited ACLs, allowing an originating process the ability to change
the allowed accesses. The allowed accesses for a process are again computed by finding the
intersection of the allowed accesses from the referenced ACLs.

4.6 Capabilities

Instead of representing the access matrix as a set of ACLs (columns of the matrix), a set of
environments (rows of the matrix) can be used. Each element in an environment is called a
capability and consists of an object identifier and a set of accesses (referred to asrights) [9, 15].
An access to an object is allowed if the process’s environment contains a capability with that
object and the desired access. Included in the accesses are controls on the use and transfer
of the capability. For example, a capability may be ‘use-once’, which causes it to be removed
from the environment when it is used. Also, a capability may be ‘no-transfer’, which prohibits
it from being copied to another environment, or ‘no-copy’, which allows it to be moved to a new
environment only if it is simultaneously removed from the old environment. Some of these
controls may be set when an object is created, for example setting a particular capability for an
object to be ‘no-copy’ so that only one subject may hold the capability at a time. Other controls
can be set before one process passes a copy to another process.

Capability systems can be enhanced withrights amplification, which provides a means of imple-
menting protected subsystems [9, 15]. For example, assume that a file system process provides
support for a virtual memory. To get a program file, the file system process requires that both
open and read permissions be held by the client. Various users can be given capabilities for
a file with only read permission. The users can only make use of these capabilities indirectly
by first passing them to the virtual memory manager, which amplifies the capability to add
open permission (permission to amplify requires possession of a special capability). Rights

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 11

amplification also provides for “courier processes” that can be given a capability that only has
courier permission. This permission does not allow the courier process that holds it to make
any accesses to the object. However, when the capability is delivered to a process that is allowed
to amplify its rights, the recipient can gain the needed permissions.

4.7 Chinese Wall

A Chinese Wall policy constrains accesses based on the history of previous accesses [6]. It was
motivated by the need to restrict insider information, such as using knowledge about one firm’s
activities in the analysis of a competitor’s best course of action. It can also be used for cases in
which an aggregate of information is more sensitive than individual pieces [19]. The objects of
interest are partitioned into data sets and the data sets are partitioned into conflict of interest
classes. For example, all objects containing information about a single firm would form a data
set. All data sets associated with petroleum companies would form a conflict of interest class,
and all data sets associated with computer firms would form another (a conglomerate spanning
several industries would presumably belong to multiple conflict of interest classes). When a
process accesses an object, it (and any other process with which it cooperates) loses access to
any objects in the same conflict of interest class but different data set as the accessed object.
Thus, once a process reads confidential information about Unisys, it cannot read confidential
information about IBM, but it could read additional information about Unisys or information
about Texaco. Also, a process may not write to an object after it has read from an object in
a different data set. Thus, it cannot copy information about IBM into a Texaco file where it
can be read by a process that already has accessed information about Unisys. The policy does
permit “trusted” processes that may read information from one data set, sanitize it, and write
it into another data set.

4.8 Combinations of Policies

The security requirements for many systems require a combination of policies. For example,
a military system might require both an MLS and an IBAC policy. A simple combination
can be made by taking the intersection of the various policies: an access is permitted by the
combined policy if it is permitted by each of the constituent policies. Sometimes, however, the
combination is more complex. For example, MLS and type enforcement can be combined such
that a write is permitted if either it is permitted by both the MLS and type enforcement policies
(as in the simple combination), or trusted write is permitted by the type enforcement policy (a
trusted write is only allowed to those processes with the authority to declassify information or
to extract nonsensitive from sensitive information) [5, 22]. This is an example of a policy in
which permission in one subpolicy overrides lack of permission in another subpolicy.

Another form of combination is to use different policies for different objects. Control of a group
of sensitive objects might use a Chinese Wall policy, control of a shared virtual memory might
use capabilities, and control of a file system might use an IBAC policy. These policies might
interact, such as storing the capabilities for the virtual memory in the file system. Thus, the
initial linking between a process and the virtual memory would depend on the identity of the
process, but then the accesses would be controlled by capabilities.

4.9 Information Flow

The policies given above have been stated in terms of allowed accesses. An alternative is to

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

12
CDRL A019

Security Policy Survey

state them as noninterference requirements [12]. One group of subjects isnoninterfering with
another group if what the first group does has no effect on what the second group can see.
For example, an MLS policy can be expressed such that subjects at one security level must
be noninterfering with subjects at another level if the second level does not dominate the first
level. Note that if having an effect includes more than being able to write to an object that the
other group can read, this MLS policy is stronger than the Bell-LaPadula policy in Section 4.1
and prohibits certain covert channels [21]. The advantage to a noninterference formulation
is that the policy can be stated formally and a model of the system can be proved to satisfy
the policy. Several versions, differing in what “having an effect on what can be seen” formally
means, have been given [11, 17, 18]. There seems to be general agreement, however, that
the formalization must be composable in that if two systems are both noninterfering, then the
larger system formed by composing them also is noninterfering [17].

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 13

Section 5
Generic Framework

We now consider what sorts of policies can be expressed and enforced within the DTOS archi-
tecture. We do this by first presenting a general system framework consisting of a manager
and a security server. A manager is the only subject able to directly access some collection
of objects that it manages. It receives a sequence of requests from various client subjects to
perform actions on its objects and must decide, based on its current state, possibly augmented
by policy information received from a security server, whether or not to carry out each request.
The security server is responsible for making policy decisions, and the manager is responsible
for enforcing those decisions. This section presents a framework for such a system. In Section 7
we will describe the DTOS microkernel as an instance of the generic manager. Later sections
will specify security servers for several security policies using as a basis the generic security
server described here.

We note here that the framework described in this section is quite general and could be applied
not only to the specification of a variety of security servers but also a variety of object managers.
To achieve this generality, substantial nondeterminism has been left in the framework. This
nondeterminism allows a given manager or security server to be specified by supplying the
detailed information required to narrow the operations to those actually allowed by the manager
or security server. Section 7 provides an example of how to do this for a manager, and Sections 8–
10 provide three examples of how to do this for a security server.

The structure of the generic framework is depicted in Figure 1. The manager receives requests
from other subjects, including the Security Server, and it sends security requests to the Security
Server. The Security Server sends to the manager responses to the Security Server requests.
The generic types M REQ , SS REQ and RESP denote the manager requests, Security Server
requests and Security Server responses, respectively. The manager and Security Server each
have internal data that records their processing state. The Security Server’s data includes

policy — a description of the policy governing the Security Server’s policy decisions
active computations — a list of requests that the Security Server has received and is
still processing

The manager’s data includes

control policy — the security requirements that the manager associates with each
manager request
retained permissions — the security requirements that are satisfied by responses that
the manager has previously received from the Security Server
active requests — a list of requests that the manager has received and is still processing
permission status of active requests — the status of each active request with regard
to the checking of the associated security requirements
independently deniable requests— those requests that may be denied by the manager
without additional consultation of the Security Server

The interpretation and use of this data is explained in greater detail below.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

14
CDRL A019

Generic Framework

Manager Security Server

control policy

retained permissions

active requests

permission status of active
 requests

independently deniable
 requests

policy

active computations

MGR_DATA SS_DATA

RESP

REQ

SS_REQ

Figure 1: Generic Framework

5.1 Shared State

The bag pending ss requests denotes the collection of security computation requests that have
been sent to the Security Server but not yet received. This component is shared between the
manager and the Security Server. The manager can only add elements to the bag while the
Security Server can only remove elements. This is formalized in the operation specifications
for the manager and Security Server (see Sections 5.2.2 and 5.3.2).

PendingSsRequests [SS REQ]
pending ss requests : bag SS REQ

Similarly, the bag pending responses denotes the collection of responses that have been sent by
the Security Server to the manager but not yet received.

PendingResponses [RESP]
pending responses : bagRESP

The bag pending requests denotes the collection of manager requests that have been sent to the
Manager but not yet received. This is shared state information since the Security Server may
make manager requests.

PendingRequests [M REQ]
pending requests : bagM REQ

From a value of type RESP , the manager can determine the SS REQ that prompted the RESP
to be sent and also whether the Security Server has indicated that the request is allowed
or denied. The operations specified in Sections 5.2.2 and 5.3.2 assume that the generic type
SS REQ coalesces three distinct types of request:

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 15

a permission request — the answer must be “yes” or “no”
an information request — the answer must be something other than “yes” or “no”
(SSI context to mid in DTOS is an example),
a notification — provides information to the security server; no answer is required.

SsRequestTypes [SS REQ]
permission requests : � SS REQ

information requests : � SS REQ

noti�cations : � SS REQ

disjoint hnoti�cations ; permission requests; information requestsi

The first two types of request anticipate a response from the security server. The third does
not although it is possible that an acknowledgement might be sent by the Security Server.
We allow the possibility that the Security Server might in a single response provide the
answers for other requests in addition to the one that is made by the manager. As an ex-
ample, the DTOS Security Server sends access vectors containing sets of granted and de-
nied permissions to the kernel. The generic type ANS denotes the set of possible answers
to SS REQs. We distinguish two special values of type ANS , ans yes and ans no, used to
communicate the granting and denial of permissions, respectively. These two special an-
swers may apply only to permission requests. The expression answers(ss response) denotes
the answers sent in the response ss response . A pair (ss req; ans) is in answers(ss response) if
ss response contains an answer ans for security server request ss req. The functions grants,
denies and holds information partition the answers provided in a response. The expression
grants(ss response) denotes the set of SS REQs for which the Security Server provides an an-
swer of ans yes within response ss response. The expression denies(ss response) denotes the
set of SS REQs for which the Security Server provides an answer ofans no within response
ss response. The expression interpret response(ss response) returns the pair (ss req ; ans) con-
taining the request to which the response is a reply and the answer for that request. This
pair must be included in answers(ss response). The expression holds information(ss response)
denotes the non-permission information that is contained in ss response . For example, in re-
sponse to the DTOS Security Server requestSSI context to mid the Security Server would
send a MID (mandatory security identifier) in the ss response. This MID would be cast as an
element of the type ANS . The pair (ss req; ans) is in holds information(ss response) exactly
when ss response contains information ans associated with information request ss req.

Answer [ANS]
ans yes; ans no : ANS

ans yes 6= ans no

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

16
CDRL A019

Generic Framework

InterpretResponse[SS REQ ;RESP ;ANS]
SsRequestTypes [SS REQ]
Answer [ANS]
answers : RESP " (SS REQ �ANS)
interpret response : RESP " (SS REQ � ANS)
grants : RESP " (� SS REQ)
denies : RESP " (� SS REQ)
holds information : RESP " (SS REQ �ANS)

(8 ss response : RESP
� answers(ss response) 6= �

^ interpret response(ss response) 2 answers(ss response)
^ grants(ss response)

= f ss req : SS REQ j (ss req; ans yes) 2 answers(ss response) g
^ denies(ss response)

= f ss req : SS REQ j (ss req; ans no) 2 answers(ss response) g
^ holds information(ss response) = f ss req : SS REQ ; ans : ANS

j (ss req; ans) 2 answers(ss response) ^ ans =2 fans yes ; ans nog
� (ss req; ans) g

^ grants(ss response) � permission requests

^ denies(ss response) � permission requests

^ dom(holds information(ss response)) � information requests)

The Security Server may volunteer in a manager request answers to security server requests.
(Note that these answers are not necessarily provided in response to any actual security server
request.) The expression volunteers answers(req) denotes the answers sent in the requestreq. A
pair (ss req; ans) is in volunteers answers(req) if req contains an answer ans for security server
request ss req. The functions voluntarily grants , voluntarily denies and volunteers information

partition the answers provided in a request. The expression voluntarily grants(req) denotes
the set of all SS REQs for which an answer of ans yes is volunteered in the request req.
The expression voluntarily denies(req) denotes the set of all SS REQs for which an answer
of ans no is volunteered in the request req. The expression volunteers information(req) de-
notes the non-permission information that is volunteered in the request req. The pair
(ss req; ans) is in volunteers information(req) exactly when req contains information ans as-
sociated with information request ss req . Most managers would execute a request req in which
volunteers answers(req) 6= � only if req is received from the security server. However, we do not
require that it be impossible for other clients to make such a request.4

4One example of a manager allowing such a request is a system where clients can make requests to have there own
permissions decreased. Such a request constitutes a voluntary denial of permission.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 17

InterpretMgrRequest[M REQ ; SS REQ ;ANS]
SsRequestTypes [SS REQ]
Answer [ANS]
volunteers answers :M REQ " (SS REQ � ANS)
voluntarily grants :M REQ "� SS REQ

voluntarily denies :M REQ "� SS REQ

volunteers information : M REQ " (SS REQ � ANS)

(8 req :M REQ

� voluntarily grants(req) = f ss req : SS REQ

j (ss req; ans yes) 2 volunteers answers(req) g
^ voluntarily denies(req) = f ss req : SS REQ

j (ss req; ans no) 2 volunteers answers(req) g
^ volunteers information(req) = f ss req : SS REQ ; ans : ANS

j (ss req; ans) 2 volunteers answers(req) ^ ans =2 fans yes ; ans nog
� (ss req; ans) g

^ voluntarily grants(req) � permission requests

^ voluntarily denies(req) � permission requests

^ dom(volunteers information(req)) � information requests)

SharedInterpretation[M REQ ; SS REQ ;RESP ;ANS]
b= InterpretResponse[SS REQ ;RESP ;ANS]

^ InterpretMgrRequest[M REQ ; SS REQ ;ANS]

In summary, the state information shared between the manager and the security server consists
of all the above.

SharedState [M REQ ; SS REQ ;RESP ;ANS]
PendingSsRequests [SS REQ]
PendingResponses [RESP]
PendingRequests [M REQ]
SharedInterpretation[M REQ ; SS REQ ;RESP ;ANS]

5.2 Manager

The manager accepts a set of requests from clients and determines whether each request can
be serviced by consulting the Security Server, answers that it has retained from previous
consultations with the Security Server, and its own control policy.

5.2.1 State

Each manager is responsible for managing a collection of data. We use the generic type
M DATA to denote the type of the data managed by the manager. The valuemgr data of this
type denotes the current contents of the data maintained by the manager.

MgrData [M DATA]
mgr data :M DATA

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

18
CDRL A019

Generic Framework

All data maintained by the manager is contained in mgr data. In specifying pieces of this
data we define extraction functions that map mgr data to the given piece of data. The ex-
traction functions have a name of the form “extract �” where “*” is the name of the extracted
information. For example, the manager assigns a unique request number to each pending
request. The expression active request(req num) denotes the request identified by req num.
The function active request is extracted from mgr data by the mapping extract active request.
Generally, we will work with the extracted information in our specification, but it will be seen
that each component of the state in the framework is derivable frommgr data via some ex-
traction function. This formalization allows us to require that a manager maintain certain
types of state information and to constrain the ways in which that information is manipulated
without specifying precisely how the manager represents the information and performs the
manipulation. For example, we will require that the manager have a concept of what security
server answers have been retained. This information must be contained in mgr data for the
manager. If a given manager does not retain any answers, this may be specified by stating that
the appropriate extract � function returns an empty set of retained answers for allmgr data

values. For a manager that does retain answers, the extract � function may be constrained to
model the answers that are retained. Our typical practice will be to constrain the extracted
information itself rather than the extraction function. Examples of such definitions can be seen
in the section that define the DTOS kernel and the example security servers.

[REQ NUMBER]

MgrRequests [M DATA;M REQ]
MgrData [M DATA]
active request : REQ NUMBER�M REQ

extract active request :M DATA"REQ NUMBER �M REQ

active request = extract active request(mgr data)

In general, a manager might need to make a set of computation requests of the Security Server
to determine whether a given manager request is permitted. The expression required(req)
indicates the set of such computation requests that the manager requires the Security Server
to perform before it will accept the request. This set is derived frommgr policy which gives
the set of all SS REQ (for both permissions and information) that the manager believes are
pertinent to the request (i.e., the control policy of the manager) and retained which, for each
M REQ , gives the set of all SS REQ for which the manager has retained an answer in its
state from previous Security Server responses and requests that volunteer answers. Note that
we allow the possibility that an answer may be retained with respect to someM REQ and
not with respect to others. This is interesting in the case where a permission can get cached
in multiple places in the manager with each place controlling a certain set of requests. The
permission might later be flushed from one such cache but remain in others. An example of
this in DTOS is the caching of permissions in the protection bits of a page. A manager may also
retain for each M REQ a set of SS REQs for which a denial of permission has been retained.
This is modeled by the function retained denial .

The functions retained and retained denial are both derived from retained answers. The expres-
sion retained answers(req) denotes the set of retained answers received in previous responses
and requests from the Security Server. These retained answers can beans yes , ans no or any
information value of type ANS . The expression retained(req) provides the SS REQ for which
a non-ans no answer has been retained for request req. The expression retained denial (req)
provides those for which ans no has been retained for req. Since retained , retained denial and

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 19

required are derived entirely from retained answers and mgr policy we do not define extraction
functions for them.

The relation retained rel contains a pair (req; ss req) if and only if ss req 2 retained(req). Simi-
larly, retained denial rel contains a pair (req ; ss req) if and only if ss req 2 retained denial (req).

MgrPolicy[M DATA;M REQ ; SS REQ ;ANS]
MgrData [M DATA]
SsRequestTypes [SS REQ]
Answer [ANS]
mgr policy :M REQ "� SS REQ

extract mgr policy :M DATA"M REQ "� SS REQ

retained answers :M REQ " (SS REQ � ANS)
retained answers rel : M REQ # (SS REQ � ANS)
extract retained answers :M DATA"M REQ " (SS REQ � ANS)
retained :M REQ "� SS REQ

retained rel :M REQ # SS REQ

retained denial :M REQ "� SS REQ

retained denial rel :M REQ # SS REQ

required :M REQ "� SS REQ

mgr policy = extract mgr policy(mgr data)
retained answers = extract retained answers(mgr data)

ranmgr policy � �(permission requests [information requests)
ran retained denial rel � permission requests

ran retained rel � permission requests [information requests

8 req :M REQ

� retained(req) = fss req : SS REQ ; ans : ANS
j (ss req; ans) 2 retained answers(req) ^ ans 6= ans no

� ss req g
^ retained denial(req)

= fss req : SS REQ j (ss req; ans no) 2 retained answers(req) g
^ required(req) = mgr policy(req) n retained(req)
^ retained answers rel�freqg� = retained answers(req)
^ retained rel�freqg� = retained(req)
^ retained denial rel�freqg� = retained denial(req)

If required(req) is equal to the empty set, then the Manager is able to determine on its own
whether the request is permissible. In some cases, the Manager can determine on its own that
a request is not permissible even though required(req) 6= �. The set denied requests denotes the
set of requests that the Manager can reject on its own without further consultation with the
Security Server. Note that as the Manager state changesdenied requests can change. Thus, it
is possible that after some amount of processing the Manager would decide on its own that the
request should be denied even though it has not received anans no response from the Security
Server.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

20
CDRL A019

Generic Framework

MgrDeniedRequests [M DATA;M REQ]
MgrData [M DATA]
denied requests : �M REQ

extract denied requests :M DATA"�M REQ

denied requests = extract denied requests(mgr data)

The expression sent(req num) denotes the set of security computation requests that the Man-
ager’s records show it has previously sent to the Security Server to determine whether
the request indicated by req num is permissible. The relation sent rel contains a pair
(req num ; ss req) if and only if ss req 2 sent(req num).

MgrSent [M DATA; SS REQ]
MgrData [M DATA]
sent : REQ NUMBER"� SS REQ

sent rel : REQ NUMBER# SS REQ

extract sent :M DATA" REQ NUMBER"� SS REQ

sent = extract sent(mgr data)
8 req num : REQ NUMBER

� sent rel�freq numg� = sent(req num)

The expression obtained (req num) denotes the set of security computation requests for which the
Manager’s records show the Security Server has responded with an answer other thenans no

for the request indicated by req num . This may include both permission and information
requests. This can be thought of as those computation requests that have “succeeded”, where
success is interpreted as ans yes for permission requests and any response for an information
request. The relation obtained rel contains a pair (req num ; ss req) if and only if ss req 2
obtained (req num).

MgrObtained [M DATA; SS REQ]
MgrData [M DATA]
obtained : REQ NUMBER "� SS REQ

obtained rel : REQ NUMBER # SS REQ

extract obtained :M DATA" REQ NUMBER"� SS REQ

obtained = extract obtained (mgr data)
8 req num : REQ NUMBER

� obtained rel�freq numg� = obtained (req num)

The expression allowed(req num) denotes the current status of the security processing per-
formed by the Manager for the request indicated by req num . The value returned is either
status yes or status unknown depending on whether the request denoted by req num has been
approved or is still being checked. We do not have a value ofstatus no since requests for which
a permission is denied are terminated rather than being marked unallowed.

STATUS ::= status yes j status unknown

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 21

MgrAllowed[M DATA]
MgrData [M DATA]
allowed : REQ NUMBER � STATUS

extract allowed :M DATA" REQ NUMBER� STATUS

allowed = extract allowed(mgr data)

The bag responses denotes the responses from the Security Server that the Manager currently
has buffered. The elements of this bag are denoted by the generic typeRESP .

MgrResponses [M DATA;RESP]
MgrData [M DATA]
responses : bagRESP
extract responses :M DATA" bagRESP

responses = extract responses(mgr data)

A Manager contains internally all of the state components described in this section. We also
require the following:

Every active request has an allowed status.
If for some request, R, the manager policy calls for an SS REQ , S , and a denial of S is
currently retained for R, then the manager is capable of denying the request indepen-
dently. This does not mean that the manager will make no Security Server computation
requests.

MgrInternals[M DATA;M REQ ; SS REQ ;RESP ;ANS]
MgrData [M DATA]
MgrRequests [M DATA;M REQ]
MgrPolicy[M DATA;M REQ ; SS REQ ;ANS]
MgrDeniedRequests [M DATA;M REQ]
MgrSent [M DATA; SS REQ]
MgrAllowed[M DATA]
MgrResponses [M DATA;RESP]
MgrObtained [M DATA; SS REQ]

domallowed = domactive request

domsent rel � domactive request

domobtained rel � domactive request

freq :M REQ j mgr policy(req) \ retained denial(req) 6= �g � denied requests

The state of a Manager consists of all of its internal state plus the shared state information.

MgrState[M DATA;M REQ ; SS REQ ;RESP ;ANS]
MgrInternals[M DATA;M REQ ; SS REQ ;RESP ;ANS]
SharedState [M REQ ; SS REQ ;RESP ;ANS]

An execution step by the Manager may change any of the Manager’s state information except
for the shared state information from SharedInterpretation . We do not allow this to change in

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

22
CDRL A019

Generic Framework

order to ensure that when the Manager receives a response or a request from the Security
Server it interprets any permissions embedded in the response or request in the same way that
the Security Server did when it formulated the response or request in an earlier system step.

MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]
�MgrState[M DATA;M REQ ; SS REQ ;RESP ;ANS]
� SharedInterpretation[M REQ ; SS REQ ;RESP ;ANS]

5.2.2 Operations

The possible actions performed by the manager are described below. We note that none of these
actions constrains mgr policy 0, extract mgr policy 0, denied requests 0 or extract denied requests 0.
As a result, the manager’s control policy and the set of requests that it decides on its own to
reject (for whatever reason) can change at any time. This reflects the fact that the state of the
manager can change during any operation, and the state changes that occur might affect the
control policy or the denied requests. For example, in the DTOS kernel almost any processing
step could potentially produce a resource shortage that would cause many requests to be added
to the set denied requests. It is assumed that the specification of a particular manager will
constrain the changes tomgr policy and denied requests in whatever way is appropriate for that
manager. All constraints upon retained answers rel

0, sent rel
0 and obtained rel

0 are defined in
terms of the subset relation � rather than equality. A similar property applies to constraints
on the bag responses 0. This means that these sets are allowed to shrink at any time. That is,
the manager can freely remove the following from its internal data:

the retention of any permissions that have been granted or volunteered by the Security
Server,
retained denial of permissions,
any record of past Security Server requests,
any record of Security Server affirmative responses, and
any unprocessed Security Server responses.

These subset constraints imply that, while the manager is allowed to discard its records of past
events, it cannot record events that did not happen. For example, a permission may not be
retained unless it was actually granted in a response or request.

5.2.2.1 Receive Request In response to receiving a request req?, the manager:

assigns it an unused request number req num?,
records the binding between req num? and req? in active request, and
sets allowed(req num?) to status unknown .

In summary, the request is added to the set of active requests and the manager data is set to
indicate that no security processing has yet been performed on the request.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 23

MgrReceiveRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]
req? :M REQ

req num? : REQ NUMBER

MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]

req? � pending requests

req num? =2 domactive request

pending ss requests
0 = pending ss requests

pending responses
0 = pending responses

pending requests 0 = pending requests ! �req?�
active request 0 = active request � f req num? 7! req? g
allowed

0 = allowed � f req num? 7! status unknown g
obtained rel

0 � obtained rel

sent rel
0 � sent rel

responses0 v responses

retained answers rel 0 � retained answers rel

5.2.2.2 Send Request to Security Server A manager may send requests (including permission,
information and notification requests) to the Security Server. This always involves placing a
ss req in pending ss requests. We model this common behavior together with other invariants
in the schema MgrSendRequestAux .

MgrSendRequestAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]
ss req? : SS REQ

MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]

pending ss requests
0 = pending ss requests] �ss req?�

pending responses
0 = pending responses

pending requests 0 = pending requests

active request 0 = active request

obtained rel
0 � obtained rel

allowed
0 = allowed

responses0 v responses

retained answers rel 0 � retained answers rel

Permission and information requests are modeled by the same transition,
MgrRequestComputation . If the status of the request indicated by req num? is status unknown

and there is a SS REQ that

is in required for this request,
has not already been sent according to the manager’s records, and
has no denial retained with respect to the manager request,

then the manager can send thisSS REQ computation request to the Security Server.5 The fact
5Note that our framework does not include any liveness (i.e., scheduling) requirements. Furthermore, its nondeter-

minism allows many possible orderings for its operations. Thus, we cannot really say here that the managerwill take a
particular action such as sending a computation request. We can only say that in particular situations, this transition
is allowed. From a standpoint of access control, this is probably sufficient. If we wished to analyze systems for denial
of service, we might need to consider stronger specifications. Of course, there is nothing to prevent an instantiation of
this framework as the specification of a particular manager from being entirely deterministic. We note that liveness
properties have been considered some in the DTOS Composability Study [24].

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

24
CDRL A019

Generic Framework

that it has been sent may be recorded in sent rel .

MgrRequestComputation [M DATA;M REQ ; SS REQ ;RESP ;ANS]
req num? : REQ NUMBER

req? :M REQ

ss req? : SS REQ

MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]
MgrSendRequestAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]

(req num?; req?) 2 active request

(req num?; status unknown) 2 allowed

ss req? 2 (required(req?) n sent(req num?)) n retained denial(req?)
ss req? 2 permission requests [information requests

sent rel 0 � sent rel [freq num? 7! ss req?g

Notification requests are modeled by the schemaMgrSendNoti�cation . We do not record that a
notification has been sent since the manager does not require a response.

MgrSendNoti�cation [M DATA;M REQ ; SS REQ ;RESP ;ANS]
ss req? : SS REQ

MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]
MgrSendRequestAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]

ss req? 2 noti�cations

sent rel
0 � sent rel

5.2.2.3 Receive Response The manager can receive a response by moving an element of
pending responses into responses .

MgrReceiveResponse [M DATA;M REQ ; SS REQ ;RESP ;ANS]
ss response? : RESP
MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]

ss response? � pending responses

pending responses
0 = pending responses ! �ss response?�

responses0 v responses] �ss response?�
pending ss requests 0 = pending ss requests

pending requests 0 = pending requests

active request 0 = active request

sent rel
0 � sent rel

obtained rel
0 � obtained rel

allowed
0 = allowed

retained answers rel 0 � retained answers rel

5.2.2.4 Process Response When the manager receives a response from the Security Server,
it must determine the active request to which the response pertains and the answer. The
security computation being checked must be in the set of computations recorded as sent for the

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 25

request and not in the set of computations recorded as obtained for the request. Theallowed
status must be status unknown .

The actions of the manager depend upon whether the response is affirmative (i.e., permission
is granted or information provided) or negative (i.e., permission is denied). We first define an
auxiliary schemaMgrProcessResponseAux that states the behavior that these two cases have in
common.

In addition to the requested permission or information, the response might contain other
answers. The manager might choose to retain any or all of these. We define the expression
Max retain(old retained rel ; ss req set) to be the retained answer set containing all the answers
in old retained plus the retention of each answer indicated byans fun for each request req.

[M REQ ; SS REQ ;ANS]
Max retain : (M REQ # (SS REQ �ANS)) � (SS REQ � ANS)

"(M REQ # (SS REQ � ANS))

8 old retained rel :M REQ # (SS REQ � ANS);
ans fun : (SS REQ �ANS)

�Max retain(old retained rel ; ans fun)
= old retained rel [(M REQ � ans fun)

As part of processing a response, any active request may be terminated and its permission
status cleared. No request may obtain the status yes value for the allowed function during the
processing of a response (see Section 5.2.2.6).

MgrProcessResponseAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]
req num? : REQ NUMBER

req? :M REQ

ss req? : SS REQ

ss response? : RESP
MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]
� SharedState[M REQ ; SS REQ ;RESP ;ANS]

(req num?; req?) 2 active request

(req num?; status unknown) 2 allowed

ss req? 2 sent(req num?) n obtained (req num?)
ss response? � responses

responses0 v responses ! �ss response?�
retained answers rel 0 � Max retain(retained answers rel; answers(ss response?))
sent rel

0 � sent rel

active request 0 � active request

8 req num : REQ NUMBER

� allowed 0(req num) = status yes) allowed(req num) = status yes

If the answer is ans no and there is a request for which the computation has been sent but not
yet obtained, then the request can be terminated. When a request is terminated, it is removed
from the domain of active request (and hence from the domain of allowed). The permission
status of the request is also cleared. We allow the possibility that additional requests might be
terminated (and their permission status cleared) in the same transition. This makes it possible
for the manager to immediately apply the answers in a response to a variety of requests. Since

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

26
CDRL A019

Generic Framework

several manager state transitions result in the termination of a request we specify an auxiliary
schema MgrTerminateRequestAux describing this transition.

MgrTerminateRequestAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]
MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]
req num? : REQ NUMBER

active request 0 � f req num? g� active request

sent rel
0 � sent rel

obtained rel
0 � obtained rel

8 req num : REQ NUMBER

� allowed 0(req num) = status yes) allowed(req num) = status yes

MgrNegativeResponse [M DATA;M REQ ; SS REQ ;RESP ;ANS]
MgrProcessResponseAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]
MgrTerminateRequestAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]

(ss response?; (ss req?; ans no)) 2 interpret response

If the answer in a response is not ans no and there is a request for which the computation
has been sent but not yet obtained, then the manager can record that a non-negative answer
has been obtained for the computation for that request. In the case of an information request,
the information will be taken into account (and might be retained), but for the purpose of
tracking the security processing of the request we need only record that the information has
been obtained.

MgrA�rmativeResponse[M DATA;M REQ ; SS REQ ;RESP ;ANS]
MgrProcessResponseAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]

(9 ans : ANS
j ans 6= ans no

� (ss response?; (ss req?; ans)) 2 interpret response)

obtained rel
0 � obtained rel [f req num? 7! ss req? g

5.2.2.5 Deny Request If the manager determines that a pending request should not be per-
mitted, then the request can be terminated.

MgrDenyRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]
req num? : REQ NUMBER

req? :M REQ

MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]
� SharedState[M REQ ; SS REQ ;RESP ;ANS]
MgrTerminateRequestAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]

(req num?; req?) 2 active request

req? 2 denied requests

responses0 v responses

retained answers rel
0 � retained answers rel

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 27

5.2.2.6 Accept Request If all of the security computations in required(req num?) are also in
obtained (req num?), then the Security Server has approved all of the computations and supplied
any necessary information. In this caseallowed(req num?) can be set to status yes .

MgrAcceptRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]
req num? : REQ NUMBER

req? :M REQ

MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]
� SharedState[M REQ ; SS REQ ;RESP ;ANS]

(req num?; req?) 2 active request

(req num?; status unknown) 2 allowed

required(req?) � obtained(req num?)

allowed 0 = allowed � f req num? 7! status yes g
active request 0 = active request

sent rel
0 � sent rel

obtained rel
0 � obtained rel

responses0 v responses

retained answers rel 0 � retained answers rel

5.2.2.7 Process Request For the most part, the manager can process any request that has
been approved and may change its state during the processing as it sees fit. The only restrictions
are:

The request identified by req num? can only be processed if allowed(req num?) is
status yes .
The request req? may not be in denied requests.
The manager may only retain answers that are already retained or are volunteered in
the request.6

After the request is processed, it is terminated. Thus, the operationMgrProcessRequest denotes
the completion of a request in a single transition after all security processing for the request
has been completed. We also allow the following to happen:

additional requests may be terminated,
permission status information may be discarded,
retained answers may be discarded,
requests that are marked status yes may be marked status unknown .

This allows cases where the processing of a request from the Security Server causes an imme-
diate withdrawal of permissions that have been previously granted (whether or not they were
retained) and this affects the permission status of other active requests.

6Normally, answers will only be volunteered in requests made by the Security Server.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

28
CDRL A019

Generic Framework

MgrProcessRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]
req num? : REQ NUMBER

req? :M REQ

MgrStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]
� SharedState[M REQ ; SS REQ ;RESP ;ANS]
MgrTerminateRequestAux [M DATA;M REQ ; SS REQ ;RESP ;ANS]

(req num?; req?) 2 active request

(req num?; status yes) 2 allowed

req? =2 denied requests

retained answers rel 0

� Max retain(retained answers rel; volunteers answers(req?))
responses0 v responses

5.2.3 Manager as a Component

Following the concepts in the DTOS Composability Study [24], we define a manager as a type
of component. This means defining the following four fields for the component:

guar a set of transitions that the manager may perform,

rely a set of transitions that the manager can tolerate from other system components

init a set of allowed initial states for the manager, and

view an equivalence relation denoting the state information that is visible to the manager.

In defining this information and reasoning with it, we will be slightly less formal than in the
Composability Study, but the composability framework is the same. We will leave unspecified
the agents of each component. In all cases it should be assumed that there is a nonempty
set of agents for each of the manager and security server and these two sets are disjoint. We
note here that we are following Draft 2 of the Composability Study7 with the exception that
we ignore the priv field of a component since, although it was carried over from Draft 1 of the
Composability Study, it really serves no useful purpose in Draft 2. When we define a particular
instance of a generic manager, we will further constrain the component’s fields.

7The differences between Draft 2 and the final draft (number 3) are not very important for the work done here. The
final draft extends the compose operation to compose an arbitrary number of components as opposed to the pairwise
operation in Draft 2. We never compose more than two components, a manager and a security server, in this report. The
final draft also uses a different method of indicating what parts of the system state are left alone by each component
when the components are composed. Both Draft 2 and this report use respect relations which are supplied as arguments
of the compose operation. The final draft achieves the same end by defining an additional piece of informationhidd
for each system component. It can be shown that the hidd approach is a special case of the respect relation approach.
The advantage of the hidd approach is that it is somewhat easier to manage in situations where lots of components
are being analyzed and composed in different combinations. Again, this is not a concern in this report.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 29

The guar for a manager allows any of the transitions described in Section 5.2.2. It is modeled
by mgr guar . We assume there is a single manager agent that can perform these transitions.

MgrGuarStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]
b= MgrReceiveRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]

_MgrRequestComputation [M DATA;M REQ ; SS REQ ;RESP ;ANS]
_MgrSendNoti�cation [M DATA;M REQ ; SS REQ ;RESP ;ANS]
_MgrReceiveResponse [M DATA;M REQ ; SS REQ ;RESP ;ANS]
_MgrNegativeResponse [M DATA;M REQ ; SS REQ ;RESP ;ANS]
_MgrA�rmativeResponse[M DATA;M REQ ; SS REQ ;RESP ;ANS]
_MgrDenyRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]
_MgrAcceptRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]
_MgrProcessRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]

MgrGuar [M DATA;M REQ ; SS REQ ;RESP ;ANS]
mgr guar : �MgrGuarStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]

mgr guar = MgrGuarStep[M DATA;M REQ ; SS REQ ;RESP ;ANS]

A manager makes the following assumptions about transitions performed by other components
of the system:

No manager-internal data is modified.

The data in SharedInterpretation is not modified.

Nothing is removed from pending responses and pending requests.

This is modeled by mgr rely.

Editorial Note:
We probably should have assumptions about who can add things to the pending lists.

MgrRely[M DATA;M REQ ; SS REQ ;RESP ;ANS]
mgr rely : ��MgrState[M DATA;M REQ ; SS REQ ;RESP ;ANS]

mgr rely = f�MgrState[M DATA;M REQ ; SS REQ ;RESP ;ANS]
j �MgrInternals[M DATA;M REQ ; SS REQ ;RESP ;ANS]
^ � SharedInterpretation[M REQ ; SS REQ ;RESP ;ANS]
^ pending responses v pending responses 0

^ pending requests v pending requests 0 g

The set of allowed initial states is modeled by mgr init . We require the following sets to be
empty: pending responses, pending requests, active request , sent , obtained , allowed and responses.
Note that we allow the possibility thatpending ss requests might be non-empty at system start-
up. This means that the start-up process is allowed to automatically queue up one or more
Security Server requests as a way of getting security information from the Security Server to
the manager.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

30
CDRL A019

Generic Framework

MgrInit [M DATA;M REQ ; SS REQ ;RESP ;ANS]
mgr init : �MgrState[M DATA;M REQ ; SS REQ ;RESP ;ANS]

8 st : mgr init

� st :pending responses = �
^ st :pending requests = �
^ st :active request = �
^ st :sent = �
^ st :obtained = �
^ st :allowed = �
^ st :responses = �

All information in MgrState is visible to the manager.

