
Part Number 83-0902024A001 Rev A

Version Date 4 December 1996

DTOS FORMAL TOP-LEVEL SPECIFICATION
(FTLS)

CONTRACT NO. MDA904-93-C-4209
CDRL SEQUENCE NO. A005

Prepared for:
Maryland Procurement Office

Prepared by:

Secure Computing Corporation
2675 Long Lake Road

Roseville, Minnesota 55113

Authenticated by Approved by
(Contracting Agency) (Contractor)

Date Date

Distribution limited to U.S. Government Agencies Only. This document contains NSA
information (4 December 1996). Request for the document must be referred to the Director,

NSA.

Not releasable to the Defense Technical Information Center per DOD Instruction 3200.12.

c Copyright, 1994, Secure Computing Corporation. All Rights Reserved. This material may
be reproduced by or for the U.S. Government pursuant to the copyright license under the

clause at DFARS 252.227-7013 (OCT.88).

Formal Top Level Specification

DTOS FORMAL TOP-LEVEL SPECIFICATION
(FTLS)

Secure Computing Corporation

Abstract

This report formally describes a portion of the DTOS kernel.

Part Number 83-0902024A001 Rev A
Created 2 December 1994
Revised 4 December 1996
Done for Maryland Procurement Office
Distribution Secure Computing and U.S. Government
CM /home/cmt/rev/dtos/docs/ftls/RCS/ftls.vdd,v 1.21 4 December 1996

This document was produced using the TEX document formatting system and the LATEX style macros.

LOCKserverTM, LOCKstationTM, NETCourierTM, Security That Strikes BackTM, SidewinderTM, and
Type EnforcementTM are trademarks of Secure Computing Corporation.

LOCKR, LOCKguardR, LOCKixR, LOCKoutR, and the padlock logo are registered trademarks of Secure
Computing Corporation.

All other trademarks, trade names, service marks, service names, product names and images mentioned
and/or used herein belong to their respective owners.

c Copyright, 1994, Secure Computing Corporation. All Rights Reserved. This material may be
reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS
252.227-7013 (OCT.88).

CDRL A005
DTOS FTLS i

Contents

1 Scope 1
1.1 Identification : 1
1.2 System Overview : 1
1.3 Document Overview : 1

2 Applicable Documents 3

3 FTLS Overview 4
3.1 Internal Consistency Within the FTLS : 4
3.2 Comments on Request Specifications : 5
3.3 Typographic Conventions : 6

4 Basic Kernel State Definition 8
4.1 Primitive Entities : 8
4.2 Process Management : 10
4.3 Port Name Space : 19
4.4 Ports : 24
4.5 Notifications : 26
4.6 Special Ports : 27
4.7 Total Send Rights : 33
4.8 Registered Rights : 34
4.9 Memory System : 35
4.10 Messages : 42
4.11 Processors and Processor Sets : 53
4.12 Time : 55
4.13 Devices : 55
4.14 Summary : 57

5 DTOS State Extensions 59
5.1 Subject Security Information : 59
5.2 Object Security Information : 60
5.3 Security Identifiers for Access Computations : 62
5.4 Permissions : 64
5.5 Access Vector Cache : 71
5.6 Message Security Information : 73
5.7 Task Creation Information : 74
5.8 Server Ports : 76
5.9 Memory Region Protections : 76
5.10 Summary of DTOS Kernel State : 77

6 Kernel Execution Model 78
6.1 Execution Summary : 78
6.2 Utility Transitions : 80
6.3 Trap Invocation : 83
6.4 Initial mach msg processing : 84
6.5 Service Checks for IPC Based Kernel Requests : : : : : : : : : : : : : : : : : : : 86

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

ii
CDRL A005

CONTENTS

6.6 Request Validation : 89
6.7 Definitions : 91

7 System Trap Requests 97
7.1 Introduction to System Trap Requests : 97
7.2 mach thread self : 98

8 Port Requests 105
8.1 Introduction to Port Requests : 105
8.2 mach port allocate : 113
8.3 mach port get receive status : 119
8.4 mach port get refs : 124
8.5 mach port get set status : 130
8.6 mach port names : 134
8.7 mach port rename : 139
8.8 mach port request notification : 144
8.9 mach port set mscount : 158
8.10 mach port set qlimit : 162
8.11 mach port set seqno : 167

9 Thread Requests 172
9.1 Introduction to Thread Requests : 172
9.2 thread abort : 183
9.3 thread create and thread create secure : 188
9.4 thread depress abort : 196
9.5 thread disable pc sampling : 200
9.6 thread enable pc sampling : 203
9.7 thread get assignment : 208
9.8 thread get sampled pcs : 210
9.9 thread get special port : 215
9.10 thread get state : 222
9.11 thread info : 227
9.12 thread max priority : 234
9.13 thread policy : 239
9.14 thread priority : 243
9.15 thread resume and thread resume secure : 248
9.16 thread set special port : 253
9.17 thread set state and thread set state secure : : : : : : : : : : : : : : : : : : 260
9.18 thread suspend : 267
9.19 thread terminate : 270

10 Virtual Memory Requests 277
10.1 Introduction to Virtual Memory Requests : 277
10.2 vm allocate and vm allocate secure : 286
10.3 vm deallocate : 296
10.4 vm inherit : 299
10.5 vm protect : 303
10.6 vm write : 308

11 Notes 314
11.1 Acronyms : 314
11.2 Glossary : 314

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS iii

A Bibliography 315

B Z Extensions 316
B.1 Disjointness and Partitions : 316
B.2 Partial Orders : 317
B.3 Sequences : 318

C IPC 319
C.1 IPC Requests : 319
C.2 mach msg : 320

D Refinements of the State Model 348
D.1 Additional Z Extensions : 348
D.2 Refinement of IPC Name Spaces : 348
D.3 Refinement of Pending Receives : 354
D.4 Refinement of Virtual Memory : 356
D.5 Miscellaneous Refinements : 360

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

iv
CDRL A005

LIST OF FIGURES

List of Figures

1 Utility Transitions : 80
2 mach msg Trap Invocation : 84
3 Message Transmission : 86
4 Request Validation : 89
5 mach thread self Processing : 103

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS v

List of Tables

1 Return Values for mach thread self : 100
2 Return Values for mach port allocate : 117
3 State Change Cases for mach port allocate : 117
4 Return Values for mach port get receive status : : : : : : : : : : : : : : : : 122
5 Return Values for mach port get refs : 128
6 Return Values for mach port get set status : : : : : : : : : : : : : : : : : : : 133
7 Return Values for mach port names : 137
8 Return Values for mach port rename : 142
9 Return Values for mach port request notification : : : : : : : : : : : : : : : 150
10 Return Values formach port request notification, port-destroyed notification 151
11 Return Values for mach port request notification, no-senders notification : 152
12 Return Values for mach port request notification, dead-name notification : 152
13 State Change Cases for mach port request notification : : : : : : : : : : : : 154
14 Return Values for mach port set mscount : 161
15 Return Values for mach port set qlimit : 165
16 Return Values for mach port set seqno : 169
17 Return Values for thread abort : 185
18 Return Values for thread create : 191
19 Return Values for thread create secure : 191
20 Return Values for thread depress abort : 198
21 Return Values for thread disable pc sampling : : : : : : : : : : : : : : : : : : 202
22 Return Values for thread enable pc sampling : : : : : : : : : : : : : : : : : : 206
23 Return Values for thread get assignment : 210
24 Return Values for thread get sampled pcs : 213
25 Return Values for thread get sampled pcs : 213
26 Return Values for thread get sampled pcs : 213
27 Return Values for thread get sampled pcs : 214
28 Return Values for thread get special port : 220
29 Return Values for thread get special port : 220
30 Return Values for thread get state : 225
31 Return Values for thread get state : 225
32 Return Values for thread get state : 225
33 Return Values for thread info : 231
34 Return Values for thread info : 232
35 Return Values for thread info : 232
36 Return Values for thread max priority : 237
37 Return Values for thread policy : 241
38 Return Values for thread priority : 246
39 Return Values for thread resume : 250
40 Return Values for thread resume secure : 251
41 Return Values for thread set special port : 257
42 Return Values for thread set state : 263
43 Return Values for thread set state secure : 264
44 Return Values for thread suspend : 268
45 Return Values for thread terminate : 271
46 Return Values for vm allocate and vm allocate secure : : : : : : : : : : : : : 292

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

vi
CDRL A005

LIST OF TABLES

47 Return Values for vm deallocate : 298
48 Return Values for vm inherit : 302
49 Return Values for vm protect : 306
50 Return Values for vm write : 311

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 1

Section 1
Scope

1.1 Identification

This Formal Top Level Specification (FTLS) document presents a formal specification of a
portion1 of the prototype kernel developed on the Distributed Trusted Operating System
(DTOS) program, contract MDA904-93-C-4209.

1.2 System Overview

The DTOS prototype is an enhanced version of the CMU Mach 3.0 kernel that provides support
for a wide variety of security policies by enforcing access decisions provided to it by asecurity
server. By developing different security servers, a wide range of policies can be supported by the
same DTOS kernel. By developing a security server that allows all accesses, the DTOS kernel
behaves essentially the same as the CMU Mach 3.0 kernel. Although this is uninteresting from
a security standpoint, it demonstrates the compatibility of DTOS with Mach 3.0.

By using appropriately developed security servers, the DTOS kernel can support interesting
security policies such as MLS (multi-level security) and type enforcement. The first security
server planned for development is one that enforces a combination of MLS and type enforce-
ment.

1.3 Document Overview

The report is structured as follows:

Section 1, Scope, defines the scope and this overview of the document.

Section 2, Applicable Documents, describes other documents that are relevant to this
document.

Section 3, FTLS Overview, provides an introduction to this document.

Section 4, Basic Kernel State Definition, describes the data structures contained in
the Mach kernel state.

Section 5, DTOS State Extensions, describes extensions to the base Mach microkernel
state that are needed to support the DTOS kernel.

Section 6, Kernel Execution Model, describes the computational model used to model
the DTOS kernel requests and the processing that is common to multiple DTOS requests.

Section 7, System Trap Requests, describes a single request (swtch) that is invoked as
a system trap.

Section 8, Port Requests, describes a selection of the port manipulation requests.
1See Section 3 for a description the coverage.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

2
CDRL A005

Scope

Section 9, Thread Requests, describes a selection of the thread manipulation requests.

Section 10, Virtual Memory Requests, describes a selection of the virtual memory
manipulation requests.

Section 11, Notes, contains a partial list of acronyms and a small glossary for this docu-
ment.

Appendix A, Bibliography, provides the bibliographical information for the documents
referenced in this document.

Appendix B, Z Extensions, describes “extensions” to the Z specification language that
are used in the DTOS FTLS.

Appendix C, IPC Requests, describes the mach msg request. This section has not yet
been updated for DTOS. Currently, this section is a direct copy of the corresponding
DTMach FTLS [5] section with minor changes required for DTOS sections that depend
on this section and has been included only for easy reference.

Appendix D, Refinements of the State Model, refines portions of the state model to a
lower level of detail to model some of the data types and relationships that are used to
implement the high-level abstract model described in the Basic Kernel State Definition
and DTOS State Extensions chapters.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 3

Section 2
Applicable Documents

The following document provides a high level description of the Mach microkernel:

OSF Mach Kernel Principles [7]

The following documents provide a detailed description of the Mach and DTOS microkernels:

OSF Mach 3 Kernel Interface [6]

DTOS Kernel Interface Document (KID) [8]

The DTOS security policy model is described in

DTOS Formal Security Policy Model (FSPM) [9]

Much of this document was derived from the following document:

Formal Top Level Specification for Distributed Trusted Mach [5]

The following documents were used as additional sources of information on Mach:

A Mathematical Model of the Mach Kernel: Entities and Relations (Draft) [2]

A Mathematical Description of the Mach Kernel: Virtual Memory Services (Draft) [1]

A Mathematical Model of the Mach Kernel: Port Services (Draft) [3]

A Mathematical Model of the Mach Kernel: Task and Thread Services (Draft) [4]

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

4
CDRL A005

FTLS Overview

Section 3
FTLS Overview

This document provides a partial formal top-level specification (FTLS) of the DTOS micro-
kernel. We have made no attempt at complete coverage of the kernel interface. The FTLS
includes

A specification of the DTOS system state,

The general properties of request execution common to most requests,

One system trap request specification,

10 port request specifications,

21 thread request specifications, and

Six virtual memory request specifications.

There are roughly 150 requests in DTOS, so this document covers approximately 25% of the
DTOS kernel requests.

This document describes the system behavior both in English and in the Z formal specification
language. Thus, readers who are unfamiliar with Z can simply ignore the formal Z specifications
and read the English text.

Writing an FTLS is valuable because many behaviors of the system that have an impact on
security can easily be overlooked in a less formal description. This is particularly true of
behaviors which might be considered side effects of operations that have some other primary
purpose. We have found this to be especially relevant for Mach since, by design, objects in the
Mach microkernel have complex interactions. The process of formally specifying the behavior
of a system frequently brings these behaviors to the surface.

3.1 Internal Consistency Within the FTLS

During the initial phases of the DTOS program, the primary goals of the FTLS were clarity,
accuracy and completeness. As the program progressed, completeness in coverage was no longer
a goal and the importance of accuracy was also diminished, leaving room for experimentation
in the presentation of the FTLS. The result of this was that the FTLS is no longer internally
consistent.2

There are two causes of inconsistency:

Updates to the state model were not carried through to the request chapters. This only
affects the virtual memory requests.

The execution model was completely rewritten, and other thanmach thread self, none
of the request specifications were updated to conform with the new model. The specific
effects of the new model on the request specifications is described in the following section.

2For further discussion of the evolution of the FTLS, the reasons for this evolution and general lessons learned
while developing the FTLS, see the DTOS Lessons Learned Report[10].

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 5

3.2 Comments on Request Specifications

We have taken steps in writing this document to make the specifications easier to follow and
to aid readers in locating desired information. First, requests are generally grouped based
upon the type of kernel object to which the name given as the first parameter of the request
is resolved (see the discussion of the client and kernel interfaces later in this section). Thus,
requests whose first parameter is resolved to a thread (e.g.,thread abort), are in the Thread
Requests chapter. Requests whose first parameter is resolved to a name space are in the Port
Requests chapter, and requests whose first parameter is resolved to a memory map are in the
VM Requests chapter.3 There are, however, some exceptions to this rule. For example, the first
parameter of a thread create request is resolved to a task, but the request specification has
been placed in the Thread Requests chapter since it is so intimately linked to the rest of the
material in that chapter. This guideline does not apply at all to system trap requests many of
which do not even have any parameters. So, these requests are in a separate chapter.

Second, we have attempted to make the structure of each chapter and each request specification
as consistent as possible. Each chapter begins with an introduction that describes processing
that is common or similar for multiple requests in the chapter.

The remainder of each chapter specifies the behavior of individual requests. Each of these
specifications has the following structure:

1. Client Interface - the interface visible to the thread sending the request message. This
includes a C Synopsis similar to that given in the Kernel Interface Document.

(a) Input Parameters - the parameters included in the request message and the way in
which the request in invoked.

(b) Output Parameters - the parameters included in the reply message generated by the
request (note that some parameters may occur in both lists).

Editorial Note:
The client interface is not consistent with the new execution model because the new execution model
makes no attempt to model the client interface. The old model included hooks for such modeling
though they were not integrated at all with the rest of the specification.

2. Kernel Interface - the interface visible to the kernel when it calls the kernel service
routine.

(a) Input Parameters - the input parameters included in the call.

(b) Output Parameters - the output parameters included in the call (note that some
parameters may occur in both lists).

Editorial Note:
The kernel interface is not consistent with the new execution model. The old execution model was
based upon an abstraction which considered kernel requests to be received off of a message queue
rather than “directly” from a trap as in the updated execution model.
In the new execution model, the specification of the input interface is directly related to the extraction
of parameters from a request (ExtractRequest) while specification of the output interface leads into
the transition (Return) that describes the return from a kernel trap into user space.

3This draft of the FTLS does not explicitly represent name spaces and memory maps. It associates the names in
a space and the regions in a map with the task that contains the name space and the memory map. However, the
distinction between the task and the name space or memory map is still reflected in the division of the FTLS into
chapters.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

6
CDRL A005

FTLS Overview

3. Request Criteria - the conditions that determine the behavior of the request (i.e., return
values and state changes) in a given situation.

4. Return Values - a description of the value(s) returned in each possible situation as deter-
mined by the Request Criteria.

5. State Changes - a description of how the system state is changed by the request as
determined by the Request Criteria.

6. Complete Request - ties together the multiple pieces of the specification including the
common processing behavior specified in Section 6, Kernel Execution Model, and in
the appropriate chapter introduction plus the return value and state change behavior
described earlier in the given specification. This section is primarily of importance for the
formal specification in Z. Readers who are ignoring the Z can skip the Complete Request
sections entirely.

Editorial Note:
It is this section that is most directly influenced by the new execution model. With the new model,
it should be possible to describe the total processing of a request more coherently in english as well
as formally. See the specification of mach thread self for an example.

The following points should be made. First, some of the specifications contain a description
of the parts of the system state that are invariant in the request. Other specifications do not
contain such a description. In the cases where the invariants are specified, they have largely
been inherited from the DTMach FTLS with only minor editing. They should not be considered
to be highly reliable, particularly since the model of the system state presented in the DTOS
FTLS is changed significantly from the model in the DTMach FTLS.

Second, the specification for each of the IPC-based kernel requests describes both the client
and kernel interface. As stated above, the former describes the input and output parameters
included in the invocation message and the reply message while the latter describes the input
and output parameters included in the function call to the kernel routine. Typically, these
parameters differ only in that some of the Mach names have been resolved to the object named
(e.g., a thread, task, or port). We have not formally specified the relationship between these
two interfaces.

3.3 Typographic Conventions

Finally, we have established typographic conventions for the identifiers used in the FTLS. In
general, global objects in the specification contain capital letters while local objects are all in
lower case. More specifically, the identifiers have the following forms:

The names of Z schemas consist of capitalized words with no underscores between words
(e.g., SpecialThreadPorts).

Both schema components and variables consist of lower case words separated by under-
scores (e.g., task self).

Global constants defined through axiomatic, generic and free type definitions have the
first word capitalized, the remaining words in lower case and all the words separated by
underscores (e.g.,Values partition).

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 7

All other identifiers (i.e., given types, free types, abbreviations and generic parameters)
are printed in upper case with underscores to separate words (e.g.,PORT CLASS).

A request name appearing in the text is set in bold face with words separated by underscores as
they would be in a call within a program (e.g., thread create secure). In the formalization,
each request has an identifier which is declared as an axiomatic global constant and is therefore
typeset with the first word capitalized, the remaining words in lower case and all the words
separated by underscores (e.g., Thread create secure id). One other typographic convention
followed in this document is that components of the system state that are considered primitive
(as opposed to being derived from some other piece or pieces of the system state) have their
first character underlined (e.g., task self rel).

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

8
CDRL A005

Basic Kernel State Definition

Section 4
Basic Kernel State Definition

The following describes the data structures contained in the Mach kernel state. The organiza-
tion of this section is as follows:

Section 4.1, Primitive Entities, describes the primitive entities in Mach. Mach is an
object-based system having these primitive entities as the defined objects.
Section 4.2, Process Management, describes data structures associated with process
management.
Section 4.3, Port Name Space, describes data structures associated with task port name
spaces.
Section 4.4, Ports, describes data structures associated with ports.
Section 4.5, Notifications, describes data structures associated with registered notifica-
tions.
Section 4.6, Special Ports, describes the various classes of ports associated with the
primitive entities.
Section 4.7, Total Send Rights, describes the way in which send rights are counted in
the kernel.
Section 4.8, Registered Rights, describes the data structures used to record the set of
port rights registered for a task.
Section 4.9, Memory System, describes the data structures associated with the virtual
memory system.
Section 4.10, Messages, describes the data structures associated with messages.
Section 4.11, Processors and Processor Sets, describes the data structures associated
with processors and processor sets.
Section 4.12, Time, describes the data structures associated with clocks.
Section 4.13, Devices, describes the data structures associated with devices.

The model of Mach presented in this section consists of both primitive and derived notions. The
derived notions provide no additional information about the Mach state beyond that embodied
in the primitive notions. In the following sections, derived notions are noted as being conve-
niences. For example, Section 4.2.1 introduces the derived notion embodied by the function
threads to provide a more convenient representation for the primitive notion embodied by the
relation task thread rel . Although any statement about threads can be reworded as a statement
about task thread rel , it is often more desirable to write the statement in terms of threads. In
many cases, the choice of whether to view a structure as being primitive or derived is subjective.
For example, others might prefer to view task thread rel as being derived from threads instead
of threads being derived from task thread rel.