MgrView[M DATA;M REQ ; SS REQ ;RESP ;ANS]
mgr view :MgrState[M DATA;M REQ ; SS REQ ;RESP ;ANS]

#MgrState[M DATA;M REQ ; SS REQ ;RESP ;ANS]

8 st1; st2 :MgrState[M DATA;M REQ ; SS REQ ;RESP ;ANS]
� (st1; st2) 2 mgr view , st1 = st2

MgrComponent [M DATA;M REQ ; SS REQ ;RESP ;ANS]
b= MgrGuar [M DATA;M REQ ; SS REQ ;RESP ;ANS]

^MgrRely [M DATA;M REQ ; SS REQ ;RESP ;ANS]
^MgrInit [M DATA;M REQ ; SS REQ ;RESP ;ANS]
^MgrView [M DATA;M REQ ; SS REQ ;RESP ;ANS]

5.2.4 Properties

We can prove8 some useful properties based entirely upon the specification of a generic manager.
These properties can then be used as lemmas when analyzing a particular manager.

Lemma 5.1 A request req? with request number req num? can be processed in some state only
if in some preceding state

mgr policy(req?) n retained(req?) � obtained (req num?):

Proof: MgrProcessRequest has the precondition (req num?; status yes) 2 allowed . The relation
allowed is empty in the initial state, so we examine the manager transitions to determine which
ones can make the precondition true. The following table indicates the change to the value of
allowed for each of the manager transitions:

MgrReceiveRequest allowed
0 = allowed � f req num? 7! status unknown g

MgrRequestComputation

MgrSendNoti�cation

MgrReceiveResponse

allowed 0 = allowed

MgrNegativeResponse

MgrA�rmativeResponse

MgrDenyRequest

MgrProcessRequest

8 req num : REQ NUMBER

� allowed 0(req num) = status yes

) allowed(req num) = status yes

MgrAcceptRequest allowed
0 = allowed � f req num? 7! status yes g

8The proofs in this and later sections are rather informal. For many of the stated lemmas and theorems, a formal
proof would require induction on the length of a prefix of a system trace.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 31

This analysis indicates that the only transition that can add(req num?; status yes) to allowed is
MgrAcceptRequest which requires required(req?) � obtained (req num?). Applying the definition
of required completes the proof. 2

Lemma 5.2 A Security Server request ss req? is in the value of obtained (req num?) in
some state only if in some preceding state there is an ss response? � responses such that
(ss response?; (ss req?; ans)) 2 interpret response where ans is not ans no.

Proof: The relation obtained rel is initially empty. Only MgrA�rmativeResponse can add an
element to the value of obtained (req num?), and it does so only under the specified conditions.

2

Lemma 5.3 The bag responses contains an element ss response? in some state only if in some
preceding state ss response? � pending responses .

Proof: The bag responses is initially empty. Only MgrReceiveResponse can add an element to
responses , and it does so only if the element is in pending responses. 2

Lemma 5.4 A Security Server request ss req? is in the value of obtained(req num?) in some
state only if in some preceding state there is an ss response? � pending responses such that
(ss response?; (ss req?; ans)) 2 interpret response where ans is not ans no.

Proof: This follows from the preceding two lemmas together with the requirements inMgrStep
and MgrRely that interpret response and ans no are invariant in all transitions. 2

Lemma 5.5 A Security Server request ss req? is in the value of retained(req?) in some state only
if it is in retained(req?) in the initial state or there is some preceding state in which

1. ss response? � pending responses where (ss req?; ans) 2 answers(ss response?), or

2. (req num
1
; req

1
) 2 active request, (req num

1
; status yes) 2 allowed , req

1
=2 denied requests

and (ss req?; ans) 2 volunteers answers(req
1
)

where ans is not ans no.

Proof: Only MgrProcessResponseAux and MgrProcessRequest may add a pair, (ss req; ans), to
the value of retained(req?). The former (applying Lemma 5.3 and the invariance ofanswers and
ans no) requires the conditions in (1). The latter requires the conditions in (2). 2

The following theorem states that if a request is performed, then everySS REQ required, at
some earlier time, for that request was either retained in the initial state, has been received in
a response from the security server or has been volunteered in a processed manager request.

Theorem 5.6 A request req? with request number req num? can be processed in some state only
if there is some preceding states in which, for every r 2 mgr policy(req?) in s, either

1. r 2 retained (req?) in the initial state, or

2. there is some state s1 preceding s and some ans 6= ans no such that in s1

(a) (r ; ans) 2 answers(ss response?) for some ss response? � pending responses , or

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

32
CDRL A019

Generic Framework

(b) for some request req
1

and request number req num
1
,

(r ; ans) 2 volunteers answers(req
1
);

req
1
=2 denied requests;

(req num
1
; req

1
) 2 active request , and

(req num
1
; status yes) 2 allowed :

Proof: We first note that

8 ss response : interpret response(ss response) 2 answers(ss response):

The desired result then follows from Lemmas 5.1, 5.4 and 5.5. Note that the hypotheses of
Lemma 5.4 are subsumed by those of 5.5. 2

The following corollary states a sufficient condition for a manager to be obeying themgr policy

in effect at the time when a request is executed rather than the one that was in effect when the
permission checking for the request was concluded.

Corollary 5.7 If mgr policy is monotone non-increasing, that is, in all transitions

8 req : mgr policy 0(req) � mgr policy(req);

then Theorem 5.6 also applies with s taken to be the state in which req? is executed.

5.3 Security Server

5.3.1 State

The Security Server is responsible for servicing requests for computation that are received
from clients. The generic types SS REQ and RESP are used to denote, respectively, requests
for computations and responses to computations. The generic typeSS DATA is used to denote
states of the Security Server. The valuess data denotes the current state of the Security Server.

SsData [SS DATA]
ss data : SS DATA

The set policy allows denotes those security computations returning ans yes under the policy
currently implemented by the Security Server. The expressionss information(ss req) denotes
the information to be returned for an information request ss req.

SsPolicyAllows[SS DATA; SS REQ ;ANS]
SsData [SS DATA]
policy allows : � SS REQ

extract policy allows : SS DATA"� SS REQ

ss information : SS REQ � ANS

extract ss information : SS DATA" (SS REQ � ANS)

policy allows = extract policy allows(ss data)
ss information = extract ss information(ss data)

Upon receiving a security computation request, the Security Server assigns a unique identifier.
The expression active computations(comp num) denotes the security computation identified by
comp num.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 33

[COMP NUMBER]

SsActiveComputations [SS DATA; SS REQ]
SsData [SS DATA]
active computations : COMP NUMBER � SS REQ

extract active computations : SS DATA"COMP NUMBER � SS REQ

active computations = extract active computations(ss data)

A Security Server contains internally all of the state components described in this section.

SsInternals [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
SsData [SS DATA]
SsPolicyAllows[SS DATA; SS REQ ;ANS]
SsActiveComputations [SS DATA; SS REQ]

The state of a Security Server consists of all of its internal state plus the shared state informa-
tion. We require the set of SS REQs allowed by the policy to be a subset ofpermission requests.
The function ss information must be defined for every element of information requests, but we
do allow the possibility thatANS might contain a special value indicating “no information”.

SsState [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
SsInternals [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
SharedState [M REQ ; SS REQ ;RESP ;ANS]

policy allows � permission requests

domss information = information requests

An execution step by the Security Server may change any of the Security Server’s state in-
formation except for the shared state information from SharedInterpretation. We do not allow
this to change in order to ensure that when the Manager receives a response or a request from
the Security Server it interprets any permissions embedded in the response or request in the
same way that the Security Server did when it formulated the response or request in an earlier
system step.

SsStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
� SsState[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
� SharedInterpretation[M REQ ; SS REQ ;RESP ;ANS]

5.3.2 Operations

The Security Server can perform at least the operations described below. Note that none of
these operations constrains policy allows

0, or extract policy allows
0. That means the policy is

allowed to change during any Security Server operation. The specification for a particular
Security Server must state any constraints upon change of the policy.

5.3.2.1 Receive Computation Request In response to receiving a security computation request
ss req?, the Security Server:

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

34
CDRL A019

Generic Framework

assigns it an unused computation numbercomp num?, and
records the binding between comp num? and ss req? in active computations .

SsReceiveRequest [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
comp num? : COMP NUMBER

ss req? : SS REQ

SsStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS]

ss req? � pending ss requests

comp num? =2 domactive computations

pending ss requests
0 = pending ss requests ! �ss req?�

active computations 0 = active computations � f comp num? 7! ss req? g
pending responses 0 = pending responses

pending requests 0 = pending requests

5.3.2.2 Send “No” Response The Security Server checks ss req? against policy allows to see
if it is allowed. If not, it creates a response containing ans no, and sends it to the Manager.
Note that additional permissions may be sent in the response but only if they are allowed by the
policy. Also, information may be sent, but only if it is consistent withss information. We do not
constrain the expression denies(ss response?) since it might be desirable to design a Security
Server that sometimes denies permissions that are grantable. For example, a Security Server
might only grant permissions that are directly requested in ss req?, forcing the manager to
explicitly request the permissions it needs.

We note that, because of the constraints stated in InterpretResponse, the value of ans in
SsSendResponseAux constrains the type of the request ss req?. If ans 2 fans no; ans yesg,
then ss req? 2 permission requests. Otherwise, ss req? 2 information requests.

SsSendResponseAux [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
comp num? : COMP NUMBER

ss req? : SS REQ

ss response? : RESP
ans : ANS
SsStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS]

(comp num?; ss req?) 2 active computations

(ss response?; (ss req?; ans)) 2 interpret response

grants(ss response?) � policy allows

holds information(ss response?) � ss information

ss req? 2 permission requests [information requests

active computations 0 = f comp num? g� active computations

pending responses
0 = pending responses] �ss response?�

pending ss requests 0 = pending ss requests

pending requests 0 = pending requests

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 35

SsSendNegativeResponse [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
comp num? : COMP NUMBER

ss req? : SS REQ

ss response? : RESP
SsStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS]

ss req? 2 permission requests n policy allows

(let ans == ans no

� SsSendResponseAux [M REQ ; SS DATA; SS REQ ;RESP ;ANS])

5.3.2.3 Send “Yes” Response If ss req? is allowed by policy allows or if it is an information
request, a response containing ans yes or the requested information is sent to the Manager.
Additional permissions and information may be sent but only when consistent with the Security
Server state.

SsSendA�rmativeResponse [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
comp num? : COMP NUMBER

ss req? : SS REQ

ss response? : RESP
SsStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS]

ss req? 2 policy allows [information requests

(9 ans : ANS
j ans 6= ans no

� SsSendResponseAux [M REQ ; SS DATA; SS REQ ;RESP ;ANS])

5.3.2.4 Make Manager Request The Security Server may make requests of the manager. The
request may contain volunteered permissions as long as those permissions are consistent with
the policy. As with extra denials sent in responses, we place no constraints on volunteered
denials.

SsMgrRequest [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
req? :M REQ

SsStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS]

voluntarily grants(req?) � policy allows

volunteers information(req?) � ss information

active computations 0 = active computations

pending responses
0 = pending responses

pending ss requests
0 = pending ss requests

pending requests 0 = pending requests] �req?�

5.3.2.5 Change State The Security Server may change state without communicating with
the Manager in any way. This allows the possibility of changes to the policy in response to
factors such as the time of day. We require ss data to change so that we can later distinguish
instances ofSsInternalTransition from those ofMgrProcessRequest (see Section 5.5). We note that
this transition is extremely flexible and can model many types of events for a Security Server
in an implemented system including

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

36
CDRL A019

Generic Framework

an intermediate step in Security Server processing,

a change to the internal tables defining the policy and

a switch to an entirely new Security Server (perhaps saving the state of the old Security
Server so that the system may switch back later).

SsInternalTransition[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
SsStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
� SharedState[M REQ ; SS REQ ;RESP ;ANS]

ss data 0 6= ss data

active computations 0 � active computations

5.3.3 Security Server as a Component

As with the generic manager, we define a generic security server as a type of component.

The guar for a security server allows any of the transitions described in Section 5.3.2. It is
modeled by ss guar . We assume there is a single security server agent that can perform these
transitions.

SsGuarStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
b= SsReceiveRequest [M REQ ; SS DATA; SS REQ ;RESP ;ANS]

_ SsSendNegativeResponse [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
_ SsSendA�rmativeResponse [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
_ SsMgrRequest [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
_ SsInternalTransition[M REQ ; SS DATA; SS REQ ;RESP ;ANS]

SsGuar [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
ss guar : � SsGuarStep [M REQ ; SS DATA; SS REQ ;RESP ;ANS]

ss guar = SsGuarStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS]

A security server makes the following assumptions about transitions performed by other com-
ponents of the system:

No security server internal data is modified.

The data in SharedInterpretation is not modified.

No requests are removed from pending ss requests.

Nothing is added to pending responses.

This is modeled by ss rely.

Editorial Note:
We probably also need assumptions aboutwho can add and delete things from the pending lists.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 37

SsRely [M REQ ; SS DATA; SS REQ ;RESP ;ANS]
ss rely : �� SsState[M REQ ; SS DATA; SS REQ ;RESP ;ANS]

ss rely = f� SsState[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
j � SsInternals[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
^ � SharedInterpretation[M REQ ; SS REQ ;RESP ;ANS]
^ pending ss requests v pending ss requests 0

^ pending responses
0 v pending responses g

The set of allowed initial states is modeled by ss init . We require only that pending responses,
pending requests and active computations be empty.

SsInit [SS DATA;M REQ ; SS REQ ;RESP ;ANS]
ss init : � SsState [SS DATA;M REQ ; SS REQ ;RESP ;ANS]

8 st : ss init

� st :pending responses = �
^ st :pending requests = �
^ st :active computations = �

All information in SsState is visible to the security server.

SsView [SS DATA;M REQ ; SS REQ ;RESP ;ANS]
ss view : SsState[SS DATA;M REQ ; SS REQ ;RESP ;ANS]

#SsState [SS DATA;M REQ ; SS REQ ;RESP ;ANS]

8 st1; st2 : SsState[SS DATA;M REQ ; SS REQ ;RESP ;ANS]
� (st1; st2) 2 ss view , st1 = st2

SsComponent [SS DATA;M REQ ; SS REQ ;RESP ;ANS]
b= SsGuar [SS DATA;M REQ ; SS REQ ;RESP ;ANS]

^ SsRely [SS DATA;M REQ ; SS REQ ;RESP ;ANS]
^ SsInit [SS DATA;M REQ ; SS REQ ;RESP ;ANS]
^ SsView [SS DATA;M REQ ; SS REQ ;RESP ;ANS]

5.3.4 Properties

We can prove some useful properties based entirely upon the specification of a generic security
server. These properties can then be used as lemmas when analyzing a particular security
server.

Theorem 5.8 If a security server transition adds ss response? to pending responses , and
(ss req; ans yes) 2 answers(ss response?), then ss req 2 policy allows in the initial state of the
transition.

Proof: Only transitions SsSendA�rmativeResponse and SsSendNegativeResponse can add an
ss response? to pending responses . Both of them require

grants(ss response?) � policy allows:

Since

grants(ss response?) = f ss req : SS REQ j (ss req; ans yes) 2 answers(ss response?) g;

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

38
CDRL A019

Generic Framework

ss req 2 grants(ss response?), and we are done. 2

Theorem 5.9 If a security server transition adds ss response? to pending responses , and
(ss req; ans) 2 answers(ss response?) where ans =2 fans yes ; ans nog, then (ss req; ans) 2
ss information in the initial state of the transition.

Proof: Only transitions SsSendA�rmativeResponse and SsSendNegativeResponse can add an
ss response? to pending responses . Both of them require

holds information(ss response?) � ss information:

Since

holds information(ss response?) = f ss req : SS REQ ; ans : ANS
j (ss req; ans) 2 answers(ss response) ^ ans =2 fans yes ; ans nog
� (ss req; ans) g;

(ss req; ans) 2 holds information(ss response?), and we are done. 2

The proofs of the following two theorems are analogous to the preceding two, and we state them
without proof.

Theorem 5.10 If a security server transition adds req? to pending requests, and
(ss req; ans yes) 2 volunteers answers(req?), then ss req 2 policy allows in the initial state of
the transition.

Theorem 5.11 If a security server transition adds req? to pending requests, and

(ss req; ans) 2 volunteers answers(req?)

where ans =2 fans yes ; ans nog, then (ss req ; ans) 2 ss information in the initial state of the
transition.

5.4 Composing the Generic Manager and Security Server

In this section we compose the generic manager and security server and analyze the properties
of the composite system. We will, in this section, use the term system to refer to the composite
of the generic manager and security server. Some important properties can be proven to hold
based merely upon the generic manager and security server specifications. Aproperty is defined
as a set of system behaviors, and a behavior is a infinite sequence of states9 that represents
one execution history of a system. To say that a component (including a composite) satisfies a
given property means that every behavior it allows is an element of the property. Since any
specific manager or security server allows a subset of the behaviors of its generic counterpart,
these properties will also hold for the composition of specific managers and security servers.

The composite state is SystemState which contains all the fields ofMgrState and SsState. Note
that the fields of SharedState occur only once inSystemState which means that the manager and
security server use consistent values for these state fields.

9In the DTOS framework, a behavior also contains an infinite sequence of agents that are responsible for the state
transitions in the corresponding state sequence. For simplicity, we will frequently ignore the agents when talking
informally about behaviors and properties.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 39

SystemState [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
MgrState[M DATA;M REQ ; SS REQ ;RESP ;ANS]
SsState [M REQ ; SS DATA; SS REQ ;RESP ;ANS]

We map each manager state to the set of all SystemState that have the same value for each of
the fields of MgrState. Similarly, we map each security server state to the set of allSystemState
that have the same value for each of the fields ofSsState.

The set of allowed initial states for the composition of two components is the intersection of
the two sets (after mapping them into the composite state). This set of states is modeled by
system init. Since system init is nonempty, the manager and security server are composable.

SystemInit [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
system init : � SystemState [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

8 st : system init

� st :pending responses = �
^ st :pending requests = �
^ st :active request = �
^ st :sent = �
^ st :obtained = �
^ st :allowed = �
^ st :responses = �
^ st :active computations = �

The composition theory requires that we define two respect relations when composing two
components. These relations make explicit our assumptions about the ways in which the two
components can affect each other’s state. In particular, they indicate the data in the composite
state that should not change during each component’s transitions. One use of these relations is
to specify that neither component modifies data that is considered private to its peer. Another
use is to specify that neither component manipulates the interface that its peer has with a
third component. (See the DTOS Composability Study [24] for more information in respect
relations.)

In composing the generic manager and security server we will use respect relations that require
each component to leave alone its peer’s internal data.

MgrSsRespect [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
mgr rsp ss : �� SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
ss rsp mgr : �� SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

mgr rsp ss = f� SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
j � SsInternals[M REQ ; SS DATA; SS REQ ;RESP ;ANS] g

ss rsp mgr = f� SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
j �MgrInternals[M DATA;M REQ ; SS REQ ;RESP ;ANS] g

The composability theory defines the guar of the composite to be

(mgr guar \mgr rsp ss) [(ss guar \ ss rsp mgr):

This is modeled by mgr ss guar .

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

40
CDRL A019

Generic Framework

SystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
b= (� SsInternals[M REQ ; SS DATA; SS REQ ;RESP ;ANS]

^MgrGuarStep[M DATA;M REQ ; SS REQ ;RESP ;ANS])
_ (�MgrInternals[M DATA;M REQ ; SS REQ ;RESP ;ANS]

^ SsGuarStep[M REQ ; SS DATA; SS REQ ;RESP ;ANS])

MgrSsGuar [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
mgr ss guar : � SystemStep [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

mgr ss guar = SystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

The rely of the composite is the intersection of the two rely relations.

MgrSsRely [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
mgr ss rely : �� SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

mgr ss rely = f� SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
j �MgrInternals[M DATA;M REQ ; SS REQ ;RESP ;ANS]
^ � SsInternals[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
^ � SharedInterpretation[M REQ ; SS REQ ;RESP ;ANS]
^ pending ss requests v pending ss requests

0

^ pending responses
0 = pending responses g

For the composite of the generic manager and security server every field of the composite state
is visible. However, as an aid to analysis, it may sometimes be useful to have fields of the
composite state that are not visible to the composite. These fields can be used to encapsulate
information about behaviors in which a given state occurs. For example, a field could be
introduced that records whether a particularM REQ has been performed. This information
might not be kept explicitly by either the manager or security server but might still be used
in defining properties that are desired of the composite. To leave this option open we will not
specify a mgr ss view here.

The Composition Theorem states that if every transition of each component (when limited by its
respect relation) is allowed by its peer component, then any property of one of the components
is a property of the composite. To show that the theorem applies in this case, we must show
that

mgr guar \mgr rsp ss � ss guar [ss rely [ss view ;

and

ss guar \ ss rsp mgr � mgr guar [mgr rely [mgr view :

We first show that mgr guar \mgr rsp ss � ss rely. Recall that ss rely is defined to be

ss rely = f� SsState[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
j � SsInternals[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
^ � SharedInterpretation[M REQ ; SS REQ ;RESP ;ANS]
^ pending ss requests v pending ss requests

0

^ pending responses
0 v pending responses g:

Since mgr rsp ss implies � SsInternals, and MgrStep implies � SharedInterpretation, we only
need to consider the pending ss requests and pending responses properties. Consideration of the

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 41

individual manager operations shows that both of these properties are satisfied. There is a
similar proof that ss guar \ ss rsp mgr � mgr rely.

We can now apply the Composition Theorem to conclude that all of the lemmas, theorems and
corollaries in Sections 5.2.4 and 5.3.4 apply to the composite as well. This supports the proof
of the following theorem that relates the processing of requests to the contents ofpolicy allows

and to the initial state under certain hypotheses about the manager and security server. The
hypotheses of the Consistency Theorem are not the weakest possible. However, they are true
of a large number of policies, and they lead to a theorem that is relatively easy to prove. We
will discuss possible generalizations below.

While the first hypothesis deals solely with the manager and the second solely with the security
server, the third hypothesis involves both. There are probably many ways in which the validity
of the third hypothesis can be ensured in particular systems. For example, we could associate
a set of SS REQ with the ability to volunteer answers and constrain the initial state and
policy allows so that only the security server has this permission. This might allow any client
to submit a request that volunteers answers, but the manager would only process those where
the client is the security server. In a second approach the manager would receive such requests
only on a special communication channel (e.g., a port in Mach) and the system would be set up
to guarantee that only the security server can submit requests on this port.

The first hypothesis can be violated in ways that are not terribly obvious. For example, assume
a manager defines mgr policy(req?) based upon security labels attached to the subjects and
objects involved in req?. If the manager allows these labels to change, this may cause new
SS REQs to be added to mgr policy(req?). Such a manager would not have a monotone non-
increasing mgr policy. If the label can change between the time at which all permission
checking is completed (i.e., when the computation is marked asallowed) and the time when the
request is actually performed, then this manager can fail to be consistent withpolicy allows.

It might be possible to define an extended consistency theorem that allows relabeling under
appropriate circumstances, but it is not clear what this theorem should look like. In particular,
one must be careful about the interaction with the second hypothesis of the Consistency Theo-
rem constraining removal of permissions frompolicy allows. It might be possible to design the
security server so that permission to change a security label is granted only if appropriate per-
missions are allowed for the new label. However, we then need to consider these permissions
as being implicitly granted and be sure that they are never removed frompolicy allows. It is
clear that non-tranquillity of security labels complicates the definition of the security server
and the analysis of the system. In this report we will instead prohibit relabeling in those cases
where we wish to show consistency of the manager withpolicy allows.

Theorem 5.12 (Consistency Theorem) Let Sys be a system with the following properties:

1. mgr policy is monotone non-increasing,

2. no SS REQ that has been either granted or volunteered by the security server is ever
subsequently removed from policy allows, and

3. if a request that volunteers answers is processable (i.e., (req num1; req1) 2 active request,
(req num?; status yes) 2 allowed and req? =2 denied requests) in any state u, then there is
a prior state in which the request was added topending requests during a security server
transition.

In Sys, if the manager processes a requestreq? in some state s, then for each r 2 mgr policy(req?)\
permission requests in s, either

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

42
CDRL A019

Generic Framework

r 2 retained (req?) in the system initial state, or

r 2 policy allows in state s.

Proof: Corollary 5.7 implies

1. r 2 retained (req?) in the initial state, or

2. there is some state s1 preceding s and some ans 6= ans no such that in s1

(a) (r ; ans) 2 answers(ss response?) for some ss response? � pending responses, or

(b) for some request req1 and request number req num1,

(r ; ans) 2 volunteers answers(req1);
req1 =2 denied requests;
(req num1; req1) 2 active request , and
(req num1; status yes) 2 allowed :

If r 2 retained(req?) in the initial state, we are done. Otherwise, consider Case 2. Since
r 2 permission requests, we know ans 2 fans yes; ans nog. Thus, Case 2 simplifies to

2. there is some state s1 preceding s and some ans 6= ans no such that in s1

(a) (r ; ans yes) 2 answers(ss response?) for some ss response? � pending responses , or

(b) for some request req
1

and request number req num
1
,

(r ; ans yes) 2 volunteers answers(req1);
req

1
=2 denied requests;

(req num1; req1) 2 active request , and
(req num1; status yes) 2 allowed :

Assume Case 2(a) is true. The initial state constraints requirepending responses = � in the
system initial state. The rely for the composite states that pending responses is not changed
by the environment of the composite. Inspection of the manager operations shows that the
manager does not add items to pending responses. Thus, ss response? must have been added to
pending responses by some prior security server transition t with starting state st . Theorem 5.8
implies that r 2 policy allows in st . Since r is granted in transition t , Hypothesis 2 implies that
it is still in policy allows in state s.

Now consider Case 2(b). Since req1 volunteers an answer and is processable in state s1, Hy-
pothesis 3 implies req1 was added to pending requests by some security server transition t with
starting state s2 prior to state s1. Theorem 5.10 implies that r 2 policy allows in s2. Since r is
volunteered in transition t , Hypothesis 2 implies that it is still in policy allows in state s. 2

Corollary 5.13 (Complete Consistency) Let Sys be a system that satisfies the hypotheses of
the Consistency Theorem and in which, for some requestreq?, policy allows in all reachable states
contains all elements fromretained(req?) in the initial state. In Sys, if the manager processes req?
in some state s, then for each r 2 mgr policy(req?) \ permission requests in s, r 2 policy allows

in state s.

The Consistency Theorem seems at first glance to be a generally useful theorem that would
be satisfied by most manager/security server combinations. It does encapsulate a good deal
of analysis. However, a closer examination reveals that it applies only to a certain class of

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 43

policies. In fact, its conclusion is false for the optimal implementation of some dynamic policies
such as Clark-Wilson and DynamicN -Person.

First, the policy must be non-retractive (see Section 6) if the theorem is to be applied. Con-
sistency between the manager’s processing steps and policy allows can also be achieved for
retractive policies, but it is more difficult. We either need to provide a mechanism to make the
manager immediately sensitive to changes inpolicy allows or limit the circumstances in which
policy allows may change. We must show that if an SS REQ is removed from policy allows,
then, from that point on (or until the SS REQ is reinserted into policy allows), no request is
processed that needs this permission according tomgr policy .

One possible way to implement this is that, if the security server needs to remove anSS REQ

that it has previously granted or volunteered, it must first request that the manager do the
following:

Remove all retentions of the SS REQ .

Determine all active requests for which theSS REQ has been utilized and either mark
them as failed or wait until they have been processed.

Notify the security server that all traces of theSS REQ have been removed from its state.

Only at this point can the security server changepolicy allows. If further actions of the security
server were dependent upon this change topolicy allows, it might be necessary for the security
server to block while all this happens. Note that Step 2 means that checking a permission
only once during the processing of a request may not be sufficient. Furthermore, if the security
server does block, it might not be possible for the manager to complete all the requests identified
in Step 2. Some of these requests might require additional security computations. To avoid
deadlock, the manager must terminate these requests. It might also be possible to design
manager requests so that they must be committed in the transaction processing sense. That
is, the manager’s persistent state would not be modified until all preliminary processing had
occurred. The commit step would be atomic, and it would include confirmation that the required
SS REQs are still held.

Second, if a security policy has permissions that may only be granted once, this is also a situation
in which the Consistency Theorem’s conclusions are generally false. (The ideal implementation
of Clark-Wilson will prevent the creation of multiple tasks with the same context. It therefore
is an example of such a policy.) The permission will be removed from policy allows as soon as
it is granted. It will not be there at the time when the permission is used in the manager.
This is not really a case of permission retraction since the kernel may still be allowed to use
the permission after it has been removed from policy allows (although the permission would
probably be marked non-cachable and used only once). We should point out that it might
be possible to patch this problem by designing the security server to block and wait for a
notification that the permission has been used. At this point it could modifypolicy allows.
However, such behavior is not necessary to implement a Clark-Wilson security server, only to
get it to comply with the Consistency Theorem. Since it would complicate the implementation,
there seems little value to this approach.

We could also consider weaker types of consistency. Two possible examples are

Check Completion Consistency - If a request is marked as allowed (status yes) in state s,
then for every SS REQ r required for the request bymgr policy in s, r 2 policy allows.

Unless all permission checking is atomic, it is not clear that this could be achieved for
retractive policies any more easily than our earlier definition.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

44
CDRL A019

Generic Framework

Invocation Consistency - If a request that was invoked in state s is eventually processed,
then for every SS REQ r required for the request by mgr policy in s, r 2 policy allows in
state s.

Although further investigation is necessary, an Invocation Consistency Theorem could
probably be proven. The hypotheses would probably include thatmgr policy is monotone
non-decreasing and policy allows is monotone non-increasing.

A more fundamental question is whether such consistency properties would be of any value.
Consistency is only of interest if it supports the definition and analysis of a security server for
some interesting security policy. Most policies are concerned with events such as reading and
writing data to files, not with the completion of permission checking or even the invocation of
a request. It is usually not a problem for an unallowed request to be invoked, as long as it is
not executed. To take a specific example, the ORCON policy is not supported by Invocation
Consistency. Assume A is not allowed to read certain data that B has read and consider the
following sequence of events:

1. A invokes a read request on file f and is granted permission.

2. B invokes a write request on f and is granted permission. This causes read permission
for A to f to be removed from policy allows, but A has already received this permission
and no subsequent confirmation is done.

3. B writes data to f that A is not allowed to read.

4. A reads f .

Although this sequence of events does not violate Invocation Consistency, itdoes violate the
ORCON policy. Similar problems could occur with environment-sensitive policies (see Sec-
tion 6). For example, if a policy requires that all write access to f is be revoked at 5:00 PM, it
might not be good enough to say that any write operation that is invoked prior to 5:00 PM can
complete after that time. We might normally assume that any such operation would conclude
shortly after 5, and that there is not really any problem. However, it might be possible for an
attacker to delay completion of the invoked operation until much later (e.g., by manipulating
scheduling, system load, etc.), and this could pose a significant violation of the high-level policy.

In conclusion, it seems likely that few managers will provide sufficient support for retractive
policies unless they are specifically designed with that goal in mind. Furthermore, in this
case the design of the manager would probably be greatly influenced by the desire to support
retractive policies.

5.5 Complete System

We use composability theory to analyze the behavior of the combination of any given manager
and security server. However, in Section 6 we discuss some general characteristics of policies,
and we classify a number of policies in a policy lattice that is derived from those characteristics.
The characteristics are also formally defined. To prepare for this, in this section we define
several concepts and functions relating to the combination of the manager and security server
that will be useful.

We define the functions Action init state and Action �nal state to return the initial and final
state, respectively, for any step.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 45

[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
Action init state :

SystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
" SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

Action �nal state :
SystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
" SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

8 SystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
� Action init state(�SystemStep) = �SystemState

^ Action �nal state(�SystemStep) = �SystemState 0

In the following we focus on sequences of operations occurring in the system. Each individ-
ual operation is a subset of SystemStep representing the set of state transitions that can be
performed by that operation. We define the set OP as the set of all subsets of SystemStep and
OP SEQ as the set of all sequences of elements ofOP . We also define STATE SET as the set
of all subsets of SystemState.

OP [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
== � SystemStep [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
== seqOP [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

STATE SET [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
== � SystemState [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

The operations of a system include those outlined in Sections 5.2 and 5.3. The setsystem ops

contains each of these operations. Note that each operation must have the same signature,
so we use the operation definition schemas as restrictions of the generalSystemStep schema.
We allow operations in this set to overlap. In fact one operation may be a specialization (i.e.,
subset) of another. For example, each operation that processes a manager request will be a
specialization of theMgrProcessRequest operation.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

46
CDRL A019

Generic Framework

SystemOperations[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
system ops : �OP

ffSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
jMgrReceiveRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
jMgrRequestComputation [M DATA;M REQ ; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
jMgrSendNoti�cation [M DATA;M REQ ; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
jMgrReceiveResponse [M DATA;M REQ ; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
jMgrNegativeResponse [M DATA;M REQ ; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
jMgrA�rmativeResponse[M DATA;M REQ ; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
jMgrDenyRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
jMgrAcceptRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
jMgrProcessRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
j SsReceiveRequest [M REQ ; SS DATA; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
j SsSendNegativeResponse [M REQ ; SS DATA; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
j SsSendA�rmativeResponse [M REQ ; SS DATA; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
j SsMgrRequest [M REQ ; SS DATA; SS REQ ;RESP ;ANS]g;

fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
j SsInternalTransition[M REQ ; SS DATA; SS REQ ;RESP ;ANS]gg

� system ops

We define a system to be the system state, the initial state and the operations that may be
performed.

System[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
b= SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

^ SystemInit [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
^ SystemOperations[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

The expressionApply op(op; state set) denotes the set of all states s such that the system could
reach state s by executing operation op in some state in the set state set . Note that op might
not be applicable to a given state in state set (i.e., its preconditions are not met), or it might
produce multiple possible final states (i.e., it is nondeterministic). Thus,Apply op(op; state set)
need not have the same number of elements as state set.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 47

[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
Apply op : OP [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� STATE SET [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
" STATE SET [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

8 state set : STATE SET [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS];
op : OP [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� Apply op(op; state set)
= f new state : SystemState [M DATA; SS DATA;

M REQ ; SS REQ ;RESP ;ANS]
j (9 old state : state set; transition : op

� Action init state(transition) = old state

^ Action �nal state(transition) = new state) g

The function Execute extends Apply op for a sequence of operations.

[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
Execute : STATE SET [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
" STATE SET [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

8 state set : STATE SET [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS];
op seq : OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� ((op seq = hi) Execute(state set ; op seq) = state set)
^ (op seq 6= hi

) Execute(state set ; op seq)
= Execute(Apply op(head op seq ; state set); tail op seq)))

An operation sequence is valid in a state S if and only if the result of executing the sequence
from the initial set of states fSg is non-empty. A state S is reachable if and only if there exists
an operation sequence op seq such that S is in the set of states resulting from the execution of
op seq beginning in the initial state system init .

[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
Valid op seqs : SystemState [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

"�OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
Reachable : System [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

"STATE SET [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

8 S : SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS];
op seq : OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� op seq 2 Valid op seqs(S), Execute(fSg; op seq) 6= �

8 S : SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS];
system : System[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� S 2 Reachable(system)
, (9 op seq : seq system :system ops

� S 2 Execute(system:system init; op seq))

We will want to talk about the subsequences of an operation sequence. We first define the
expression Sub seqs(s) to return the set of all subsequences of s. A subsequence of s is any

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

48
CDRL A019

Generic Framework

sequence obtained by omitting zero or more elements froms and leaving the remaining elements
in the same order. This includes the empty sequence as well ass.10

[X]
Sub seqs : seqX "�(seqX)

8 s; t : seqX
� (t 2 Sub seqs(s)

, (9 indexes : �
� t = indexes s))

We define Manager requests(op seq) to be the subsequence of op seq consisting of the steps
where the manager is processing a request.11

[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
Manager requests : OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

" OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

8 op seq : OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
�Manager requests(op seq) = op seq

� fop : OP [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
j op � fSystemStep [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

j � SsInternals[M REQ ; SS DATA; SS REQ ;RESP ;ANS]
^MgrProcessRequest [M DATA;M REQ ;

SS REQ ;RESP ;ANS] gg

Because of the system state elements that are required to be invariant inMgrProcessRequest
and the fact that ss data is required to change in SsInternalTransition there is no ambiguity in
distinguishing the processing of a request from other system steps. No other system transition
qualifies as a valid element ofMgrProcessRequest .

10The Z operation U s returns a sequence that contains the elements of s with an index in the setU in the order
in which they occur in s .
11The Z operation s �V returns a sequence that contains the elements ofs that are in the setV in the order in which

they occur in s .

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 49

Section 6
Security Policy Lattice

In this section we develop a lattice of security policies. We begin by defining a list of policy
characteristics. This set of characteristics defines a lattice of policies. For any interesting policy,
we can place the policy at a node in the lattice by determining the set of policy characteristics
that it has.

This lattice is useful in analyzing the capabilities of a manager to support security policies. We
first determine the set of policy characteristics that are supported by the manager. This places
the manager in the lattice at a nodeN . The manager can support each policy that is located at
a node that is dominated by or equal toN . Furthermore, the placement of policies in the lattice
will help to identify policy characteristics that are important to support in a manager for which
policy flexibility is a design goal. Finally, ifm managers are to be analyzed with respect to p
policies, the complexity of doing this with the lattice ism + p as opposed to mp for analyzing
each manager-policy combination separately.

6.1 Security Policy Characteristics

In this section we informally describe the dimensions along which we will classify security
policies. They are

Input — Many policies vary on the amount of information used in a single policy decision. For
example, Type Enforcement considers only two security contexts, a domain and a type.
In contrast, Clark-Wilson (in its pure version discussed below) considers an arbitrary
number of security contexts contained in an access triple when making a single policy
decision. At the Mach microkernel level, it would probably be useful to control port
requests based upon a triple containing the client, the target task, and the target port.
We will use C to denote the number of contexts used in making a policy decision and
will say that C = 2 for policies such as Type Enforcement and C > 2 for policies like
Clark-Wilson.

In addition to security contexts a policy decision might also take into account other data
describing the operation for which a subject is requesting permission. For example, a
subject might wish to change its scheduling priority. A policy might associate a range
of allowed priority values with each subject and include in its decision-making process
an examination of the priority requested by the subject. Since the priority is most likely
a parameter of the kernel request submitted by the subject, we will say that a policy is
parametric if it takes this type of information into account in making its decisions.