As a convention, we underline the first letter in the identifier for each primitive structure in
the Mach state. This is most useful when identifying which primitive structures are affected
by DTOS services.

4.1 Primitive Entities

The primitive entities in Mach are:

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 9

Tasks — environments in which threads execute; a task consists of an address space, a port
name space, and a set of threads

Threads — active entities comprised of an instruction pointer and a local register state

Ports — unidirectional communication channels between tasks

Messages — entities transmitted through ports

Memories — memory object representing a shared memory

Pages — logical units of memory; either a unit of physical memory or provided by a memory

Hosts — instances of the Mach kernel

Processors — devices capable of executing threads

Processor Sets — groups of processors, each belonging to a host, to which threads are as-
signed for scheduling

Devices — resources such as terminals and printers that can be used to transmit information
between the system and its environment

Each of these primitive entities can be viewed as an abstract data type.

Mach Definition 1

[TASK ; THREAD ; PORT ; MESSAGE ; MEMORY ; PAGE ;
HOST ; PROCESSOR; PROCESSOR SET ; DEVICE]

At any given time, only certain primitive entities are present in the system. The setstask exists,
thread exists, port exists, message exists, memory exists, page exists, proc exists, procset exists,
and device exists denote the entities of each class that are present in the current system state.

Mach Definition 2

TaskExist b= [task exists : �TASK]
ThreadExist b= [thread exists : �THREAD]
MessageExist b= [message exists : �MESSAGE]
MemoryExist b= [memory exists : �MEMORY]
PageExist b= [page exists : �PAGE]
ProcessorExist b= [proc exists : �PROCESSOR]
ProcessorSetExist b= [procset exists : �PROCESSOR SET]
DeviceExist b= [device exists : �DEVICE]

Ip null and Ip dead are two special values inPORT which are never in the set of existing ports.
port pointer consists of port exists plus the special values Ip null and Ip dead .

Mach Definition 3

Ip null ; Ip dead : PORT

Ip null 6= Ip dead

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

10
CDRL A005

Basic Kernel State Definition

Mach Definition 4

PortExist

port exists : �PORT
port pointer : �PORT

Ip null =2 port exists

Ip dead =2 port exists

port pointer = port exists [fIp null ; Ip deadg

Mach Definition 5

Exist

TaskExist

ThreadExist

PortExist

MessageExist

MemoryExist

PageExist

ProcessorExist

ProcessorSetExist

DeviceExist

Note that in the model, the kernel itself is viewed as an existing task and is denoted bykernel.

Mach Definition 6

Kernel

kernel : TASK
TaskExist

kernel 2 task exists

4.2 Process Management

This section describes the data structures associated with process management. Multi-
threaded processes are supported by allowing tasks to contain multiple threads.

4.2.1 Thread to Task Relationship

The relation task thread rel denotes the relationship between threads and tasks; a pair
(task ; thread) is an element of task thread rel exactly when thread is one of the threads contained
in task . Each thread belongs to exactly one task. For convenience, the following additional no-
tation is introduced:

owning task(thread) — the task to which thread belongs
threads(task) — the set of threads belonging to task

Mach Definition 7

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 11

TasksAndThreads

TaskExist

ThreadExist

task thread rel : TASK #THREAD

owning task : THREAD � TASK

threads : TASK ��THREAD

dom task thread rel � task exists

ran task thread rel = thread exists

owning task = task thread rel
�

threads

= (� task : TASK
j task 2 task exists

� task thread rel�ftaskg�)

4.2.2 Execution Status

The execution status of a thread identifies whether a thread is running, waiting on an event,
waiting uninterruptibly, and/or halted. A thread holds some subset of these characteristics
at any point in time. The type RUN STATES defines the possible thread characteristics.
RUN STATES has possible values Running , Stopped , Waiting , Uninterruptible and Halted .

Mach Definition 8

RUN STATES ::= Running j Stopped jWaiting j Uninterruptible j Halted

The values of this type have the following meanings:

Running — The thread is either executing on a processor or is in a run queue waiting to
execute.

Stopped — The thread has been asked to stop (and might have done so). A stopped thread
does not execute any instructions.

Waiting — The thread is waiting for an event.

Uninterruptible — The thread is waiting uninterruptibly.

Halted — The thread is halted at what the kernel considers to be a “clean” point (i.e., it
can be resumed properly).

The state Uninterruptible does not imply the stateWaiting . A run state that includes the former
but not the latter can result when the procedureclear wait is called on a thread that is both
Uninterruptible and Waiting . The expression run state(thread) indicates which of the above
characteristics are held by an existing thread.

Each thread has an associated suspend count that determines whether the thread may execute
user level instructions. This count is denoted by thread suspend count(thread). A thread may
execute such instructions only if the value of its suspend count is zero. It is a consequence of
the operation of the system (and therefore is not stated as an axiom here) that only stopped
threads have a suspend count greater than zero.

A thread may be swapped out. A thread that is swapped out has no kernel stack. The set of
such threads is indicated by swapped threads. Some threads may be wired into the system. A

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

12
CDRL A005

Basic Kernel State Definition

wired thread may not be swapped out. The set threads wired denotes the set of wired threads.
Certain threads are called idle threads. An idle thread is one that runs on a processor that has
no user threads to run. (That is, the thread keeps the processor “idling”.) User threads will not
be marked as idle. We use idle threads to denote the set of idle threads.

Mach Definition 9

ThreadExecStatus

ThreadExist

run state : THREAD ��RUN STATES

thread suspend count : THREAD �
swapped threads : �THREAD
threads wired : �THREAD
idle threads : �THREAD

domrun state = thread exists

dom thread suspend count = thread exists

swapped threads � thread exists

threads wired � thread exists

idle threads � thread exists

threads wired \ swapped threads = �

Each task also has a suspend count. The expressiontask suspend count (task) denotes the count
associated with task . If this value is non-zero, then none of the threads in task may execute
regardless of their individual suspend counts.

Mach Definition 10

TaskSuspendCount

task suspend count : TASK �

Review Note:
We should probably specify the relationships between task suspend count , thread suspend count and
run state here.

4.2.3 Priority Levels

Thread priority levels are used to determine thread execution scheduling priorities. Priority
levels are represented as a subset of the integers (in particular by the numbers between 0 and
31 inclusive in current implementations). The setPriority levels denotes the allowable priority
levels. The relation Lower priority indicates when a priority is lower than a second priority; in
particular, (x ; y) is an element of Lower priority exactly when x is a lower priority thany . Since
the implementation uses higher numbers to indicate lower priorities,x is lower than y when
x > y. The relation Higher priority is the inverse ordering indicating when a priority is higher
than a second priority. The constants Lowest possible priority and Highest possible priority

denote the maximum and minimum integers, respectively, inPriority levels.

Mach Definition 11

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 13

Priority levels : ��
Lower priority;Higher priority : �#�
Lowest possible priority;Highest possible priority : �

Lower priority � Priority levels � Priority levels

8 x ; y : Priority levels � (x ; y) 2 Lower priority , x > y

Higher priority = Lower priority�

Lowest possible priority = max Priority levels

Highest possible priority = min Priority levels

Using these relations, the minimum and maximum priorities in a set of priorities can be
defined. These are denoted by Lowest priority(priority set) and Highest priority(priority set),
respectively.

Mach Definition 12

Lowest priority;Highest priority : ����

domLowest priority = �
1
Priority levels

ranLowest priority = Priority levels

domHighest priority = �
1
Priority levels

ranHighest priority = Priority levels

8 priority set : �
1
� � Lowest priority(priority set) = max priority set

8 priority set : �
1
� � Highest priority(priority set) = min priority set

There is a highest priority (equal to 12 in current implementations) normally granted to ordi-
nary user threads. This priority is denoted byBase user priority.

Mach Definition 13

Base user priority : �

Base user priority 2 Priority levels

Three different types of priority values are associated with each thread.

The expression thread priority(thread) represents a base user-setable priority for thread .
The expression thread max priority(thread) represents the maximum value to which
thread priority(thread) can be set.
The expression thread sched priority(thread) represents the priority that the system uses
to make scheduling decisions. This value is determined based upon thread priority and
the thread scheduling policy (discussed in Section 4.2.4), and is not directly set by the
user. This value cannot exceed thread priority(thread).

The priority level of a thread can temporarily be depressed by the request swtch pri or
thread switch to allow other threads to run. When a thread is depressed, its priority is
set to the lowest possible priority.4 The set depressed threads denotes those threads whose
priority is currently depressed. The expression priority before depression(thread) denotes the
priority level thread had before depression if thread ’s priority level has been depressed and
thread priority(thread) otherwise.

Mach Definition 14
4Note, however, that not all threads having the lowest possible priority are depressed.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

14
CDRL A005

Basic Kernel State Definition

ThreadPri

ThreadExist

thread priority : THREAD ��
thread max priority : THREAD ��
thread sched priority : THREAD ��
depressed threads : �THREAD
priority before depression : THREAD ��

ran thread priority � Priority levels

ran thread max priority � Priority levels

ran thread sched priority � Priority levels

ran priority before depression � Priority levels

depressed threads � thread exists

dom thread priority = dom thread max priority = dom thread sched priority

= dompriority before depression = thread exists

8 thread : THREAD j thread 2 dom thread priority

� (thread priority(thread); thread max priority(thread)) =2 Higher priority

^ (thread sched priority(thread); thread priority(thread)) =2 Higher priority

8 thread : THREAD j thread 2 dom thread priority n depressed threads

� priority before depression(thread) = thread priority(thread)
8 thread : THREAD j thread 2 depressed threads

� thread priority(thread) = Lowest possible priority

Each existing task has an associated priority level, denoted bytask priority(task), that is used
to assign the initial priority for any thread created within the task.

Mach Definition 15

TaskPriority

TaskExist

task priority : TASK ��

dom task priority = task exists

ran task priority � Priority levels

4.2.4 Scheduling Policies

Each thread has an associated scheduling policy, represented by thread sched policy(thread).
The type SCHED POLICY represents the set of available scheduling policies. Examples of
supported policies are Timesharing (Timeshare) and Fixed Priority (Fixedpri). Some scheduling
policies have associated policy specific data that must be associated with each thread. For
example, threads scheduled under the Fixed Priority policy must have an associated scheduling
quantum. The type SCHED POLICY DATA denotes policy specific scheduling data. The
expression thread sched policy data(thread) denotes any such policy specific data associated
with thread . The set supported sp indicates which scheduling policies are actually supported by
a given Mach system. All Mach systems are required to supportTimeshare and each thread in
a Mach system must be assigned one of the scheduling policies supported by the system.

Mach Definition 16

[SCHED POLICY ; SCHED POLICY DATA]

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 15

Timeshare;Fixedpri : SCHED POLICY

Timeshare 6= Fixedpri

Mach Definition 17

ThreadSchedPolicy

ThreadExist

thread sched policy : THREAD � SCHED POLICY

thread sched policy data : THREAD � SCHED POLICY DATA

supported sp : � SCHED POLICY

dom thread sched policy data � dom thread sched policy = thread exists

Timeshare 2 supported sp

ran thread sched policy � supported sp

4.2.5 Instruction Pointer

The set VIRTUAL ADDRESS is used to denote the set of virtual addresses. These addresses
are assumed to be ordered in some manner withVm start and Vm end denoting, respectively,
the smallest and largest addresses.

Mach Definition 18

[VIRTUAL ADDRESS]

Vm start;Vm end : VIRTUAL ADDRESS

Each thread has an associated instruction pointer indicating the address at which the thread
is currently executing. The expression instruction pointer(thread) denotes thread ’s current in-
struction pointer.

Mach Definition 19

ThreadInstruction

instruction pointer : THREAD � VIRTUAL ADDRESS

4.2.6 Emulation Environment

Mach supports binary compatibility by allowing tasks to establish user-level handlers for sys-
tem calls. This is accomplished by associating an emulation vector with each task. Each
entry in an emulation vector specifies a system call and a virtual address. Whenever the task
executes a system call that has an entry in the emulation vector, the code at the specified
virtual address for the system call is executed rather than the system call. The expression
emulation vector(task) denotes task ’s emulation vector.

Mach Definition 20

EmulationVector

TaskExist

emulation vector : TASK �� VIRTUAL ADDRESS

domemulation vector = task exists

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

16
CDRL A005

Basic Kernel State Definition

4.2.7 Sampling

Any thread or task may be sampled. This causes the instruction pointer to be recorded in
a buffer during clock interrupts or page faults if the thread or task is currently execut-
ing. The type SAMPLE represents the sampling information that is collected, and type
SAMPLE TYPES represents information that determines at which times during execution
samples are collected for a given thread or task.

There are six recognized sample types. They are:

Sample periodic — each clock interrupt
Sample vm z�ll faults — zero-filling a virtual memory page
Sample vm reactivation faults — reactivating a virtual memory page
Sample vm pagein faults — bringing a virtual memory page in
Sample vm cow faults — virtual memory copy-on-write faults
Sample vm faults any — all virtual memory page faults. This includes miscellaneous
faults beyond the above mentioned four types of virtual memory faults.

These values comprise the elements of the setRecognized sample types .

Mach Definition 21

[SAMPLE ; SAMPLE TYPES]

Sample periodic; Sample vm z�ll faults;
Sample vm reactivation faults; Sample vm pagein faults;
Sample vm cow faults; Sample vm faults any : SAMPLE TYPES

Recognized sample types : � SAMPLE TYPES

hSample periodic; Sample vm z�ll faults;
Sample vm reactivation faults; Sample vm pagein faults;
Sample vm cow faults; Sample vm faults anyi

Values partition Recognized sample types

For convenience, SAMPLE VM FAULTS is used as the combination of the sample
types Sample vm z�ll faults, Sample vm reactivation faults, Sample vm pagein faults and
Sample vm cow faults.

There is a maximum number of samples (determined by the buffer size) that can be kept for
any thread or task. This maximum is represented byMax samples.

Mach Definition 22

SAMPLE VM FAULTS == fSample vm z�ll faults; Sample vm reactivation faults;
Sample vm pagein faults; Sample vm cow faultsg

Max samples : 1

The set sampled threads denotes the set of threads that are currently being sampled. For
each sampled thread there is a set of sample types, denoted by thread sample types(thread),
indicating when a sample should be taken for the thread. Each sample taken for a thread is
assigned a unique sequence number. The expression thread sample sequence number (thread)
denotes the sequence number of the most recent sample for a thread (or zero if no samples have

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 17

been collected). The expression thread samples(thread) denotes the currently stored samples
for thread . Each sample is stored with an associated sample number. Only theMax samples

most recent samples are retained.

Mach Definition 23

ThreadSampling

ThreadExist

sampled threads : �THREAD
thread sample types : THREAD �� SAMPLE TYPES

thread sample sequence number : THREAD �
thread samples : THREAD � (� SAMPLE)

sampled threads � thread exists

dom thread sample types = sampled threads

dom thread sample sequence number = sampled threads

dom thread samples = sampled threads

8 smpls : � SAMPLE ; thread : THREAD ;
num; high :

j (thread ; smpls) 2 thread samples

^ high = thread sample sequence number (thread)
^ num = min fhigh;Max samplesg

� dom smpls = high � num + 1 : : high

The same sampling information is kept for tasks.

Mach Definition 24

TaskSampling

TaskExist

sampled tasks : �TASK
task sample types : TASK �� SAMPLE TYPES

task sample sequence number : TASK �
task samples : TASK � (� SAMPLE)

sampled tasks � task exists

dom task sample types = sampled tasks

dom task sample sequence number = sampled tasks

dom task samples = sampled tasks

8 smpls : � SAMPLE ; task : TASK ;
num; high :

j (task ; smpls) 2 task samples

^ high = task sample sequence number(task)
^ num = min fhigh;Max samplesg

� dom smpls = high � num + 1 : : high

4.2.8 Thread Time Statistics

The system records time statistics for each thread. The following information is recorded:

user time(thread) — the total user run time for thread
system time(thread) — the total system run time for thread

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

18
CDRL A005

Basic Kernel State Definition

cpu time(thread) — thread ’s scaled CPU usage
sleep time(thread) — the amount of time for which thread has been sleeping

Mach Definition 25

ThreadStatistics

ThreadExist

user time : THREAD �
system time : THREAD �
cpu time : THREAD �
sleep time : THREAD �

domuser time = domsystem time = dom cpu time = dom sleep time

= thread exists

Review Note:
Should the domain of sleep time be all threads or only those with a particular run state?

4.2.9 Machine State

The system records the machine state of each thread. Typically, the structure of the machine
state varies depending upon the architecture of the machine to which the thread is assigned.
The type SUPP MACHINE ARCH represents the set of supported machine architectures. The
set THREAD STATE INFO TYPES denotes the names of the various structures that are
associated with the supported architectures. The typeTHREAD STATE INFO denotes the
possible values of the state information recorded for a thread.

The expression State info avail (arch) denotes the types of state information which the archi-
tecture supports.

Mach Definition 26

[SUPP MACHINE ARCH]
[THREAD STATE INFO TYPES ;THREAD STATE INFO]

State info avail : SUPP MACHINE ARCH

"�THREAD STATE INFO TYPES

The expression thread state(thread ; info type) returns the indicated type of state information
recorded for thread .

Mach Definition 27

ThreadMachineState

ThreadExist

thread state : THREAD �THREAD STATE INFO TYPES

�THREAD STATE INFO

dom thread state = thread exists �THREAD STATE INFO TYPES

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 19

Review Note:
Actually, the current instruction pointer is part of the machine state rather than being a separate state
component.

Mach Definition 28

Threads

TasksAndThreads

ThreadPri

ThreadSchedPolicy

ThreadInstruction

ThreadExecStatus

ThreadStatistics

ThreadMachineState

ThreadSampling

TaskSampling

4.3 Port Name Space

Each task uses its own (local) set of names to refer to ports. The setNAME is used to name
ports in a task’s name space.

Mach Definition 29

[NAME]

The names Mach port null and Mach port dead are reserved. They will never be used as an
index in a task’s port name space. The remainder of this section discusses the three types of
entities that can be in name spaces: port rights, port sets, and dead names.

Mach Definition 30

Mach port dead : NAME

Mach port null : NAME

4.3.1 Port Rights

A port is only of use to a task if the task holds some kind of right to the port. The types of
available rights are defined via the typeRIGHT . A right for a port allows a task to either send
or receive messages via that port. The task may have either a general right to send messages
via a port or a one-time right to do so. Thus, the elements of typeRIGHT are: Send , Receive,
and Send once .

A Capability is the combination of a port and a right to do something with that port.

Strictly speaking, a task associates a name with a particular right to a port, not simply with
the port. The set port right rel relates the ports to which a task has rights with their right
types and their local names. More specifically, each element ofport right rel is a tuple of the
form (task ; port; name ; right; i). Such a tuple is an element of port right rel only when name

denotes in task ’s name space a right of type right to port. The i-value is used to allow a task
to accumulate multiple send rights under the same name. For send-once or receive rights, the

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

20
CDRL A005

Basic Kernel State Definition

value of i is always equal to 1. For convenience, the expressionnamed port(task ; name) denotes
the port associated with name in task ’s name space.

At most one task can receive messages from a port at any given time. The expression
receiver(port) denotes the task (if any) that is currently permitted to receive messages from
port , and receiver name(port) denotes the receiver task’s name for the port.

Many tasks may have Send or Send once rights to a port. The relation sender indicates the
tasks currently permitted to send messages to a port; an element(port ; task) is in sender exactly
when task has a send right to port .

Mach Definition 31

RIGHT ::= Send j Receive j Send once

Capability

port : PORT
right : RIGHT

TasksAndPorts

TaskExist

PortExist

port right rel : �(TASK � PORT � NAME � RIGHT � 1)
named port : TASK �NAME � PORT

receiver : PORT � TASK

receiver name : PORT �NAME

sender : PORT #TASK

port right rel � task exists � port exists � NAME � RIGHT � 1
8 task : TASK ; port : PORT ; right : RIGHT ; i : 1
� (task ; port;Mach port null ; right; i) =2 port right rel

^ (task ; port;Mach port dead ; right; i) =2 port right rel

named port = f task : TASK ; port : PORT ; name : NAME ; right : RIGHT ; i : 1
j (task ; port; name; right; i) 2 port right rel � ((task ; name); port)g

receiver = f task : TASK ; port : PORT ; name : NAME

j (task ; port; name;Receive; 1) 2 port right rel � (port ; task) g
receiver name = f task : TASK ; port : PORT ; name : NAME

j (task ; port; name;Receive; 1) 2 port right rel � (port ; name) g
sender = f task : TASK ; port : PORT ; name : NAME ; right : RIGHT ; i : 1
j (((task ; port; name; right; i) 2 port right rel) ^ right 2 fSend ; Send onceg)
� (port ; task) g

The i-value is called the user reference count. As noted above, it is equal to 1 for receive and
send-once rights, but is of interest for send rights. The expressions right ref count (task ; name)
returns the user reference count forname in task ’s name space (when it is a send right). There
is a system-wide maximum number of references to a given send right which a task may
accumulate, represented byMax right refs.