We note here that with regard to both the number of contexts and the inclusion of pa-
rameters we are considering security server permission requests, not manager requests.
This policy characteristic deals with the “language” used to request permissions. The
processing of a single manager request may involve multiple permission requests to the
security server. The number and content of these requests will certainly be affected by the
manager request, including the values of the parameters and the number of entities in the
request. This, by itself, does not make the policy C > 2 nor parametric. If the manager
never supplies more than two contexts in permission requests and never includes any

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

50
CDRL A019

Security Policy Lattice

parameter information, then the policy decisions made in the security server are based
upon just two contexts.

Sensitivity — While policy decisions are obviously influenced by the input (i.e., contexts and
parameters) to the policy, many policies are also sensitive to other information. Such
sensitivity can cause a policy to change so that it might make different decisions in two
cases that have identical input. This dimension indicates whether a policy is sensitive to
other information and, if so, the kind of information.

We will call a policy that is insensitive (i.e., decisions are based solely upon the input
information) a static policy. Static policies can change only as a result of a specific policy
modification request by a privileged user. MLS policies are typically static. If a policy is
not static, we call it dynamic. A Chinese Wall policy is dynamic. Initially, a user can read
all files in the system. However, if a user u reads a file f , that user may no longer read
any files that are in the conflict of interest class forf except for those that are in the same
company data set as f . Thus, as a side effect of reading a file, u has lost read access to
other files, and the policy has changed automatically. In terms of sensitivity, the Chinese
Wall policy is sensitive to the history of file read accesses.

For a dynamic policy, it is important to know which events cause the policy to change —
the events to which it is sensitive. We identify several types of sensitivity. A single policy
may have multiple sensitivities.

History — Many policies are sensitive to accesses to files (see the Chinese Wall example
above). We generalize this concept and say that any policy that is sensitive to the
execution of manager requests is history-sensitive.

Environment — Other policies are sensitive to properties such as the time of day (e.g.,
no write access between 5 PM and 9 AM) or operational mode of the system (e.g.,
training, normal, emergency). We will call such policiesenvironment-sensitive.

Discretionary — A policy such as IBAC changes as a result of an explicit request by a
user (privileged or unprivileged) to change the portion of the policy that applies to
objects owned by that user. We call such policiesdiscretionary.

Relinquishment — In addition to making requests for permissions (e.g., read access
to a file) processes also logically relinquish the permissions that they hold. For
example, when a process closes a file, it is relinquishing its access to that file. True
relinquishment implies that it is impossible for the process to reopen the file without
making a new permission request. When a process terminates, it relinquishes all the
permissions that were granted to it. Note that relinquishment and history-sensitivity
are related in that permission is often required to perform a relinquishment action
such as deallocating a region or terminating a task. They are different in that
the permission(s) relinquished are different from the permission that enables the
relinquishment. When a task deallocates a region to which it has read permission, it
adds deallocation permission to the history and relinquishes read permission to the
region.
If a policy changes in response to relinquishment, we will say it isrelinquishment-
sensitive. For example, if we depended upon the security policy to enforce locking
of files (e.g., at most one process using each file at a time), the policy would change
whenever a process opened a file. When a process closed a file, the policy should
change again to allow access to the file for other processes.12 Although our discussion
has focused on file access, relinquishment can in principle apply to any permission.

12Locking can in most cases be handled by the file server rather than the Security Server. However, if file locking is
related in some way to security policy decisions, then the policy will probably play a role in the control of locking.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 51

The lines between these sensitivity types are somewhat vague and arbitrary. For example,
if we defined history-sensitive as “sensitive to any system event” rather than “sensitive to
the execution of a manager request”, then history-sensitivity would include environment,
discretionary and relinquishment sensitivity since changes in the environment, requests
to change discretionary policy and relinquishment are all system events. By restricting
history-sensitivity to consider only the execution of manager requests we are singling
out those policies where the Security Server must observe what the manager is doing.
We consider sensitivity to operational mode to be environment sensitivity. However,
to implement a change in operational mode might require a manager request, and it
probably is initiated by a user and thus has a discretionary flavor. We choose not to
consider it discretionary due to its potentially global effect on security decisions, reserving
discretionary sensitivity for modifications performed by a user to the parts of the policy
dealing with objects owned by the user. We choose not to consider it history sensitive since
the primary purpose of a change-of-mode request would be to modify the Security Server’s
internal data, not that of the manager. Intuitively, it is really a Security Server request
rather than a manager request. Relinquishment sensitivity is really just a special case of
history sensitivity.

Retraction — Many dynamic policies need the ability to retract permissions that have been
previously granted. We call such policies retractive. Note that this is a fairly narrow
definition of retraction. We only consider retraction ofgranted permissions. If the removed
permission is merely grantable and has never actually been granted, this will not make
the policy retractive. Consider the Chinese Wall example, and let f1 be a file in the same
conflict of interest class as f such that f and f1 are in different company data sets. Initially,
read access for u to f1 is grantable but not granted. Whenu reads f , read access for u to f1
becomes nongrantable. We know at this point that read access was never granted foru to
f1 since otherwise read access to f could not be granted. The policy does not need to retract
a permission that it has never granted, so no retraction is necessary here. Retraction is
similar to relinquishment. The difference is that retraction is an action of the policy to
forcibly remove permissions from a process while relinquishment is a voluntary action of
a process to give up those permissions.

Transitivity — In defining security policies we are often concerned with the ways that multi-
ple subjects can combine to obtain information or affect the system state and output. For
example, in an MLS system a subject may write to an object only if the level of the object
dominates the level of the subject. Since the dominance relation on levels is transitive,
so is the permission to write. That is, if a subject at levelA can write to an object at level
B , and a subject at levelB can write to an object at levelC , then a subject at levelA can
write to an object at levelC . An analogous relationship exists for reading. Such policies
are called transitive. More generally, we will say that in a transitive policy if a subjectA
can modify a data item dA (e.g., a file or a piece of system state) and if a subject B can
detect the modifications made byA to dA and can itself modify a data item dB , then A can
also modify dB .

Transitivity is not a desirable property in all circumstances. For example, consider the
problem of output labeling in an MLS environment. Suppose every page that is printed
must be marked with its classification level. A page labeling program could be used to
do this automatically. The normal way to print a document then would be to send it to
the page labeler program to be marked and then pipe the result into the print spooler. A
user must be able to send information to the labeler and the labeler must be able to send
information to the print spooler. It is important, however, that users not be allowed to
send information directly to the print spooler. If this happened, unlabeled pages could
be printed. Thus, an intransitive policy is needed here. It should be noted that few if

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

52
CDRL A019

Security Policy Lattice

any policies are purely transitive without any exceptions. For example, an MLS system
will typically have trusted subjects that are able to downgrade information to a lower
classification level. This downgrader can be used by other subjects to write downgraded
information to levels to which they themselves cannot write.13

Editorial Note:
Another characteristic to consider is whether entities must have unique SIDs.

6.2 Classification of Some Well-Known Policies

Now we will consider a number of well-known security policies and classify them with respect
to the dimensions identified in Section 6.1. We will also discuss whether the policy can be
implemented in the current DTOS prototype. To gain a better understanding of the issues
involved, some variants of these security policies that have slightly different characteristics
from the originals will also be considered. These variants are called Nonretractive IBAC,
Piecemeal Clark-Wilson, Piecemeal Dynamic N -person, Locking ORCON and Static Chinese
Wall. The discussion in this section is summarized in Table 1. Section 6.3 will summarize the
conclusions regarding the ability of DTOS to support the policies in this section and will give a
more general discussion of the issues involved.

6.2.1 Type Enforcement

In Type Enforcement (TE) subjects with identical access privileges are grouped into adomain
and objects that may be accessed in precisely the same ways by each domain are grouped
into a type. Access controls then restrict the access of domains to types. The other policies
discussed in this report have explicit goals such as preventing downward flow of classified
information, ensuring data integrity, and preventing fraud or insider trading. TE, by itself,
has no similar goal. Thus, we consider TE to be more a framework through which security
policies can be implemented than a policy in its own right. We discuss it here since the DTOS
security mechanisms are based upon TE, and any policy that can be achieved through TE can
be supported by DTOS.

TE makes decisions based upon the domain and type, so it is a C = 2, nonparametric policy.
We consider it static, but if mechanisms are provided for changing the domain definition table,
TE can be used as a basis for dynamic policies. TE by itself does not require retraction, and it
can support intransitive policies.

6.2.2 IBAC

Identity-Based Access Control (IBAC), also known as Discretionary Access Control (DAC), has
as its guiding principle the idea that control of access to a file is up to the individual who owns
that file. This owner determines the permissions of other users to access the file. The owner
may change the permissions at any time. Thus, the policy is sensitive to discretionary controls.
It is trivial for a user to set file permissions in a way that makes the policy intransitive. Since
an IBAC policy makes most decisions based upon the user associated with a process and the
access controls assigned to a file, IBAC is essentiallyC = 2 and nonparametric. There are,

13It is also worth noting that trusted pipelines, such as the page labeler, and downgraders seem to be the main, if
not only, places where intransitivity is needed in systems that are otherwise MLS.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 53

Input Sensitivity

Policy C

>
2

P
ar

am
et

ri
c

D
yn

am
ic

/S
ta

ti
c

D
is

cr
et

io
n

ar
y

H
is

to
ry

E
n

vi
ro

n
m

en
t

R
el

in
qu

is
h

m
en

t

R
et

ra
ct

iv
e

T
ra

n
si

ti
ve

D
T

O
S

S
u

pp
or

ts

MLS/BLP S � Y
Biba S � Y
Type Enforcement S Y
IBAC

Retractive D � �rwe Nb

Nonretractive D � Y
Clark-Wilson

Pure � S Na

Piecemeal D �we Y
Dynamic N -Person

Pure � D �e Na

Piecemeal D �we Y
ORCON

Pure D �rwe �re Nb

Locking D �rwe � Nc

Chinese Wall
Pure D �rw Y

Static � S Na

For history-sensitive policies the entry includes an annotation indicating the
actions that cause the policy to change. The history-sensitive policies studied
here are sensitive to reading (r), writing (w) and executing (e). For policies that
are retractive we indicate the permissions that need to be retracted using the
same annotations as for history-sensitivity. The rightmost column in the table
indicates the policies supported by DTOS. A “Y” indicates support while an “N”
indicates lack of support. A subscript attached to “N” denotes the reason why
DTOS does not support the policy. The meaning of the subscripts is

Na - Arbitrary number of SIDs in a request,

Nb - Retraction,

Nc - Relinquishment.

Table 1: Characteristics of Security Policies

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

54
CDRL A019

Security Policy Lattice

however, examples where a request in an IBAC system involves checks on more than two
entities and where the specific checks required depend upon parameters of the system request.
For example, consider unlinking a UNIX file from a directory with the sticky bit set. The
permission logic is:

the user must have write access to the directory, and

either

– the user must own the directory, or

– the user must own the file being unlinked, or

– the user must be the superuser.

So, the logic must deal with the contexts of three entities: the process, directory and file.
Whether this makes the policy C > 2 depends upon how the policy is implemented. If the
manager breaks the permission checking up into the individual requests indicated in the
bulleted items above and sends each as a separate security server request, then the decisions
made in the security server are still based upon a pair of contexts. If on the other hand the
manager sends a permission requestunlink �le(�le; dir ; process) to the security server, then the
implementation of the policy isC > 2. We anticipate that the most common implementation will
be the former one involving multiple permission requests,14 so we will classify IBAC asC = 2.
The permission checks required are sufficiently independent that no semantic information is
lost by doing so.

As an example of parametric control, consider the UNIX chmod command. If the setgid bit
is set in the new file mode, then the user must be a member of the group that owns the file. As
with the example involving unlinking a file, this does not necessarily imply that the policy is
parametric. Again, we assume the implementation involving multiple permission requests to
be the typical one, and we classify IBAC as nonparametric.

Retraction is slightly complicated. A file owner may remove accesses of other users for a file
at any time. If another user is reading a file at the time when read access is removed, the
access could be disabled immediately (retractive) or it could remain as long as the file is open
(nonretractive). In Table 1 we include both versions labeled as Retractive and Nonretractive,
respectively. DTOS supports only the nonretractive version.

6.2.3 MLS and Biba

MLS and Biba are both defined in terms of a lattice of levels. In MLS each level represents a
classification (e.g., unclassified, secret and top secret) with high classifications at the top of the
lattice. In Biba each level represents a given amount of integrity with low integrity at the top
of the lattice. The same restrictions on reading and writing apply to both lattices. A process
executing at level l may only read a file whose level is dominated by l and may only write to a
file whose level dominates l .

Both of these policies are static. Since decisions are based only upon the level of the process
(subject) and file (object), C = 2 and the policies are not parametric. Both policies are also
nonretractive and transitive. DTOS is able to support both policies.

14Actually, we expect that in many implementations directory and file ownership will be managed entirely within
the file system and identity as the superuser will be managed entirely within the operating system. Thus, only one
permission request will be sent.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 55

6.2.4 Clark-Wilson

6.2.4.1 Pure Clark-Wilson The Clark-Wilson policy is defined in terms of access triples
of the form (UserID ;TP ; (CDI1;CDI2; : : : ;CDIn)) rather than the more common access pair
(subject ; object). Although this policy can be implemented through access pairs by requiring
subjects to submit a properly constructed sequence of permission requests, it is more consistent
with the definition of the policy to think of a subject requesting access to aset of CDIs all at once
with one security decision made for the entire set. Access to the CDIs here is all or nothing.
This type of system interaction is quite different from what typically occurs in a UNIX system
where programs request access to a single file at a time. However, it is closely linked to the way
in which file access has historically been controlled on many commercial mainframe systems
using COBOL. To run a program on such a system, a user must prepare and submit a sequence
of instructions in a Job Control Language (JCL). These JCL instructions state the program
that is to be run along with the name and desired access mode of each file to be used by the
program. Each file is assigned some code (e.g., a unique letter) by the JCL instructions. These
codes are used inside the program to refer to all files. No other way to access files is provided to
the program. Before the program begins execution, the system tries to obtain access to each of
the files requested in the JCL instructions. If access to any file cannot be obtained, the entire
execution terminates without performing a single instruction of the COBOL program. We call
this interpretation of Clark-Wilson Pure Clark-Wilson.

In many respects Pure Clark-Wilson is a very simple policy. It is static in that no decisions
on access to a set of CDIs depend upon earlier decisions. A static policy needs no history, and
unless it also includes discretionary control it is nonretractive. However, Pure Clark-Wilson
assumes a style of interaction between individuals and the system that is at least similar to the
JCL example discussed above. It also means that the Security Server must handle requests
containing an arbitrary number of SIDs. This is outside the capabilities of DTOS.15 A Clark-
Wilson policy is almost certainly intransitive since reading is unconstrained but each user/TP
pair is granted write access to only certain files.

6.2.4.2 Piecemeal Clark-Wilson If we wish to apply the Clark-Wilson policy to a system that
follows the UNIX paradigm for file access (i.e., one file at a time), the way that we think about
Clark-Wilson must change dramatically. We will call this view of Clark-Wilson thePiecemeal
Clark-Wilson policy.16

The first thing we observe is that Piecemeal Clark-Wilson is not a static policy since obtaining
access to a particular CDI can affect future access decisions. For example, assume a transfor-
mation procedure TP1 is certified to manipulate the following sets of CDIs:

ffCDI1;CDI3g; fCDI2;CDI3g; fCDI2;CDI4gg

Initially, TP1 could obtain Have write permission to any of CDI1; : : : ;CDI4. However, if TP1

is granted Have write permission to CDI2, then the policy should no longer grant Have write

permission to CDI1 since there is no set above that contains bothCDI1 and CDI2.

Since the policy changes in response to file access we consider it to be history-sensitive with
writing and executing as the events that cause policy changes.17 Retraction is not necessary

15A complex request with arbitrarily many SIDs can be broken down into a sequence of requests based upon SID
pairs (which is what happens with Piecemeal Clark-Wilson). However, it is important for Pure Clark-Wilson that this
sequence of requests be recombined to form the access triple and that access be all or nothing.
16This is the version of Clark-Wilson described in Section 9.
17We consider Clark-Wilson to be primarily concerned with the writing of CDIs and not the reading of them. Input to

TPs is unconstrained by the policy, and the TPs themselves are responsible for making sure that they are given correct

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

56
CDRL A019

Security Policy Lattice

since actions can only affect future access decisions and never invalidate prior decisions. As
with the pure version, a Piecemeal Clark-Wilson policy is almost certainly intransitive. Since
DTOS can support nonretractive, history-sensitive policies, Piecemeal Clark-Wilson can be
implemented on a DTOS system.

We note here that the pure and piecemeal versions of Clark-Wilson exercise equivalent control
over the system. It is only the implementation of the policy that changes. The fact that this has
a profound effect on the classification of the two policies suggests that distinctions such as static
versus dynamic, while appearing to describe a policy in abstract terms, implicitly incorporate
details of how the policy might be implemented. We discuss this further in Section 6.4.

6.2.5 Dynamic N -Person

A dynamic N -person policy is similar to a Clark-Wilson policy except that the roles played by
the users are not fixed as they are in Clark-Wilson. To see why fixed roles can be undesirable,
let us consider the following example. In a Clark-Wilson policy we might allow a purchasing
clerk to initiate a purchase order and then require that the purchasing supervisor approve the
order. In order to require that two people be involved in this transaction we must prevent the
supervisors from initiating purchase orders and prevent the clerks from approving them. This
enforces separation of duty. One drawback of this static assignment of roles is that it does not
allow any flexibility in responding to special situations such as the absence of all purchasing
clerks (e.g., due to illness or vacation). DynamicN -person policies add this flexibility while still
maintaining separation of duty. The purchasing supervisors are allowed to initiate a purchase
order, but a single supervisor cannot both initiate and approve any given order. Instead, the
order must be approved by another supervisor. Thus, a supervisor is allowed to fill more than
one role but can fill at most one role with respect to any given order.

To define such a policy, we must have a concept of avalid sequence of TP executions. The policy
defines the valid sequences and for each step in the sequence the CDIs that may be manipulated
by the step. When a TP process is created, it must either establish a new sequence or continue
an existing one. The granting of permission to create the TP process would be sensitive to the
valid TP sequences. The granting of CDI accesses could then be decided on the basis of the
user, TP and perhaps the sequence.

6.2.5.1 Pure DynamicN -Person As with Clark-Wilson we distinguish two versions of dynamic
N -person policy. In the pure version, access for a TP process to the CDIs is all-or-nothing just
like it is with Pure Clark-Wilson. This policy has C > 2. Unlike Pure Clark-Wilson it is
dynamic. This comes not from the CDI access, but from the sensitivity to the position of the TP
process in the valid sequence. This policy is nonretractive and will usually be intransitive. It
cannot be supported by DTOS due to lack of input flexibility.

6.2.5.2 Piecemeal Dynamic N -Person This version corresponds to Piecemeal Clark-Wilson
— CDIs are accessed one at a time, and the access permissions are sensitive to the history of
CDI accesses granted to the TP process. It is thus sensitive to the write and execute accesses
granted to files. C = 2, and the policy is nonretractive and generally intransitive. This policy
can be supported by DTOS.

input. Thus, the reading of a CDI does not cause the policy to change. This focus on writing rather than reading is
consistent with the author’s experience in a business information systems environment. With the exception of sensitive
information (e.g., personnel files) programmers were allowed to execute programs that read virtually any files on the
system. However, they were not allowed to write any production data files (the CDIs of the system). This allowed them
to debug programs using production data while preventing them from destroying information or committing fraud.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 57

6.2.6 ORCON

6.2.6.1 Pure ORCON In the ORCON policy if a process p1 reads a file f1 the permissions
associated with f1 place a new upper bound on the permissions associated with any file f2 to
which p1 subsequently writes. If a process p2 is reading f2, the change to the permissions for f2
is propagated to the files to which p2 is writing. This constitutes a change of policy so ORCON
is dynamic. Since the change is in response to file access, ORCON is history-sensitive with
sensitivity to reading, writing and executing. In the above example it is possible thatp2 might
no longer have read or execute access to f2 when its ACL is changed as a result ofp1 writing to
it. In this case ORCON must be able to retract read and execute permissions. In DTOS, read,
write execute permissions are what we call migrating permissions. A migrating permission is
one that is retained in the protection bits associated with memory. When one these permission
is flushed from the cache, a “flush thread” is spun off to search the page tables flushing the
associated protection bits. This thread will eventually remove all the migrated permissions.
However, the cache flush request can return before the flush thread finishes its job, and there
is currently no way for the security server to determine when the flush thread has completed
the operation. Thus, DTOS provides rather poor support for any policy that needs to flush one
of these migrating permissions.

Since read permission migrates in the DTOS microkernel, the prototype cannot support the
retractions required in ORCON. We also recall the discussion in Section 5.4 regarding the
general difficulties in supporting retraction. This suggests that even if we modified DTOS so
that the security server could determine when the page table protection bits have been cleared,
DTOS would still not provide good support for retractive policies. The security server would
also need the ability to abort or restart active kernel requests that make use of the permissions
being retracted.

6.2.6.2 Locking ORCON We now consider a modified version of ORCON which we callLocking
ORCON. Retraction only needs to be done in ORCON if the processp2 currently has read access
to the file f2 when process p1 writes to f2. If p2 does not have read access when the writing
occurs (i.e., read access was either never granted or was relinquished), then read access can
simply be denied when p2 requests access at a later time. If we can guarantee that no file may
be open for reading and writing by different processes at the same time, then no retraction is
necessary. Locking ORCON consists of standard ORCON together with this new restriction
that a process must have a file locked (i.e., no other processes have it open for reading) in order
to write to the file.

Editorial Note:
We suspect that even Locking ORCON cannot practically be supported by DTOS since the Security Server
has no reliable way to find out that the file is no longer locked (even ifp2 terminates). Even worse, if the
Security Server itself is enforcing the locking as part of the policy, then once a file is read it would be tied
up in perpetuity. The SS needs to be able to respond to relinquishment. This also relates to the issue of
how the Security Server recognizes the destruction of a process.

6.2.7 Chinese Wall

6.2.7.1 Pure Chinese Wall As described in Section 6.1 the Chinese Wall policy is history-
sensitive. Its sensitivity to reading has already been discussed. It is also extremely sensitive
to writing. If a user has write access to any file in an unsanitized data setD , then that user

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

58
CDRL A019

Security Policy Lattice

may only read files that are either inD or in the sanitized data set. Thus, granting processp
write access to a file makes read access ungrantable forp to most of the files in the system.

This observation casts some question on the claim of Brewer and Nash that a Chinese Wall
system may be operated with a number of users that is no more than the largest number of
data sets in any conflict of interest class. Since for each company data set there would most
likely be at least one user with write permission to that data set, and since that user cannot
read any other company data set, the number of users must be at least the number of company
data sets. This is most likely a much larger number of required users.

The breach of security that Brewer and Nash are trying to prevent is the following:

1. User-A has access to data on Oil Company-A and Bank-A.

2. User-B has access to data on Oil Company-B and Bank-A.

3. User-A writes information on Oil Company-A to a file in the data set for Bank-A.

4. User-B reads that file and now holds information on two oil companies, in violation of the
policy (and United Kingdom laws).

The problem is that, although we can trust a financial analyst not to write any information on
Oil Company-A to the data set for Bank-A, we cannot necessarily trust a computer program in
this way. The program has no understanding of the data, and furthermore, it could have been
subverted by User-B to write information without the knowledge of User-A.

The Chinese Wall policy is nonretractive since each access, when allowed, affects only the
permissions that are grantable and ungranted. Note that write access is granted only if no
objects have been read in any other unsanitized data set. Because of the extreme constraints
on writing, the policy is nearly transitive with only one type of intransitive behavior. Assume
A can write to the sanitized data set (and therefore to no other data set), andB can write to
an unsanitized data set D . Since every user can read the sanitized data set,B can read files
written by A. However, A cannot write to D . This policy can be supported by DTOS.

6.2.7.2 Static Chinese Wall In Section 6.2.4.2 we modified the static Pure Clark-Wilson policy
(C > 2) to obtain a dynamic version which we called Piecemeal Clark-Wilson (C = 2). The
restriction of C to 2 allows us to implement the piecemeal version on DTOS. The fact that
this could be done suggests a relationship between history-sensitivity and implementation. To
explore this relationship further we now attempt to apply the reverse process to Chinese Wall
to obtain a static version withC > 2.

Any Chinese Wall system progresses toward a static state. If it reaches a point where every
user either has write access to some data set or has read access to one data set from each
conflict of interest class, then no more policy changes can occur unless a new user is added or
a new conflict of interest class is created. Along the way to this static state the policy changes
whenever any user is granted permission to write a file or is granted permission for the first
time to read a given data set. Our static version collapses this progression by requiring the
administrator to specify at the time when a new user is added to the system all of the data sets
to which the user is given read and/or write access.

This policy is static in that the only changes are due to explicit requests from the administration.
C > 2 since we assume the administrator submits the entire set of allowed accesses all at once.
The policy is nonretractive since it is static. It is intransitive for the same reasons as Pure
Chinese Wall. Admittedly, this policy is less convenient for everyone involved, but it does allow

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 59

the same proof of compliance with United Kingdom law as is allowed by the pure version. Since
the pure version can be supported, this variant is only of theoretical interest.

6.3 Classification of the DTOS Kernel

In this section we consider DTOS with respect to its ability to support policies with the charac-
teristics we have been discussing. We both collect in one place the earlier conclusions regarding
policy support and draw some more general conclusions. In supporting security policies DTOS
does have several limitations, and we discuss a number of them in this section. We should point
out that these are limitations of the DTOS microkernel and the prototype Security Server, not
of the general idea of separating policy decisions from policy enforcement. These limitations
could typically be skirted by developing a new manager and Security Server that interacted to
enforce a given policy.

The first limitation we discuss is that DTOS makes decisions based upon a pair of security
identifiers (SIDs), one for the subject (active entity) and another for the object (passive entity).
Thus, C = 2. While this works well for most policies, there are certain cases where the policy
is most naturally thought of in terms of more than two SIDs (C > 2). For example, in the
Clark-Wilson integrity policy, access is typically defined in terms of access triples of the form
(UserID ;TP ; (CDI1;CDI2; : : : ;CDIn)). Since we would most likely consider eachCDIi to be an
object with its own unique SID, these access triples really include an arbitrary number of SIDs.
Note that one could develop a file server and a Security Server that could send lists of SIDs
back and forth, so this is not a general limitation of the architecture. It applies only to the
DTOS microkernel and the prototype Security Server. Furthermore, DTOS does not support
parametrized policies well. The only input information for a policy decision in addition to the
SIDs is the requested permission. This could also be resolved by implementing more extensive
detailed communication between the manager and Security Server.

A second limitation relates to the ability of DTOS to retract permissions. DTOS has improved
in this regard over the course of its development and maintenance. However, it still does not
support retraction entirely. In DTOS, the results of permission requests are stored in a cache
to improve performance of the system. To allow for the removal of permissions the cache may
be flushed. Furthermore, individual permissions stored in the cache may be marked as non-
cachable (i.e., they may be used only once). In certain cases granted permissions may migrate
out of the cache and into the microkernel. In early versions of DTOS the migrated permissions
were not removed when a cache flush was performed. This placed a very serious limitation
on retractive policies. When a page fault occurs in DTOS the cache and Security Server are
consulted to calculate the permissions of the task to the page. The result of this computation
is stored in the page table so that permissions to the page may be efficiently checked on future
page accesses. In early releases, a subsequent cache flush had no immediate effect on the page
table. The permissions Have read , Have write and Have execute had effectively migrated into
the microkernel and were not retractable. This migration problem was solved by modifying the
microkernel so that when permissions are flushed from the cache they are also flushed from the
page table and are recalculated at the next access to the page. This has been implemented by
a flush thread that resets the appropriate page table bits. Since the flush request may return
to the Security Server before this thread finishes its job, there is a time delay in the retraction.
With the current implementation of the flush thread, the Security Server has no way of knowing
when the flush thread is done. Thus, retraction is still rather difficult to achieve in DTOS. The
situation could be improved by

having the flush thread send a notification to the Security Server when it is done cleaning
the page tables, and

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

60
CDRL A019

Security Policy Lattice

running the flush thread at a very high priority to ensure that it does its job quickly.

However, even with this approach there is a time delay involved in flushing the cache — the
flush request must be sent and processed — and this might make it difficult to implement a
strict retraction policy. Refer to the discussion of the Consistency Theorem on page 43 for more
on this.

Permissions may also migrate to other servers. When a request is made by sending a message
to a server S , the access vector of the requesting task to the server’s port is included in the
message. S may use this access vector in any way it wishes. If it continues to use this vector
over a period of time to make service access decisions regarding the client task, then a retraction
of permissions will not be reflected in the actions ofS . S might also be able to make requests
directly to the Security Server, and the same issue of stale, migrated permissions applies in this
case. To solve this migration problem servers must be notified when permissions are removed
for any subject. The later releases of DTOS do provide for this notification.

DTOS also is limited in its sensitivity. For history-sensitive policies it is important to know
what permissions have been used. However, if a Security Server grants a permission, it cannot
tell whether the permission is actually used. By use here, we mean that the service controlled
by the permission has occurred. For example, the fact that write access for a file was requested
and granted does not mean the requesting process actually wrote to the file. This can partially
be overcome by having the Security Server assume that any granted permission is in fact used.
We call this the use-of-permission assumption. When using this assumption in a Security
Server, it will typically be necessary to design the server so that it only grants permissions
that are actually requested. Otherwise, the server might unnecessarily restrict future policy
decisions making the system hard to use. For example, if a task originally requests read access
but not write access, it is only given the former even if the latter is also allowed by the policy.
If the task later wishes to write, it must make another request, this time for write access.
This allows tasks to declare to the Security Server which of their grantable permissions they
wish to exploit. We call this Security Server behaviorstinginess. If applied to all permissions,
stinginess could greatly increase the number of interactions between a task and the Security
Server and thus slow the system down. To prevent this a DTOS Security Server is allowed
to be stingy with some permissions and generous with others. Selective stinginess can in
principle be implemented in DTOS with the use of the cache control vector to make denied,
stingy permissions non-cachable. This will cause a new query to the Security Server when the
denied permission is checked. However, for the migrating permissions the denied permission
is checked from the page table rather than the cache and a new security server request is not
generated. To fix this, it would be necessary to make the permission checking mechanisms in
the page table sensitive to cachability of permissions. A typical policy need only be stingy with
some subset of the permissions read, write and execute, but stinginess can in principle apply
to any permission.

We must, however, be judicious in applying the use-of-permission assumption. If the sensitivity
of the policy implies that the use of a particular permission reduces the set of grantable
permissions, then the assumption is safe. If, on the other hand, the use of the permission
can cause an ungrantable permission to become grantable, the use-of-permission assumption
is dangerous and should be avoided. An implication of this is that DTOS does not support
relinquishment well. There is no way for a task to notify the Security Server that it has
relinquished a permission. A task would most likely relinquish access by deallocating a region
of memory. There is a permission check at the start of this operation, so the Security Server is
told when this operation is being attempted. However, the Security Server is never notified that
this operation has actually succeeded. The Security Server could make the use-of-permission
assumption and adjust the policy to allow access for the file to other processes. However, if the

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 61

deallocation fails for some reason, the relinquishing task might still be able to access the file.
This would violate the policy.

DTOS can support environment-sensitivity through mechanisms such as
the SSI load security policy interface and the ability to dynamically swap in a security
server by setting the security server port (host set special port). The current implemen-
tation of SSI load security policy may not be adequate to support policies that are both
history- and environment-sensitive if the history information must survive an environment
change either to affect the decisions in the new environment or to be resumed later when the
system returns to the original environment. However, this is only a limitation of the prototype
Security Server. A different Security Server could reimplement this operation.

The DTOS prototype Security Server could in principle support discretionary policies through
the SSI load security policy interface, but this would be clumsy and difficult to use. It
would be better to implement an additional interface to the Security Server for requesting
changes to the discretionary policy.18 Another option is to not put the discretionary policy in
the Security Server at all but to locate it in another server (e.g., the file server).

Finally, DTOS does support intransitive policies since the policy in the Security Server may
implement any general relation.

In summary, the current DTOS prototype microkernel has the following properties with respect
to support of the policy characteristics:

C > 2 — No support.
Parametric — No support.
Discretionary — Yes, but clumsily.
History Sensitivity — Yes, but only in cases where the use-of-permission assumption is
valid.
Environment Sensitivity — Yes.
Relinquishment Sensitivity — No.
Retractive — Not entirely, because of the time delay in flushing the cache and the inabil-
ity of the security server to determine when migrated permission have been eliminated.
(Early releases failed to support retraction of read, write and execute permissions at all.)
Transitivity — Supports both transitive and intransitive policies.

The fact that it is difficult to provide “yes or no” answers on whether DTOS supports these
characteristics suggests that it might be worthwhile in further work to attempt a further
decomposition of the characteristics. For example, perhaps history-sensitivity could be split
into two classes depending on whether the use-of-permission assumption is valid.

6.4 History Sensitivity and Implementation Methods

As we have seen the sensitivity of a policy to the history of file accesses depends in part on the
style of interaction between users, processes and the Security Server. Piecemeal Clark-Wilson
is history-sensitive because the Security Server cannot grant access to a CDI for a TP without
knowing the other CDIs to which the TP has already been granted access. This cannot be
determined based upon a single policy input withC = 2. However, Pure Clark-Wilson receives

18Discretionary policies typically, in their most natural interpretation, require a 1-1 relationship between objects
and security identifiers. While the DTOS microkernel does not prohibit this, it provides virtually no assistance to
processes wishing to label objects uniquely. We view this as an inconvenience in using DTOS rather than a total lack
of support for discretionary policies.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

62
CDRL A019

Security Policy Lattice

in a single input (withC arbitrarily large) enough information to make a policy decision without
sensitivity to any prior file access.

Working in the reverse direction, we modified the Chinese Wall policy, which is typically viewed
as history-sensitive, to obtain a static policy (Static Chinese Wall). In this version, an adminis-
trator must certify each individual for a particular non-conflicting group of company data sets
when the individual’s account is set up. While this static version is clearly less flexible than
the original, it can still prevent insider information in much the same way as the Chinese Wall
policy.

The difference in both cases is in the amount of information received in a single policy input.
We call this chunking. It is worth looking at various policies and asking whether there is
some level of chunking that would make the policy static. We start with the Pure Dynamic
N -Person policy. For this policy the history-sensitivity is not in the CDIs which are accessed in
a chunk as with Pure Clark-Wilson. The sensitivity is in the valid sequences of TP executions.
The determination of whether an individual i is allowed to perform the next step in a TP
sequence depends upon the history of the sequence. That is, which individuals have executed
the preceding steps. To remove the sensitivity, the entire sequence must be placed in a single
chunk. Thus, an entire sequence would have to be requested (or at least declared in some way)
all at once. This would include a specification of who could perform each step. This is clearly
harder to use than the standard policy.

The prospects for a static variant of ORCON are much worse. Individual process executions
are much more intimately linked than they are in a system with the Pure Clark-Wilson policy.
Every read and write operation throughout the life of the system can potentially change the
policy. It is therefore likely that we could only use one chunk containing the entire life of the
system. This is unworkable.

In summary, history-sensitivity is closely linked to the way in which a policy is implemented.
For some policies such as Clark-Wilson the interactions between individual policy decisions are
localized enough that a static implementation is feasible. For other policies this seems unlikely.

6.5 The Lattice

Figure 2 graphically shows a portion of the lattice of policies defined by the characteristics
presented above. The bottom node of the lattice represents those policies that have none of the
characteristics and can be supported by a manager that supports none of the characteristics.
The nodes immediately dominating the bottom node represent those policies that have exactly
one of the characteristics. Each node is labeled with the set of characteristics held by policies
classified at that node. Managers can also be placed in the lattice with the following inter-
pretation. A manager is placed at node N if it supports exactly the characteristics indicated
by the label of N . We have placed DTOS in the lattice. See Section 6.3 for a discussion of its
placement. The nodes in the lattice that indicate classes of policies that can be supported by
DTOS are shaded.

It should be noted that we have taken intransitivity (rather then transitivity) to be a charac-
teristic that might be supported by a manager or required by a policy. Transitivity provides
an assumption about the ways in which permissions may be assigned in the system. If a sys-
tem is designed with transitive policies in mind, then it is likely that this assumption will be
used to gain efficiency or make it easier to define the set of allowed permissions. Transitive
relations are more restricted than general relations, and this provides more information that
can be used by designers. If a system is designed with intransitive policies in mind, no such
assumption is made. It also seems unlikely that the design would incorporate an assumption

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 63

M
L

S
B

ib
a

T
yp

e
E

nf
or

ce
m

en
t

Pu
re

 C
la

rk
-W

ils
on

St
at

ic
 C

h.
 W

al
l

Pi
ec

em
ea

l C
la

rk
-W

ils
on

Pi
ec

em
ea

l D
yn

. N
-P

er
so

n
Pu

re
 C

h.
 W

al
l

N
on

re
tr

ac
tiv

e
IB

A
C

D
T

O
S

L
oc

ki
ng

 O
R

C
O

N
Pu

re
 O

R
C

O
N

R
et

ra
ct

iv
e

IB
A

C
D

yn
am

ic
 N

-P
er

so
n

L
eg

en
d

C D E H I L P R

C
 >

 2
D

is
cr

et
io

na
ry

E
nv

ir
on

m
en

t-
se

ns
iti

ve
H

is
to

ry
-s

en
si

tiv
e

In
tr

an
si

tiv
e

R
el

in
qu

is
hm

en
t

Pa
ra

m
et

ri
c

R
et

ra
ct

io
n

{
D

,E
,H

,I
}

{
}

{
P

 }
{

L
 }

{
C

 }
{

H
 }

{
I }

{
R

 }
{

D
 }

{
E

 }

{
D

,I
}

{
I,R

 }
{

H
,I

}
{

C
,I

}
{

H
,L

 }

{
H

, I
, L

 }
{

C
,H

,I
}

{
H

,I,
R

 }
{

D
,H

,I
}

{
D

,I,
R

 }

Figure 2: Partial Security Policy Lattice

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

64
CDRL A019

Security Policy Lattice

that no potential policy for the system can be transitive. Thus, while any system that supports
intransitive policies will most likely also support transitive ones, the converse is not true.