Mach Definition 32

Max right refs : 1

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 21

Mach Definition 33

UserReferenceCount

TasksAndPorts

s right ref count : TASK �NAME �1

8 task : TASK ; port : PORT ; name : NAME ; right : fReceive; Send onceg; i : 1
� (task ; port; name; right; i) 2 port right rel) i = 1
s right ref count = f task : TASK ; port : PORT ; name : NAME ; i : 1
j (task ; port; name; Send ; i) 2 port right rel � ((task ; name); i)g
8 task : TASK ; name : NAME � s right ref count(task ; name) � Max right refs

For convenience:

The relations s right, r right , and so right are used to identify the names of each of the
types of rights which are associated with a given task. For example, (task ; name) is an
element of s right exactly when name is a send right in task ’s name space.
The relation s r right is used to identify names that are either a receive or a send right.
The relation port right namep identifies names that are either receive, send, or send-once
rights.

The semantics of Mach are such that send and receive rights within a task coalesce into a single
name. In other words:

If name is a receive right for port in task ’s name space, then no other name in task ’s name
space may be a send right for port ; the send rights must be associated withname , too.
If name is a send right for port in task ’s name space, then all of the send rights forport in
task ’s name space are associated with name .

Note, however, that the same task can have multiple names associated with send-once rights
for the same port. Mach prohibits a name that is a send or a receive right from also being a
send-once right.

A message may be forcibly enqueued using a send right. In this case it will be added to the
message queue of the named port even if the queue has reached its designated size limit. At
most one message may be forcibly enqueued at a time using any given send right. After that
message is removed from the queue, a message-accepted notification is sent and the send right
can again be used to forcibly enqueue a message. The component f orcibly queued (task ; name)
denotes the message, if any, forcibly enqueued using a send rightname in task ’s ipc name space.

Mach Definition 34

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

22
CDRL A005

Basic Kernel State Definition

TasksAndRights

MessageExist

TasksAndPorts

s right : TASK #NAME

r right : TASK # NAME

so right : TASK # NAME

s r right : TASK #NAME

port right namep : TASK # NAME

f orcibly queued : (TASK � NAME)�MESSAGE

s right = f task : TASK ; port : PORT ; name : NAME ; i : 1
j (task ; port; name; Send ; i) 2 port right rel � (task ; name)g

r right = f task : TASK ; port : PORT ; name : NAME

j (task ; port; name;Receive; 1) 2 port right rel � (task ; name)g
so right = f task : TASK ; port : PORT ; name : NAME

j (task ; port; name; Send once ; 1) 2 port right rel � (task ; name)g
s r right = s right [r right

port right namep = s r right [so right

dom f orcibly queued � s right

ran f orcibly queued � message exists

disjoint hso right; s r righti
8 task : TASK ; name1; name2 : NAME

� (task ; name1) 2 s r right ^ (task ; name2) 2 s r right

^ named port(task ; name1) = named port(task ; name2)
) name1 = name2

Review Note:
I’d like to tie the message indicated by f orcibly queued back to the port indicated by the send right, but
I’m not sure this will be accurate.

4.3.2 Port Sets

A port set is a set of ports associated with a particular task and name. A port set is used to
allow the receiving of a message via any member of the port set. Given a task and a port set
name, the expression port set(task ; name) denotes the port set. The relation port set namep

identifies the port set names associated with each task. containing set(port) denotes the name
of the port set containing port, if any. Note that a port can be in at most one port set.

Mach prohibits the reserved names Mach port null and Mach port dead from being port set
names or the inclusion of the same receive right in two different port sets.

Mach Definition 35

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 23

PortSets

TaskExist

TasksAndRights

port set rel : �(TASK �NAME � �PORT)
port set : (TASK �NAME)��PORT
port set namep : TASK #NAME

containing set : PORT � NAME

port set = ftask : TASK ; name : NAME ; set of ports : �PORT
j (task ; name; set of ports) 2 port set rel � ((task ; name); set of ports)g

port set namep = domport set

containing set = ftask : TASK ; name : NAME ; port : PORT
j (task ; name) 2 port set namep ^ port 2 port set(task ; name)
� (port ; name)g

domport set namep � task exists

8 task : TASK ; name : NAME ; port : PORT j (task ; name) 2 domport set

� port 2 port set(task ; name)) task = receiver(port)
8 task : TASK ; set of ports : �PORT
� ((task ;Mach port null); set of ports) =2 port set

^ ((task ;Mach port dead); set of ports) =2 port set

8 task : TASK ; name1; name2 : NAME

j (task ; name1) 2 domport set ^ (task ; name2) 2 domport set

� name1 6= name2) disjoint hport set(task ; name1); port set(task ; name2)i

4.3.3 Dead Rights

A dead name is a name which previously named a send, receive, or send-once right for a task,
but no longer does.5 Each dead name in a task can have an associated count that is analogous
to the reference count associated with send rights. This count is initially set based on the user
reference counts for the right previously bearing the name. The count may be modified by
subsequent actions of the kernel. The relation dead right rel identifies the dead names and
their associated counts for each task; an element(task ; name; i) is an element of dead right rel

if name is a dead name in task with associated count i . The previously defined constant,
Max right refs, is a system-wide maximum for the reference count of a given dead right. For
convenience:

The relation dead namep identifies the dead names associated with each task.
The expression dead right ref count (task ; name) denotes the count associated with name
in task (when name is a dead name).

Mach prohibits Mach port null and Mach port dead from being dead names.

Mach Definition 36

5A dead name may also be specified in the body of a message in place of an actual port right.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

24
CDRL A005

Basic Kernel State Definition

DeadRights

dead right rel : �(TASK � NAME � 1)
dead right ref count : TASK � NAME �1
dead namep : TASK #NAME

dead right ref count = ftask : TASK ; name : NAME ; i : 1
j (task ; name; i) 2 dead right rel � ((task ; name); i)g
dead namep = domdead right ref count

8 task : TASK ; name : NAME

� dead right ref count(task ; name) � Max right refs

8 task : TASK
� (task ;Mach port null) =2 dead namep

^ (task ;Mach port dead) =2 dead namep

4.3.4 Summary

A task’s port right names (send, receive, and send-once), port set names, and dead names are
mutually disjoint. The union of port right namep, port set namep, and dead namep identifies
the names in each task’s name space. For convenience:

The relation local namep is used to denote this union.
The expression number of rights(task) is used to denote the number of names that
local namep associates with task . This is the current size of task ’s name space.

Mach Definition 37

PortNameSpace

TaskExist

TasksAndPorts

TasksAndRights

UserReferenceCount

PortSets

DeadRights

local namep : TASK # NAME

number of rights : TASK �

disjoint hport right namep ; port set namep ; dead namepi
local namep = port right namep [port set namep [dead namep

domnumber of rights = task exists

8 task : TASK j task 2 task exists

� number of rights(task) = #(local namep�f task g�)

4.4 Ports

This section describes data structures associated with ports.

4.4.1 Make Send Count

Each time the receiver for a port creates a new send right for the port, the system increments
a counter associated with the port. The expressionmake send count (port) denotes the value

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 25

of the counter associated with port. Note that this count does not necessarily represent the
current number of send rights for the port since tasks other than the receiver can create send
rights. Furthermore, the count does not necessarily represent the number of send rights the
receiver has created because the count can directly be set to arbitrary values by user threads.

Mach Definition 38

SendRightsCount

PortExist

make send count : PORT �

dommake send count = port exists

4.4.2 Message Queues

Each port has an associated message queue. A message queue can be thought of as a sequence
of messages. In Mach, a task may set a limit on the number of messages that are permitted
in a given message queue. The value Mach port q limit default represents the default limit
the kernel uses for newly allocated ports. The value Mach port q limit max represents a
system-imposed limit on the value a task may specify as the limit for a message queue.

Mach Definition 39

Mach port q limit max :
Mach port q limit default :

For each port, q limit(port) indicates the current limit set for the port. This denotes an in-
tended bound on the number of messages in the associated message queue. The expression
port size(port) indicates the number of messages that are actually present inport ’s message
queue. Although it is intended thatport size(port) is always less than or equal toq limit(port),
the kernel does not actually guarantee that this property always holds. Examples of ways in
which the property may be violated include:

The intended bound on the number of messages in a queue can be decreased below the
number of messages already in the queue.
Messages sent with a send-once right are delivered regardless of whether the destination
port’s queue is already full.
Each name for a send right to a port may be used to forcibly enqueue one message at a
time to the named full port.

The expression message in port rel(port) denotes the sequence of messages in the queue asso-
ciated with port. Each message is contained in at most one message queue. For convenience,
the expression containing port(message) is used to indicate the port associated with the message
queue to which message belongs.

Each port has an associated sequence number that is used to properly sequence messages
received through the port. The expression sequence no(port) indicates port ’s current sequence
number.

Mach Definition 40

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

26
CDRL A005

Basic Kernel State Definition

MessageQueues

PortExist

q limit : PORT �
message in port rel : PORT " iseqMESSAGE

port size : PORT �
containing port :MESSAGE � PORT

sequence no : PORT ��

containing port = fmessage :MESSAGE ; port : PORT
j message 2 ran(message in port rel(port)) � message 7! port g

(8 port : port exists

� port size(port) = # (message in port rel(port))
^ q limit(port) � Mach port q limit max)

domq limit = port exists

dommessage in port rel = port exists

domsequence no = port exists

4.4.3 Summary

The data structures defined in this section consist of make-send counts, message queues, and
sequence numbers associated with ports.

Mach Definition 41

PortSummary

SendRightsCount

MessageQueues

4.5 Notifications

A task may request that a notification message be sent when one of the following changes
occurs in the status of a port:

The port is destroyed.
The last send right for the port is deallocated.

A task may also request a notification message be sent when a send right becomes a dead name.
In each case, the task requesting the notification must register a port to which the notification
should be sent.

The relation port notify destroyed rel identifies the ports for which a destroyed noti-
fication has been requested and the associated notification ports. For convenience,
port notify destroyed(port) is used to denote the notification port registered for a destroyed
notification on port.

The relation port notify no more senders rel identifies the ports for which a no-more-senders
notification has been requested and the associated notification ports. For convenience,
port notify no more senders(port) is used to denote the notification port registered for a no-
more-senders notification on port.

The relation port notify dead rel identifies the task-name pairs for which a dead-name
notification has been requested and the associated notification ports. For convenience,

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 27

port notify dead (task ; name) is used to denote the notification port registered for a dead-name
notification on name in task ’s name space.

The registered notification ports remain in force as long as both the port in question and the
registered port exist regardless of whether the same tasks remain related to these ports.

Mach Definition 42

Noti�cations

PortExist

TasksAndPorts

port notify destroyed rel : PORT # PORT

port notify no more senders rel : PORT # PORT

port notify dead rel : �(PORT � TASK � NAME)
port notify destroyed : PORT � PORT

port notify no more senders : PORT � PORT

port notify dead : TASK � NAME � PORT

port notify destroyed = port notify destroyed rel

port notify no more senders = port notify no more senders rel

8 task : TASK ; port : PORT ; name : NAME

� ((port ; task ; name) 2 port notify dead rel

, ((task ; name); port) 2 port notify dead)

domport notify destroyed = port exists

domport notify no more senders = port exists

domport notify dead = domnamed port

ran port notify destroyed � port exists [fIp nullg
ran port notify dead � port exists [fIp nullg
ran port notify no more senders � port exists [fIp nullg

Review Note:
Should the range of these functions also include Ip dead? It seems that it should because the port could
die. Should look at the code to see what happens if we try to send a notification in this situation.

4.6 Special Ports

This section describes the special ports known to the kernel. Each of the special ports is
associated with some kernel entity.

4.6.1 Task Ports

In addition to the ports referenced in its port name space, each task has four special ports. The
self port is used to request the kernel to perform actions upon the task. Any task holding a
send right to a second task may use that right to request operations on the second task. The
kernel is always the receiver for a task’s self port. A task’s sself port is normally equal to its
self port, but may refer to a different port and have a task other than the kernel, such as a
debugger, as its receiver. The relations task self rel and task sself rel identify the self and
sself ports associated with each task.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

28
CDRL A005

Basic Kernel State Definition

The other two special ports are the exception port and the bootstrap port. A task receives
exception messages from the kernel via its exception port. A task’s bootstrap port is provided
as a start-up means for a task to obtain a send right to a service port for a server that can
provide the task start-up information. The relations task eport rel and task bport rel identify
the exception port and bootstrap port associated with each task. The sself, exception and
bootstrap ports may be modified. Unlike the self port, they may become Ip null or Ip dead .

For convenience:

The expression task self (task) denotes task ’s self port.
The expression task sself (task) denotes task ’s sself port.
The expression task eport(task) denotes task ’s exception port.
The expression task bport(task) denotes task ’s bootstrap port.
The expression self task (port) denotes the task (if any) having port as its self port.

Mach Definition 43

SpecialTaskPorts

TaskExist

PortExist

Kernel

TasksAndPorts

task self rel : TASK # PORT

task sself rel : TASK # PORT

task eport rel : TASK # PORT

task bport rel : TASK # PORT

task self : TASK � PORT

task sself : TASK � PORT

task eport : TASK � PORT

task bport : TASK � PORT

self task : PORT �TASK

task self = task self rel

task eport = task eport rel

task bport = task bport rel

task sself = task sself rel

dom task self = dom task sself = dom task eport = dom task bport = task exists

ran task self � port exists

ran task sself � port pointer

ran task eport � port pointer

ran task bport � port pointer

self task = port exists � (task self
�)

8 task : TASK j task 2 task exists � receiver(task self (task)) = kernel

4.6.2 Thread Ports

Each thread has a self port, sself port, and an exception port with purposes parallel to the cor-
responding special ports for tasks. The relations and functionsthread self rel , thread sself rel,
thread eport rel , thread self , thread sself , thread eport, and self thread are used to denote these
state components.

Mach Definition 44

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 29

SpecialThreadPorts

ThreadExist

PortExist

TasksAndPorts

Kernel

thread self rel : THREAD # PORT

thread sself rel : THREAD # PORT

thread eport rel : THREAD # PORT

thread self : THREAD � PORT

thread sself : THREAD � PORT

thread eport : THREAD � PORT

self thread : PORT � THREAD

thread self rel = thread self

thread sself rel = thread sself

thread eport rel = thread eport

dom thread self = thread exists

dom thread sself = thread exists

dom thread eport = thread exists

ran thread self � port exists

ran thread sself � port pointer

ran thread eport � port pointer

self thread = port exists � (thread self
�)

8 thread : THREAD j thread 2 thread exists � receiver(thread self (thread)) = kernel

4.6.3 Memory Ports

A kernel and a memory object interact by engaging in a dialogue. The kernel sends messages
to an object port and the object manager sends messages to a control port. There is also a
name port used to identify the object in vm region requests. The relations object port rel,
control port rel , and name port rel are used to represent the binding between a memory and
its associated ports. For a particular Mach host kernel, there is at most one of each type of port
associated with a given memory. Furthermore, no object port is associated with more than one
memory object. For convenience:

The expressions object port(memory), control port(memory), and name port(memory) are
used to denote, respectively, the object, control, and name port formemory.
The expression object memory(port) denotes the memory object (if any) for which port is
the object port.
The expression control memory(port) denotes the memory object (if any) for which port is
the control port.

Memory objects are given a name port immediately upon allocation. However, they need not
necessarily have object and control ports until a page that they back needs to be paged out.

Mach Definition 45

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

30
CDRL A005

Basic Kernel State Definition

MemoriesAndPorts

Kernel

MemoryExist

TasksAndPorts

object port rel :MEMORY # PORT

control port rel :MEMORY # PORT

name port rel :MEMORY # PORT

object port :MEMORY � PORT

control port :MEMORY � PORT

name port : MEMORY � PORT

object memory : PORT �MEMORY

control memory : PORT �MEMORY

object port rel = object port

control port rel = control port

name port rel = name port

object port� = object memory

control port� = control memory

domcontrol port rel = domobject port rel � domname port rel

domname port rel = memory exists

8 port : PORT j port 2 ran control port rel

� port 2 domreceiver ^ receiver(port) = kernel

8 port : PORT j port 2 ran name port rel

� port 2 domreceiver ^ receiver(port) = kernel

4.6.4 Host Ports

Each host has two associated ports: the control port and the name port. These ports are
denoted by host control port and host name port. The kernel is the receiver for each of these
ports. The name port is used to service “unprivileged” requests while the control port is used
to service “privileged” requests.

Mach Definition 46

HostsAndPorts

Kernel

TasksAndPorts

host control port : PORT
host name port : PORT

(host name port; kernel) 2 receiver
(host control port; kernel) 2 receiver

4.6.5 Processor Ports

Each processor has a port that is used to name it. The relationprocessor port rel indicates the
association between processors and their name ports. There is exactly one port associated with
each processor. For convenience, proc self (proc) and the processor(port) are used to denote,
respectively, the port associated with a given processor and the processor associated with a
given port.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 31

Each processor set has two associated ports: the control port and the name port. The relations
ps control port rel and ps name port rel are used to represent the binding between a processor
set and its associated ports. In Mach, there is exactly one of each type of port associated with
each existing processor set. For convenience:

The expression controlled proc set(port) is used to indicate the processor set (if any) having
port as its control port.
The expression procset self (procset) is used to indicate procset ’s control port.
The expression named proc set(port) is used to indicate the processor set (if any) having
port as its name port.
The expression procset name port(procset) is used to indicate procset ’s name port.

Mach Definition 47

ProcessorsAndPorts

Kernel

TasksAndPorts

processor port rel : PROCESSOR # PORT

ps control port rel : PROCESSOR SET # PORT

ps name port rel : PROCESSOR SET # PORT

proc self : PROCESSOR� PORT

the processor : PORT � PROCESSOR

controlled proc set : PORT � PROCESSOR SET

procset self : PROCESSOR SET � PORT

named proc set : PORT � PROCESSOR SET

procset name port : PROCESSOR SET � PORT

domps control port rel = domps name port rel

processor port rel
� = the processor

processor port rel = proc self

ps control port rel
� = controlled proc set

ps control port rel = procset self

ps name port rel
� = named proc set

ps name port rel = procset name port

8 port : PORT j port 2 ran ps control port rel

� port 2 domreceiver ^ receiver(port) = kernel

8 port : PORT j port 2 ran ps name port rel

� port 2 domreceiver ^ receiver(port) = kernel

8 port : PORT j port 2 ran processor port rel

� port 2 domreceiver ^ receiver(port) = kernel

4.6.6 Device Ports

Each device is represented by a unique port. The relationdevice port rel identifies the device
port representing each device. The kernel is the receiver for a device port. For convenience:

The expression device port(dev) is used to denote dev ’s device port.
The expression port device(port) is used to denote the device (if any) having port as its
device port.

Mach Definition 48

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

32
CDRL A005

Basic Kernel State Definition

DevicesAndPorts

TasksAndPorts

Kernel

device port rel : DEVICE # PORT

device port : DEVICE � PORT

port device : PORT �DEVICE

device port = device port rel

port device = device port rel
�

8 port : PORT j port 2 ran device port rel

� port 2 domreceiver ^ receiver(port) = kernel

4.6.7 Device Master Port

Tasks gain access to devices through the device master port which is denoted by
master device port . The kernel is the receiver for this port.

Mach Definition 49

MasterDevicePort

TasksAndPorts

Kernel

master device port : PORT

(master device port ; kernel) 2 receiver

4.6.8 Summary

Each special port for which the kernel is always the receiver must be distinct from all of the
other special ports for which the kernel is always the receiver. For example, no two tasks may
have the same self port, and no port may be both a task self port and a thread self port. Note,
however, that the kernel does not prohibit overlaps between the special ports for which the
kernel is always the receiver and the other special ports. For example, a task’s bootstrap port
might be set to some others task’s self port (even though this would probably not serve any
useful purpose).

Mach Definition 50

SpecialPurposePorts

SpecialTaskPorts

SpecialThreadPorts

MemoriesAndPorts

HostsAndPorts

ProcessorsAndPorts

DevicesAndPorts

MasterDevicePort

disjoint h ran task self ; ran thread self ; ran control port ; ranobject port;
ran name port ; f host control port g; f host name port g;
ran ps control port rel; ran ps name port rel ; ranprocessor port rel;
ran device port rel; fmaster device port g i

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 33

Editorial Note:
The following needs some revision:

Add port classes for pager name ports and pager (object) ports.