6.6 Formal Description of Policy Characteristics

In this section we formalize the policy characteristics using the machinery of our formal model of
a manager/Security Server structured system. We will define each characteristic as a restriction
of the schema System.

6.6.1 Input

To formalize the types of input for a security computation request that were defined informally
we must interpret elements ofSS REQ as including security contexts and/or parameters.19 We
do this by defining functionsContexts and Parameters from a SS REQ to sequences of elements
from the generic types CONT and PAR, respectively.

[SS REQ ;CONT ;PAR]
Contexts : SS REQ " seqCONT
Parameters : SS REQ " seqPAR

We can now formally define what it means for a system to beC > 2 or parametric.

C > 2[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS ;CONT ;PAR]
System[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

9 ss req : SS REQ

� #(Contexts [SS REQ ;CONT ;PAR](ss req)) > 2

Parametric[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS ;CONT ;PAR]
System[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

9 ss req : SS REQ

� #(Parameters[SS REQ ;CONT ;PAR](ss req)) > 0

6.6.2 Sensitivity

In this section we apply the concept of sensitivity to an entire system rather than just a security
policy. We will say that a system has a sensitivity if the security policy of its Security Server
has that sensitivity.

In defining sensitivities we will need to examine the security policy in effect after a sequence of
operations is performed. Thus, we define a function Final policies(init ; op seq) which returns
the set of possible policies (allowing nondeterminism) of the Security Server after the execution
of an action sequence starting in some initial state.

19Note that we do not require that all systems have contexts or parameters in aSS REQ .

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 65

[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
Final policies : (SystemState[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS])
"�(� SS REQ)

8 init : SystemState [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS];
op seq : OP SEQ [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� Final policies(init ; op seq)
= f state : Execute(finitg; op seq)

� state:policy allows g

Before examining particular sensitivities, it is easy to define those systems that have a dynamic
policy. They are simply those in which there is a valid behavior during which the policy changes.

Dynamic[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
System[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

9B : seq system ops; init : system init ; i :
� B 2 Valid op seqs(init)
^ Final policies(init ;B) 6= finit :policy allowsg

6.6.2.1 History Sensitivity We first define sensitivity to the processing of a request and then
use this to define history sensitivity in general. A system is sensitive to the processing of a
request req if there exists a valid operation sequence B of the system in which req is executed
at step i such that, for every valid subsequenceS of the sequence B(1);B(2); : : : ;B(i �1);B(i +
1); : : :B(n) (where n is the length of B), the policy after executing operation sequenceB from
some reachable state init differs from the policy after executing S from init .

We define sensitivity in terms of operation sequences rather than individual steps since there
might be a delay between the execution of the request and the change to the policy. Note that
we do not require that all operation sequences containingreq produce a different policy when
req is removed. There might be some operation sequences in whichreq has no effect or in which
its effect is cancelled by the effects of other requests in the sequence to which the system is also
sensitive. We consider subsequences ofB in which more than step i has been removed since
the sequence obtained by removing only step i from B might not be a valid operation sequence
of the system. All such subsequences must result in a different final policy since otherwise the
system might actually be sensitive to some other request req1 that also occurs in B (and not
to req). In that case we could merely choose to look at a subsequence in which req1 has been
removed, and this subsequence could produce a different policy.

Now we formally define sensitivity to a request.20

20The Z operation U s returns a sequence that contains the elements of s with an index in the setU in the order
in which they occur in s . In this case we are using it to remove element i from the sequence B .

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

66
CDRL A019

Security Policy Lattice

SensitiveToRequest [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
System[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
req :M REQ

(9B : seq system ops; i : ;
init : SystemState [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� i 2 domB

^ init 2 Reachable(�System)
^ B 2 Valid op seqs(init)
^ B(i) � fSystemStep[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

jMgrProcessRequest [M DATA;M REQ ; SS REQ ;RESP ;ANS]
^ active request(req num?) = reqg

^ (8 S : seq system ops

j S 2 Sub seqs(fj : j j 6= ig B)
^ S 2 Valid op seqs(init)

� Final policies(init ;B) 6= Final policies(init ; S)))

A more restrictive definition of sensitivity would require

disjoint hFinal policies(init ;B);Final policies(init ; S)i:

For deterministic operation sequences the two definitions are equivalent. For nondeterministic
sequences the disjoint set definition requires that the policies be different whereas the set
inequality definition only requires that it be possible for the policies to be different. We have
chosen the set inequality definition since it seems more consistent with our decision that the
policy need not change in response to all executions ofreq , only to some execution.

Since this definition is perhaps not very intuitive, we give an example of how it might be applied
to a particular implementation of history sensitivity where a “request-succeeded” message is
sent to the Security Server when the processing of a request is completed, and when the
Security Server receives this message it processes it by changing the policy. Note that we will
typically want to choose the operation sequenceB to be as short as possible. In this example,
we could take it to be

1. manager processes the requestR and sends message

2. Security Server receives message

3. Security Server processes the message thereby changing the policy.

We assume that each of these operations is deterministic.

We also get to choose any reachable state init in which B can be validly executed. In this case
we select a state with the following properties:

nothing is in the Security Server request queue,

the Security Server is idle, and

the policy contains a permission that should be removed in response to the execution of
the request R.

We must prove that this state is reachable. We assume that all three of these properties are
true in system init , so this state is trivially reachable.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 67

Now we consider all valid subsequences of B that do not contain the first operation B(1).
Since the Security Server request queue must be empty at the point whenB(2) is executed,
no valid subsequence begins with the Security Server receiving a message. Similarly, since
no messages are received by the Security Server and the Security Server is initially idle, the
Security Server cannot performB(3). Thus, the only subsequence ofB that we need to consider
is the empty sequence. Since the empty sequence does not change the policy and since the
initial state was chosen so thatB(3) does change the policy, we have Final policies(init ;B) 6=
Final policies(init ; hi)) and the system is sensitive toR.

We can now define a history sensitive system. It is one that is sensitive to some request.

HistorySensitive[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
b= SensitiveToRequest [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS] n (req)

There are some weaknesses in this formalization of history sensitivity. One is that it is too
implementation dependent to adequately describe when a policy (as opposed to a particular
implementation of the policy in a Security Server) is history sensitive. This means that if we
are to use our formal definition as a guide to the placement of a policy in the policy lattice, we
must apply it to a particular implementation of the policy, not the policy itself. For example,
consider the Clark-Wilson policy, and assume that there is a processP and CDIs C1 and C2.
Furthermore, write access is initially grantable toP for both CDIs, but if P writes to either
CDI, then write access becomes ungrantable to P for the other CDI. If we implement this
sensitivity by sending a “request succeeded” message from the manager to the Security Server
when a CDI is opened for writing and having the Security Server change its policy when the
message is received, then Clark-Wilson is history-sensitive according to the formal definition.
However, if we implement the sensitivity by having the Security Server change its policy when
it grants write permission to a CDI, then Clark-Wilson isnot history-sensitive according to the
formal definition. The processing of a manager request has no effect on the policy.

We could claim that the second implementation of Clark-Wilson is sensitive not to the pro-
cessing of manager requests, but to the sending of a permission request from the manager to
the Security Server. This suggests a broader formalization of history sensitivity as “sensitiv-
ity to any manager transition”. While this would make both the above implementations of
Clark-Wilson history-sensitive, it introduces a different shortcoming. For policies where the
performance of a manager request causes permissions to become grantable, it is important to
change the policy only when the request has been successfully performed. This policy would
be history-sensitive under both definitions, but only with the former definition could we be
sure that an implementation was faithful to the policy. A system capable of implementing
sensitivity to any manager transition and incapable of implementing sensitivity specifically to
processing of a request would be classified as supporting history-sensitivity but would not be
able to support this history-sensitive policy.

This leads to a general problem in defining a policy lattice. A policy is classified in the lattice
as history-sensitive if it (or its Security Server implementation) reflectsany aspect of history-
sensitivity. If we apply the same existentially quantified definition of classification in the
lattice to a manager such as the DTOS microkernel, then even the placement of a policy and
a manager in the same node of the lattice does not imply that the manager can support the
history-sensitivity required by the policy. One possible solution is to use a universally quantified
definition of classification for managers. For example, a manager is classified in the lattice as
history-sensitive if it supports all aspects of history-sensitivity. In combination with this we
would probably wish to define useful subclasses of history sensitivity. Then, we could classify a
manager as, for example, supporting all aspects of sensitivity to Security Server requests but
not supporting sensitivity to the processing of manager requests.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

68
CDRL A019

Security Policy Lattice

This weakness seems less significant if we recall the discussion of Sections 6.2.4.2 and 6.4. As
explained there, the entire static/dynamic distinction is heavily influenced by the implementa-
tion.

A second weakness in this formalization is that it does not capture our expectation that it will
be a necessary property of a Security Server for most history-sensitive policies that the Security
Server not make any policy decisions between the occurrence of an event to which the policy is
sensitive and the corresponding update to the policy. Otherwise, the Security Server is making
decisions based upon out-of-date history information.

6.6.2.2 Environment Sensitivity Although environment sensitivity makes intuitive sense, it is
difficult to formalize as something distinct from history sensitivity within the framework that
has been defined. As described earlier environment sensitivity includes sensitivity to things
such as the time of day and the operating mode of the system. In most systems, manager
processing will be necessary in order to set the operating environment. This means that the
change of policy due to a change of mode will be a history sensitivity to any requests used to
change the mode. Similarly, to determine the time of day a Security Server will most likely
have to request the time from the manager. Any resulting change of policy will represent a
history sensitivity to the request for the system time. To formalize environment sensitivity it
would be necessary to have a framework that is more tightly constrained than the current one.

6.6.2.3 Discretionary Sensitivity Similar comments apply to discretionary sensitivity. The key
notion here is that each user has the ability to define parts of the policy.

6.6.2.4 Relinquishment Sensitivity In terms of the Security Server, relinquishment sensitivity
is not really any different from history sensitivity. The manager processes a request, and in
response, the policy changes. In terms of the manager, the processing of the request to which the
policy is sensitive must potentially reduce retained rel. It is, however, possible that no change
occurs in retained rel because the relevant retentions are not actually present. For example,
they may have been flushed to make room for other retentions. Thus, given the current
framework, relinquishment is formally very difficult to distinguish from history-sensitivity.

6.6.3 Retraction

We formalize retractive systems in two parts. The first models those systems where retraction
is potentially necessary. This is essentially a Security Server property. It is satisfied if it is
possible for the Security Server to grant (either voluntarily or in response to a request) an
SS REQ which is later ungrantable.

NeedsRetraction[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
System[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

9B : seq system ops; ss req : SS REQ ;
init; s : SystemState [M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

� init 2 Reachable(�System)
^ s 2 Execute(finitg;B)
^ ss req 2

S
(grants�dom init:pending responses�
[voluntarily grants�dom init:pending requests�)

^ ss req =2 s:policy allows

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 69

The second part models systems that support retraction. This property is satisfied if in all
states the set of SS REQ retained for any M REQ is a subset of those allowed by the current
Security Server policy. Note that this property is trivially satisfied by a system that never
retains any SS REQs.

SupportsRetraction[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
System[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

ran retained rel � policy allows

A system is retractive if retraction is potentially necessary and it is supported.

Retractive[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
b= NeedsRetraction[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]
^ SupportsRetraction[M DATA; SS DATA;M REQ ; SS REQ ;RESP ;ANS]

6.6.4 Transitivity

Transitivity really only applies to a particular class of policies that are defined in terms of a
trinary relation between a set of domains (collections of active entities)DOM , a set of types
(collections of passive entities) TYPE and a set of permissions PERM allowing elements of a
domain to perform a given operation on elements of a type. In order to formalize this dimension
we define the following mappings on SS REQ :

[SS REQ ;DOM ;TYPE ;PERM]
Domain : SS REQ " DOM

Type : SS REQ " TYPE

Perm : SS REQ " PERM

Perm triple : SS REQ " DOM � TYPE � PERM

8 ss req : SS REQ

� Perm triple(ss req) = (Domain(ss req);Type(ss req);Perm(ss req))

We divide the set of permissions into two not necessarily disjoint classes,Observe perms and
Alter perms. The former contains the permissions that allow an element of a domain to observe
information from an element of a type. The latter contains the permission that allow an element
of a domain to alter information in an element of a type. Every permission must be in at least
one of these sets.

[PERM]
Observe perms;Alter perms : �PERM

Observe perms [Alter perms = PERM

We now define two types of transitivity, alter-transitivity and observe-transitivity. An alter-
transitive system is one in which the following property holds. If domaind1 has permission to
alter elements of type t1 and domain d2 has permission both to observe elements of type t1 and
alter elements of type t2, then d1 has permission to alter elements of type t2. Note that we do
not require that d1 have permission to observe elements of t1 nor that d2 have permission to
observe elements of t2.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

70
CDRL A019

Security Policy Lattice

AlterTrans[MD ; SSD ;M REQ ; SS REQ ;RESP ;ANS ;DOM ;TYPE ;PERM]
System[MD ; SSD ;M REQ ; SS REQ ;RESP ;ANS]

let triple == Perm triple[SS REQ ;DOM ;TYPE ;PERM]
� 8 d1; d2 : DOM ; t1; t2 : TYPE

j (9 ss req
1
; ss req

2
; ss req

3
: policy allows;

alter1; alter2 : Alter perms; obs1 : Observe perms

� triple(ss req
1
) = (d1; t1; alter1)

^ triple(ss req
2
) = (d2; t1; obs1)

^ triple(ss req
3
) = (d2; t2; alter2))

� (9 ss req
4
: policy allows; alter3 : Alter perms

� triple(ss req
4
) = (d1; t2; alter3))

An observe-transitive system is similarly defined. If domaind1 has permission both to observe
elements of type t1 and alter elements of type t2 and domain d2 has permission to observe
elements of type t2, then d2 has permission to observe elements of type t1.

ObserveTrans[MD ; SSD ;M REQ ; SS REQ ;RESP ;ANS ;DOM ;TYPE ;PERM]
System[MD ; SSD ;M REQ ; SS REQ ;RESP ;ANS]

let triple == Perm triple[SS REQ ;DOM ;TYPE ;PERM]
� 8 d1; d2 : DOM ; t1; t2 : TYPE

j (9 ss req1; ss req2; ss req3 : policy allows;
alter1 : Alter perms; obs1; obs2 : Observe perms

� triple(ss req1) = (d1; t1; obs1)
^ triple(ss req2) = (d1; t2; alter1)
^ triple(ss req

3
) = (d2; t2; obs2))

� (9 ss req4 : policy allows; obs3 : Alter perms

� triple(ss req4) = (d2; t1; obs3))

A transitive system is one that is both alter-transitive and observe-transitive.

Transitive[MD ; SSD ;M REQ ; SS REQ ;RESP ;ANS ;DOM ;TYPE ;PERM]
b= AlterTrans[MD ; SSD ;M REQ ; SS REQ ;RESP ;

ANS ;DOM ;TYPE ;PERM]
^ ObserveTrans[MD ; SSD ;M REQ ; SS REQ ;RESP ;

ANS ;DOM ;TYPE ;PERM]

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 71

Section 7
DTOS Microkernel

In this section we specify the DTOS microkernel as an instantiation of the generic manager
described in Section 5. The DTOS system is object-based in that its overall structure is a
collection of active components (a microkernel for each system node and a set of tasks) that
communicate by sending messages through ports or by reading and writing shared memory.
Each of these components may be considered to be a manager that controls a group of objects,
performing operations to effect changes and communicating values. The ports and the memory
objects through which the communication occurs, and the creation, destruction, and scheduling
of tasks, are managed by the microkernels.

The Mach microkernel design on which DTOS is based (and also several other microkernel
designs) provides some security through capabilities. Unfortunately, these capabilities are
rather limited in that they only provide control over sending to and receiving from ports.
Potentially, they could be used in the implementation of various security policies. However, the
security functions added in DTOS also control IPC operations (as well as operations on many
other objects); indeed, possession of a send capability for a port is not sufficient to allow a task
to send a message to that port. We therefore will not consider the Mach capabilities further in
the description of the DTOS microkernel as a manager.

7.1 Instantiation of Generic Types

We begin by defining types for each of the generic parameters of a manager,M DATA, M REQ ,
SS REQ ,RESP andANS . We then specify additional constraints on the components ofMgrState
and the manager operations to restrict the behavior of the manager to that of the microkernel.

There are three kinds of computation requests that may be generated by the DTOS Microker-
nel: permission requests, information requests and notifications. This specification will focus
primarily upon permission requests. A permission request to the Security Server consists of a
PermReq which contains a requested permission perm, a subject security identifier ssi and an
object security identifier osi .

[PERMISSION ; SSI ;OSI]

Among the defined permissions in DTOS are the following:

Cross context create;Create task ;Have read ;Have write;Have execute ;
Can send ;Can receive;Make sid : PERMISSION

We mention these permissions because they are needed in the specifications of the example
Security Servers included later in this report. A complete list of permissions can be found in
the DTOS Formal Security Policy Model [27].

PermReq

perm : PERMISSION
ssi : SSI
osi : OSI

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

72
CDRL A019

DTOS Microkernel

We will model information requests and notifications simply as elements on the types
D INFO REQ and D NOTIF REQ .

[D INFO REQ ;D NOTIF REQ]

A DTOS Security Server computation request is modeled by the typeD SS REQ .

D SS REQ ::= Perm req�PermReq� j Info req�D INFO REQ�
j Notif req�D NOTIF REQ�

The Security Server responds to permission and information requests with one or more answers
of type D ANS .

[D ANS]

For permission requests the Security Server responds with a ruling containing the following
information:

access vector — a set of permission that are granted,
control vector — a set of permissions (granted or denied) that may be retained in the
cache,
noti�cation vector — a set of permissions (granted or denied) for which the Security Server
wishes to be notified when the permission is checked,
expiration value — a time at which the vectors are no longer considered valid, and
time stamp — the time at which the ruling was sent.

Editorial Note:
The implementation does not include a time stamp. This component has been introduced as an abstraction
device to model the behavior of the kernel when it receives a flush request. See Section 7.3 for more
information on flush requests.

To model the association between the permission request and the ruling from the security
server, we include the permission request as part of the ruling.

ACCESS VECTOR == �PERMISSION

DtosRuling

ss req : PermReq
access vector : ACCESS VECTOR

control vector : ACCESS VECTOR

noti�cation vector : ACCESS VECTOR

expiration value :
time stamp :

We model returned information with the typeD INFO .

[D INFO]

A Security Server response is modeled by the typeD RESP

D RESP ::= Ruling resp�DtosRuling� j Info resp�D INFO�

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 73

A request to the microkernel includes an operation op to be performed and a sequence of
parameters for that operation. The client of the request is a thread. In addition to the values
of KERNEL OP defined in the FSPM we include such operations as reading, writing and
executing a word from a memory page. This is necessary because, at the microkernel level,
these are the operations that many security policies must control, and the ability to perform
these operations in DTOS is based upon the protection bits associated with a page rather than
with an explicit check to the security policy. For a static policy this distinction is not important,
but for dynamic policies that must retract permissions it is crucial.

[THREAD;TASK ;KERNEL OP ;KERNEL PARAM]

The following operations are needed later in the descriptions of the example Security Servers:

Avc ush cache id ;Read page;Write page ;Execute page;
Vm read id ;Vm write id ;Task create id ;Task create secure id ;
Task change sid id

: KERNEL OP

For a complete list of operations, refer to the document DTOS Mach Kernel Interfaces [31].

MkRequest

client : THREAD
client task : TASK
op : KERNEL OP

params : seqKERNEL PARAM

The microkernel maintains data that is relevant to security decisions in thecache of access
vectors. The cache is a set of CacheEntry values. A CacheEntry value has the following
components:

ssi — the SSI associated with the cached access computation
osi — the OSI associated with the cached access computation
access vector — the set of permissions the Security Server indicated forssi to osi
control vector — the cache control vector the Security Server indicated forssi to osi
noti�cation vector — the notification vector the Security Server indicated forssi to osi
expiration value — the time at which the Security Server indicatedaccess vector needs to
be recomputed

CacheEntry

ssi : SSI
osi : OSI
access vector : ACCESS VECTOR

control vector : ACCESS VECTOR

noti�cation vector : ACCESS VECTOR

expiration value :

The cache contains at most one non-expired CacheEntry for each (ssi ; osi) pair. The value
host time is the current time that is used in determining expiration of cache entries, and
time stamp is the time at which the most recently processed flush request was sent.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

74
CDRL A019

DTOS Microkernel

Editorial Note:
The implementation does not include a time stamp. This component has been introduced as an abstraction
device to model the behavior of the kernel when it receives a flush request. See Section 7.3 for more
information on flush requests.

An instance pr ofPermReq is granted by the cache if there exists a non-expired cache entryentry
with ssi and osi matching pr such that pr :perm is in both the access vector and control vector
of entry . The expression granted by cache denotes the set of PermReq values that are granted
by the cache. An instance pr of PermReq is denied by the cache if there exists a non-expired
cache entry entry with ssi and osi matching pr such that pr :perm is in the control vector ofentry
and not in the access vector. The expressiondenied by cache denotes the set of PermReq values
that are denied by the cache. Note that the permissions stored in the cache may in principle
be consulted with respect to any request req. It is the kernel’s control policy mgr policy that
determines which permissions are actually consulted.

MkCache

cache : �CacheEntry
host time :
time stamp :
granted by cache : �PermReq
denied by cache : �PermReq

(8 e1; e2 : CacheEntry
j f e1; e2 g � cache

^ e1:ssi = e2:ssi
^ e1:osi = e2:osi
^ e1:expiration value � host time

^ e2:expiration value � host time

� e1 = e2)

granted by cache

= fpr : PermReq
j (9 entry : cache

� entry :expiration value � host time

^ pr :ssi = entry :ssi
^ pr :osi = entry :osi
^ pr :perm 2 entry:access vector \ entry :control vector)g

denied by cache

= fpr : PermReq
j (9 entry : cache

� entry :expiration value � host time

^ pr :ssi = entry :ssi
^ pr :osi = entry :osi
^ pr :perm 2 entry:control vector n entry:access vector)g

In the DTOS kernel certain permissions maymigrate beyond the cache. By this we mean that
these permissions are checked at some point and then stored as data within the system state.
Certain later operations are based upon this data rather than on the contents of the cache or new
responses of the Security Server. An example of this is in the setting of the page protection bits.
We represent this with the functionsmigrated grantings and migrated denials . The expression

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 75

migrated grantings(req) denotes the set of granted permissions that have migrated beyond the
cache for future use with the request req . The expression migrated denials(req) denotes the set
of denied permissions that have migrated beyond the cache for future use with the requestreq.
Unlike the permissions in the cache, migrated permissions apply to only certain requests. In
terms of our example, this reflects the fact that the protection bits are consulted only for requests
for words within the appropriate page. No permission may be in bothmigrated grantings(req)
and migrated denials(req) for any req.

MkMigratedPermissions

migrated grantings :MkRequest "�PermReq
migrated denials : MkRequest "�PermReq

8 req :MkRequest
� migrated grantings(req) \migrated denials(req) = �

Each port in the kernel is labeled with an OSI. The label is denoted by the expression
port osi(port). The kernel labels each memory object (via its pager port) and each memory
region with an OSI. These labels are returned by the functionsmemory osi and region osi ,
respectively. When a region is mapped to a memory object, the region’s label is derived from
the label of the object. The function memory osi region osi denotes this relationship between
object security identifiers. The OSI osi1 equals memory osi region osi(osi2) when osi1 is the
OSI used to label regions that are mapped to memory objects labeled with osi2. The kernel
labels each task with an SSI denoted by task ssi(task) used to control the actions of that task
and with an OSI denoted by task osi(task) used to control actions performed upon that task.
Two tasks have the same SSI if and only if they have the same OSI. The expressionssi osi(ssi)
denotes the OSI of a task with SSI ssi . The mapping osi ssi is the inverse of ssi osi . Both of
these functions are injections. All memory region, memory object, and task OSI’s are also port
OSI’s.

One of the features of Mach is that it allows tasks to perform operations on other tasks that
have not traditionally been provided by operating systems. For example, Mach allows tasks to
access memory regions in other tasks while one of the features of traditional operating systems
is the separation of address spaces. To provide finer control over task accesses, DTOS defines
task self sid to be a value to be used in access computations governing accesses a task makes
to itself. No kernel entities are ever assigned task self sid as their SID. Instead, this SID
indicates to security servers that the kernel requires an access computation to be performed
between a task and the task itself. One potential use of this finer control would be to contain a
faulty task by preventing it from corrupting other tasks having the same SID.

We define task target(task1; task2) to be the OSI of task2’s self port if task1 and task2 are different
and task self sid , otherwise. When task1 attempts to operate on task2, the kernel enforces
accesses on the pair (task ssi(task1); task target(task1; task2)). This allows separate permissions
sets to be applied when a task operates on itself versus operating on another task with the
same SSI.

[PORT ;REGION ;MEMORY ;PAGE]

task self sid : OSI

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

76
CDRL A019

DTOS Microkernel

MkLabels

task ssi : TASK � SSI

task osi : TASK �OSI

task target : TASK � TASK � OSI

port osi : PORT �OSI

region osi : REGION �OSI

memory osi :MEMORY �OSI

ssi osi : SSI �OSI

osi ssi : OSI � SSI

memory osi region osi : OSI �OSI

disjoint hran task osi ; ran region osi ; ranmemory osi ; ftask self sidgi
ran task osi [ran region osi [ranmemory osi � ran port osi

task self sid =2 ran port osi

domssi osi = ran task ssi

task osi = task ssi � ssi osi

dommemory osi region osi = ranmemory osi

ranmemory osi region osi � ran region osi

osi ssi = ssi osi�

8 client ; task : dom task ssi

� (client ; task) 2 dom task target

^ task target(client; task)
= if client = task then task self sid

else task osi(task)

A region may be mapped to a memory.

MkAddressSpace

mapped memory : REGION �MEMORY

The data controlled by the DTOS microkernel includes the Mach state, the cached and migrated
permissions and the security labels.

[MACH STATE DATA]

MkMachState

mach state data :MACH STATE DATA

[OTHER MK DATA]

MkData

MkMachState

MkCache

MkMigratedPermissions

MkLabels

MkAddressSpace

other mk data : OTHER MK DATA

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 77

7.2 DTOS State

In this section we define the DTOS microkernel state. First, we constrain the control policy of
the kernel. These constraints represent only a small portion of the constraints imposed by the
DTOS Formal Security Policy Model [27]. We have focused on those security server requests
that are necessary for the security servers defined in the following sections of this document.

Since mgr policy is defined as a function from a kernel request to a set of Security Server com-
putation requests, and since the parameters of the kernel request are important in determining
this relationship, we define several functions that interpret kernel request parameters return-
ing the appropriate kernel or security objects. The functionFind task returns a task indicated
by an IPC name supplied as a parameter of a request from task client task . The function
Find ssi returns the SSI indicated by a parameter. The functionFind region returns a memory
region indicated by an address supplied as a parameter of a request from taskclient task . The
region is within client task ’s address space. Finally, Find task region returns a memory region
of a task indicated by a name parameter interpreted in the IPC space ofclient task where the
start address and size or the region are also indicated by parameters.

Find task : TASK � KERNEL PARAM � TASK

Find ssi : KERNEL PARAM � SSI

Find region : TASK �KERNEL PARAM �REGION

Find task region : (TASK � KERNEL PARAM � KERNEL PARAM

�KERNEL PARAM)�REGION

The schema MkClientNeedsPermissionAux is used in defining the control policy constraints. It
requires for a kernel request req that mgr policy(req) contain a Security Server request for
permission the perm from the SSI of the client task21 to the OSI the osi .

MkClientNeedsPermissionAux

MgrState[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS]
req :MkRequest
the perm : PERMISSION
the osi : OSI

9 preq : PermReq
j Perm req(preq) 2 mgr policy(req)
� preq :perm = the perm

^ preq :ssi = mgr data :task ssi(req :client task)
^ preq :osi = the osi

We now constrain the policy as follows:

For any task create operation the client must haveCreate task permission to SID of the
target task.
For any task create secure operation the client must have Cross context create per-
mission to the SID of the new task.
For any task change sid operation the client must have Make sid permission to the
new SID.
For any vm read operation the client must haveHave read permission to the SID of the
region being read.

21We note that in DTOS, some requests require permission requests in which thessi is not that of the client.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

78
CDRL A019

DTOS Microkernel

For any vm write operation the client must have Have write permission to the SID of
the region being written.
For any read page operation the client must have Have read permission to the SID of
the indicated region of its address space.
For any write page operation the client must haveHave write permission to the SID of
the indicated region of its address space.
For any execute page operation the client must have Have execute permission to the
SID of the indicated region of its address space.

We note that we have been somewhat careless here regarding the domain restrictions of func-
tions. For any given kernel state, there are requests inMkRequest that are for non-existent
threads or tasks. Furthermore, we have not constrained theclient to be a thread belonging to
task client task . It should ideally be stated that any request that is actually made to the kernel
is by an existing thread operating within an existing task which is theclient task of the request.
However, our intent is that even ill-formed requests will be in the domain ofmgr policy. The
value of mgr policy for such a request should be the set of all SS REQ . Then, when a new
thread is created,mgr policy for requests by that thread can be shrunk to the set of permission
requests appropriate for the SSI assigned to the thread. This shrinking will not disturb the
monotonicity of mgr policy .

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 79

MkPolicy

MgrState[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS]

8 req :MkRequest
� (req :op = Task create id

) (let the osi == mgr data :task target(req:client task ;
Find task (req:client task ; (req:params)(1)))

�MkClientNeedsPermissionAux [Create task=the perm]))
^ (req:op = Task create secure id

) (let the osi == mgr data :ssi osi(Find ssi((req :params)(4)))
�MkClientNeedsPermissionAux [Cross context create=the perm]))

^ (req:op = Task change sid id

) (let the osi == mgr data :ssi osi(Find ssi((req :params)(2)))
�MkClientNeedsPermissionAux [Make sid=the perm]))

^ (req:op = Vm read id

) (let the osi == mgr data :region osi(Find task region(req:client task ;
(req:params)(1); (req:params)(2); (req:params)(3)))

�MkClientNeedsPermissionAux [Have read=the perm]))
^ (req:op = Vm write id

) (let the osi == mgr data :region osi(Find task region(req:client task ;
(req:params)(1); (req:params)(2); (req:params)(4)))

�MkClientNeedsPermissionAux [Have write=the perm]))
^ (req:op = Read page

) (let the osi == mgr data :region osi(Find region(req :client task ;
(req:params)(1)))

�MkClientNeedsPermissionAux [Have read=the perm]))
^ (req:op =Write page

) (let the osi == mgr data :region osi(Find region(req :client task ;
(req:params)(1)))

�MkClientNeedsPermissionAux [Have write=the perm]))
^ (req:op = Execute page

) (let the osi == mgr data :region osi(Find region(req :client task ;
(req:params)(1)))

�MkClientNeedsPermissionAux [Have execute=the perm]))

Editorial Note:
It would be better to add the FSPM concept of services in here and use it in defining MkPolicy . This
would reduce the conceptual dependence of this document upon the FTLS.

We can now define the microkernel state as an instantiation ofMgrState. We define retained and
retained denial in terms of the cache and the migrated permissions. The expressionretained(req)
is taken to be the union of the permissions that have migrated for use withreq together with
the set of all permissions granted by the cache unless the cached permissions are overridden by
a migrated denial for use with req. Similarly, the expression retained denial (req) is taken to be
the union of the denials that have migrated for use withreq together with the set of all denials
by the cache unless the cached denials are overridden by a migrated granting. Note that the
migrated permissions take precedence over those in the cache. In the current version of DTOS,
there are no kernel requests that volunteer permissions.22 For any response response that is
a permission ruling ruling, the expression grants(response) denotes the set of PermReqs whose
22This is not true for the latest releases of DTOS in which the request avc cache control may be used not only

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

80
CDRL A019

DTOS Microkernel

ssi and osi match that of ruling:ss req and whose perm is an element of ruling:access vector .
The expression denies(response) denotes the set of PermReqs whose ssi and osi match that of
ruling:ss req and whose perm is not an element of ruling:access vector .

This model differs from that in the FTLS. In the absence of migrated permissions the micro-
kernel always requests a Security Server computation if the desired permission is marked as
non-cachable (i.e., not in control vector). In this case the valid for component of a CacheEntry

in the FTLS is useless and is omitted. (This component is only an abstract device used in the
FTLS and does not exist in the prototype at all.) The fact that a non-cachable permission may
still be checked once (as part of the processing of the request that caused the query to the Se-
curity Server) is modeled here by the schemasMkNegativeResponse and MkA�rmativeResponse

which perform a permission check based upon theDtosRuling ignoring any cachability issues.

MkState

MgrState[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS]
MkPolicy

(8 req :MkRequest
� Perm req��retained(req)� = mgr data:migrated grantings(req)

[(mgr data :granted by cache nmgr data:migrated denials(req))
^ Perm req��retained denial(req)� = mgr data :migrated denials(req)

[(mgr data :denied by cache nmgr data :migrated grantings(req))
^ voluntarily grants(req) = �)

permission requests = ranPerm req

information requests = ran Info req

noti�cations = ranNotif req

8 response : ranRuling resp

� let ruling == Ruling resp
�(response)

� Perm req��grants(response)�
= fpr : PermReq

j pr :perm 2 ruling :access vector

^ pr :ssi = ruling:ss req:ssi
^ pr :osi = ruling :ss req:osig

^ Perm req��denies(response)�
= fpr : PermReq

j pr :perm =2 ruling :access vector

^ pr :ssi = ruling:ss req:ssi
^ pr :osi = ruling :ss req:osig

^ �rst(interpret response(response)) = Perm req(ruling:ss req)

to flush permissions, but also to volunteer them. Rather than updating this report we will assume the older flush
interface that could only remove permissions from the cache.

The question of volunteered permissions in DTOS has always been open to interpretation. For permission requests
from the kernel the DTOS Security Server returns an access vector by sending a message to a reply port provided
by the kernel in its SSI compute access vector request. The operation identifier in this message is 100 plus the
identifier for SSI compute access vector. Since a permission check is done by the kernel when it receives this
reply message, it has at least some of the properties of a kernel request, and we frequently think of it as a request.
However, unlike other requests,

it has a reply operation identifier (i.e., the third least significant digit is odd),

it is not sent to the kernel port of a Mach entity and

the sending thread (i.e., the Security Server) does not begin processing its own message in kernel mode.

Given these differences it is probably more accurate to think of this message as a response to a request than as
volunteered permissions.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 81

7.3 DTOS Operations

Now, we describe the operations that change the microkernel state. Many of these operations
require only minor modifications from the instantiations of operations in the generic manager
description. In particular we require the following of all DTOS transitions:

the SIDs on ports,23 memory objects and memory regions are stable, and
the host time and time stamp are monotonically non-decreasing.

These requirements are captured in the schemaMkStep .

MkStep

MgrStep[MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]

mgr data
0:host time � mgr data :host time

mgr data
0:time stamp � mgr data:time stamp

8 p : PORT ; r : REGION ; m :MEMORY
� (p 2 dommgr data :port osi \ dommgr data 0:port osi

) mgr data
0:port osi(p) = mgr data :port osi(p))

^ (r 2 dommgr data :region osi \ dommgr data
0:region osi

) mgr data
0:region osi(r) = mgr data:region osi(r))

^ (m 2 dommgr data :memory osi \ dommgr data 0:memory osi

) mgr data 0:memory osi(m) = mgr data:memory osi(m))

Furthermore, the mgr policy is non-increasing unless a task change sid request is being
processed. Schema MkPolicyShrinkStep models an MkStep in which the mgr policy does not
increase.

MkPolicyShrinkStep

MkStep

mgr policy
0 � mgr policy

23This should really not apply to task and thread ports during atask change sid request since the SIDs on these
ports are changed at that time.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

82
CDRL A019

DTOS Microkernel

MkReceiveRequest

b= MgrReceiveRequest [MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^MkPolicyShrinkStep

MkRequestComputation

b= MgrRequestComputation[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS]
^MkPolicyShrinkStep

MkSendNoti�cation

b= MgrSendNoti�cation [MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^MkPolicyShrinkStep

MkReceiveResponse

b= MgrReceiveResponse [MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^MkPolicyShrinkStep

MkDenyRequest

b= MgrDenyRequest [MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^MkPolicyShrinkStep

MkAcceptRequest

b= MgrAcceptRequest [MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^MkPolicyShrinkStep

MkProcessRequest

MgrProcessRequest [MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
MkStep

(req?:op 6= Task change sid id

) mgr policy
0 � mgr policy)

The only significant addition to the model is a description of the changes to the microkernel’s
access vector cache. This cache may change in two ways:

When a response is received from the Security Server the cache is updated to contain the
new information. One or more old cache entries might also be flushed, either to make
room for the new one or because they hold outdated information that is superseded by the
data being added.

The Security Server may issue a kernel request to flush some set of access vectors from
the cache.

We first define a generic MkUpdateCache that will be used to describe the changes to the cache
that occur for both affirmative and negative rulings from the Security Server. A ruling is cached
only if its time stamp is no older than the time stamp on the cache. Note that even if a ruling
is not cached, it is still used for the permission check that generated the security computation
request.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 83

MkUpdateCache

ss response? : ranRuling resp

MkPolicyShrinkStep

(ss response? 2 ranRuling resp

^ mgr data :time stamp � (Ruling resp�(ss response?)):time stamp

^ (9 new entry : CacheEntry ;
cleaned cache : �mgr data:cache ;
ruling : DtosRuling

j ss response? = Ruling resp(ruling)
^ new entry :ssi = ruling:ss req:ssi
^ new entry :osi = ruling:ss req:osi
^ new entry :access vector = ruling :access vector

^ new entry :control vector = ruling:control vector
^ new entry :noti�cation vector = ruling:noti�cation vector

^ new entry :expiration value = ruling:expiration value

� mgr data 0:cache
= cleaned cache

n f entry : CacheEntry
j entry :ssi = ruling :ss req:ssi
^ entry :ssi = ruling:ss req :ssi g

[f new entry g))
_ mgr data 0:cache � mgr data:cache

UsingMkUpdateCache we can specifyMkNegativeResponse andMkA�rmativeResponse as follows:

MkNegativeResponse

b= MgrNegativeResponse[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS]
^MkUpdateCache

MkA�rmativeResponse

b= MgrA�rmativeResponse[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS]
^MkUpdateCache

Editorial Note:
The use of time stamps in flush requests and in the cache does not actually occur in DTOS. The kernel
achieves the same effect through manipulation of low-level details of the cache lookup code and the
code that sends computation requests to the Security Server. These details are at a lower level of
abstraction than the current specification, so we have introduced time stamps as an abstraction of the
actual implementation.