Correct the misunderstanding that a port in a port class must have the kernel as the receiver.
While this is true for most classes, memory object (pager) ports are a notable exception.

The type PORT CLASS denotes the classes of ports for which the kernel is the receiver.
These are Pc task , Pc thread , Pc host control , Pc host name , Pc ps control , Pc ps name,
Pc processor , Pc memory, and Pc device .

If the kernel is the receiver for port , then the expression port class(port) denotes port ’s class.

Mach Definition 51

PORT CLASS ::= Pc task j Pc thread j Pc host control j Pc host name

j Pc ps control j Pc ps name j Pc processor j Pc memory

j Pc device

PortClasses

SpecialPurposePorts

port class : PORT � PORT CLASS

8 port : PORT
� (port 2 ran task self) (port;Pc task) 2 port class)
^ (port 2 ran thread self) (port ;Pc thread) 2 port class)
^ (port = host control port) (port ;Pc host control) 2 port class)
^ (port 2 ran device port rel) (port ;Pc device) 2 port class)
^ (port 2 ran control port rel) (port ;Pc memory) 2 port class)
^ (port = host name port) (port ;Pc host name) 2 port class)
^ (port 2 ran ps control port rel) (port ;Pc ps control) 2 port class)
^ (port 2 ran ps name port rel) (port ;Pc ps name) 2 port class)
^ (port 2 ran processor port rel) (port ;Pc processor) 2 port class)

4.7 Total Send Rights

In addition to the send rights contained in the port name spaces associated with the tasks,
the kernel maintains so-called naked send rights to the special ports. We occasionally need to
know the total number of send rights to a given port including both those recorded in a name
space and the naked rights. Naked rights are associated with the following ports: task sself ,
task eport , task bport, thread sself and thread eport. We define port right seq to be any sequence
of the elements of the set port right rel (the precise ordering of elements is not important for
our purposes). The expression total name space srights(port) denotes the number of send rights
to port in all name spaces, and total naked srights(port) denotes the total number of send rights
to port that are not stored in any name space. The expression total srights(port) is the sum of
these two numbers.

Review Note:

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

34
CDRL A005

Basic Kernel State Definition

Need to determine if naked send rights are implied by any other special port relationships. Note that a
naked send right is not created for the self port relationships (e.g., thread self).

Need to determine whether rights in messages count as naked send rights too.

Mach Definition 52

TotalSendRights

PortExist

TasksAndPorts

SpecialPurposePorts

port right seq : seq(TASK � PORT � NAME � RIGHT � 1)
total name space srights : PORT �
total naked srights : PORT �
total srights : PORT �

ran port right seq = port right rel

#port right seq = #port right rel

(8 port : PORT j port 2 port exists

� total name space srights(port)
= Seq plus(squash ftask : TASK ; name : NAME ; i ; n : 1
j (n; (task ; port; name; Send ; i)) 2 port right seq

� (n; i)g)
^ total naked srights(port) = #(task sself � fportg)

+ #(task eport � fportg)
+ #(task bport � fportg)
+ #(thread sself � fportg)
+ #(thread eport � fportg)

^ total srights(port) = total name space srights(port) + total naked srights(port))

4.8 Registered Rights

Each task has a finite array of send rights, intended to use for access to the Network Name
Server, the Environment Manager, and the Service server (although they may have any use).
These rights are called “registered,” to denote the fact that the kernel knows their identity. The
expression registered rights(task) denotes the set of names of rights registered for task . There
may be more than three registered rights, in fact their number need only be less than or equal to
the system constantTask port register max . The kernel has three constantsName server slot,
Environment slot , and Service slot which tell it which element of the array refers to each of
these servers.

Mach Definition 53

Task port register max :
Name server slot :
Environment slot :
Service slot :

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 35

RegisteredRights

TaskExist

registered rights : TASK � seqPORT

domregistered rights = task exists

8 task : TASK j task 2 task exists

� #(registered rights(task)) � Task port register max

4.9 Memory System

This section describes the components of the Mach system that are used to provide tasks with
address spaces.

4.9.1 Memory

Each memory can be viewed as mapping a memory offset to a value. Essentially, a memory can
be viewed as an array of values indexed by offsets; the only difference is that a memory may
have holes in the sense that some offsets do not map to any value. The mapping from offsets to
values is defined by the memory’s manager. As described in Section 4.9.2, the kernel becomes
aware of pieces of this mapping as data is cached in resident pages. The typesOFFSET and
WORD denote, respectively, the sets of memory offsets and memory values.

The kernel maintains a copy strategy for each memory object. This strategy is one of the
following:

Memory copy none —

Review Note:
We need to figure out the meaning of each strategy.

Memory copy call —
Memory copy delay —
Memory copy temporary —

These values comprise the elements of the typeMEMORY COPY STRATEGY . The expres-
sion copy strategy(memory) denotes the copy strategy recorded formemory .

The kernel cannot request access permissions and data from a memory object until it has
received a memory object ready command (normally in reply to a memory object init
request). The set initialized denotes the set of memory objects for which this has occurred.

The kernel records which memory objects may be cached; the setmay cache denotes the set of
such memory objects. The memory performance for a memory object is influenced by its copy
strategy and whether it can be cached.

A memory can be either managed or unmanaged. The setmanaged denotes the set of memories
that are managed. Corresponding to each such memory there is a task acting as the memory’s
manager. The manager formemory is denoted by manager (memory). Each memory having an
object port is managed.

Similarly, memories can be temporary or non-temporary. The settemporary rel denotes the set
of memories that are temporary.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

36
CDRL A005

Basic Kernel State Definition

If the page of data corresponding to a given memory-offset pair is not resident when
a thread attempts access, then the thread is blocked on a page fault. The expression
memory fault(memory ; o�set) indicates the set of threads that are currently blocked on a page
fault generated by access to a given memory-offset pair.

Temporary memory is backed by the default memory manager. The kernel records a port
identifying the current default memory manager. This port is denoted bydefault mem manager .

A null value is used to indicate the lack of a memory filling a particular function in a virtual
memory map entry.

Review Note:
Need to figure out how default mem manager relates to managed and manager .

Mach Definition 54

[WORD ;OFFSET]

MEMORY COPY STRATEGY ::=Memory copy none jMemory copy call

jMemory copy delay jMemory copy temporary

Memory

MemoriesAndPorts

PortExist

copy strategy :MEMORY �MEMORY COPY STRATEGY

initialized : �MEMORY

may cache : �MEMORY

managed : �MEMORY

manager :MEMORY � TASK

temporary rel : �MEMORY

memory fault :MEMORY � OFFSET ��THREAD
default mem manager : PORT

default mem manager 2 port exists

managed = domobject port

domobject port � dommanager

initialized � domobject port

may cache � initialized

initialized = domcopy strategy

8memory :MEMORY ; o�set : OFFSET
j (memory ; o�set) 2 dommemory fault

^ memory fault(memory ; o�set) 6= �
� memory 2 managed

4.9.2 Pages

At the physical level, pages relate page offsets and values in much the same way as memories
relate memory offsets and values. The relation page word rel identifies the binding between
page-offset pairs and words of data. Since at most one value can be stored at a given page offset,
page word rel is actually a function mapping page-offset pairs to values. For convenience,

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 37

page word fun(page)(page o�set) is used to denote the word of data at offset page o�set of page
page .

Each page represents some area of memory. The relation represents rel indicates the binding
between pages and memory-offset pairs. This relation should be interpreted as indicating the
memory and offset within that memory of the beginning of the data that a page represents.
Since each area of memory is represented by at most one page, the function representing page

denoting the page representing an area of memory can be defined. Each page in the range of
this function represents some area of memory. For convenience:

The set represents memory is used to denote the set of pages that represent some area of
memory.
The set represented is used to denote the set of memory-offset pairs that are represented
by some page.
The expressions represented memory(page) and represented o�set(page) denote, respec-
tively, the memory and offset that page represents.

When a page is modified, it becomes dirty. The set dirty rel denotes the set of dirty pages.
Upon evicting a page, the kernel checks whether the page is dirty. If it is, then the contents of
the page are sent to the appropriate memory manager for it to record the updates. A memory
manager may instruct the kernel that it will not retain a copy of a page that it has provided to
the kernel by indicating that the page is precious. Whenever the kernel evicts a precious page,
it sends the contents of the page to the appropriate memory manager regardless of whether the
page is dirty. By instructing the kernel that a page is precious, a memory manager can relieve
itself of the responsibility of retaining a copy of a page while the page is resident; the memory
manager can rely on the kernel to inform it of the page’s current contents whenever the page
is evicted. The set precious is used to denote the set of precious pages.

Mach Definition 55

[PAGE OFFSET]

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

38
CDRL A005

Basic Kernel State Definition

PageAndMemory

page word rel : �((PAGE � PAGE OFFSET) �WORD)
page word fun : PAGE � PAGE OFFSET "WORD

represents rel : PAGE # (MEMORY �OFFSET)
representing page :MEMORY �OFFSET � PAGE

represents memory : �PAGE
represented : �(MEMORY �OFFSET)
represented memory : PAGE �MEMORY

represented o�set : PAGE �OFFSET

dirty rel : �PAGE
precious : �PAGE

(8 page : PAGE ; page o�set : PAGE OFFSET ; word :WORD

� page word fun(page)(page o�set) = word

, ((page ; page o�set);word) 2 page word rel)
represents memory � dompage word fun

representing page = represents rel
�

dirty rel � represents memory = ran representing page

represented = domrepresenting page

represented memory = fmemory :MEMORY ; o�set : OFFSET ; page : PAGE
j (page ; (memory; o�set)) 2 represents rel � (page ;memory)g

represented o�set = fmemory :MEMORY ; o�set : OFFSET ; page : PAGE
j (page ; (memory; o�set)) 2 represents rel � (page ; o�set)g

precious � represents memory

Mach allows pages to be locked against particular types of accesses. This is represented by
associating a set of protections with each page. The protections are of typePROTECTION which
is comprised of the elementsRead , Write, and Execute. The relation page lock rel indicates the
access modes against which a page is locked. For conveniencepage locks(page) is defined to be
the set of access modes against which page is locked.