For Security Server requests to flush the cache we specify aMkFlushCache operation as a special
case of MkProcessRequest .24 There are four parameters for this request:

the host control port (to which the request is sent)
the source SID
the object SID
the time stamp indicating when the flush request was sent.

24The operation described here corresponds to an earlier implementation of the flush operation in DTOS. The new
interface is a little more flexible and powerful than described here. In addition to flushing, the new interface also
allows rulings to be volunteered.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

84
CDRL A019

DTOS Microkernel

We use the functions Source sid , Target sid and Find number to interpret the parameters of the
request. The function Source sid maps a parameter to an element of the free typeSOURCE SID

which contains an element for eachSSI plus the special element Wildcard ssid . The function
Target sid maps a parameter to an element of the free type TARGET SID which contains an
element for each OSI plus the special elementWildcard tsid . The function Find number maps
a parameter to a natural number.

SOURCE SID ::= Source�SSI � jWildcard ssid

TARGET SID ::= Target�OSI� jWildcard tsid

Source sid : KERNEL PARAM � SOURCE SID

Target sid : KERNEL PARAM �TARGET SID

Find number : KERNEL PARAM �

MkFlushCache

MkProcessRequest

MkPolicyShrinkStep

let req == active request(req num?);
pars == (active request(req num?)):params

� mgr data
0:time stamp = Find number(pars(3))

^ req:op = Avc ush cache id

^ pars(2) 2 domSource sid

^ pars(3) 2 domTarget sid

^ (9 source set : � SSI ; target set : �OSI
j source set = if Source sid(pars(2)) = Wildcard ssid

then SSI

else f Source�(Source sid(pars(2))) g
^ target set = if Target sid(pars(3)) = Wildcard tsid

then OSI

else fTarget�(Target sid(pars(3))) g
� mgr data

0:cache = mgr data:cache
n f entry : CacheEntry

j entry :ssi 2 source set

_ entry :osi 2 target set g)

DTOS also allows notifications from the kernel to the Security Server if the Security Server is
the receiver of the audit port. The Security Server may request notifications in two ways. It
may set a bit in a notification vector when it sends a ruling. Whenever the corresponding access
vector bit is checked a record containing the source and target SIDs, the access vector and the
permission being checked is placed in a buffer. The contents of this buffer are occasionally
sent to the audit port. The second way to request notifications is to ask that the kernel send
notifications of the failure of any permission check performed against the cache. The same
information is buffered as above. We do not formalize either of these types of notification at
this time since the current framework does not have an explicit transition for performing a
permission check against retained information. Rather, the retention of answers is considered
in determining required and denied requests.

7.4 Component Specification

We can use the above to specify the DTOS kernel as a component.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 85

The guar for the kernel allows any of the transitions described in Section 7.3. This is modeled
by mk guar .

MkGuarStep

b= MkReceiveRequest

_MkRequestComputation

_MkSendNoti�cation

_MkReceiveResponse

_MkNegativeResponse

_MkA�rmativeResponse

_MkDenyRequest

_MkAcceptRequest

_MkProcessRequest

MkGuar

mk guar : �MkGuarStep

mk guar = MkGuarStep

Note that the operationMkFlushCache is a special case ofMkProcessRequest and therefore need
not be explicitly mentioned in the guar.

The kernel assumes that the assumptions of generic managers inMgrRely are satisfied.

MkRely

mk rely : ��MkState

MgrRely[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS]

mk rely = mgr rely

The set of allowed initial states is modeled by mk init. We require only that an initial state
satisfy the constraints imposed byMgrInit.

Editorial Note:
Additional constraints are probably required. For example, we may need to constrain the initial state of
the cache.

MkInit

MgrInit [MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
mk init : �MkState

mk init � mgr init

All information in MkState is visible to the kernel.

MkView

mk view :MkState #MkState

8 st1; st2 :MkState
� (st1; st2) 2 mk view , st1 = st2

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

86
CDRL A019

DTOS Microkernel

MkComponent

b= MkGuar ^MkRely ^MkInit ^MkView

The following results are easy to prove.

Lemma 7.1 mgr policy is monotone non-increasing in the DTOS kernel if notask change sid
request is ever processed.

Proof: MkPolicyShrinkStep requiresmgr policy 0 � mgr policy . This handles all manager transi-
tions except a MkProcessRequest transition with op(req?) = Task change sid id , and by hypoth-
esis, such a transition cannot occur. Also,mk rely = mgr rely which requires �MgrInternals.
MgrInternals includes mgr policy, and this completes the proof. 2

Theorem 7.2 (DTOS Consistency Theorem) Let Sys be a system including the DTOS ker-
nel as its manager and having the property that no SS REQ that has been either granted or
volunteered by the security server is ever subsequently removed frompolicy allows. Assume fur-
ther that the kernel never processes atask change sid request. If the DTOS kernel processes
a request req? in some state s, then for each r 2 mgr policy(req?)\permission requests in s, either

r 2 retained (req?) in the system initial state, or

r 2 policy allows in state s.

Proof: This is a straightforward application of the generic Consistency Theorem. The first
hypothesis of the Consistency Theorem is supported by Lemma 7.1, and the second hypothesis
is included as a hypothesis of the DTOS Consistency Theorem. The third hypothesis is trivially
satisfied since MkState requires that voluntarily grants(req) = � for all req. 2

Corollary 7.3 (DTOS Complete Consistency) Let Sys be a system that satisfies the hy-
potheses of the DTOS Consistency Theorem and in which, for some requestreq?, policy allows in
all reachable states contains all elements from retained(req?) in the initial state. In Sys, if the
manager processes req? in some state s, then for each r 2 mgr policy(req?) \ permission requests

in s, r 2 policy allows in state s.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 87

Section 8
MLS/TE Policy

A MultiLevel Secure (MLS) policy is defined using a lattice of levels [10]. The lattice defines a
partial ordering on levels called a dominance relation. In many cases, a level consists of two
parts: an element of an ordered sequence of sensitivities (i.e. unclassified, confidential, secret,
top secret) and a set of compartments. In this case levela dominates level b if a ’s sensitivity is
at least as high as b’s and b ’s set of compartments is a subset of a ’s. However, a level need not
have this structure. Each subject is assigned a level representing its level of trust and each
object is assigned a level representing the sensitivity of the information that it contains. Each
access is classified as a read and/or a write. The Bell-LaPadula version of MLS [3] allows a
subject to perform a read access only if its level dominates that of the object, and awrite access
only if its level is dominated by that of the object.

Another form of access control policy is type enforcement [5, 22]. Allowed accesses are specified
with a Domain Definition Table (DDT), which is a coarse version of the access control matrix
in which objects that have equal access privileges are clustered into groups calledtypes and
the environments, that may represent a cluster of individuals, are called domains. Because
of the coarseness of specification, type enforcement is frequently used to constrain the flow of
information between groups of objects (the types) rather than to control access to particular
objects. A typical example of its use is for a guard between a group of sensitive objects and
the rest of the system. In this case, the only domain in the DDT that permits reading from
the sensitive object type and writing to objects of other types is the one in which the guard
executes and no other process can execute in this domain. Thus, information may only move
from sensitive objects to the rest of the system by passing through a guard. This movement of
information would be in violation of a strict MLS policy, but it is usually necessary in special
cases to obtain a workable system. Changes to the DDT potentially impact on many objects
and therefore are usually reserved for a very few trusted domains.

The MLS/TE policy is a combination of MLS and Type Enforcement. In MLS/TE, all operations
must obey Type Enforcement. Furthermore, operations by normal subjects must obey MLS. A
specified set of exceptional subjects are allowed to violate MLS. Exceptional subjects require
close analysis to ensure proper functioning (e.g., to ensure that no classified information is
written to an object labeled “Unclassified”). MLS/TE can be thought of as relaxation of MLS,
within the bounds of Type Enforcement, that allows for the existence of subjects such as the
guard discussed above (a form of downgrader) without unnecessarily complicating the task of
analyzing the system. The analysis can focus on the subjects that can violate MLS.

In Section 8.1 we describe the elements of the system state that are relevant to the MLS/TE
security policy, and we state the requirements placed upon these state elements to define the
MLS/TE policy. Section 8.2 defines the correspondence between the concepts of the abstract,
high-level definition of MLS/TE and the entities of the DTOS kernel. Sections 8.3–8.5 describe
a Security Server that enforces the MLS/TE policy, and Section 8.6 composes the MLS/TE
security server with the DTOS kernel and demonstrates that the high-level policy is satisfied.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

88
CDRL A019

MLS/TE Policy

8.1 Formal MLS/TE Definition

As noted in the introduction to this section, in a practical system we typically need exceptions
(e.g., a downgrader) to the standard MLS restrictions on subjects and objects. This is in part a
result of the level at which the MLS policy is typically stated. The major underlying concern
in an MLS system is that no subject should gain access to information for which it does not
possess the proper clearance. This subject/information formulation of MLS is somewhat less
implementation-oriented than the typical statement of the policy in terms of subjects reading
and writing objects. In addition, it recognizes that not all information in a single object
necessarily has the same level. For example, a tuple in a relational database may contain
information at various levels. The database system will be trusted not to divulge classified
information to users who do not have the appropriate clearance. If a tuple containing both
Secret and Unclassified fields is stored in a single object labeled Secret, then, to service queries
from processes labeled Unclassified, the database system must be able read a Secret object
and write to an Unclassified object. This means that it can either read up or write down,
which is a violation of the typical formulation of MLS. However, if the database system is
correctly implemented, no Secret information is being divulged — only the Unclassified fields
are returned to the Unclassified process. Subjects such as this database system will be called
exceptional subjects. To guarantee that the system is secure, the exceptional subjects must be
analyzed to be sure they do not divulge information. Thus, they require much more scrutiny
than the non-exceptional subjects.

While intuitively satisfying, the high-level view of MLS is very difficult to formalize. First,
the concept of information is not easily mapped in any direct way to data in the system. The
number 3 in the computer may denote many different pieces of information (e.g., the number of
missiles at a given base) or no information at all (e.g., a number typed randomly at a keyboard).
It is the information, not the number, to which we want to assign a level. Furthermore, the
information content of some data may depend upon other data (from the computer or from
other sources) that is already held. In fact, the information content of data is intimately
connected to the beliefs of the people possessing the data. If a user obtains the data “Base X
has 3 missiles” and this sentence is true and the user believes that it is true, then the user
has obtained information. If the sentence is false or the user does not believe the truth of
the sentence then no information is obtained. Similarly, a user may choose to believe things
about unclassified data that result in the user believing correct classified information. For
example, an unclassified file might contain the number 3 referring to the number of meals in a
day. A user may choose to believe that this number is actually the number of missiles at Base
X. If Base X really does have 3 missiles then the set of beliefs for the user includes classified
information. Of course, this is really no more than a lucky guess, and it does not constitute a
true disclosure of information.

As another example, assume that a corrupted top secret task reads the top secret file and
then makes a series of downgrader requests to put each of the characters of this sentence
in a separate unclassified file in some predetermined order. A task operating at unclassified
could read these files, reassembling the characters in the correct order. Although none of the
individual files would seem to carry any top secret information, in the context of a user that
knows how to reassemble the data the collection of files does in fact carry top secret information.
In summary, there is clearly no straightforward connection between data and information.

Due to the difficulty of formalizing an information-based definition of the high-level MLS policy,
we will follow tradition and consider only the reading and writing of data.

It is also worth noting here that if we were to use a subject/information formulation of MLS
then MLS/TE can quite naturally be viewed as theconjunction of MLS with Type Enforcement.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 89

An operation is allowed only if no information is divulged and no Type Enforcement rules are
violated. With the more traditional formulation of MLS dealing with subjects reading and
writing objects, MLS/TE essentially reduces to a particular flavor of Type Enforcement policy
— MLS is overridden by Type Enforcement for exceptional domains. In this case, MLS provides
a set of underlying defaults that are ignored when deemed appropriate. When ignored, only
Type Enforcement applies. The same effect could be achieved by a pure Type Enforcement
policy if the level were considered part of the domain and type.

The primary entity types in our model of the MLS/TE policy are subjects, objects and users.
We start by defining given types for these entities.

[MT SUBJECT ;MT OBJECT ;MT USER]

Various labels are attached to subjects and objects. We define the following three types of label:

[MT LEVEL;MT DOMAIN ;MT TYPE]

The expressionsmt levels, mt domains and mt types denote the recognized levels, domains and
types in the system. A partial ordering � is defined on mt levels. We use level1 � level2 to
denote that level1 and level2 are recognized levels and that level1 is at or below level2. For
convenience, we introduce dominated by as a prefix form of the relation �. In other words,
dominated by(level1; level2) holds exactly when level1 � level2. The set mt exc domains contains
those domains that are considered exceptional (i.e., in which a subject may read up or write
down).

MlsTeLabel

mt levels : �MT LEVEL

mt domains : �MT DOMAIN

mt types : �MT TYPE

� :MT LEVEL#MT LEVEL

dominated by :MT LEVEL#MT LEVEL

mt exc domains : �MT DOMAIN

8 level :MT LEVEL j level 2 mt levels

� level � level

8 level1; level2 :MT LEVEL j f level1; level2 g � mt levels

� (level1 � level2 ^ level2 � level1
) level1 = level2)
8 level1; level2; level 3 : MT LEVEL j f level1; level2; level 3g � mt levels

� (level1 � level2 ^ level2 � level 3
) level1 � level 3)
8 level1; level2 :MT LEVEL j level1 � level2
� f level1; level2 g � mt levels

dominated by = (�)
mt exc domains � mt domains

In any given system state, mt objects denotes the set of all objects in the system. Each object
has an associated level and type.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

90
CDRL A019

MLS/TE Policy

MlsTeObject

MlsTeLabel

mt objects : �MT OBJECT

mt object level :MT OBJECT �MT LEVEL

mt object type :MT OBJECT �MT TYPE

dommt object level = mt objects

ranmt object level � mt levels

dommt object type = mt objects

ranmt object type � mt types

The current set of subjects in the system ismt subjects. Each subject has an associated level,
domain and user.

MlsTeSubject

MlsTeLabel

mt subjects : �MT SUBJECT

mt subject level :MT SUBJECT �MT LEVEL

mt subject domain :MT SUBJECT �MT DOMAIN

mt subject user :MT SUBJECT �MT USER

dommt subject level = dommt subject domain

= dommt subject user = mt subjects

ranmt subject level � mt levels

ranmt subject domain � mt domains

The expressions mt auth users denotes the set of authorized users for the system. Associated
with each user are a set of domains and a set of levels that are allowed for that user’s subjects.
These sets are modeled by mt auth domains(user) and mt auth levels(user). An unauthorized
user is not authorized for any domains or levels.

MlsTeUser

MlsTeLabel

mt auth users : �MT USER

mt auth domains :MT USER"�MT DOMAIN

mt auth levels :MT USER "�MT LEVEL

f user : MT USER j mt auth domains(user) 6= � g � mt auth users

f user : MT USER j mt auth levels(user) 6= � g � mt auth users

8 user :MT USER

� mt auth domains(user) � mt domains

^ mt auth levels(user) � mt levels

Subjects perform operations on objects. These operations have typeMT OPERATION . There
are two (not necessarily disjoint) classes of operations, those that alter the system state
and those that observe it. These are represented by the expressionsmt alter operations and
mt observe operations , respectively.

[MT OPERATION]

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 91

MlsTeOperation

mt alter operations;mt observe operations : �MT OPERATION

The MLS portion of the policy restricts the operations a nonexceptional subject may perform
on an object based upon the levels of the subject and object. If slvl and olvl are the respective
levels of the subject and object, then

the subject may perform an alter operation on the object only ifslvl � olvl , and

the subject may perform an observe operation on the object only ifolvl � slvl.

The functionmls defines the operations that nonexceptional subjects at one level are allowed to
perform on objects at another. An operation is an element of the set denoted bymls(slvl ; olvl) only
if it satisfies the restrictions on alter and observe operations described above. The expression
mls exceptions(d ; t ; slvl; olvl) defines the operations a subject in an exceptional domaind at level
slvl is allowed to perform on an object of type t at level olvl . We leave unspecified precisely what
operations with be allowed for exceptional subjects as this will be determined by the needs
of the subject and the degree of trust placed in it. We use mls and mls exceptions to define
mls allows. Finally, every subject must execute at a level that is allowed for the user associated
with it.

MlsRestrictions

MlsTeOperation

MlsTeSubject

MlsTeObject

MlsTeUser

mls : (MT LEVEL�MT LEVEL)"�MT OPERATION

mls exceptions : (MT DOMAIN �MT TYPE �MT LEVEL �MT LEVEL)
"�MT OPERATION

mls allows : (MT SUBJECT �MT OBJECT)
"�MT OPERATION

(8 slvl ; olvl : MT LEVEL

j mls(slvl ; olvl) 6= �
� fslvl ; olvlg � mt levels

^ (8 op : mls(slvl ; olvl)
� ((op 2 mt alter operations) slvl � olvl)
^ (op 2 mt observe operations) olvl � slvl))))

(8 d :MT DOMAIN ; t :MT TYPE ; slvl; olvl :MT LEVEL

j mls exceptions(d ; t ; slvl; olvl) 6= �
� d 2 mt exc domains)

8 subj :MT SUBJECT ; obj :MT OBJECT

� mls allows(subj ; obj) =
mls(mt subject level(subj);mt object level(obj))

[mls exceptions(mt subject domain(subj);mt object type(obj);
mt subject level(subj);mt object level(obj))

^ mt subject level(subj) 2 mt auth levels(mt subject user(subj))

The Type Enforcement part of the policy restricts the operations that a subject may perform
on an object based upon the domain of the subject and the type of the object. The expression

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

92
CDRL A019

MLS/TE Policy

te(d ; t) denotes the set of operations that a subject with domaind is allowed to perform on an
object with type t . The expression te allows(subj ; obj) denotes the operations subj may perform
on obj . Also, every subject must execute in a domain that is allowed for the user associated
with it.

TeRestrictions

MlsTeLabel

MlsTeSubject

MlsTeObject

MlsTeUser

te : (MT DOMAIN �MT TYPE)"�MT OPERATION

te allows : (MT SUBJECT �MT OBJECT)
"�MT OPERATION

8 d :MT DOMAIN ; t : MT TYPE

j te(d ; t) 6= �
� d 2 mt domains ^ t 2 mt types

8 subj :MT SUBJECT ; obj :MT OBJECT

� te allows(subj ; obj)
= te(mt subject domain(subj);mt object type(obj))

^ mt subject domain(subj) 2 mt auth domains(mt subject user (subj))

The MLS/TE system state consists of the above information together with the function
mls te allows which defines the operations allowed under the MLS/TE policy. To be allowed
an operation must be in both te allows(subj ; obj) and mls allows(subj ; obj). Recall that the
definition of mls allows makes it possible for exceptional subjects to read up and write down.

MlsTeSystemState

MlsRestrictions

TeRestrictions

mls te allows : (MT SUBJECT �MT OBJECT)
"�MT OPERATION

8 subj :MT SUBJECT ; obj :MT OBJECT

� mls te allows(subj ; obj)
= te allows(subj ; obj) \mls allows(subj ; obj)

8.2 MLS/TE Objects and the Kernel

The MLS/TE policy is defined in terms of subjects, objects and users. We first relate these
concepts to microkernel entities. MLS/TE objects will be divided into two disjoint classes and
realized in the kernel by two different types of entity: ports and memory regions. These are
not the only objects that would be controlled by an MLS/TE policy in DTOS. However, to avoid
obscuring the main issues in the analysis, we will restrict our attention to them. They are the
primary overt information channels in Mach. The port associated with an object is denoted
by mt obj to port(obj), and the memory region by mt obj to reg(obj). These mappings have
disjoint domains, and they are both injections meaning that no two MLS/TE objects may have
the same associated port or memory region. Subjects are represented by tasks. The task
associated with a subject is denoted by subj task (subj). This mapping is also an injection so

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 93

that no two subjects may have the same associated task. Users will be discussed in the next
section.

MlsTeToDtos

MlsTeSystemState

mt obj to port :MT OBJECT � PORT

mt obj to reg :MT OBJECT �REGION

subj task :MT SUBJECT �TASK

trusted task : �MT SUBJECT

dommt obj to port = mt objects

dommt obj to reg = mt objects

domsubj task = mt subjects

The following assumptions relate to the ability of the DTOS kernel to enforce a given MLS/TE
security policy. For a given high level MLS/TE policy it should be possible to define specific
values for the mappingsOp requests andControlling perm declared below and then demonstrate
the validity of Assumption 8.3.

Assumption 8.1 There exists a mapping Op requests from a (MT OPERATION �
MT SUBJECT � MT OBJECT) triple to a set of MkRequest indicating the MkRequests that
perform the operation from the subject to the object.

Op requests : (MT OPERATION �MT SUBJECT �MT OBJECT)"�MkRequest

Assumption 8.2 In the DTOS kernel each MT OPERATION has an associated permis-
sion by which it is controlled. This permission is indicated by the Controlling perm of the
MT OPERATION . The relation Controlled ops is the inverse of Controlling perm.

Controlling perm :MT OPERATION " PERMISSION

Controlled ops : PERMISSION "�MT OPERATION

8 p : PERMISSION
� Controlled ops(p) = fop :MT OPERATION j Controlling perm(op) = pg

Assumption 8.3 If a MkRequest r performs a givenMT OPERATION m between a subject and
object then in all statesmgr policy(r) includes a permission request forControlling perm(m) for
the appropriate SIDs associated with the subject and object.

8.3 MLS/TE Security Server

In this section we describe a Security Server that enforces the above security policy. Note that
we will only address overt information flows. For an analysis of covert information flows in
DTOS see [25, 26].

8.3.1 Security Database

8.3.1.1 Security Contexts We first define the security contexts. A subject security context is
associated with each subject. A subject context consists of the following:

level — the level at which the subject is executing,

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

94
CDRL A019

MLS/TE Policy

domain — the domain in which the subject is executing.
user — the user in whose behalf the subject is executing.

MlsTeSsc

level :MT LEVEL

domain :MT DOMAIN

user :MT USER

The object security context of an object consists of the following:

level — the object’s level,
type — the object’s type.

MlsTeOsc

level :MT LEVEL

type :MT TYPE

We define mt sscs and mt oscs to be the existing subject and object security contexts.

MlsTeContexts

mt sscs : �MlsTeSsc
mt oscs : �MlsTeOsc

Each subject security identifier is mapped by the functionssi ssc to a subject security context,
and each object identifier is mapped by osi osc to an object context. The function osi ssc maps
an object SID to a subject security context. This is used when a subject is being operated upon.
All three of these functions are injections.

MlsTeSidToContext

MlsTeContexts

MkLabels

ssi ssc : SSI �MlsTeSsc

osi osc : OSI �MlsTeOsc

osi ssc : OSI �MlsTeSsc

ran ssi ssc � mt sscs

ran osi osc � mt oscs

osi ssc = osi ssi � ssi ssc

We make the following assumptions regarding consistency in the labeling of tasks and memory:

Every OSI used to label memory or a port has an associated OSC.

Every SSI used to label a task has an associated SSC.

For every object j mapped to a port, the OSI used to label the port maps to an OSC with
level and type equal to that of j .

For every object j mapped to a memory region, the OSI used to label the region maps to
an OSC with level and type equal to that of j .

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 95

For every subject j , the SSI used to label the task with which j is associated maps to an
SSC with domain and level equal to that of j .

If we had a more complete model of the system including the file server and the ways in which
the DTOS kernel assigns SIDs, these assumptions would be justified in terms of that model.

MtConsistentLabels

MlsTeSidToContext

MlsTeToDtos

ran region osi � domosi osc

ran port osi � domosi osc

ran task ssi � dom ssi ssc

(8 j : dommt obj to port

� (osi osc(port osi (mt obj to port(j)))):level = mt object level(j)
^ (osi osc(port osi(mt obj to port(j)))):type = mt object type(j))

(8 j : dommt obj to reg

� (osi osc(region osi(mt obj to reg(j)))):level = mt object level(j)
^ (osi osc(region osi(mt obj to reg(j)))):type = mt object type(j))

(8 j : dom subj task

� (ssi ssc(task ssi(subj task(j)))):domain = mt subject domain(j)
^ (ssi ssc(task ssi(subj task(j)))):level = mt subject level(j))

Note that we do not assume consistency for mt subject user(j). Rather we will eventually
justify this property based upon our interpretation ofmt subject user together with a pair of
policy requirements. For any subject j we will interpret mt subject user(j) to be

the USER most recently assigned to j by an exceptional subject if such an assignment has
occurred, or

mt subject user(p) where p is the parent subject and is not an exceptional subject.

Of course, the first subject created in the system (e.g., a bootstrap task) must be treated as a
special case. Its user is assumed to be the system itself. This interpretation means that we
trust exceptional subjects to correctly assign the user of any subjects they create. Any other
subject may only create subjects that have the same user.

8.3.1.2 Policy Representation We now define the structures used to store the Security Server
representation of an MLS/TE policy.

The data maintained by the MLS/TE Security Server includes the sets of defined subject
and object security contexts, the mappings from SIDs to contexts, the MLS/TE policy data
(from MlsTeSystemState) and other miscellaneous data, other mt data, from which the generic
Security Server information is extracted.

[OTHER MT DATA]

MlsTeData

MlsTeSidToContext

MlsTeSystemState

other mt data : OTHER MT DATA

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

96
CDRL A019

MLS/TE Policy

8.3.2 Permission Requirements

In this section we state constraints on the permissions that are inpolicy allows. These con-
straints will be used below in defining the MLS/TE Security Server state.

Policy Requirement 8.1 : A permission is granted to ssi for osi only if every
MT OPERATION controlled by the permission is allowed by te from the domain of the context
associated with ssi to the type of the context associated with osi .

EnforceTypes

SsPolicyAllows[MlsTeData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

� let sdom == ((ss data :ssi ssc)(preq :ssi)):domain ;
otype == ((ss data :osi osc)(preq :osi)):type

� Controlled ops(preq :perm) � (ss data:te)(sdom ; otype)

Policy Requirement 8.2 : A permission is granted to ssi for osi only if every
MT OPERATION controlled by the permission is allowed by mls from the level of the con-
text associated with ssi to the level of the context associated withosi or by mls exceptions from
the domain of the context associated with ssi to the type of the context associated with osi for
the levels of the ssi and osi .

EnforceMls

SsPolicyAllows[MlsTeData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

� let the ssc == ((ss data:ssi ssc)(preq :ssi));
the osc == ((ss data:osi osc)(preq :osi))

� Controlled ops(preq :perm)
� (ss data :mls exceptions)(the ssc:domain; the osc:type;

the ssc:level ; the osc:level)
[(ss data :mls)(the ssc:level; the osc:level)

Note that we cannot just define a pair of policy requirements for simple security and the
*-property because we do not know thatmls in the high-level policy definition allowsall accesses
that are permitted by the dominance relation. If it does not, then the high level policy would
not be achieved by the policy requirements.

To ensure monotonicity we prohibit the task change sid request by denying Make sid per-
mission.

Policy Requirement 8.3 : Make sid permission is always denied.

MtMakeSid

SsPolicyAllows[MlsTeData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

� preq :perm 6= Make sid

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 97

Policy Requirement 8.4 : Create task and Cross context create permissions for osi (for a
subject being acted upon) are given to ssi only if both SIDs map to subject contexts with the
same user component or the domain of the context associated with ssi is in mt exc domains .

MtCorrectUser

SsPolicyAllows[MlsTeData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

^ preq :perm 2 fCreate task ;Cross context createg
� ((ss data:ssi ssc)(preq:ssi)):domain 2 (ss data:mt exc domains)

_ ((preq :osi) 2 dom(ss data :osi ssc)
^ ((ss data:ssi ssc)(preq:ssi)):user

= ((ss data :osi ssc)(preq:osi)):user)

Policy Requirement 8.5 : Create task and Cross context create permissions for osi (the SID
to be assigned to the subject) are given only if the domain and level ofosi ssc(osi) are allowed
for the user of osi ssc(osi).

MtDomainLevel

SsPolicyAllows[MlsTeData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

^ preq :perm 2 fCreate task ;Cross context createg
� ((preq :osi) 2 dom(ss data :osi ssc)

^ (let the ssc == ((ss data :osi ssc)(preq :osi))
� the ssc:domain 2 (ss data :mt auth domains)(the ssc:user)
^ the ssc:level 2 (ss data:mt auth levels)(the ssc:user)))

8.3.3 Security Server State

The MLS/TE Security Server combines the general properties of a DTOS Security Server (i.e.,
the typesMkRequest ,D SS REQ , D RESP andD ANS) with the MLS/TE Security Server data
and the above policy requirements.

MlsTeState

SsState [MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]
EnforceTypes

EnforceMls

MtMakeSid

MtCorrectUser

MtDomainLevel

8.4 Operations

The operations of the MLS/TE Security Server are basically those of the generic server. The
only additional constraint is that the policy remain unchanged. This requirement is formalized
by MlsTePolicyInvariant.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

98
CDRL A019

MLS/TE Policy

MlsTePolicyInvariant

SsStep[MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]

policy allows
0 = policy allows

MlsTeSendNegativeResponse

b= SsSendNegativeResponse [MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]
^MlsTePolicyInvariant

MlsTeSendA�rmativeResponse

b= SsSendA�rmativeResponse [MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]
^MlsTePolicyInvariant

MlsTeReceiveRequest

b= SsReceiveRequest [MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]
^MlsTePolicyInvariant

MlsTeMgrRequest

b= SsMgrRequest [MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]
^MlsTePolicyInvariant

MlsTeInternalTransition

b= SsInternalTransition[MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]
^MlsTePolicyInvariant

8.5 Component Specification

We can use the above to specify the MLS/TE security server as a component.

The guar for the MLS/TE security server allows any of the transitions described in Section 8.4.
This is modeled by mt guar .

MtGuarStep

b= MlsTeReceiveRequest

_MlsTeSendNegativeResponse

_MlsTeSendA�rmativeResponse

_MlsTeMgrRequest

_MlsTeInternalTransition

MtGuar

mt guar : �MtGuarStep

mt guar = MtGuarStep

The MLS/TE security server assumes that the assumptions of generic security servers inSsRely
are satisfied.

MtRely

mt rely : ��MlsTeState

SsRely [MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]

mt rely = ss rely

The set of allowed initial states is modeled by mt init . We require that an initial state satisfy
the constraints imposed by SsInit .

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 99

MtInit

SsInit [MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]
mt init : �MlsTeState

mt init � ss init

All information in MlsTeState is visible to the MLS/TE security server.

MtView

mt view :MlsTeState #MlsTeState

8 st1; st2 :MlsTeState
� (st1; st2) 2 mt view , st1 = st2

MtComponent

b= MtGuar ^MtRely ^MtInit ^MtView

The following lemma is a trivial consequence of the invariance ofpolicy allows and the definition
of mt rely.

Lemma 8.4 No SS REQ that has been either granted or volunteered by the security server is
ever subsequently removed frompolicy allows.

8.6 Composing DTOS and MLS/TE

In this section, we first compose the DTOS kernel with the MLS/TE security server. We then
show that this composite system implements the abstract MLS/TE policy.

The composite state isMkMtState which contains all the components ofMkState and MlsTeState.

MkMtState

MkState

MlsTeState

Each kernel state is associated with the set of allMkMtState that have the same value for each
of the components of MkState . Similarly, each MLS/TE security server state is associated with
the set of all MkMtState that have the same value for each of the components ofMlsTeState.

The set of allowed initial states for the composition of two components is the intersection of
the two sets (after mapping them into the composite state). This set of states is modeled
by mk mt init. Since mk mt init is nonempty, the kernel and MLS/TE security server are
composable.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

100
CDRL A019

MLS/TE Policy

MkMtInit

mk mt init : �MkMtState

8 st : mk mt init

� st :pending responses = �
^ st :pending requests = �
^ st :active request = �
^ st :sent = �
^ st :obtained = �
^ st :allowed = �
^ st :responses = �
^ st :active computations = �

In composing the kernel and MLS/TE security server we will use respect relations that require
each component to leave alone its peer’s internal data.

MkMtRespect

mk respect mt : ��MkMtState

mt respect mk : ��MkMtState

mk respect mt = f�MkMtState

j � SsInternals[MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS] g
mt respect mk = f�MkMtState

j �MgrInternals[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS] g

The guar of the composite is denoted by mk mt guar .

MkMtStep

b= (� SsInternals[MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]
^MkGuarStep)

_ (�MgrInternals[MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^MtGuarStep)

MkMtGuar

mk mt guar : �MkMtStep

mk mt guar = MkMtStep

The rely of the composite is the intersection of the two rely relations.

MkMtRely

mk mt rely : �� MkMtState

mk mt rely = f�MkMtState

j �MgrInternals[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS]
^ � SsInternals[MkRequest ;MlsTeData;D SS REQ ;D RESP ;D ANS]
^ � SharedInterpretation[MkRequest ;D SS REQ ;D RESP ;D ANS]
^ pending ss requests v pending ss requests 0

^ pending responses
0 = pending responses g

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 101

To show that the Composition Theorem applies to the composite, we must show that

mk guar \mk respect mt � mt guar [mt rely [mt view ;

and

mt guar \mt respect mk � mk guar [mk rely [mk view :

The proofs of these properties are essentially identical to the corresponding proofs for the
composition of the generic manager and security server.

Theorem 8.5 (DTOS MLS/TE Consistency Theorem) Let Sys be a system including the
MLS/TE Security Server together with the DTOS kernel as the manager. If the DTOS kernel
processes a request req? in some state s, then for each r 2 mgr policy(req?) \ permission requests

in s, either

r 2 retained (req?) in the system initial state, or

r 2 policy allows in state s.

Proof: Follows immediately from Lemma 8.4 and the DTOS Consistency Theorem. Note that
the DTOS kernel will never process a task change sid request since Make sid permission is
denied in all cases. 2

Since policy allows is static the following Corollary holds:

Corollary 8.6 (DTOS MLS/TE Complete Consistency) Let Sys be a system that satisfies
the hypotheses of the DTOS MLS/TE Consistency Theorem and in which, for some request
req?, policy allows in the initial state contains all elements from retained(req?) in the initial
state. In Sys, if the manager processes req? in some state s, then for each r 2 mgr policy(req?) \
permission requests in s, r 2 policy allows in state s.

Note that if we were to completely define retained in the initial state for the DTOS kernel and
policy allows for a given MLS/TE security server then we could demonstrate that for everyreq?
the hypotheses of the DTOS MLS/TE Complete Consistency lemma is satisfied. We could then
deduce a simple consistency property that policy allows in any reachable state s contains all
permissions required for any request executed in states.

Definition 8.7 If the composition of a manager with a security server has the property that in
the initial state, for every request r , retained(r) � policy allows then it is initially consistent.

Theorem 8.8 For an initially consistent system, if the DTOS kernel performsop on obj for subj
then op 2 te allows(subj ; obj).

Proof: By Assumption 8.1 DTOS performs op on obj for subj by performing an MkRequest r .
Given a specific value for the mappingOp requests, we could perform an analysis of cases at this
point, demonstrating that each of the possible requests for each operation has a permission
requirement that ensures compliance with the high-level policy. Lacking such a definition
we instead refer to Assumption 8.3 to conclude thatmgr policy(r) contains a PermReq p with
perm = Controlling perm(op), and with ssi and osi taken to be the SIDs of the kernel entities
associated with the subject and object. Since the system is assumed to be initially consistent
the DTOS MLS/TE Complete Consistency theorem implies thatp 2 policy allows.

Here we must perform a case analysis on the possible types of SID that can occur in any
p 2 mgr policy(r). Since mgr policy for DTOS is only partially specified we will merely provide
an example here.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

102
CDRL A019

MLS/TE Policy

Consider the case where the SSI is task ssi(subj task (subj)) and the OSI is
region osi(mt obj to reg(obj)). PR8.1 implies that

Controlled ops(Controlling perm(op))
� te(ssi ssc(task ssi(subj task (subj)));

osi osc(region osi(mt obj to reg(obj))))

Applying MtConsistentLabels and the definition of te allows we find that

Controlled ops(Controlling perm(op))
� te(mt subject domain(subj);mt object type(obj))
= te allows(subj ; obj)

To conclude the proof we note that op 2 Controlled ops(Controlling perm(op)). 2

Theorem 8.9 For an initially consistent system, if the DTOS kernel performsop on obj for subj
then op 2 mls allows(subj ; obj).

Proof: The proof is analogous to that for Theorem 8.8. 2

Definition 8.10 If in a state s, for every subject j

(ssi ssc(task ssi(subj task (j)))):user = mt subject user(j)

we will say s is user consistent.

Lemma 8.11 If the DTOS MLS/TE system is initially consistent and is user consistent in the
initial state, then it is user consistent in every state.

Proof: Recall that we interpret mt subject user of a subject to be the user assigned to it by
an exceptional subject if this has happened and otherwise the user associated with the parent
subject. This theorem is proved by induction. The base case is true by hypothesis. To prove
the inductive step we show that

1. The only way for a security context to be associated with a subject is through creation of
the subject (i.e., task creation),

2. Whenever a new context is associated with a subject the new context does not introduce
a violation of user consistency.

We assume that for any existing subject the task associated with that subject bysubj task does
not change. Furthermore we will assume that the context that ssi ssc associates with any
SSI assigned to an existing task does not change. Since the security context associated with a
subject j is defined by ssi ssc(task ssi(subj task (j))), the only way to associate a context with
a subject is by creating a new subject, with its associated task, (i.e., extending subj task) or
by modifying task ssi . The former occurs only during task creation, and the latter occurs only
during task creation and the task change sid operation. The task change sid operation
never occurs sinceMake sid permission is always prohibited and always required bymgr policy.
This demonstrates part (1).

For part (2), if a context is assigned to a subject in a request by an exceptional subject, then
by definition, user consistency holds for that subject in the resulting state. So we need only
consider the case of a task creation request r by a nonexceptional subject n to create a task t .
In this case mt subject user

0((subj task
0)�(t)) = mt subject user (n). A task creation operation

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 103

will require eitherCreate task or Cross context create permission from the SID of n to the SID
to be assigned to t . The DTOS MLS/TE Complete Consistency theorem implies that these
permissions are in policy allows. PR8.4 then implies that

ssi ssc(task ssi(subj task(n))):user = osi ssc 0(new sid):user

= ssi ssc 0(task ssi
0(t)):user :

Since by the inductive hypothesis the system is user consistent in the state in whichr is
processed, the left hand side is mt subject user(n), and this concludes the proof. 2

Theorem 8.12 Assume the DTOS MLS/TE system is initially consistent, user consistent in the
initial state and that for every subject j in the initial state the following properties hold:

mt subject domain(j) 2 mt auth domains(mt subject user(j))
mt subject level(j) 2 mt auth levels(mt subject user (j))

Then, the above properties hold for all j in every reachable state.

Proof: We will prove only the first property. The proof of the second is nearly identical.
Applying MtConsistentLabels and Theorem 8.11 the first property becomes

ssi ssc(task ssi(subj task (j))):domain
2 mt auth domains(ssi ssc(task ssi(subj task (j))):user)

That is, we must show that in all states and for every subjectj , in the context assigned to j the
domain is an authorized domain for the user.

Following the reasoning used in the proof of Theorem 8.11, a context can be assigned to j
only during the creation of j . The permission required for the relevant request must be in
policy allows. The client of the request that assigns an SSI s to j must hold at least one of the
permissions Create task and Cross context create to ssi osi(s). PR8.5 implies that

osi ssc(ssi osi(s)):domain 2 mt auth domains(osi ssc(ssi osi(s)):user):

Using MlsTeSidToContext this is equivalent to

ssi ssc(s):domain 2 mt auth domains (ssi ssc(s):user):

Since in the resulting state s = task ssi(subj task (j)), we are done.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

104
CDRL A019

Clark-Wilson Policy

Section 9
Clark-Wilson Policy

The Clark-Wilson security policy is an integrity policy. As such it is concerned with the cor-
rectness of data and the prevention of fraud rather than the prevention of disclosure. The data
items that are to be protected are called constrained data items (CDIs). The correctness of a
CDI is protected in two ways. The first is through integrity verification procedures (IVPs). An
IVP is intended to verify the integrity of a CDI in one or more of the following senses:

the internal consistency of a particular CDI,

the consistency of CDIs with each other, and

the consistency of CDIs with the external world.

The second way in which CDI correctness is protected is by allowing CDIs to be modified only
by certain programs, called transformation procedures (TPs), that have been certified to take
the set of CDIs from one valid state to another. Validity is defined in some application-specific
way.

Prevention of fraud is furthered by providing mechanisms for the separation of duty. Only
certain users are allowed to modify a given CDI and then only by using a particular TP. Thus,
we can prevent the person who can run the check-writing program from also running the
equipment purchasing program. In this way no single person can produce a purchase order,
discard it, and then write a check to pay for an item which is never ordered. Fraud then
requires at least two people conspiring together.

In Section 9.1 we describe the elements of the system state that are relevant to the Clark-
Wilson security policy, and we state the requirements placed upon these state elements to
define the Clark-Wilson policy. Section 9.2 defines the correspondence between the concepts of
the abstract, high-level definition of Clark-Wilson and the entities of the DTOS kernel. Sec-
tions 9.3–9.5 describe a Security Server that enforces the Clark-Wilson policy, and Section 9.6
composes the Clark-Wilson security server with the DTOS kernel and demonstrates that the
high-level policy is satisfied.

9.1 Formal Clark-Wilson Definition

We first describe the entities relevant to defining the Clark-Wilson policy that are visible to a
person using a Clark-Wilson system. They are operating system entities, not Security Server
entities. We start with the following given types.

[DATA ITEM ; INDIVIDUAL;PROCEDURE ;CW PROCESS]

DATA ITEM is the type of all data items, both constrained and unconstrained. The types
INDIVIDUAL, PROCEDURE and CW PROCESS contain all individuals, procedures and pro-
cesses, respectively. A procedure corresponds to an executable file and each process executes
some procedure. The Clark-Wilson policy uses the term user rather than individual ; since in
other DTOS documents the term user refers to a component of a security context, we will sub-
stitute the term individual when defining Clark-Wilson (except when quoting the certification

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 105

and enforcement rules of the policy). The term user will be used in Section 9.3 in defining the
structure of security contexts.

The set of all data items in the system isdata items. The set constrained data items is the subset
of data items consisting of the constrained data items (CDIs). The setunconstrained data items

is the subset of data items consisting of the unconstrained data items (UDIs). There is a log,
indicated by log, which is a CDI that holds information on transformations that have been
applied to constrained data items.

DataItem

data items : �DATA ITEM

constrained data items : �DATA ITEM

unconstrained data items : �DATA ITEM

log : DATA ITEM

constrained data items � data items

unconstrained data items = data items n constrained data items

log 2 constrained data items

Transformation procedures (TPs) are used to transform one valid25 system state to an-
other. The set procedures contains all of the defined procedures for the system, and
transformation procedures is the subset of procedures consisting only of the certified transfor-
mation procedures. Each transformation procedure must be certified by a security officer to
manipulate one or more sets of CDIs. This is modeled by the relation may manipulate. Note
that a single TP might be certified for several different sets of CDIs. Thus, themay manipulate

relation might not be a function. To find all sets of CDIs that may be manipulated by a TPtp,
we will take the relational image may manipulate�ftpg�. A TP may also read and write UDIs.
Since the integrity of UDIs is not an explicit goal of a Clark-Wilson system, manipulation of
them is not controlled by the system. Also, since we are concerned with integrity and not
disclosure we focus on manipulation (i.e., modification of CDIs) and ignore the reading of CDIs.
This pushes onto the certification process the burden of ensuring that a TP is run only with
appropriate input information. This is unavoidable since new information can enter the system
only through UDIs, and they have no integrity. A TP might also be executed without using
any CDIs. For example, it might be possible to set program switches for the TP so that it only
parses its UDI input files to check for correct syntax, and no files are modified.

Review Note:
It is unclear whether Clark and Wilson intended the range of may manipulate to be
� constrained data items or seq constrained data items . They refer to it using both the terms “set”
and “list”. The latter emphasizes that each CDI must fill a particular role in the TP computation while
the former says nothing about this. The latter would be a stronger statement of the Clark-Wilson policy.
Either definition can be supported in DTOS. We have chosen � constrained data items in this report.
Similar comments apply to may execute below.

25The definition of a valid state depends upon the use of the system. A necessary condition would be that all the
IVPs are satisfied.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

106
CDRL A019

Clark-Wilson Policy

TransformationProcedure

DataItem

procedures : �PROCEDURE
transformation procedures : �PROCEDURE
may manipulate : PROCEDURE #�DATA ITEM

transformation procedures � procedures

dommay manipulate � transformation procedures

ranmay manipulate � � constrained data items

Integrity verification procedures (IVPs) are used to confirm that all of the CDIs in the system
conform to the integrity specification at the time at which the IVPs are executed. These
procedures must also be certified by the security officer. We leave open the possibility that an
IVP is also a TP.

IntegrityVer�cationProcedure

TransformationProcedure

certi�ed IVPs : �PROCEDURE

certi�ed IVPs � procedures

The set individuals contains all existing individuals in the system, and
authenticated individuals is the set of all individuals who are authenticated for the system.
(We allow the possibility of unauthenticated individuals, e.g., anonymous ftp individuals.) In
the Clark-Wilson policy it is paramount that the person responsible for the execution of a TP
can be identified. Thus, we will assume that stringent authentication mechanisms are applied
to any person who wishes to execute a TP.

Each individual may execute only certain TPs manipulating only certain CDIs. This certifi-
cation information is recorded by the functionmay execute . The security officer is called the
certi�er and is one of the authenticated individuals.

Individual

DataItem

TransformationProcedure

individuals : � INDIVIDUAL
authenticated individuals : � INDIVIDUAL
may execute : INDIVIDUAL" (PROCEDURE #�DATA ITEM)
certi�er : INDIVIDUAL

authenticated individuals � individuals

ranmay execute � �(transformation procedures � � constrained data items)
certi�er 2 authenticated individuals

8 i : INDIVIDUAL
� may execute(i) = � _ i 2 authenticated individuals

As with may manipulate the relation may execute(u) for any individual u in the domain
of may execute might not be a function, and we will take the relational image (e.g.,
(may execute(u))�ftpg�) to find all sets of CDIs that may be manipulated by tp executing on
behalf of u.

The set processes contains all processes executing on the system. The functionprocess individual

maps each executing process to the individual on whose behalf the process is executing, and

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 107

process procedure maps an executing process to the procedure that it is executing. The function
process manipulates indicates the constrained data items which are being (or have been) ma-
nipulated by each process. We assume that if a process has manipulated any CDIs then it is
executing a procedure.

Process

DataItem

Individual

TransformationProcedure

processes : �CW PROCESS

process individual : CW PROCESS � INDIVIDUAL

process procedure : CW PROCESS � PROCEDURE

process manipulates : CW PROCESS ��DATA ITEM

domprocess individual = domprocess manipulates = processes

domprocess procedure � processes

ran process manipulates � � constrained data items

ran process individual � individuals

ran process procedure � procedures

8 p : CW PROCESS

� process manipulates(p) = � _ p 2 domprocess procedure

The part of the system state relevant to the Clark-Wilson policy consists of all the above
information.

State

DataItem

TransformationProcedure

IntegrityVer�cationProcedure

Individual

Process

Next, we describe the restrictions placed by Clark-Wilson on the system states as described
above. These restrictions deal with the relationships between CDIs, individuals, TPs and
processes. It is essential to keep in mind that these are operating system entities, not Security
Server entities. We are describing the constraints on the entities visible at the level of a person
using the system. This defines the goal we wish to achieve when defining the Security Server
in Section 9.3.

The Clark-Wilson policy has two parts, certification and enforcement. Certification controls
the contents of the setscerti�ed IVPs , constrained data items,may manipulate andmay execute.
Although the results of certification are registered in these sets, the certification itself is outside
the system. The system handles enforcement only, so that is where we will focus our attention.
A change to the certifications (and to the corresponding certification sets and relations) consti-
tutes a change in the security policy. We ignore the way in which the certifications are entered
into the system and treat the certifications (and hence the security policy) as static. For clarity
we will include English statements of the certification parts of the policy, but they will not be
formalized.

The certification and enforcement rules given in this section are taken from [8].

Certification 1 (C1) All IVPs must properly ensure that all CDIs are in a valid state at the
time the IVP is run.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

108
CDRL A019

Clark-Wilson Policy

Certification 2 (C2) All TPs must be certified to be valid. That is, they must take a CDI to
a valid final state, given that it is in a valid state to begin with. For each TP, and each set of
CDIs that it may manipulate, the security officer must specify a “relation,” which defines that
execution. A relation is thus of the form: (TPi, (CDIa, CDIb, CDIc, …)), where the list of CDIs
defines a particular set of arguments for which the TP has been certified.

Enforcement 1 (E1) The system must maintain the list of relations specified in rule C2, and
must ensure that the only manipulation of any CDI is by a TP, where the TP is operating on the
CDI as specified in some relation.

Any process will either manipulate no CDIs, or it will manipulate a subset of some set of CDIs
for which its executing TP has been certified.

E1TransProcMayManipulate
State

8 p : processes j process manipulates(p) 6= �
� (9 S : may manipulate�fprocess procedure(p)g�

� process manipulates(p) � S)

Enforcement 2 (E2) The system must maintain a list of relations of the form: (UserID, TPi,
(CDIa, CDIb, CDIc, …)), which relates a user, a TP, and the data objects that TP may reference
on behalf of that user. It must ensure that only executions described in one of the relations are
performed.

Any process will either manipulate no CDIs, or it will manipulate a subset of some set of CDIs
that its individual has been certified to manipulate via the executing TP.

E2IndividualMayExecute
State

8 p : processes j process manipulates(p) 6= �
� (9 S : (may execute(process individual(p)))�fprocess procedure(p)g�

� process manipulates(p) � S)

As Clark and Wilson have noted, E1 is subsumed by E2. They maintain that “for philosophical
and practical reasons, it is helpful to have both sorts of relations.” E1 focuses on internal
consistency — ensuring that CDIs are in a consistent state within and among themselves.E2
focuses on separation of duty in an effort to prevent fraud and maintain external consistency
with the real world. (Compare C2 and C3.) They claim that, as a matter of practicality, it is
also advantageous to keep both lists since it allows the use of wild card characters that match
classes of TPs or CDIs when defining complex policies. We have maintained bothE1 and E2
for consistency with Clark and Wilson.

Certification 3 (C3) The list of relations in E2 must be certified to meet the separation of duty
requirement.

Enforcement 3 (E3) The system must authenticate the identity of each user attempting to
execute a TP.

This enforcement rule depends upon authentication mechanisms, and it is largely beyond the
scope of this report. If one person is able to log onto the system in someone else’s name, that
constitutes a severe violation of Clark-Wilson. However, there is nothing that the Security
Server itself can do to prevent this. The enforcement of the Clark-Wilson policy will be only as
good as the authentication of its users.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 109

We will merely require that any individual who wishes to execute a TP must be an authenti-
cated individual (as opposed to some sort of anonymous or guest individual). We rely on good
authentication mechanisms combined with strong institutional policies for confidentiality of
authentication information (e.g., passwords or personal identification numbers) to ensure that
the person logged on to an account is really the intended person.

E3AuthenticatedExecutor
State

8 p : processes
j p 2 domprocess procedure ^ process procedure(p) 2 transformation procedures

� process individual (p) 2 authenticated individuals

Certification 4 (C4) All TPs must be certified to write to an append-only CDI (the log) all
information necessary to permit the nature of the operation to be reconstructed.

Certification 5 (C5) Any TP that takes a UDI as an input value must be certified to perform
only valid transformations, or else no transformations, for any possible value of the UDI. The
transformations should take the input from a UDI to a CDI, or the UDI is rejected. Typically,
this is an edit program.

Enforcement 4 (E4) Only the agent permitted to certify entities may change the list of such
entities associated with other entities: specifically, the associated with a TP [sic]. An agent that
can certify an entity may not have any execute rights with respect to that entity.

The first sentence is ignored here since it describes the way in which the certification of pro-
grams is described to the system (i.e., as certification lists) and therefore deals with certification.
We formalize the second sentence by stating that the individual associated with any process
that is executing a TP must not be the certifier.

Editorial Note:
Note that this formalization might be somewhat too strong in that it prevents the certifier from running
any TPs. As a result, in order to modify the certifications of objects (i.e., change the security policy)
the certifier must have available some secure mechanism other than TP execution. For example, if the
Security Server executes on a different processor the certifier could directly interact with the Security
Server, bypassing the Clark-Wilson system entirely. Of course, the certifier can still execute non-TPs
(e.g., programs under development and programs submitted for certification as TPs).

A more practical Clark-Wilson design would probably treat many more objects including source and
object code representations of TPs and IVPs and the certification data itself as CDIs. A TP would be
used to modify the certification data. Since E4 states that no agent may certify a program to which she
has execute rights, the certifier may not certify the certification TP — some other agent must certify it.
To do this the second agent must use a certification TP on a different piece of certification data. This
certification TP must be a different one from the first since otherwise, Agent 2 could execute an item that
she certified. Fortunately, we can stop here since Agent 1 can certify the second certification TP using
the first one. We have chosen to avoid this complexity entirely in this report.

E4MustNotBeCerti�er
State

8 p : processes
j p 2 domprocess procedure ^ process procedure(p) 2 transformation procedures

� process individual (p) 6= certi�er

A Clark-Wilson state is one that obeys the above constraints.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

110
CDRL A019

Clark-Wilson Policy

ClarkWilson

State

E1TransProcMayManipulate
E2IndividualMayExecute
E3AuthenticatedExecutor
E4MustNotBeCerti�er

9.2 Clark-Wilson Objects and the Kernel

The Clark-Wilson policy is defined in terms of data items, procedures, processes and individuals.
Since these concepts do not exist at the microkernel level, we map them to microkernel entities.
This mapping also implicitly associates SIDs with Clark-Wilson entities.

Data items and procedures will be represented by memory objects. The associated memories
can be obtained via the mappings di memory and proc memory . These mappings are injec-
tions, meaning that no two data items or procedures may have the same associated memory.
Furthermore, no data item and procedure may be associated with the same memory. This
assumption is made for simplicity. In reality we would want the TP executables to be CDIs
as well. We assume that any region that is mapped to the memory object of a data item or
procedure was mapped via the request vm map and therefore bears a SID derived from the
SID of the memory object. Processes are represented by tasks. The task associated with a
process is denoted by process task(process).

CwToDtos

State

MkAddressSpace

MkLabels

di memory : DATA ITEM �MEMORY

proc memory : PROCEDURE �MEMORY

process task : CW PROCESS � TASK

domdi memory = data items

domproc memory = procedures

domprocess task = processes

ran di memory � dommemory osi

ran proc memory � dommemory osi

ran process task � dom task osi

disjoint hran di memory ; ranproc memoryi
8 region : REGION
j mapped memory(region) 2 ran di memory [ran proc memory

� region osi(region)
= memory osi region osi(memory osi(mapped memory(region)))

We will assume that a TP is executed through requests to the operating system to create
a process and load and execute the executable code for the TP. Furthermore, CDI access
is controlled through requests to the memory manager which communicates with the DTOS
microkernel. The actions of the microkernel will generate requests to the Security Server.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 111

9.3 Clark-Wilson Security Server

In this section we describe a Security Server that enforces the above security policy.

9.3.1 Security Database

9.3.1.1 Security Contexts We first define the security contexts. The set of object security con-
texts isCW OSC . An object security context may have associated with it either aPROCEDURE
or a DATA ITEM . These are obtained by the functions osc proc and osc di . Note that these
mappings are invertible.

[CW OSC]

osc proc : CW OSC � PROCEDURE

osc di : CW OSC �DATA ITEM

disjoint hdomosc proc; domosc dii

Subject security contexts are associated with both processes and individuals (e.g., login pro-
cesses). A subject security context contains the following three components: the ind , the
procedure and the index . The ind provides a record of the individual on whose behalf the sub-
ject is executing. In the following we will constrain the creation of subjects so that when an
individual or process creates a new process, the ind of the newly created process is identical
to that of the creating individual or process. (Note that this does not apply to the creation of
a new individual by a privileged process.) The procedure indicates the procedure executed by
the subject. For an individual, the procedure component of the security context might be, for
example, the procedure used for a login shell. The index is included to allow a single ind to run
several processes executing the same procedure at the same time, each with a distinct subject
context.

CwSsc

ind : INDIVIDUAL
procedure : PROCEDURE
index :

The set Cw privileged contexts denotes a set of privileged subject contexts. These contexts may
have permission to create a process in a context with a different ind . It is assumed that this
context will be reserved for tasks such as the login task that must start individual processes in
their correct context.

Cw privileged contexts : �CwSsc

We define cw sscs and cw oscs to be the existing subject and object security contexts.

CwContexts

cw sscs : �CwSsc
cw oscs : �CW OSC

Each subject security identifier is mapped by the functionssi ssc to a subject security context,
and each object identifier is mapped by osi osc to an object context. The function osi ssc maps
an object SID to a subject security context. This is used when a subject is being operated upon.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

112
CDRL A019

Clark-Wilson Policy

CwSidToContext

CwContexts

ssi ssc : SSI � CwSsc

osi osc : OSI � CW OSC

osi ssc : OSI �CwSsc

ran ssi ssc � cw sscs

ran osi osc � cw oscs

ran osi ssc � cw sscs

We make the following assumptions regarding the labeling of memory and tasks:

Every OSI used to label memory has an associated OSC.

Every SSI used to label a task has an associated SSC.

For every d 2 data items, the OSI used to label the memory associated with d maps to an
OSC associated with d by the security server.

For every p 2 procedures, the OSI used to label the memory associated with p maps to an
OSC associated with p by the security server.

If we had a more complete model of the system including the file server, the ways in which
individuals may log on to the system and the ways in which the DTOS kernel assigned SIDs,
these assumptions would be justified in terms of that model.

CwConsistentLabels

CwSidToContext

CwToDtos

ranmemory osi � domosi osc

ran task ssi � dom ssi ssc

8 d : data items; p : procedures
� (osi osc(memory osi(di memory(d))); d) 2 osc di

^ (osi osc(memory osi(proc memory(p))); p) 2 osc proc

Paralleling the MLS/TE section, we do not assume consistency forprocess individual(p). Rather
we will eventually justify this property based upon our interpretation of process individual

together with the policy requirements. For any processp we will interpret process individual (p)
to be

the INDIVIDUALmost recently assigned top by a privileged process if such an assignment
has occurred, or

process individual(p) where p is the parent process and is not privileged.

Of course, the first process created in the system (e.g., a bootstrap task) must be treated as a
special case. Its individual is assumed to be the system itself. This interpretation means that
we trust privileged processes to correctly assign the individual of any processes they create.
Any other process may only create processes that have the same individual.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 113

9.3.1.2 Policy Representation Policy decisions in the Clark-Wilson security server are sen-
sitive to the history of permissions that have already been granted, so the Security Server
must maintain a history. For example, assume a transformation procedureTP1 is certified to
manipulate the following sets of CDIs:

ffCDI1;CDI3g; fCDI2;CDI3g; fCDI2;CDI4gg

Initially, TP1 could obtain Have write permission to any of CDI1; : : : ;CDI4. However, if TP1

is granted Have write permission to CDI2, then the policy should no longer grant Have write

permission to CDI1 since there is no set above that contains bothCDI1 and CDI2.

We introduce the schema CwHistory to represent the history information maintained by the
Security Server. The expression have writes so far(ssc) denotes the set of all data items to
which the tasks in subject contextssc have been givenHave write permission. For convenience,
we define the relation have writes so far rel so that (ssc; di) 2 have writes so far rel exactly
when di 2 have writes so far(ssc).

CwHistory

CwContexts

have writes so far : CwSsc "�DATA ITEM

have writes so far rel : CwSsc #DATA ITEM

domhave writes so far rel � cw sscs

8 ssc : CwSsc
� have writes so far rel�fsscg� = have writes so far(ssc)

Finally, the data maintained by the Clark-Wilson Security Server includes the sets of defined
subject and object security contexts, the mappings from SIDs to contexts, the Clark-Wilson
policy data in DataItem , TransformationProcedure and Individual , the history data and other
miscellaneous data, other cw data, from which the generic Security Server information is
extracted.

[OTHER CW DATA]

CwData

CwSidToContext

CwHistory

DataItem

TransformationProcedure

Individual

other cw data : OTHER CW DATA

9.3.2 Permission Requirements

In this section we state constraints on the permissions that are inpolicy allows. These con-
straints will be used below in defining the Clark-Wilson Security Server state. We must
constrain the policy so that it enforces the rulesE1–E4 of the Clark-Wilson policy.

9.3.2.1 Valid SIDs Requirement The following policy requirement is used only to guarantee
well-definedness of several of the following requirements.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

114
CDRL A019

Clark-Wilson Policy

Policy Requirement 9.1 : No permissions are given if the SSI is not in domssi ssc or if the
OSI is not in domosi osc.

ValidSids

SsPolicyAllows[CwData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

� (preq :ssi) 2 dom(ss data:ssi ssc)
^ (preq :osi) 2 dom(ss data:osi osc)

9.3.2.2 SID Assignment Permission Requirements

Policy Requirement 9.2 : Make sid permission is prohibited.

CwMakeSid

SsPolicyAllows[CwData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

� preq :perm 6= Make sid

Policy Requirement 9.3 : Cross context create permission to an OSI (for a subject being
acted upon) is given to an SSI only if both SIDs map to subject contexts with the sameind field
or the SSI identifies a privileged context.

CorrectUser

SsPolicyAllows[CwData;D SS REQ ;D ANS]
ValidSids

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

^ preq :perm = Cross context create

� (ss data :ssi ssc)(preq:ssi) 2 Cw privileged contexts

_ ((preq :osi) 2 dom(ss data :osi ssc)
^ ((ss data:ssi ssc)(preq:ssi)):ind

= ((ss data :osi ssc)(preq:osi)):ind)

Clark-Wilson is implemented most naturally with an assumption that each task has a unique
context. However, this is not strictly necessary. The security server defined here controls the
actions of tasks based upon their context. If two tasks share the same context, this constrains
them more than if their contexts are distinct. In effect the two tasks would be considered a
single process to be controlled by Clark-Wilson.

The following two optional requirements can be used to ensure a one-to-one mapping between
tasks and contexts. They would most likely be paired with the provision of an information
request to ask for unused SIDs. These constraints are not essential in the subsequent proofs.
(We do use PR9.4 in one proof, but we could instead complete that proof by arguing that the
Task create id operation can only create a task with the same context as the parent task.)

Editorial Note:

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 115

These two requirements are stronger than strictly needed for one-to-oneness in Clark-Wilson. They
could be relaxed to apply only to creation of tasks for TP execution. We state them in this way as a
simplification.

Policy Requirement 9.4 : Create task permission is prohibited.

NoCreateTask

SsPolicyAllows[CwData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

� preq :perm 6= Create task

Policy Requirement 9.5 : Cross context create permission to an OSI (for a subject being
acted upon) is given only if theOSI maps to an unused subject context.

NewSid

SsPolicyAllows[CwData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

^ preq :perm = Cross context create

� (preq :osi) 2 dom(ss data :osi ssc)
^ (ss data :osi ssc)(preq :osi) =2 (ss data :cw sscs)

9.3.2.3 Have execute Permission Requirements

Policy Requirement 9.6 : Have execute permission to anOSI , osi , is granted to ssi only if ssi
maps to a context that has the object context ofosi as its procedure component.

CorrectProcedure

SsPolicyAllows[CwData;D SS REQ ;D ANS]
ValidSids

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

^ preq :perm = Have execute

� ((ss data:osi osc)(preq :osi)) 2 domosc proc

^ osc proc((ss data :osi osc)(preq:osi))
= ((ss data :ssi ssc)(preq :ssi)):procedure

Policy Requirement 9.7 : Have execute permission to a TP’s OSI is granted to ssi only if ssi
maps to a context with a ind field that is not the certifier.

NoExecutionByCerti�er

SsPolicyAllows[CwData;D SS REQ ;D ANS]
ValidSids

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

^ preq :perm = Have execute

^ osc proc((ss data :osi osc)(preq:osi)) 2 ss data :transformation procedures

� ((ss data:ssi ssc)(preq:ssi)):ind 6= (ss data :certi�er)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

116
CDRL A019

Clark-Wilson Policy

Policy Requirement 9.8 : Have execute permission to a TP’s OSI is granted to ssi only if ssi
maps to a context with a ind field that is in the set authenticated individuals .

UnauthenticatedIndividual

SsPolicyAllows[CwData;D SS REQ ;D ANS]
ValidSids

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

^ preq :perm = Have execute

^ osc proc((ss data :osi osc)(preq:osi)) 2 ss data :transformation procedures

� ((ss data:ssi ssc)(preq:ssi)):ind 2 (ss data :authenticated individuals)

Multiple threads within a task are allowed here. However, they would all be required to execute
procedures with the same TP SID, and they would all have the same history. Thus, ifthread1 is
granted Have write permission to a CDIC , so is its sister thread thread2, and this might affect
the CDIs to which thread2 is granted Have write permission.

9.3.2.4 Have write Permission Requirements

Policy Requirement 9.9 : Have write permission for a CDI’sOSI , osi , is granted to ssi only if
the data item to which osi maps, together with the set of data items associated with all previous
CDI Have write permissions for ssi , would be consistent with one of the sets inmay manipulate

for the procedure component of the context to which ssi is mapped.

ManipulationAllowed

SsPolicyAllows[CwData;D SS REQ ;D ANS]
ValidSids

8 ss req : policy allows; preq : PermReq;
the ssc : CwSsc; the di : DATA ITEM

j Perm req(preq) = ss req

^ preq :perm = Have write

^ the ssc = (ss data :ssi ssc)(preq :ssi)
^ the di = osc di((ss data:osi osc)(preq :osi))
^ the di 2 ss data :constrained data items

� (9 S : (ss data:may manipulate)�fthe ssc:procedureg�
� fthe dig [(ss data :have writes so far)(the ssc) � S)

Policy Requirement 9.10 : Have write permission for a CDI’s OSI , osi , is granted to ssi

only if the data item to which osi maps, together with the set of data items associated with
all previous CDI Have write permissions for ssi , would be consistent with one of the sets in
may execute for the ind and procedure components of the context to which ssi is mapped.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 117

ExecutionAllowed

SsPolicyAllows[CwData;D SS REQ ;D ANS]
ValidSids

8 ss req : policy allows; preq : PermReq;
the ssc : CwSsc; the di : DATA ITEM

j Perm req(preq) = ss req

^ preq :perm = Have write

^ the ssc = (ss data :ssi ssc)(preq :ssi)
^ the di = osc di((ss data:osi osc)(preq :osi))
^ the di 2 ss data :constrained data items

� the ssc:ind 2 dom(ss data :may execute)
^ (9 S : ((ss data:may execute)(the ssc:ind))�fthe ssc:procedureg�

� fthe dig [(ss data :have writes so far)(the ssc) � S)

9.3.3 Security Server State

The Clark-Wilson Security Server combines the general properties of the DTOS Security Server
with the history information and the mappings from Clark-Wilson entities to security identifiers
and contexts. The policy allows must satisfy all constraints in the previous section.

CwState

SsState [MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]
ValidSids

CwMakeSid

NoCreateTask

NewSid

CorrectUser

CorrectProcedure

NoExecutionByCerti�er

UnauthenticatedIndividual

ManipulationAllowed

ExecutionAllowed

9.4 Operations

In sending a response to a security server request, the history data might need to be changed.
In particular, if Have write permission is granted in the response, this must be recorded in
have writes so far . If Cross context create permission granted, the context of the task to be
created must be stored in cw sscs . Given the above constraints on policy allows, the policy
might change to remain consistent with the history data. We define a schemaCwUpdateHistory
to describe the changes to the history. Note that we allow at most one(ssc; di) pair to be added
to have writes so far rel in any transition.26

26This is not essential for Clark-Wilson. However, if this assumption is not made then we would have to include
in our specifications of CwSendNegativeResponse and CwSendA�rmativeResponse constraints similar to those in
ManipulationAllowed and ExecutionAllowed . In this case the constraints would be stated in terms of granted per-
missions rather than the contents of policy allows, and they would consider all additionalHave write permissions.
This would be necessary since there might be multiple data items for whichHave write could be granted without
violating Clark-Wilson constraints, and yet ifHave write is granted for some combination of these we might violate
the high-level policy. We also note that this requirement does not really add anything new for Clark-Wilson together

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

118
CDRL A019

Clark-Wilson Policy

CwUpdateHistory

SsSendResponseAux [MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]

ss data
0:have writes so far rel = ss data :have writes so far rel

[fthe ssc : CwSsc; the di : DATA ITEM

j (9 preq : Perm req��grants(ss response?)�
� (preq :perm = Have write

^ (ss data :ssi ssc)(preq:ssi) = the ssc

^ osc di((ss data :osi osc)(preq :osi)) = the di

^ the di 2 ss data :constrained data items))g

#(ss data 0:have writes so far rel n ss data:have writes so far rel) � 1

ss data
0:cw sscs = ss data:cw sscs

[fthe ssc : CwSsc
j (9 preq : Perm req��grants(ss response?)�

� preq :perm = Cross context create

^ (ss data :osi ssc)(preq :osi) = the ssc)g

We include CwUpdateHistory in the definitions of CwSendNegativeResponse and
CwSendA�rmativeResponse.

CwSendNegativeResponse

b= SsSendNegativeResponse [MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]
^ CwUpdateHistory

CwSendA�rmativeResponse

b= SsSendA�rmativeResponse [MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]
^ CwUpdateHistory

To the remaining generic Security Server operations we add the requirement that the history
information remain unchanged. This requirement is formalized byCwHistoryInvariant.

CwHistoryInvariant

SsStep[MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]

ss data
0:have writes so far rel = ss data :have writes so far rel

ss data 0:cw sscs = ss data:cw sscs

CwReceiveRequest

b= SsReceiveRequest [MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]
^ CwHistoryInvariant

CwMgrRequest

b= SsMgrRequest [MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]
^ CwHistoryInvariant

CwInternalTransition

b= SsInternalTransition[MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]
^ CwHistoryInvariant

with the DTOS kernel since all permissions granted in aD RESP must be for the same SID pair.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 119

9.5 Component Specification

We can use the above to specify the Clark-Wilson security server as a component.

The guar for the Clark-Wilson security server allows any of the transitions described in Sec-
tion 9.4. This is modeled by cw guar .

CwGuarStep

b= CwReceiveRequest

_ CwSendNegativeResponse

_ CwSendA�rmativeResponse

_ CwMgrRequest

_ CwInternalTransition

CwGuar

cw guar : �CwGuarStep

cw guar = CwGuarStep

The Clark-Wilson security server assumes that the assumptions of generic security servers in
SsRely are satisfied.

CwRely

cw rely : �� CwState

SsRely [MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]

cw rely = ss rely

The set of allowed initial states is modeled by cw init. We require that an initial state satisfy
the constraints imposed by SsInit and that have writes so far be consistent with constraints
on writing expressed inmay manipulate and may execute . Note that have writes so far may be
non-empty initially to reflect permissions that are “retained” in the kernel at system startup to
allow successful booting of the system. If it is necessary to have initially “retained” permissions
that are inconsistent with may manipulate or may execute, then it may not be possible to
combine the Clark-Wilson server and the DTOS kernel to implement the high-level policy. This
is reflected by the hypotheses of the theorems below.

CwInit

SsInit [MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]
cw init : �CwState

cw init � ss init

8 st : cw init ; ssc : CwSsc
� (9 S : (st :ss data:may manipulate)�fssc:procedureg�

� st :ss data:have writes so far(ssc) � S)
^ (9 S : ((st :ss data:may execute)(ssc:ind))�fssc:procedureg�

� (st :ss data:have writes so far)(ssc) � S)

All information in CwState is visible to the Clark-Wilson security server.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

120
CDRL A019

Clark-Wilson Policy

CwView

cw view : CwState # CwState

8 st1; st2 : CwState
� (st1; st2) 2 cw view , st1 = st2

CwComponent

b= CwGuar ^ CwRely ^ CwInit ^ CwView

We now prove several lemmas regarding the Clark-Wilson security server. These will be used
in the next section to show that the Clark-Wilson server when composed with the DTOS mi-
crokernel satisfies the Clark-Wilson requirementsE1–E4. Since there is a one-to-one mapping
between SIDs and security contexts, we will frequently use these concepts interchangeably.
For example, we will sometimes refer to SIDs when discussingpolicy allows, and at other times
refer to contexts.

Lemma 9.1 If d is added to have writes so far(s) in transition (t ; t 0) for some CwSsc s,
then in state t policy allows contains Have write permission from s to osc di

�(d), and d is
in constrained data items.

Proof: The component definition for the Clark-Wilson security server implies that if
(s; d) is added to have writes so far then it is during a CwSendA�rmativeResponse or
CwSendNegativeResponse transition in which

9 preq : Perm req��grants(ss response?)�
� (preq :perm = Have write

^ (ss data :ssi ssc)(preq :ssi) = s

^ osc di ((ss data :osi osc)(preq:osi)) = d

^ d 2 ss data :constrained data items):

CwSendA�rmativeResponse and CwSendNegativeResponse require that grants(ss response?) �
policy allows. This completes the proof. 2

Lemma 9.2 In any reachable CwState, for any c 2 CwSsc, there exists

S 2 (ss data :may manipulate)�fc:procedureg�

such that

(ss data :have writes so far)(c) � S

Proof: We induct on the length of behavior prefixes. Since the lemma is true for all initial
states (see CwInit), the base case is satisfied.

We next assume that the lemma holds for all states reachable in n transitions (n � 0)
and show that it also holds for all states reachable in n + 1 transitions. Let t be a state
reachable in n transitions and t 0 be a state reachable from t in one transition. Since
ss data .may manipulate is invariant, if the transition (t ; t 0) does not add any elements to
the set (ss data:have writes so far)(c) for any c, then the lemma is true for t 0. Otherwise,
let (c; d) be the pair added to have writes so far rel in transition (t ; t 0). (Recall there is at
most one such addition in any single transition.) Lemma 9.1 implies that policy allows in
state t contains Have write permission from c to osc di

�(d), and d 2 constrained data items.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 121

ManipulationAllowed (PR9.9) implies there exists S 2 (ss data :may manipulate)�fc:procedureg�
such that

fdg [t :ss data :have writes so far(c) � S :

Since the left hand side equals t 0:ss data :have writes so far(c), we are done.

2

Lemma 9.3 In any reachable CwState t , for any c 2 CwSsc, there exists

S 2 ((ss data :may execute)(c:ind))�fc:procedureg�

such that

(ss data :have writes so far)(c) � S

The proof of this lemma is essentially the same as for the preceding one withExecutionAllowed
(PR9.10) used instead of ManipulationAllowed (PR9.9).

9.6 Composing DTOS and Clark-Wilson

In this section, we first compose the DTOS kernel with the Clark-Wilson security server. We
then show that this composite system implements the abstract Clark-Wilson policy.

The composite state is MkCwState which contains all the components ofMkState and CwState.

MkCwState

MkState

CwState

Each kernel state is associated with the set of allMkCwState that have the same value for each
of the components of MkState. Similarly, each Clark-Wilson security server state is associated
with the set of all MkCwState that have the same value for each of the components ofCwState.

The set of allowed initial states for the composition of two components is the intersection of
the two sets (after mapping them into the composite state). This set of states is modeled by
mk cw init . Since mk cw init is nonempty, the kernel and Clark-Wilson security server are
composable.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

122
CDRL A019

Clark-Wilson Policy

MkCwInit

mk cw init : �MkCwState

8 st : mk cw init ; ssc : CwSsc
� st :pending responses = �

^ st :pending requests = �
^ st :active request = �
^ st :sent = �
^ st :obtained = �
^ st :allowed = �
^ st :responses = �
^ st :active computations = �
^ (9 S : (st :ss data:may manipulate)�fssc:procedureg�

� st :ss data:have writes so far(ssc) � S)
^ (9 S : ((st :ss data:may execute)(ssc:ind))�fssc:procedureg�

� (st :ss data:have writes so far)(ssc) � S)

In composing the kernel and Clark-Wilson security server we will use respect relations that
require each component to leave alone its peer’s internal data.

MkCwRespect

mk respect cw : ��MkCwState

cw respect mk : ��MkCwState

mk respect cw = f�MkCwState

j � SsInternals[MkRequest ;CwData;D SS REQ ;D RESP ;D ANS] g
cw respect mk = f�MkCwState

j �MgrInternals[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS] g

The guar of the composite is denoted by mk cw guar .

MkCwStep

b= (� SsInternals[MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]
^MkGuarStep)

_ (�MgrInternals[MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^ CwGuarStep)

MkCwGuar

mk cw guar : �MkCwStep

mk cw guar = MkCwStep

The rely of the composite is the intersection of the two rely relations.

MkCwRely

mk cw rely : ��MkCwState

mk cw rely = f�MkCwState

j �MgrInternals[MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^ � SsInternals[MkRequest ;CwData;D SS REQ ;D RESP ;D ANS]
^ � SharedInterpretation[MkRequest ;D SS REQ ;D RESP ;D ANS]
^ pending ss requests v pending ss requests 0

^ pending responses
0 = pending responses g

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 123

To show that the Composition Theorem applies to the composite, we must show that

mk guar \mk respect cw � cw guar [cw rely [cw view ;

and

cw guar \ cw respect mk � mk guar [mk rely [mk view :

The proof of these properties is essentially identical to the corresponding proof for the compo-
sition of the generic manager and security server.

We now demonstrate that the composition of the Clark-Wilson security server and the DTOS
microkernel satisfies the high-level requirements of the Clark-Wilson security policy. We first
must define our interpretations of process manipulates and process procedure in terms of the
DTOS kernel. These components were not defined in terms of kernel entities in CwToDtos

because they do not correspond very cleanly to any component of the DTOS state. Rather, they
are best defined in terms of behaviors in the kernel. We use the notation[b; n] to denote the first
n transitions of a behavior b. For any process p, process manipulates(p) for [b; n] is the set of all
DATA ITEM d such that process task(p) has performed aWrite page or Vm write id operation
on di memory(d) in [b; n]. Similarly, process procedure(p) for [b; n] is the PROCEDURE r such
that process task (p) has performed an Execute page operation on proc memory(r) in [b; n].27

Editorial Note:
An alternative approach for interpreting process manipulates and process procedure would be to define
new components in the composite state that are visible to neither the kernel nor the security server
and to use the respect relations to constrain the changes to these components with respect to the visible
components. For example, we could define task manipulates as an invisible component mapping tasks
to memory objects. The respect relations would constrain task manipulates so that it records the writing
that each task has done. There are drawbacks to this approach. In the terminology of the DTOS
Composability Study, the composite would not be proper. That is, its transitions would be constrained
by information that is not in its view. All the interesting properties of composition (e.g., the Composition
Theorem, commutativity and associativity) still apply for improper components. However, the view in
an improper component does not correspond well to one’s intuition. Further study would be necessary to
determine if this alternative is appropriate. Perhaps the implications of this could be studied in future
composability work.

In proving that the high level policy is satisfied by the implementation described in this section
we could take at least three different approaches. In one approach, we could attempt to use
the DTOS Consistency Theorem. In order to apply this theorem it would be necessary to
ignore the optional policy requirementPR9.5 since this causes a granted permission to become
ungrantable. (In this case we would probably also ignorePR9.4 since it serves little purpose
in the absence of PR9.5.) This means that we would allow a Clark-Wilson process to consist of
several “logical tasks” all with the same SID.

A second approach would involve proving a partial consistency theorem that could be used
to prove consistency for some SS REQs but not for others. If we chose to keep requirement
PR9.5, then we could use the partial consistency theorem to demonstrate consistency with
respect to permissions other than Cross context create, but could not use it to reason about
Cross context create. Although we have not explored this approach, it appears likely that it
would work. The proof in this case would be fairly similar to that for MLS/TE with the main
difference being that, since the policy is dynamic, we must work harder to show that no granted
permission (other thanCross context create) ever becomes ungrantable.
27For simplicity we assume there is only one such procedure. The security server really only requires that each proce-

dure executed have the correct context relative to the context of the process executing it. The one-to-one correspondence
can thus be obtained by labeling the procedures so that each has a different SID.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

124
CDRL A019

Clark-Wilson Policy

However, since this is a research report we will instead follow a third approach in which the two
optional policy requirements may be kept if desired. We select this approach primarily because
it demonstrates an alternative technique for proving satisfaction of a high-level policy without
using consistency. We expect this technique to be useful for history-sensitive policies. The
technique relies upon the use-of-permission assumption described in Section 6.3. The security
server maintains a history of the policy-relevant actions it believes the kernel has performed.
This history affects decisions of the security server regarding the granting and volunteering of
permissions. The proof has two primary steps:

1. Show that in every valid state the set of policy-relevant actions the security server believes
the kernel has taken is allowed by the high-level policy.

2. Show that at every point in any system behavior the set of all policy-relevant actions that
the kernel has taken is a subset of the set of policy-relevant actions the security server
believes the kernel has taken.

We cannot perform such a proof in general for the current framework because it does not require
that the security server maintain a history.

As an example, consider the proof of requirement E1 of the Clark-Wilson policy. The relevant
history information is stored inhave writes so far . The first step amounts to showing that if the
system has only written CDIs as described byhave writes so far then E1 is satisfied. This is
essentially Lemma 9.2. Intuitively, the second step means showing thatprocess manipulates(p)
is a “subset” of have writes so far(p). This is shown in the following lemma:

Definition 9.4 Let p be a process and s a CwSsc such that s = task ssi(process task (p)). If
the “retention” of Have write permission for s to memory osi(di memory(e)) in the initial state
implies have writes so far rel contains (ssi ssc(s); e) in the initial state then we will say the
system is initially Have write consistent for p.

Lemma 9.5 Let [b; n] be a behavior prefix, p a process and s a CwSsc such that s =
ssi ssc(task ssi(process task (p))). Assume that the system is initially Have write consistent
for p. Then

process manipulates(p) � st :ss data :have writes so far(s)

where st is the state resulting from [b; n].

Proof: Let d be an arbitrary element of process manipulates(p). Then, there exists a transi-
tion (t1; t 01) in [b; n] during which process task(p) performs a Write page or Vm write id oper-
ation on di memory(d). Have write is required by mgr policy from task ssi(process task (p)) to
memory osi(di memory(d)) for both of these operations. Call this permission requirement r .

Note that mgr policy is static, and therefore monotone non-increasing, for the DTOS kernel.
Also, the Clark-Wilson security server does not volunteer any permissions. Therefore, Corol-
lary 5.7 implies that either

1. r is retained in the initial state, or

2. there is a state t2 preceding t1 such that in t2 there is an ss response? � pending responses

where (r ; ans yes) 2 answers(ss response?) (i.e., r 2 grants(ss response?)).

In the first case, our hypotheses indicate that (s; d) is in have writes so far rel in the initial
state. Since have writes so far rel is monotone non-decreasing, (s; d) 2 have writes so far rel

in state st .

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 125

Now consider the second case. The initial state constraints require pending responses = �
in the system initial state. The rely for the composite implies that pending responses is not
changed by the environment of the composite. Inspection of the manager operations shows
that the manager does not add items to pending responses . Thus, ss response? must have
been added to pending responses by some prior security server transition T . Examination
of the Clark-Wilson security server transitions indicates thatT must add the pair (s; d) to
have writes so far rel. Since have writes so far rel is monotone non-decreasing, that pair
must also be in have writes so far rel in state st . 2

Definition 9.6 Let p be a process and s a CwSsc such that s = task ssi(process task (p)). If
the “retention” of Have execute permission for s to m in the initial state implies policy allows in
the initial state contains Have execute permission from s to m then we will say the system is
initially Have execute consistent for p.

Lemma 9.7 Let st be the state resulting from a behavior prefix [b; n], let p be a process, and
take r = process procedure(p) and c = ssi ssc(task ssi(process task(p))). Assume that the system
is initially Have execute consistent for p. Then c:procedure = r

Proof: From the interpretation of process procedure(p) for [b; n] we find that process task (p)
has performed an Execute page operation on proc memory(r) in [b; n]. Have execute is required
by mgr policy from task ssi(process task(p)) to memory osi(proc memory(r)) for this operation.
Call this permission requirement q .

Note that mgr policy is static, and therefore monotone non-increasing, for the DTOS kernel.
Also, the Clark-Wilson security server does not volunteer any permissions. Therefore, Corol-
lary 5.7 implies that either

1. q is retained in the initial state, or

2. there is a state t2 preceding t1 such that in t2 there is an ss response? � pending responses

where (q ; ans yes) 2 answers(ss response?) (i.e., q 2 grants(ss response?)).

In the first case, our hypotheses indicate that policy allows in the initial state con-
tains Have execute permission from task ssi(process task(p)) to memory osi(proc memory(r))).
PR9.6 (CorrectProcedure) then requires that

osc proc(osi osc(memory osi (proc memory(r)))) = c:procedure:

According to the constraints inCwConsistentLabels the left hand side equals r .

Now consider the second case. The initial state constraints require pending responses = �
in the system initial state. The rely for the composite implies that pending responses is not
changed by the environment of the composite. Inspection of the manager operations shows
that the manager does not add items to pending responses. Thus, ss response? must have been
added to pending responses by some prior security server transition T . Theorem 5.8 implies
that q 2 policy allows in the start state of transitionT . We then follow the same reasoning as
in the first case to conclude that c:procedure = r . 2

Theorem 9.8 E1 is satisfied by the composite of the DTOS kernel and the Clark-Wilson security
server, assuming the system is initiallyHave write consistent for all processes.

Proof: This follows from Lemmas 9.2, 9.5 and 9.7. 2

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

126
CDRL A019

Clark-Wilson Policy

Theorem 9.9 E2 is satisfied by the composite of the DTOS kernel and the Clark-Wilson security
server, assuming the system is initiallyHave write consistent for all processes.

Proof: This follows from Lemmas 9.3, 9.5 and 9.7. 2

Definition 9.10 If in a state s, for every process p

(ssi ssc(task ssi(process task (p)))):ind = process individual(p)

we will say s is individual consistent.

Lemma 9.11 If the DTOS Clark-Wilson system is initially consistent (see Definition 8.7) and is
individual consistent in the initial state, then it is individual consistent in every state.

Proof: Recall that we interpret process individual of a process to be the individual assigned to
it by a privileged process if this has happened and otherwise the individual associated with the
parent process. This theorem is proved by induction. The base case is true by hypothesis. To
prove the inductive step we must show that

1. The only way for a security context to be associated with a process is through creation of
a process (i.e., task creation),

2. Whenever a new context is associated with a process the new context does not introduce
a violation of individual consistency.

We assume that for any existing process the task associated with that process byprocess task

does not change. Furthermore we will assume that the context that ssi ssc associates with
any SSI assigned to an existing task does not change. Since the security context associated
with a process p is defined by ssi ssc(task ssi(process task (p))), the only ways to associate a
context with a process are by creating a new process, with its associated task, (i.e., extending
process task) or by modifying task ssi . The former occurs only during task creation and the latter
occurs only during task creation and thetask change sid operation. The task change sid
operation never occurs sinceMake sid permission is always prohibited and always required by
mgr policy. This demonstrates part (1).

For part (2), if a context is assigned to a process in a request by a privileged process, then by
definition, individual consistency holds for that process in the resulting state. So we need only
consider the case of a task creation request r by an unprivileged process n to create a task
t . In this case process individual 0((process task 0)�(t)) = process individual (n). A task creation
operation will require eitherCreate task orCross context create permission from the SID ofn to
the SID to be assigned to the new task. Create task permission is always prohibited (PR9.4) so
it cannot be used by the kernel. Thus, Corollary 5.7 implies that either theCross context create

permission is retained in the initial state or there is some preceding state in which the kernel
has a security server response granting theCross context create permission. If it is retained
in the initial state, then initial consistency implies that it was inpolicy allows in the initial
state. If it was granted in a security server response, then it was inpolicy allows in the state
in which it was granted (see Theorem 5.8). Thus, we know there is some preceding state s
in which policy allows contains Cross context create permission from the SID of n to the SID
to be assigned to t . Since Make sid is always prohibited, ssi ssc(task ssi(process task (n))) =2
Cw privileged contexts in s. So PR9.3 implies that the

ssi ssc(task ssi(process task (n))):ind = osi ssc 0(new sid):ind

= ssi ssc 0(task ssi
0(t)):ind :

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 127

Since by hypothesis the system is individual consistent in the state in whichr is processed the
left hand side is process individual(n), and this concludes the proof. 2

Theorem 9.12 E3 is satisfied by the composite of the DTOS kernel and the Clark-Wilson
security server, assuming the system is initially consistent and is individual consistent in the
initial state.

Proof: Let p be a process such that

p 2 domprocess procedure

process procedure(p) 2 transformation procedures

Recall that process procedure(p) is the PROCEDURE r such that process task (p) has performed
an Execute page operation on proc memory(r). Following analysis similar to that in the proof
of Lemma 9.11, we find that either Have execute permission from task ssi(process task (p))
to memory osi (proc memory(process procedure(p))) is retained in the the initial state or it is
granted by the security server. Thus, there exists a preceding states in which thisHave execute

permission is in policy allows. CwConsistentLabels implies that

osc proc(osi osc(memory osi (proc memory(process procedure(p)))))
= process procedure(p):

Thus, PR9.8 requires

ssi ssc(task ssi(process task (p))):ind 2 (ss data :authenticated individuals)

Application of Lemma 9.11 completes the proof. 2

Theorem 9.13 E4 is satisfied by the composite of the DTOS kernel and the Clark-Wilson
security server, assuming the system is initially consistent and is individual consistent in the
initial state.

Proof: The proof of this property is essentially the same as for E3 withPR9.7 used instead of
PR9.8.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

128
CDRL A019

ORCON Policy

Section 10
ORCON Policy

This section describes the use of an Originator Controlled (ORCON) [14, 16] policy on a DTOS
system. An IBAC security policy usually allows a process that is able to read information from
an object, as identified by the object’s Access Control List (ACL), to make that information
available to other processes at its discretion. This discretionary aspect of an IBAC policy can
be eliminated by using an ORCON policy [2]. With an ORCON policy, only those processes
allowed to read an object are able to read from any objects that may have been derived from
that object.

The root policy is that the originator of a piece of information can specify who may see that
information and that everyone who does see the information obeys the originator’s wishes.
Given the current state of the art, it is much more practical to use this policy with people
than it is with computers. The originator of information trusts those to whom access has been
granted not to divulge the information to others who are not on the list. However, on a computer
system it is processes, not people, which are seeing the information and deciding how they can
pass it on. Since these processes are frequently not entirely trusted, it is necessary to assume
that when they write to a file they will divulge all information they have previously read. So,
any time a process writes to a file, this will likely reduce the set of processes that may read
that file. Such a system tends to converge on a state where each process can read only the files
to which it can write, resulting in a rather segregated file system. Despite the impracticality
of this policy for use on computers, it is still an interesting example to consider in this study
because it involves retraction of permissions.

ORCON can be defined in terms of two access control lists. Each object has an associated
Access Control List (ACL) as described above. In addition, each process has a Propagated
Access Control List (PACL) that lists those processes allowed to receive all of the information
that the process possesses. Whenever a process reads an object, the intersection of the processes
allowed to read that object and the reader’s PACL form a new PACL (a process will always be
on its own PACL). Whenever a process writes an object, read access must be removed from the
object’s ACL for any processes not on the writer’s PACL.

A process allowed to read a memory object may also communicate information to other processes
through messages and various indirect channels (for example, by modifying the name space of
the recipient process). To provide complete security, these channels also need to be protected.
For messages, each port should have an ACL restricting the processes that can receive (read)
from it. When a process sends a message (writes to a port), the port’s ACL is intersected with
the process’s PACL. For clarity, the model given below only considers memory objects, but it
could easily be extended to cover message passing.

We will take the view in this section that the manipulation of ACLs and PACLs as described
above is really an implementation rather than a specification of the high-level policy. It belongs
in the security server. As stated above, the high-level policy is that the originator of information
may define who can see the information. As explained in the MLS/TE section, it is rather
difficult to formally state the policy in terms of information.28 However, rather than retreating

28This is probably the reason why one often sees an implementation of a policy serving as a definition of the policy.
This allows the security analyst to avoid the difficulties inherent in an information-based definition. However, any
proof that a system complies with the policy is really just a proof that a more detailed implementation (e.g., a decider-

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 129

to ACLs and PACLs in our policy definition, we will state the policy as follows: No system
behavior is allowed that contains a finite sequence of alternating read and write actions by
which it is possible for data to be transferred from an object j to a process p such that p is not
allowed to read j .

In the next section we define this policy more formally. Section 10.2 defines the correspondence
between the concepts of the abstract, high-level definition of ORCON and the entities of the
DTOS kernel. Sections 10.3–10.5 describe a Security Server that enforces the ORCON policy,
and Section 10.6 composes the ORCON security server with the DTOS kernel and demonstrates
that the high-level policy is satisfied.

10.1 Formal ORCON Definition

The primary entity types in our model of the ORCON policy are processes and memory objects.
We add individuals to this list of entity types since, as a matter of practicality, ACLs are defined
based upon individuals rather than processes. It would be impractical to modify the ACL of
every memory object in the system whenever a new process is created. An individual can be
thought of as a user ID. We start by defining given types for these entities. The type for
all processes is ORCON PROCESS , the type for all individuals is ORCON INDIV , and the
type for all memory objects isORCON OBJ . Processes perform operations on memory objects.
ORCON OP is the type for these operations, andRead is one of the operations.

[ORCON PROCESS ;ORCON INDIV ;ORCON OBJ ;ORCON OP]

Read : ORCON OP

In any given system state, orcon objects denotes the set of all memory objects in the system.
Each memory object has an associated originator-assigned ACL denoted byorig acl(obj). Each
ACL is a total function from individuals to sets of memory operations. Unlike the ACL in the
implementation which is automatically modified when information is written to an object, this
ACL is changed only by explicit actions of the originator. For any objectobj , orcon readers(obj)
is the set of all individuals, ind , such that Read 2 orig acl(obj)(ind).

OrconObject

orcon objects : �ORCON OBJ

orig acl : ORCON OBJ " (ORCON INDIV "�ORCON OP)
orcon readers : ORCON OBJ "�ORCON INDIV

8 obj : ORCON OBJ ; ind : ORCON INDIV

j orig acl(obj)(ind) 6= �
� obj 2 orcon objects

8 obj : ORCON OBJ ; ind : ORCON INDIV

� ind 2 orcon readers(obj), Read 2 orig acl(obj)(ind)

The set of current processes in the system isorcon processes. Each process process is executing
on the behalf of some individual denoted by process individual(process).

enforcer implementation) is a correct implementation of the less detailed implementation. In the case of ORCON, an
organization probably does not really care that ACLs and PACLs are manipulated properly. The real concern is that
the desires of object originators are enforced.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

130
CDRL A019

ORCON Policy

OrconProcess

OrconObject

orcon processes : �ORCON PROCESS

process individual : ORCON PROCESS �ORCON INDIV

domprocess individual = orcon processes

The expression orcon indivs denotes the set of individuals recognized by the system. If an
individual ind is not in this set, then, for all memory objects obj , ind is not allowed to perform
any memory operations on obj .

OrconIndiv

OrconObject

orcon indivs : �ORCON INDIV

8 ind : ORCON INDIV ; obj : ORCON OBJ

j ind =2 orcon indivs

� orig acl(obj)(ind) = �

The ORCON system state consists of the above information together with the state of all objects
and processes in the system which we summarize asorcon system data .

[ORCON SYSTEM DATA]

OrconSystemState

OrconObject

OrconProcess

OrconIndiv

orcon system data : ORCON SYSTEM DATA

We define the term application to refer to the execution of an ORCON OP in some state.
APPLICATION denotes the type of all applications. Each element ofAPPLICATION encodes
a state and an operation. Read ops(p; j) denotes the set of all APPLICATION in which process
p reads an object j , and Write ops(p; j) the APPLICATION in which p writes to an object j .
Appl state maps an APPLICATION to the OrconSystemState in which the operation occurs.
The set Transfer possible denotes the set of all triples (s; j ; p) where s is a finite sequence of
applications through which it is possible for data to be transferred from objectj to process p via
a sequence of alternating read and write operations. The setTraces denotes the set of allowed
infinite application sequences for an ORCON system. A trace t is in Traces only if it does not
contain a finite subsequence29 s such that for some j and p

(s; j ; p) 2 Transfer possible, and

the individual associated with p during the last application in s is not allowed to read j

by the ACL of j in effect at the start of s.

Some care is required when constraining Traces to avoid an overly strong constraint on the
system. For example, assume two objects contain identical data but have different ACLs
29The Z function squash takes a finite partial function on1 as its argument and compacts it into a finite sequence

preserving the order of the elements.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 131

assigned by different originators. Unless it can be determined from any change of state what
operation is being executed, a change of state resulting from reading one of the objects will be
indistinguishable from a change of state resulting from reading the other. In this case,Traces
would require that both ACLs allow p to read the object. This would be rather difficult to
implement. When we constrain Traces in terms of APPLICATION , we know which object p
asked to read, and we only need check the ACL of that object. In the constraint onTraces we use
the ACL of j at the start of s so that if the originator changes the ACL of an object the system
need not enforce this change retroactively. We also require that the individual associated with
an existing process not change in any trace.

[APPLICATION]

Appl state : APPLICATION " OrconSystemState

Read ops;Write ops : (ORCON PROCESS �ORCON OBJ)"�APPLICATION
Transfer possible : �(seqAPPLICATION �ORCON OBJ �ORCON PROCESS)
Traces : �(1 "APPLICATION)

(8 t : Traces; m; n : 1 j n 2 dom t ^ m < n � m 2 dom t)

(8 s : seqAPPLICATION ; j : ORCON OBJ ; p : ORCON PROCESS

j (s; j ; p) 2 Transfer possible

� #s mod 2 = 1
^ (9 k : seqORCON OBJ ; r : seqORCON PROCESS

� #k = #r = (#s div 2) + 1
^ j = k(1)
^ p = r(#r)
^ s(#s) 2 Read ops(r(#r); k(#k))
^ (8 i : 1 : : (#k � 1)

� s(2 � i � 1) 2 Read ops(r(i); k(i))
^ s(2 � i) 2Write ops(r(i); k(i + 1)))))

(8 t : Traces; d : �1;
s : seqAPPLICATION ; j : ORCON OBJ ; p : ORCON PROCESS ;
Initial acl : ORCON INDIV "�ORCON OP

j s = squash (d � t)
^ (s; j ; p) 2 Transfer possible

^ Initial acl = ((Appl state(s(1))):orig acl)(j)
� Read 2 Initial acl(((Appl state(s(#s))):process individual)(p)))

8 t : Traces; i ; j : 1; p : ORCON PROCESS

j fi ; jg � dom t

^ p 2 (Appl state(t(i))):orcon processes

^ p 2 (Appl state(t(j))):orcon processes

� ((Appl state(t(i))):process individual)(p) = ((Appl state(t(j))):process individual)(p)

10.2 ORCON Objects and the Kernel

The ORCON policy is defined in terms of processes, individuals and objects (e.g., files). Since
these concepts do not exist at the microkernel level, we map them to microkernel entities.
ORCON objects will be represented by memory objects. The associated memories can be
obtained via the mapping obj memory. This mapping is an injection, meaning that no two

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

132
CDRL A019

ORCON Policy

ORCON objects may have the same associated memory. Processes are represented by tasks.
The task associated with a process is denoted by process task(process). This mapping is an
injection, meaning that no two processes may have the same associated task. Individuals do
not correspond to any microkernel entity, but rather to user identifiers. We consider them later
when defining subject security contexts.

OrconToDtos

OrconSystemState

MkAddressSpace

MkLabels

obj memory : ORCON OBJ �MEMORY

process task : ORCON PROCESS �TASK

domobj memory = orcon objects

domprocess task = orcon processes

ran obj memory � dommemory osi

ran process task � dom task osi

8 region : REGION
j mapped memory(region) 2 ran obj memory

� region osi(region)
= memory osi region osi(memory osi(mapped memory(region)))

Before proceeding to define an ORCON Security Server we consider several issues in supporting
a retractive policy such as ORCON in the DTOS architecture. The retraction that happens in
ORCON is characterized by the following sequence of events.

1. Task A reads an object that taskB is not permitted to read.

2. Task B obtains read permission to object j .

3. Task A obtains write permission to j .

4. Task A writes to j .

To prevent B from obtaining data it is not permitted to read, we must ensure that taskB loses
its ability to read j no later than the start of Step 4.

The first issue is that in DTOS even if the Security Server sends a flush request to the manager
to remove read permission from B to j the Security Server has no way of determining when
this has actually occurred. As noted in Section 6.3, this could be remedied by having the flush
thread send a notification to the Security Server when it has finished the flush.

The second issue deals with concurrency. Let us elaborate the above event sequence as follows:

1. Task A reads an object that taskB is not permitted to read.

2. Task B (via the manager) requests read permission to object j .

3. The Security Server sends a response r to the manager granting read permission.

4. Task A requests write permission to j .

5. The Security Server sends a request to the manager to flush read permission fromB to j .

6. The flush request is processed (with no effect since responser has not yet been processed),
and a notification is sent back to the Security Server.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 133

7. The Security Server responds to A’s request granting write permission to j , and the
manager processes this response.

8. Task A writes to j .

9. The manager processes response r giving B read permission to j .

10. Task B reads j .

This scenario can be dealt with by attaching information to Security Server responses and flush
requests that allows the manager to detect a response that is overruled by a subsequent flush.
The manager can then reissue the Security Server request or refuse to perform the operation.
DTOS does support such information in Security Server responses and flush requests. However,
it currently uses this information only to control caching. A ruling based upon a previous policy
is still used for the permission check that caused the Security Server interaction.

Since there may be an arbitrarily long delay between the checking of a permission and the
actual performance of the request, there is another variation on this scenario:

1. Task A reads an object that taskB is not permitted to read.

2. Task B (via the manager) requests read permission to object j .

3. The Security Server sends a response r to the manager granting read permission.

4. The manager processes response r giving B read permission to j and recording this in
obtained .

5. Task A requests write permission to j .

6. The Security Server sends a request to the manager to flush read permission fromB to j .

7. The flush request is processed retracting read permission fromB to j (but recall that this
permission has already been checked for the above request) and a notification is sent back
to the Security Server.

8. The Security Server responds to A’s request granting write permission to j and the
manager processes this response.

9. Task A writes to j .

10. Task B ’s read request is marked as allowed and the read operation is performed.

This case is essentially an instance of check-before-use and requires slightly more drastic
measures. We either need to have an atomic operation in which we determine that all the
required permissions are still held or we need to ensure that the data returned toB is equivalent
to what it would have been if A had not written to j . The atomic operation is probably not
feasible in the DTOS architecture, so we consider the second option and assume that the read
operation occurs as follows:

1. Before any permission checking is performed for a read request (including checks on
retained permissions as well as the sending of permission requests to the security server)
the object to be read is locked so that it may not be written.30

30An alternative to this object locking schema is to copy the data to be read before the permission checking begins
and to base the results on the copy of the data rather than the current contents.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

134
CDRL A019

ORCON Policy

2. The kernel performs all processing associated with the read request, resulting in either
successful or unsuccessful completion of the request.

3. The lock on the object is released so that write operations may again occur.

In terms of the manager framework, an object to be read becomes locked no later than the
first MgrRequestComputation transition, if one occurs, and no later than theMgrAcceptRequest
transition, if one occurs.31 The locking must extend through the transition in which the request
is removed from active request .

DTOS does not perform this type of read operation. Since DTOS does not adequately support
ORCON, we will continue our analysis using a hypothetical manager that deals with the
issues identified above. We first assume a flush operation which we callcomplete flush that
removes all matching retentions in a single transition. For simplicity, we will assume that
complete flush takes three parameters: the host control port, a sequence of (ssi ; osi) pairs,
and a time stamp. The second parameter is interpreted by the function�nd sid pairs, and the
third by Find number . All retained permissions for the indicated SID-pairs will be removed,
and the time stamp will be recorded in the cache. We do not require retained denials to also
be flushed. The schema OrconMgrCompleteFlush defines the behavior of the complete flush
request.

complete ush id : KERNEL OP

�nd sid pairs : KERNEL PARAM � (SSI # OSI)

OrconMgrCompleteFlush

MkProcessRequest

let req == active request(req num?);
pars == (active request(req num?)):params

� mgr data 0:time stamp = Find number(pars(3))
^ req:op = complete ush id

^ �nd sid pairs(pars(2)) 2 (SSI #OSI)
^ retained rel

0 � retained rel

� f ss req : D SS REQ

j (9 pair : �nd sid pairs(pars(2))
� (Perm req�(ss req)):ssi = �rst(pair)
_ (Perm req�(ss req)):osi = second(pair)) g

We assume a “flush complete” notification is sent back to the Security Server to indicate that the
flush has completed. Later, we will specify that the Security Server waits until the notification
is received before processing any additional security computations.

Flush complete : D NOTIF REQ

FlushCompleteNoti�cation

MkSendNoti�cation

ss req? = Notif req(Flush complete)

31If no MgrAcceptRequest transition occurs, then the request is never processed.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 135

We will further assume that the manager processes an affirmative response (schema
MgrA�rmativeResponse) only if the time stamp is at least as large as the time stamp stored
with the cache.

OrconMgrA�rmativeResponse

MkA�rmativeResponse

mgr data:time stamp � (Ruling resp
�(ss response?)):time stamp

If a response with an out-of-date time stamp is received, the manager may remove thess req?
involved from sent , allowing the Security Server request to be retried (note that this removal
is allowed by the generic framework), but it may not consider thess req? as obtained.

OrconMgrNegativeResponse

MkA�rmativeResponse

mgr data:time stamp > (Ruling resp
�(ss response?)):time stamp

obtained rel 0 � obtained rel

10.3 ORCON Security Server

In this section we describe a Security Server that, when combined with the modified kernel
described in the preceding section, satisfies the ORCON security policy. As a simplification, we
will assume that orig acl is invariant in the system. That is, the ACL assigned to each object
by the originator of that object is known at system start-up and does not change. Without
this assumption we would have to provide a mechanism for originators to supply the desired
ACL to the security server when creating an object and a mechanism for the originator of an
object to notify the security server of a desired change to the ACL of the object. The former
mechanism could be implemented by providing a security server information request that takes
a desired ACL as a parameter and returns a SID that may then be used to create an object with
the desired ACL. When processing this request, the security server would allocate a security
context for the anticipated new object, associate the supplied ACL with that context, allocate a
SID to serve as an identifier for the new context, and return the SID to the client of the request.
If an originator further restricts the ACL of an object at a later time, this restriction would only
affect future operations on the object. It will be necessary to constrain an originator’s ability
to relax the ACL of an object. Since other individuals may have already written data to the
object, the object’s ACL must henceforth be constrained by the ACL of that data. Therefore,
the originator cannot grant read access to anyone not allowed to read all the data written to
the file.

For the ORCON Security Server, the processing of a permission request will require
several transitions. To control this processing, we introduce ORCON STATUS and
OrconProcessingState. The values in ORCON STATUS have the following meanings:

Locked — The Security Server has determined what response to send for a selected per-
mission request and has determined that certain permissions must be flushed, but it has
not yet sent the response nor issued the flush request.

Waiting — The Security Server has issued the flush request and is waiting for notification
that the request has been completed.

Flush done — The Security Server has received notification that the flush request is done.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

136
CDRL A019

ORCON Policy

Unlocked — The Security Server is not currently processing any permission request. Any
permission requests that the Security Server has previously begun processing have been
completed and the responses sent.

The lock and status fields record the security server computation (i.e., permission request) that
is currently being processed and the point the security server has reached in the processing
of that request. There may be at most one computation in lock at a time, and the server has
status Unlocked exactly when lock is empty. The formulated response and required ushes fields
store information that is determined at the beginning of the processing of a computation for
use in later transitions. The time stamp is incremented in each security server transition and
is sent in each ruling and in each request to flush permissions from the kernel. This allows
outdated rulings to be recognized. The use of this state information is described more fully in
Section 10.4.

ORCON STATUS ::= Locked jWaiting j Flush done j Unlocked

OrconProcessingState

lock : �COMP NUMBER

status : ORCON STATUS

formulated response : D RESP

required ushes : SSI # OSI

time stamp :

#lock � 1
status = Unlocked , lock = �

10.3.1 Security Database

10.3.1.1 Security Contexts Now we define the security contexts. The set of object security
contexts isORCON OSC . We define this type to be identical to ORCON OBJ .

ORCON OSC == ORCON OBJ

Subject security contexts are associated with processes. A subject security context contains the
following two components: the user and the index . The user provides a record of the individual
on whose behalf the subject is executing. In the following we will constrain the creation of
subjects so that when an unprivileged individual or process creates a new process, theuser of
the newly created process is identical to that of the creating individual or process. Theindex is
included to allow a single user to run several processes at the same time, each with a distinct
subject context and therefore a possibly distinct PACL.

OrconSsc

user : ORCON INDIV

index :

The set Orcon privileged contexts denotes a set of privileged subject contexts. These contexts
may have permission to create a process in a context with a different user.

Orcon privileged contexts : �OrconSsc

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 137

We define orcon sscs and orcon oscs to be the existing subject and object security contexts.

OrconContexts

orcon sscs : �OrconSsc
orcon oscs : �ORCON OSC

Each subject security identifier is mapped by the functionssi ssc to a subject security context,
and each object security identifier is mapped by osi osc to an object context. The function
osi ssc maps the object security identifier of a task port to the subject context of that task.

OrconSidToContext

OrconContexts

MkLabels

ssi ssc : SSI � OrconSsc

osi osc : OSI � ORCON OSC

osi ssc : OSI �OrconSsc

ran ssi ssc � orcon sscs

ran osi osc � orcon oscs

domosi osc = OSI n domosi ssi

osi ssc = osi ssi � ssi ssc

We make the following assumptions regarding the labeling of memory and tasks:

Every OSI used to label memory has an associated OSC.

Every SSI used to label a task has an associated SSC.

For every j 2 domobj memory, the OSI used to label the memory associated with j maps
to an OSC associated with j by the security server.

If we had a more complete model of the system including the file server, the ways in which
individuals may log on to the system and the ways in which the DTOS kernel assigned SIDs,
these assumptions would be justified in terms of that model. To allow us to focus on the central
ORCON requirement, rather than proving consistency forprocess task as we have done in the
preceding sections, we will state a consistency property: the context associated with the task
of p has a user field equal to process individual(p).

OrconConsistentLabels

OrconSidToContext

OrconToDtos

ranmemory osi � domosi osc

ran task ssi � dom ssi ssc

8 j : domobj memory

� osi osc(memory osi(obj memory(j))) = j

8 p : domprocess task

� (ssi ssc(task ssi(process task(p)))):user = process individual(p)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

138
CDRL A019

ORCON Policy

10.3.1.2 Policy Representation We now define the structures used to store the Security Server
representation of an ORCON policy. The function ss pacl denotes the Security Server repre-
sentation of the PACL described in the introduction to this section and ss acl denotes the
representation of the ACL. For any context c, readers(c) is the set of all individuals, p, such
that Have read 2 ss acl (c)(p).

OrconPolicyData

ss pacl : OrconSsc ��ORCON INDIV

ss acl : ORCON OSC � (ORCON INDIV ��PERMISSION)
readers : ORCON OSC "�ORCON INDIV

8 c : ORCON OSC ; p : ORCON INDIV

� p 2 readers(c)
, c 2 dom ss acl

^ p 2 dom(ss acl (c))
^ Have read 2 ss acl(c)(p)

The data maintained by the ORCON Security Server includes the definition of the current policy
in terms of contexts, the processing state and other miscellaneous data,other orcon data , from
which the generic Security Server information is extracted.

[OTHER ORCON DATA]

OrconData

OrconSidToContext

OrconPolicyData

OrconProcessingState

OrconObject

other orcon data : OTHER ORCON DATA

10.3.2 Permission Requirements

In this section we state constraints on the permissions that are inpolicy allows. These con-
straints will be used below in defining the ORCON Security Server state.

Policy Requirement 10.1 : Each permission is granted to ssi for osi only if the permission
is an element of the set of permissions allowed the user from the subject context ofssi in the
ss acl associated with the object context ofosi .

InAcl

SsPolicyAllows[OrconData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

� let the acl == ss data :ss acl ;
the osc == (ss data :osi osc)(preq :osi);
user == ((ss data :ssi ssc)(preq:ssi)):user

� preq :perm 2 the acl(the osc)(user)

Note that because of the definition ofD RESP for the DTOS kernel, all the permissions granted
in a single Security Server response must have the same SSI and OSI. As described in Sec-
tion 10.4, the granting of read and write permission can cause the policy to change. To prevent

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 139

unnecessary policy changes from occurring, an implementation of an ORCON Security Server
should probably be stingy with respect to these permissions. That is, the permissionsHave read

and Have write should only be granted when specifically requested. It is important that any
denied permission with respect to which the Security Server is stingy not be in the correspond-
ing cache control vector. This signals the kernel to send another request when the permission
is needed. Since stinginess deals with keeping the system flexible rather than ensuring that
the policy is enforced, we omit stinginess from our specification of the ORCON Server.

Policy Requirement 10.2 : Create task or Cross context create permission to an OSI (of a
task port) is given to an SSI only if both SIDs map to subject contexts with the same user
component or the SSI identifies a privileged context.

OrconCorrectUser

SsPolicyAllows[OrconData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

^ preq :perm 2 fCross context create;Create taskg
� (ss data :ssi ssc)(preq:ssi) 2 Orcon privileged contexts

_ ((ss data:ssi ssc)(preq:ssi)):user = ((ss data:osi ssc)(preq :osi)):user

Policy Requirement 10.3 : Make sid permission is prohibited.

OrconMakeSid

SsPolicyAllows[OrconData;D SS REQ ;D ANS]

8 ss req : policy allows; preq : PermReq
j Perm req(preq) = ss req

� preq :perm 6= Make sid

10.3.3 Security Server State

The ORCON Security Server combines the general properties of a DTOS Security Server (i.e.,
the typesMkRequest , D SS REQ , D RESP and D ANS) with the ORCON Security Server data
and the above policy requirements. Only an active Security Server computation may have the
Security Server locked.

OrconState

SsState [MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
InAcl

OrconCorrectUser

OrconMakeSid

ss data :lock � domactive computations

10.4 Operations

When the Security Server sends a ruling it might also need to change its policy data. In
particular, if Have write or Have read permission is granted in the response, ss acl or ss pacl

might change. Given the above constraints onpolicy allows, the policy might change to remain
consistent with the policy data. Since one of the permissionsHave write or Have read might

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

140
CDRL A019

ORCON Policy

change from being grantable to being ungrantable, and since these permissions might have
been granted in a previous ruling, it is necessary for the ORCON Security Server to flush
retained permissions from the kernel.

When a Security Server request is received there may be up to five Security Server transitions
needed to complete the processing of that request:

send a response
modify the internal state
send a flush request to the kernel
receive a notification that the flush is complete
process the “flush complete” notification

These transitions cannot be collapsed into a single Security Server transition because of the way
in which the generic framework models the Security Server operations. The framework defines
the first three transition types to be non-overlapping. For example, an SsInternalTransition

requires pending requests and pending responses to be invariant whereasSsMgrRequest requires
that pending requests change, and SsSendResponseAux requires that pending responses change.
Even thoughSsMgrRequest allows the internal state to change, we must still separate it from the
SsInternalTransition since the internal state may change without any flushing being necessary.
Although we break the processing into smaller transitions, there must be a certain amount of
consistency between them. In particular, the changes made to the policy and the flush request
that is sent must both be based upon the response that is made.

The server is further complicated by the fact that the following sequencing constraints must
be obeyed by the ORCON Security Server.

If the flush for an active computation A occurs before the policy update, then no other
active computation B can be allowed to generate a Security Server response between
the flush and the policy update for A. This prevents flushed permissions from being
reobtained before they are removed from the policy.
Any necessary flushing must occur no later than the sending of the response granting the
new permissions. This prevents a state where the kernel is simultaneously holding some
permissions from the new policy and others from an old policy where the old ones are not
allowed in the new policy and are to be flushed.
If a response for an active computation A is determined in a transition t1 that precedes
the transition t2 that changes the policy to reflect that response, then we must ensure
that there is no other active computation B for which the response is determined in a
transition that occurs between t1 and t2. The determination of each response must reflect
all prior response determinations.

To satisfy all of these requirements, we will allow an active Security Server computation to
lock the Security Server while it is being processed. That is, once the Security Server begins
processing a particular requestR that it has previously received, it will not do any processing
of any other request (although it might receive new requests) until the processing forR is
completed. This locking will be accomplished in the specification using the lock component of
the internal data.32 The component status will keep track of where the Security Server is in
its processing of R, and formulated response will be used in determining updates to the policy
data, any necessary flushing and the response that is sent. The Security Server will perform
the processing ofR as follows:
32There is more than one way in which this could be achieved in an actual implementation. For example, the Security

Server could be single-threaded, or it could use a lock variable as done in this specification.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 141

1. Initialize the internal processing state to indicate that R is being processed,
formulated response is to be sent and the retained permissions forrequired ushes must be
flushed. Also update the policy data.33 The status moves from Unlocked to either Locked ,
if a flush is necessary, orFlush done otherwise.

2. If required ushes is non-empty, then

(a) send a flush request (status moves from Locked to Waiting),

(b) receive the “flush complete” notification (note that other requests may also be re-
ceived, but not processed, during this time), and

(c) process the “flush complete” notification (status moves from Waiting to Flush done).

(d) Send the response (status moves from Flush done to Unlocked).

Although we do not include this in our specification, the security server should be implemented
to “time-out” on waiting for a flush complete notification. This would prevent the security server
from becoming permanently blocked waiting for a notification that never comes. Without the
time-out implementation, there is a potential denial of server attack. Note that under this
implementation the security server must back out any changes it has made to ss acl and
ss pacl while processing the current request before it begins processing another request.

We first formalize that a computation releases the lock only when the Security Server has
finished processing the computation. After the transition in which a lock is obtained,ss acl ,
ss pacl , formulated response and required ushes remain constant until the lock is released. We
also require that the time stamp be incremented in each Security Server transition.

OrconStep

SsStep[MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
comp num? : COMP NUMBER

comp num? 2 ss data:lock n ss data 0:lock
) comp num? 2 domactive computations n domactive computations 0

ss data :status 6= Unlocked

) (ss data
0:ss acl = ss data:ss acl

^ ss data
0:ss pacl = ss data :ss pacl

^ ss data 0:formulated response = ss data :formulated response

^ ss data 0:required ushes = ss data :required ushes)
ss data

0:time stamp = ss data:time stamp + 1

Since the first transition in the processing of a request is rather complicated we break its specifi-
cation into pieces. To begin, we define schemasNewPaclAux andNewAclAux . We then use these
in defining OrconFindAclsAux . Schema NewPaclAux models the computation of a new PACL
as a result of the granting of Have read permission to client ssc? for memory osc?. Schema
NewAclAux models the computation of a new ACL as a result of the granting ofHave write

permission to client ssc? for memory osc?.

33In ORCON it is never the case that the granting of a permission fromssi to osi makes that permission ungrantable
from ssi to osi in the future. If this did happen, then it would be necessary to delay the update of the policy data until
the transition in which the response is sent. Otherwise, we would violate the generic framework restriction that the
response only grant permissions that are allowed by the policy in effect when the response is sent.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

142
CDRL A019

ORCON Policy

NewPaclAux

old acl : ORCON OSC � (ORCON INDIV ��PERMISSION)
old pacl ; new pacl : OrconSsc ��ORCON INDIV

client ssc? : OrconSsc
memory osc? : ORCON OSC

new pacl(client ssc?) = old pacl(client ssc?)
\ f user : ORCON INDIV j Have read 2 old acl(memory osc?)(user)g

f client ssc? g� new pacl = f client ssc? g� old pacl

NewAclAux

old acl ; new acl : ORCON OSC � (ORCON INDIV ��PERMISSION)
old pacl : OrconSsc ��ORCON INDIV

client ssc? : OrconSsc
memory osc? : ORCON OSC

new acl(memory osc?) = old acl(memory osc?)
� fuser : ORCON INDIV j user =2 old pacl(client ssc?)

� user 7! old acl(memory osc?)(user) n fHave read gg
fmemory osc? g� new acl = fmemory osc? g� old acl

Schema OrconFindAclsAux models the changes to ss pacl and ss acl that are necessary when
response is to be sent.

OrconFindAclsAux

SsInternalTransition[MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
OrconStep

response : D RESP

let granted perms == f preq : Perm req��grants(response)� � preq :perm g;
old acl == ss data :ss acl ;
old pacl == ss data :ss pacl ;
new acl == ss data

0:ss acl ;
new pacl == ss data

0:ss pacl

� (Have read =2 granted perms

) new pacl = old pacl)
^ (Have read 2 granted perms

) (8 preq : Perm req��grants(response)�
� let client ssc? == (ss data:ssi ssc)(preq :ssi);

memory osc? == (ss data :osi osc)(preq :osi)
� NewPaclAux))

^ (Have write =2 granted perms

) new acl = old acl)
^ (Have write 2 granted perms

) (8 preq : Perm req
��grants(response)�

� let client ssc? == (ss data:ssi ssc)(preq :ssi);
memory osc? == (ss data :osi osc)(preq :osi)

� NewAclAux))

Next we specify OrconFindFlushesAux which models the calculation of the flush request that
must be made. Let ssc and osc be the contexts associated withssi and osi , respectively. Retained

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 143

permissions for the pair (ssi ; osi) must be flushed when either of the following conditions are
satisfied:

ss pacl is changing, ssc is the context of the process being grantedHave read permission,
and the current ACL of osc grants Have write permission to ssc.user .

ss acl is changing, osc is the context of the memory object to whichHave write permission
is being granted and the current ACL ofosc grants Have read permission to ssc.user.

OrconFindFlushesAux

SsInternalTransition[MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
OrconStep

9 pacl ushes ; acl ushes : SSI # OSI ;
preq : PermReq ;
client ssi : SSI ; memory osi : OSI ;
user : ORCON INDIV ; memory osc : ORCON OSC

j Perm req(preq) = active computations(comp num?)
^ client ssi = preq:ssi
^ memory osi = preq:osi
^ user = ((ss data :ssi ssc)(client ssi)):user
^ memory osc = (ss data:osi osc)(memory osi)
^ pacl ushes = if ss data :ss pacl 6= ss data 0:ss pacl then

f osi : OSI ; osc : ORCON OSC

j osc = (ss data :osi osc)(osi)
^ Have write 2 ss data :ss acl (osc)(user)

� (client ssi ; osi) g
else �

^ acl ushes = if ss data:ss acl 6= ss data 0:ss acl then

f ssi : SSI ; user : ORCON INDIV

j user = ((ss data :ssi ssc)(ssi)):user
^ Have read 2 ss data :ss acl(memory osc)(user)

� (ssi ;memory osi) g
else �

� ss data 0:required ushes = pacl ushes [acl ushes

The transition OrconBeginProcessing performs the first of the five steps involved in processing
a request. If flushing is required the status is set to Locked . Otherwise, it is set to Flush done

to indicate that no flush request is needed.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

144
CDRL A019

ORCON Policy

OrconBeginProcessing

SsInternalTransition[MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
OrconStep

OrconFindFlushesAux

ss data :lock = �
comp num? 2 domactive computations

ss data
0:lock = fcomp num?g

grants(ss data
0:formulated response) � policy allows

ss data 0:status = if ss data 0:required ushes = �
then Flush done

else Locked

let response == ss data
0:formulated response

� OrconFindAclsAux

The transition OrconFlush sends a complete flush request to the kernel. The server status
changes from Locked to Waiting . The comp num? must be the locking computation.

OrconFlush

SsMgrRequest [MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
OrconStep

comp num? 2 ss data:lock
ss data :status = Locked

ss data :required ushes 6= �
req?:op = complete ush id

let pars == req?:params
� �nd sid pairs(pars(2)) = ss data :required ushes

^ Find number(pars(3)) = ss data :time stamp

ss data
0:status = Waiting

The receipt of the “flush complete” notification is handled by OrconReceiveRequest , the same
transition that receives all requests. This transition is modeled below. The transition
ProcessFlushNoti�cation models the completion of the RPC invocation of complete flush. It
processes the “flush complete” notification changing the status fromWaiting to Flush done .

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 145

ProcessFlushNoti�cation

comp num? : COMP NUMBER

ss req? : D SS REQ

SsInternalTransition[MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
OrconStep

ss data :status = Waiting

(comp num?; ss req?) 2 active computations

ss req? = Notif req(Flush complete)

active computations 0 = f comp num? g� active computations

pending responses 0 = pending responses

pending ss requests
0 = pending ss requests

pending requests
0 = pending requests

ss data
0:status = Flush done

The transition OrconSendResponseAux describes the basic behavior of sending a response to
the kernel from the ORCON server. The comp num? must be the locking computation, and
the response must be labeled with the current time stamp. The status is changed from
Flush done toUnlocked . SchemasOrconSendNegativeResponse andOrconSendA�rmativeResponse
use OrconSendResponseAux to model the sending of negative and affirmative responses.

OrconSendResponseAux

SsSendResponseAux [MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
OrconStep

comp num? 2 ss data:lock
ss data :status = Flush done

grants(ss response?) = grants(ss data :formulated response)
(ss response? 2 ranRuling resp

) (Ruling resp�(ss response?)):time stamp

= ss data :time stamp)

ss data
0:status = Unlocked

OrconSendNegativeResponse

b= SsSendNegativeResponse [MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
^ OrconSendResponseAux

OrconSendA�rmativeResponse

b= SsSendA�rmativeResponse [MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
^ OrconSendResponseAux

Any other transitions are identical to the corresponding transitions of the generic security
server with the additional constraints that the ORCON policy and processing data are invariant
as specified by OrconProcessingStateInv .

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

146
CDRL A019

ORCON Policy

OrconProcessingStateInv

OrconStep

ss data
0:lock = ss data:lock

ss data
0:formulated response = ss data :formulated response

ss data 0:required ushes = ss data:required ushes

ss data 0:status = ss data:status
ss data

0:ss pacl = ss data:ss pacl

ss data
0:ss acl = ss data:ss acl

OrconReceiveRequest

b= SsReceiveRequest [MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
^ OrconProcessingStateInv

The OrconMgrRequest schema includes OrconFlush . OrconInternalTransition includes
OrconBeginProcessing and ProcessFlushNoti�cation.

OrconMgrRequest

b= OrconFlush

_ (SsMgrRequest [MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
^ OrconProcessingStateInv)

OrconInternalTransition

b= OrconBeginProcessing

_ ProcessFlushNoti�cation

_ (SsInternalTransition[MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
^ OrconProcessingStateInv)

Since the PACL of a process denotes the individuals allowed to read all data read by the process,
we assume that, when a new process is created with contextssc, ss pacl (ssc) = ORCON INDIV .
All individuals are allowed to read an empty collection of data.34 The ss pacl (ssc) will be
constrained the first time the process reads an object.

10.5 Component Specification

We can use the above to specify the ORCON security server as a component.

The guar for the ORCON security server allows any of the transitions described in Section 10.4.
This is modeled by orcon guar .

OrconGuarStep

b= OrconReceiveRequest

_ OrconSendNegativeResponse

_ OrconSendA�rmativeResponse

_ OrconMgrRequest

_ OrconInternalTransition

34This assumes that no read permissions for this context are retained by the manager when the new process is
created. Otherwise, PACL-read-consistency (see page 149) must apply.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 147

OrconGuar

orcon guar : �OrconGuarStep

orcon guar = OrconGuarStep

The ORCON security server assumes that the assumptions of generic security servers inSsRely
are satisfied.

OrconRely

orcon rely : �� OrconState

SsRely [MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]

orcon rely = ss rely

The set of allowed initial states is modeled by orcon init. We require that an initial state satisfy
the constraints imposed by SsInit . We also require that for every object obj , readers(obj) is a
subset of orcon readers(obj). This requirement is called ACL-read-consistency.

OrconInit

SsInit [MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
orcon init : �OrconState

orcon init � ss init

(8 st : orcon init ; obj : ORCON OBJ

� st :ss data:readers(obj) � st :ss data:orcon readers(obj))

All information in OrconState is visible to the ORCON security server.

OrconView

orcon view : OrconState #OrconState

8 st1; st2 : OrconState
� (st1; st2) 2 orcon view , st1 = st2

OrconComponent

b= OrconGuar ^ OrconRely ^ OrconInit ^ OrconView

Lemma 10.1 In all transitions, for every object context j and subject context p such that j and
p are in the domains of ss acl and ss pacl , respectively, both before and after the transition

ss data 0:ss acl(j)(p:user) � ss data:ss acl(j)(p:user)

ss data
0:ss pacl(p) � ss data:ss pacl(p)

Proof: Since ss acl and ss pacl are internal data of the Security Server, they are not changed
during environment transitions. Examination of the Security Server operations indicates that
ss acl and ss pacl change only during andOrconBeginProcessing transition, and this transition
requires the above to hold. 2

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

148
CDRL A019

ORCON Policy

10.6 Composing DTOS and ORCON

In this section, we first compose the modified DTOS kernel with the ORCON security server.
We then show that this composite system implements the abstract ORCON policy.

The composite state is MkOrconState which contains all the components of MkState and
OrconState.

MkOrconState

MkState

OrconState

Each kernel state is associated with the set of allMkOrconState that have the same value for each
of the components of MkState . Similarly, each ORCON security server state is associated with
the set of all MkOrconState that have the same value for each of the components ofOrconState.

The set of allowed initial states for the composition of two components is the intersection of
the two sets (after mapping them into the composite state). This set of states is modeled
by mk orc init. Since mk orc init is nonempty, the kernel and ORCON security server are
composable.

MkOrconInit

mk orc init : �MkOrconState

8 st : mk orc init ; obj : ORCON OBJ

� st :ss data:readers(obj) � st :ss data:orcon readers(obj)
^ st :pending responses = �
^ st :pending requests = �
^ st :active request = �
^ st :sent = �
^ st :obtained = �
^ st :allowed = �
^ st :responses = �
^ st :active computations = �

In composing the kernel and ORCON security server we will use respect relations that require
each component to leave alone its peer’s internal data.

MkOrconRespect

mk respect orc : ��MkOrconState

orc respect mk : ��MkOrconState

mk respect orc = f�MkOrconState

j � SsInternals[MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS] g
orc respect mk = f�MkOrconState

j �MgrInternals[MkData ;MkRequest ;D SS REQ ;D RESP ;D ANS] g

The guar of the composite is denoted by mk orc guar .

MkOrconStep

b= (� SsInternals[MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
^MkGuarStep)

_ (�MgrInternals[MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^ OrconGuarStep)

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 149

MkOrconGuar

mk orc guar : �MkOrconStep

mk orc guar = MkOrconStep

The rely of the composite is the intersection of the two rely relations.

MkOrconRely

mk orc rely : ��MkOrconState

mk orc rely = f�MkOrconState

j �MgrInternals[MkData;MkRequest ;D SS REQ ;D RESP ;D ANS]
^ � SsInternals[MkRequest ;OrconData;D SS REQ ;D RESP ;D ANS]
^ � SharedInterpretation[MkRequest ;D SS REQ ;D RESP ;D ANS]
^ pending ss requests v pending ss requests 0

^ pending responses 0 = pending responses g

To show that the Composition Theorem applies to the composite, we must show that

mk guar \mk respect orc � orcon guar [orcon rely [orcon view ;

and

orcon guar \ orc respect mk � mk guar [mk rely [mk view :

The proof of these properties is essentially identical to the corresponding proof for the compo-
sition of the generic manager and security server.

We now demonstrate that the composition of the ORCON security server and the DTOS mi-
crokernel satisfies the high-level requirements of the ORCON security policy. We will focus on
the primary requirement, ignoring the requirement of invariance forprocess individual (p). The
goal will be to prove that in any possible transfer sequence the final reader has read permission
in orig acl to the object that is at the start of the transfer sequence.

In order to complete the proof, we will need the following additional assumptions about the
initial state:35

PACL-read-consistency — For every request r , if retained(r) contains Perm req(pr) where
pr :perm = Have read , then ss pacl (ssi ssc(pr :ssi)) � readers(osi osc(pr :osi)).

PACL-write-consistency — For every request r , if retained(r) contains Perm req(pr) where
pr :perm = Have write, then readers(osi osc(pr :osi)) � ss pacl(ssi ssc(pr :ssi)).

MkOrconInitExtra

MkOrconInit

8 st : mk orc init ; r :MkRequest ; pr : PermReq
j Perm req(pr) 2 st :retained(r)
� let pacl == st :ss data:ss pacl(st :ss data:ssi ssc(pr :ssi));

rdrs == st :ss data :readers(st :ss data:osi osc(pr :osi))
� (pr :perm = Have read) pacl � rdrs)
^ (pr :perm = Have write) rdrs � pacl)

35An alternative way to express these assumptions within the composability framework is to add retained to the
security server state OrconState and to the view. We could then place these assumptions in OrconInit instead of
making them hypotheses of Theorem 10.2.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

150
CDRL A019

ORCON Policy

Theorem 10.2 Let s be a subsequence of lengthm of a trace t , let p be a process with context
cp, and j an object with context cj and assume (s; j ; p) 2 Transfer possible. Assume the system
is initially consistent (see 8.7), ACL-read-consistent, PACL-read-consistent and PACL-write-
consistent and that processes do not have concurrent kernel requests. Then the individual
associated with p in the final transition of s is allowed by orig acl to read j .

Proof: The proof is by induction on the length of s. Note that this length must be odd, so in
the base case we will consider a sequence of length 1, and the inductive step will increment
by 2. To support the inductive step we will also prove the auxiliary conclusion that at the start
of the final transition in s, ss pacl(cp) � orcon readers(j).

Base Case: m = 1. The application s(1) denotes the processing of a read operation on object j
in state Appl state(s(1)) by process p. We consider two cases.

Base Case 1: p has been granted Have read permission to j .

At some previous time, ss acl(cj)(cp :user) contained Have read . Monotonicity implies that this
is also true of ss acl in the initial state. The assumption of ACL-read-consistency completes the
proof of the main conclusion in this case. When theOrconBeginProcessing step for theHave read

permission request by p on j concludes, ss pacl(cp) � readers(cj). The auxiliary conclusion
follows from ACL-read-consistency and the monotonicity ofss acl and ss pacl .

Base Case 2: p has never been granted Have read permission to j .

In the initial state, p must have Have read permission for j retained. The main conclusion
follows from initial consistency, InAcl , and ACL-read-consistency. The auxiliary conclusion
follows from PACL-read-consistency and monotonicity of ss pacl .

Inductive Step: Assuming the auxiliary conclusion holds for all sequences of lengthn (for
some odd number n � 1), the main and auxiliary conclusions must hold for all sequences of
length n + 2.

Let w be the final writer in s (i.e., the process in application s(n + 1)) and let cw be the context
of w . Let k , with context ck , be the final object in s. For s(n + 1) to be processed there must
be a preceding transition in which this operation is marked as allowed. The same applies to
s(n + 2), the final read operation in s. For these requests to be marked allowed, one of the
following must be true:

1. The relevant permission (Have write or Have read) was retained from the initial state,

2. The kernel obtained the permission while doing the permission checking for the request,
or

3. This permission was retained from the permission checking for an earlier request during
which it was obtained.

We now consider the following cases:

Case 1: The Have write permission used for s(n + 1) is retained from the initial state.

Whenever ss pacl (cw) changes, it is due to the granting ofHave read permission to w , and all
Have write permissions for w are flushed before theHave read permission is granted. Further-
more, the security server completes the processing of each permission request before starting
another. So, ss pacl (cw) does not change from the timeHave write is retained (the initial state
in this case) through the transition in whichs(n +1) is marked allowed. Since w does not have
concurrent requests, the invariance ofss pacl (cw) extends through the processing of s(n + 1).
From PACL-write-consistency and the inductive hypothesis we conclude that in the initial state

readers(ck) � ss pacl(cw) � orcon readers(j) (1)

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 151

From initial consistency, InAcl , and the monotonicity of ss acl we know that, whether the
Have read permission for s(n + 2) is initially retained or is obtained at some point, cp:user
must be in readers(ck) in the initial state for p to read k . This demonstrates the main con-
clusion. Similarly, the auxiliary conclusion follows from (1), PACL-read-consistency and the
monotonicity of ss pacl .

Case 2: The Have write permission used for s(n + 1) is obtained.

At the end of theOrconBeginProcessing transition associated with the granting of theHave write

permission, we have readers(ck) � ss pacl(cw). Following the same reasoning as in Case 1,
ss pacl(cw) is invariant from the end of theOrconBeginProcessing transition through the end of
s(n + 1). (Note that this OrconBeginProcessing transition might be associated with a request
other then s(n +1).) If s(n) precedes theOrconBeginProcessing transition, then by the inductive
hypothesis and monotonicity of ss pacl , at the end of this transition, we know ss pacl(cw) �
orcon readers(j). If s(n) follows, then s(n) occurs in the period during which ss pacl (cw) is
invariant. By the inductive hypothesis, at the end of theOrconBeginProcessing transition we
know ss pacl(cw) � orcon readers(j).

Thus, at the end of the OrconBeginProcessing transition

readers(ck) � ss pacl(cw) � orcon readers(j) (2)

We now further divide this case into two subcases.

Case 2a: TheHave read permission used for s(n+2) is obtained after theHave write permission
for s(n + 1) is obtained.

The main and auxiliary conclusions follow from the monotonicity ofss acl and ss pacl , respec-
tively, together with (2).

Case 2b: The Have read permission used for s(n + 2) is not obtained after the Have write

permission for s(n + 1) is obtained.

We first note that, because k is locked against writing from the time at which permission
checking for s(n+2) begins through the processing ofs(n+2), s(n+1) must be processed before
the checking for s(n +2) begins. This means theHave read permission was not obtained during
the permission checking for s(n + 2). It must be retained either from an earlier permission
check or from the initial state.

Let tw be the state in whichHave write becomes available for s(n+1), and let tr be the state from
which Have read is retained for s(n + 2) (i.e., either the initial state, or the state in which the
Have read most recently becomes available). We know tr precedes tw . Assume the processing
of some permission request alters ss acl (ck) between tr and tw . This would generate a flush
request which, due to the security server locking protocol, must be completed beforetw . This
flush request would remove all Have read permissions to k , but this means that Have read

cannot be retained from tr through s(n + 2), and this is a contradiction. Thus, theHave write

permission check for s(n + 1) is made while ss acl(ck) has the same value as it does in state tr ,
and readers(ck) � orcon readers(j) in tr . The main conclusion follows directly from this. The
auxiliary conclusion follows from the monotonicity ofss pacl . 2

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

152
CDRL A019

Conclusion

Section 11
Conclusion

We have used a formal specification language, Z [32], to model a generic framework for systems
containing an object manager that enforces policy decisions made by a security server. The
DTOS microkernel has been specified as an instance of the generic manager and three example
security servers have been modeled and analyzed. A lattice of policy characteristics has also
been developed to study the implications that the separation of enforcement from decision-
making has on the policy flexibility of a system. The key factors limiting policy flexibility under
this separation are

the interface between the object manager and security server,

the ability to retract permissions, and

the degree of synchronization required for dynamic policies.

An example of an interface limitation is that a manager will only send selected pieces of
information to the security server in a permission request. Any policy that requires additional
information may be difficult or impossible to implement. For example, the DTOS microkernel
sends a requested permission identifier and a pair of security identifiers in a permission request.
Any policy that requires, for example, a requested priority level or the amount of memory to
be allocated could not be implemented. Early versions of DTOS were not completely capable
of retracting permissions because Mach caches the permissions in the page protection bits.
Although this has been resolved in later releases, there are still issues regarding the order in
which interactions between the manager and security server are processed and the degree of
synchronization required. Great care is required when implementing and analyzing a security
server for a retractive policy.

It has been found in this study that the DTOS kernel supports MLS/TE with little difficulty. It
only supports the piecemeal version of Clark-Wilson since the kernel will request permissions
only with respect to a single pair of SIDs. Of course, this relates to the more fundamental
inability of Mach tasks to request access to multiple objects in a single request. DTOS, as is,
does not support ORCON, but with some modification it could. We reiterate that the failure of
the kernel to support any policy is not a reflection on the general DTOS architecture, but only
on the particular DTOS kernel. A modified kernel or a new object manager, together with an
appropriate security server, could support Pure Clark-Wilson or ORCON on the objects that it
manages.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 153

Section 12
Notes

12.1 Acronyms

ACL Access Control List

CDI Constrained Data Item

CMU Carnegie Mellon University

DDT Domain Definition Table

DTOS Distributed Trusted Operating System

FSPM Formal Security Policy Model

IBAC Identity Based Access Control

IPC InterProcess Communication

MLS Multi-Level Secure

ORCON Originator Controlled

OSC Object Security Context

OSI Object Security Identifier

PACL Propagated Access Control List

SSC Subject Security Context

SSI Subject Security Identifier

TE Type Enforcement

TP Transformation Procedure

UDI Unconstrained Data Item

12.2 Glossary

access control list: a column of the security policy matrix; a list of (principal, permitted
access set) pairs.

capability: an object identifier and a set of accesses

environment: a row of the security policy matrix representing the permissions for a principal;
a list of capabilities.

security identifier: the name by which a principal or an object is identified to the Security
Server.

security policy: “the set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information” [21].

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

154
CDRL A019

Notes

12.3 Open Issues

The formalization of the various sensitivities is not entirely satisfying. For example,
the formalization of history sensitivity is too dependent upon the implementation of a
policy rather than the policy itself. (This criticism also applies to the static/dynamic
distinction.) Furthermore, the history sensitivity characteristic is probably too broad; a
manager might support some types of history sensitivity but not others. It is also rather
difficult to formally distinguish the other types of sensitivity from history-sensitivity as
defined. This suggests that the identified types of sensitivity are not an ideal set of
characteristics for use in the analysis of policies.

When defining the policy characteristics and placing policies into the policy lattice it
was at times necessary to consider how a policy might be implemented rather than the
abstract properties of the policy itself. This suggests that it might be more appropriate
to focus entirely on ways of implementing policies rather than on the policies themselves.
Further work would be needed to determine if this leads to a better classification scheme.

This study suggests that the problems of obtaining policy flexibility may be exacerbated
by the level of separation between manager and security server present in the DTOS
architecture. It is an open question to what degree this is actually true. Answering
this question would require performing an analysis similar to the one in this study but
with a more tightly coupled manager and security server. Of course there would also
be disadvantages to this tighter coupling. For example, if the security server code were
actually incorporated into the managers, then we could not change the security server
code without at least relinking the managers. This, too, is counter to policy flexibility.
The ideal solution most likely lies in solving the problems discussed in this report.

Another possible security policy characteristic to which we have given some thought is
whether each entity must have a unique SID and context. However, there are some
subtleties to this question, and we have not included it in our list.

Consider Clark-Wilson for example. Assume that individual i is authorized to execute TP
p on each of the sets of CDIs fa; b; cg and fd ; eg, but no other CDI sets. Assume i creates
one task t1 for executing p on a, b and c and then, while t1 is still executing, asks to create
another task t2 for executing p on d and e. There are two options: consider t1 and t2 to be
separate Clark-Wilson processes, or consider them to be two tasks operating within the
same Clark-Wilson process.36 If we choose the latter, that means that i may only have
one process at a time executing a given TP. It also makes it imperative that the manager
notify the security server when a process is terminated so that the TP can be executed
again. In this case t2’s requests for access to d and e must be denied since i is not allowed
to have a process executing p on fa; b; c; d ; eg. To ensure this, we must give the same SID
to t1 and t2.

If we choose to consider the two tasks to be different Clark-Wilson processes, then the
second request should be allowed. We also must be careful that t1 are t2 are separated in
such a way that t1 cannot access d and e and t2 cannot access a, b, and c. To achieve this,
we will need different SIDs on t1 and t2. In fact, every Clark-Wilson process must have
a unique SID. This approach is more flexible than the other one since an individual may
simultaneously run p on two different sets of CDIs. It also makes it less crucial that the
security server be notified of process termination.

To answer the question of whether unique SIDs are needed we must decide how abstract
concepts such as Clark-Wilson processes correspond to low-level, labeled entities such as

36We assume the former in our specification of Clark-Wilson.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 155

tasks, threads and ports. The above example suggests that, for Clark-Wilson, it would be
good to have a unique SID for each task. We suspect that this will also be true for many
other policies.

The DTOS design, but not the kernel, offers as least some support for this 1-1 relationship.
A security policy may be defined in such a way that the default version of task creation
(i.e., task create) in which the SID is inherited from the parent task is not allowed.
Furthermore, task create secure, in which a SID for the new task is specified as a
parameter, is disallowed unless the specified SID is different from that of any other task.
The DTOS design contains a security server request SSI transition domain37 that
may be used to obtain a SID for use in creating a new task. This means that the task
submitting the task create secure need not guess an unused SID but can simply use
SSI transition domain to ask for one. This will typically require modified versions
of all applications that create tasks through explicit kernel calls. Since the operating
system would probably be modified to request distinct SIDs automatically during process
creation, applications that create new tasks only through operating system calls need not
be modified.

The current generic security server specification requires that a permission be granted
only if it is in policy allows. For history based policies it might be convenient to also allow
the granting of permissions that are inpolicy allows

0. Consider a policy in which a request
for a permission A causes permission B to become grantable. To avoid an extra security
server interaction, the designer of a server might decide to grantB along with A. This
behavior does not pose a threat to any consistency theorem since by the timeB can be
used by the manager it will be in policy allows (assuming it is not removed after being
granted). This can be viewed as an issue of atomicity. An implementation of the security
server could first addB to the policy and then send the response granting bothA and B .
This two step process could be collapsed into a single transition in the specification. Of
course, the specification could also use a smaller atomicity breaking the larger transition
into two smaller ones corresponding to those described for the implementation.

37This request was not added to support a 1-1 relationship, but it can be used for this purpose if desired.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

156
CDRL A019

Bibliography

Appendix A
Bibliography

[1] Martín Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for
access control in distributed systems. ACM Transactions on Programming Languages
and Systems, 15(4):706–734, September 1993.

[2] Marshall D. Abrams. Renewed understanding of access control policies. InProceedings
16th National Computer Security Conference, pages 87–96, Baltimore, MD, September
1993.

[3] D. Elliott Bell and Leonard J. La Padula. Secure computer systems: Mathematical foun-
dations and model. Technical Report M74-244, The MITRE Corporation, May 1973.

[4] K. J. Biba. Integrity considerations for secure computer systems. Technical Report TR-
3153, Mitre Corp., Bedford, MA, 1977. Also available through Nat’l Technical Information
Service, Springfield, Va., Report No. NTIS AD-A039324.

[5] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity policies. In
Proceedings 8th National Computer Security Conference, pages 18–27, Gaithersburg, MD,
October 1985.

[6] David F. C. Brewer and Michael J. Nash. The Chinese wall security policy. In IEEE
Symposium on Security and Privacy, pages 206–214, Oakland, CA, May 1989.

[7] Maureen Harris Cheheyl, Morrie Gasser, George A. Huff, and Jonathan K. Millen. Veri-
fying security. ACM Computing Surveys, 13(3):279–339, September 1981.

[8] David D. Clark and David R. Wilson. A comparison of commercial and military computer
security policies. In IEEE Symposium on Security and Privacy, pages 184–194, Oakland,
CA, April 1987.

[9] Ellis Cohen and David Jefferson. Protection in the Hydra operating system. InProceedings
of the Fifth Symposium on Operating Systems Principles, Operating Systems Review 9,5,
pages 141–160, Austin, TX, November 1975.

[10] Dorothy E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, May 1976.

[11] Todd Fine, J. Thomas Haigh, Richard C. O’Brien, and Dana L. Toups. Noninterference
and unwinding for LOCK. InProceedings of Computer Security Foundations Workshop II,
pages 22–28, Franconia, NH, June 1989. IEEE.

[12] Joseph A. Goguen and José Meseguer. Security policy and security models. In IEEE
Symposium on Security and Privacy, pages 11–20, Oakland, CA, April 1982.

[13] G. Scott Graham and Peter J. Denning. Protection – principles and practice. InProceedings
AFIPS 1972 SJCC, volume 40, pages 417–429. AFIPS Press, 1972.

[14] Richard Graubart. On the need for a third form of access control. InProceedings 12th
National Computer Security Conference, pages 147–156, Baltimore, MD, October 1989.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A019
Generalized Security Policy 157

[15] Anita K. Jones and William A. Wulf. Towards the design of secure systems. Software –
Practice and Experience, 5:321–336, 1975.

[16] Catherine Jensen McCollum, Judith R. Messing, and LouAnna Notargiacomo. Beyond the
pale of MAC and DAC – defining new forms of access control. In IEEE Symposium on
Security and Privacy, pages 190–200, Oakland, CA, May 1990.

[17] Daryl McCullough. Noninterference and the composability of security properties. InIEEE
Symposium on Security and Privacy, pages 177–186, Oakland, CA, April 1988.

[18] John McLean. A general theory of composition for trace sets closed under selective in-
terleaving functions. In Proceedings IEEE Computer Society Symposium on Research in
Security and Privacy, Oakland, CA, May 1994.

[19] Catherine Meadows. Extending the Brewer-Nash model to a multilevel context. InIEEE
Symposium on Security and Privacy, pages 95–102, Oakland, CA, May 1990.

[20] Michael J. Nash and Keith R. Poland. Some conundrums concerning separation of duty.
In IEEE Symposium on Security and Privacy, pages 201–207, Oakland, CA, May 1990.

[21] NCSC. Trusted computer systems evaluation criteria. Standard, DOD 5200.28-STD,
US National Computer Security Center, Fort George G. Meade, Maryland 20755-6000,
December 1985.

[22] Richard C. O’Brien and Clyde Rogers. Developing applications on LOCK. InProceedings
14th National Computer Security Conference, pages 147–156, Washington, DC, October
1991.

[23] Edward A. Schneider, Stanley Perlo, and David Rosenthal. Discretionary access control
mechanisms for distributed systems. Technical Report RADC-TR-90-275, Rome Air De-
velopment Center, June 1990.

[24] Secure Computing Corporation. DTOS Composability Study. DTOS CDRL AO20, Se-
cure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536,
September 1995.

[25] Secure Computing Corporation. DTOS Covert Channel Analysis Plan. DTOS CDRL AO17,
Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536,
April 1995.

[26] Secure Computing Corporation. DTOS Covert Channel Analysis Report. DTOS CDRL
AO07, Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-
2536, May 1995.

[27] Secure Computing Corporation. DTOS Formal Security Policy Model. DTOS CDRL AO04,
Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536,
September 1996.

[28] Secure Computing Corporation. DTOS Formal Security Policy Model (Non-Z Version).
Technical report, Secure Computing Corporation, 2675 Long Lake Road, Roseville, Min-
nesota 55113-2536, September 1996.

[29] Secure Computing Corporation. DTOS Formal Top-Level Specification. DTOS CDRL
AO05, Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-
2536, December 1996.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902036A002 Rev A
1.7, 25 June 1997

158
CDRL A019

Bibliography

[30] Secure Computing Corporation. DTOS Kernel and Security Server Software Design Doc-
ument. DTOS CDRL A002, Secure Computing Corporation, 2675 Long Lake Road, Ro-
seville, Minnesota 55113-2536, December 1996.

[31] Secure Computing Corporation. DTOS Kernel Interfaces Document. DTOS CDRL AO03,
Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536,
January 1997.

[32] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International, 1992.

[33] Phil Terry and Simon Wiseman. A ‘new’ security policy model. In IEEE Symposium on
Security and Privacy, pages 215–228, Oakland, CA, May 1989.

[34] Thomas Y. C. Woo and Simon S. Lam. Authorization in distributed systems: A new
approach. Journal of Computer Security, 1994.

83-0902036A002 Rev A
1.7, 25 June 1997

Secure Computing Corporation
CAGE Code 0HDC7