Mach Definition 56

PROTECTION ::= Read jWrite j Execute

Lock

page lock rel : PAGE #�PROTECTION
page locks : PAGE ��PROTECTION

page lock rel = page locks

4.9.3 Address Space

The set allocated is used to denote the set ofTASK -PAGE INDEX pairs that have been allocated
in a task’s address space. A task-index pair may be mapped to a memory area. Using the
previously defined state components, these memory areas can be related to the physical pages
used to contain the data when it is paged out. Thus, a task’s address space completes the
picture of mapping virtual addresses to physical pages and values. Note, however, that not all
allocated addresses need be mapped to memory. The relation map rel associates task-index
pairs with memory-offset pairs. There is at most one memory-offset pair associated with each
task-index pair. For convenience:

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 39

The expressions mapped memory(task ; index) and mapped o�set(task ; index) are used to
denote the memory and offset corresponding to a given task-index pair.
The set mapped is used to denote the set of memories to which some task-index pair maps.

Mach Definition 57

[PAGE INDEX]

AddressSpace

map rel : (TASK � PAGE INDEX)# (MEMORY �OFFSET)
mapped memory : TASK � PAGE INDEX �MEMORY

mapped o�set : TASK � PAGE INDEX �OFFSET

allocated : �(TASK � PAGE INDEX)
mapped : �MEMORY

dommap rel = dommapped memory = dommapped o�set

dommap rel � allocated

mapped = ranmapped memory

8 task va pair : TASK � PAGE INDEX ; memory :MEMORY ; o�set : OFFSET
� (task va pair ; (memory; o�set)) 2 map rel

, (mapped memory(task va pair) = memory

^ mapped o�set(task va pair) = o�set)

4.9.4 Memory Protection

Mach protects memory objects by assigning protections to each page in a task’s address space.
Three sets of protections are associated with each page in a task’s address space. The Mach
protection holds currently applicable protection limits as indicated by users. The maximum
protection limits the allowable values for the Mach protection. The third set, the current
protections, is what actually limits a task’s access to a page. This is a DTOS addition and will
be further defined in Section 5.9.6

We use mach protection to denote the relation between tasks, pages, and Mach protec-
tion sets. The pair ((task ; page index); protection set) is an element of mach protection if
protection set is the set of protections most recently established by a user request to set
the Mach protections for page index . We model maximum protections similarly by defining
max protection(task ; page index) to denote the maximum protection that task is permitted to
the memory it has mapped at page index .

Mach Definition 58

MachProtection

mach protection : (TASK � PAGE INDEX)��PROTECTION
max protection : (TASK � PAGE INDEX)��PROTECTION

dommach protection = dommax protection

8 task page index : TASK � PAGE INDEX

j task page index 2 dommach protection

� mach protection(task page index) � max protection(task page index)

6The Mach protection in DTOS is called the current protection in Mach and is used in Mach to control a task’s
access of pages. The terminology has been changed here to remain consistent with the prototype which must take into
account the decisions of the security server when determining the current protections.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

40
CDRL A005

Basic Kernel State Definition

4.9.5 Memory Inheritance

For each memory region within a task’s address space, Mach records an inheritance attribute
that indicates the manner in which child tasks inherit the memory. The possible options are:

Inheritance option share — indicates the region should be shared by the parent and child
Inheritance option copy — indicates the region should be shared by the parent and child
until one of them writes to the region; once a modification occurs, a copy-on-write is
performed
Inheritance option none — indicates the region should not be made accessible to the child

These values comprise the elements of the type INHERITANCE OPTION .

The expression inheritance(task ; page index) indicate the inheritance option associated with the
region indicated by page index in task ’s address space.

Mach Definition 59

INHERITANCE OPTION ::= Inheritance option share j Inheritance option copy

j Inheritance option none

Inheritance

inheritance : TASK � PAGE INDEX � INHERITANCE OPTION

4.9.6 Shadow Memories

A memory, memory1, is said to back a second memory, memory2, if memory1’s manager takes
responsibility for pages of memory2 that are not handled by memory2’s manager. The relation
backing rel indicates when memory

1
backs memory

2
at a given offset within memory

1
. Each

memory is backed by at most one memory-offset pair. Furthermore, a memory may back at most
one other memory. For convenience, backing memory(memory) and backing o�set (memory) are
used to denote, respectively, the memory and offset backingmemory .

Whenever memory1 backs memory2, memory2 is said to shadow memory1. For convenience:

The expression shadow memories(memory) indicates the singleton set of memories backed
by memory. shadow memories is defined only for those memories that back another mem-
ory.
The expression backing chain(memory) indicates the sequence of memories backing
memory.

If a memory is not backed by any memories, then its backing chain is empty. If memory1
is backed by memory2 then the backing chain for memory1 consists of memory2 followed by
the backing chain formemory2. For example, suppose memory2 backs memory1, memory3 backs
memory

2
, and no memory backsmemory

3
. Then, the backing chains formemory

3
, memory

2
, and

memory1are, respectively, hi, hmemory3i, and hmemory2;memory3i. Mach does not permit cycles
to occur in the sequence of memories backing a memory. Thus, we require that no memory be
present in its backing chain.

Mach Definition 60

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 41

ShadowMemories

backing rel : �(MEMORY �MEMORY �OFFSET)
backing memory :MEMORY �MEMORY

backing o�set :MEMORY �OFFSET

shadow memories :MEMORY "�MEMORY

backing chain :MEMORY " seqMEMORY

8memory
1
;memory

2
:MEMORY ; o�set : OFFSET

� (memory
1
;memory

2
; o�set) 2 backing rel

, ((memory
2
;memory

1
) 2 backing memory

^ (memory
2
; o�set) 2 backing o�set)

domshadow memories = ran backing memory

8memory
1
:MEMORY j memory

1
2 domshadow memories

� shadow memories(memory1)
= fmemory2 :MEMORY

j (9 o�set : OFFSET � (memory
1
;memory

2
; o�set) 2 backing rel)g

8memory1 :MEMORY j memory1 2 domshadow memories

� #(shadow memories(memory1)) = 1
8memory :MEMORY

� memory =2 dombacking memory) #(backing chain(memory)) = 0
^ (memory 2 dombacking memory

) backing chain(memory)
= hbacking memory(memory)i

�backing chain(backing memory(memory)))
8memory :MEMORY � memory =2 ran(backing chain(memory))

4.9.7 Page Wiring

To prevent critical pages from being evicted, Mach allows tasks to wire pages. For each page
allocated in a task, a count is maintained of the number of times that the task has wired the
page. The expression wire count (task ; page index) denotes the number of times that task has
wired the page indicated by page index in its address space. As long as a task’s count for
page index remains nonzero, the physical page associated withpage index must be retained in
memory. In other words, a physical page may only be evicted when no task has the page wired.
The set wired denotes the set of physical pages that are wired by some task.

Mach Definition 61

Wired

AddressSpace

PageAndMemory

wire count : (TASK � PAGE INDEX)�
wired locations : �(TASK � PAGE INDEX)
wired : �PAGE

domwire count = allocated

wired locations = f task : TASK ; page index : PAGE INDEX

j wire count (task ; page index) > 0 g
wired locations � dom(representing page �map rel)
wired = (representing page �map rel) �wired locations�

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

42
CDRL A005

Basic Kernel State Definition

Review Note:
The wire count component corresponds to the VM entry wire count. A page is wired if any VM entry
that is mapped to it is wired. For efficiency the prototype maintains two wire counts, one on VM entries
and another on pages. The latter denotes the number of VM entries that have the page wired ignoring
multiple wirings by a single VM entry. We do not model the page wire count.

4.9.8 Summary

The memory system is comprised of memory objects, address spaces, pages, and backing chains.

Mach Definition 62

MemorySystem

Memory

AddressSpace

PageAndMemory

MachProtection

Lock

ShadowMemories

Inheritance

Wired

allocated = dommach protection

ran represented memory � domobject port

8 task va pair : TASK � PAGE INDEX

j task va pair 2 dommap rel

^ map rel(task va pair) 2 domrepresenting page

� mach protection(task va pair)
� PROTECTION n page locks(representing page(map rel(task va pair)))
dom inheritance = allocated

mapped � domobject port

4.10 Messages

This section discusses the structure of messages.

4.10.1 Message Options

The type MACH MSG OPTION denotes the base values of the options parameter of
mach msg. The recognized values of this type are Mach send msg , Mach rcv msg,
Mach send cancel , Mach send notify, Mach rcv notify , Mach rcv large, Mach send timeout,
and Mach rcv timeout . The options parameter is set to some set of the base values.

Mach Definition 63

[MACH MSG OPTION]

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 43

Mach send msg :MACH MSG OPTION

Mach rcv msg :MACH MSG OPTION

Mach send cancel :MACH MSG OPTION

Mach send notify : MACH MSG OPTION

Mach rcv notify :MACH MSG OPTION

Mach rcv large : MACH MSG OPTION

Mach send timeout :MACH MSG OPTION

Mach rcv timeout :MACH MSG OPTION

disjoint hfMach send msgg; fMach rcv msgg;
fMach send cancelg; fMach rcv largeg; fMach send notify g;
fMach rcv notify g; fMach send timeout g; fMach rcv timeout gi

4.10.2 Complex Messages

In addition to simply carrying data, a message can also carry port rights and memory regions.
A message carrying port rights or memory regions is called acomplex message. Each message
carries a flag indicating whether the message contains port rights or memory regions. The type
COMPLEX OPTION consists of the elements Co carries rights and Co carries memory; the
flag carried in each message is a set of these values. Note that a flag containing both elements
indicates that the message contains both port rights and memory regions.

Mach Definition 64

[COMPLEX OPTION]

Co carries rights : COMPLEX OPTION

Co carries memory : COMPLEX OPTION

disjoint hfCo carries rightsg; fCo carries memorygi

4.10.3 Data Types

Each element in the body of a message is typed. The setMACH MSG TYPE denotes the set
of data types recognized by the system.

Mach Definition 65

[MACH MSG TYPE]

Whenever a port right is sent in a message, the client indicates a transfer option for the port
right. The collection of acceptable transfer options is denoted byRecognized transfer optionsand
contain the values Mmt make send , Mmt copy send , Mmt move send , Mmt make send once,
Mmt move send once, and Mmt move receive.

An element of type Mmt make send indicates a receive right held by the sender from which a
send right is to be created for the receiver. Similarly, an element of typeMmt make send once

indicates a receive right held by the sender from which a send-once right is to be created for
the receiver.

An element of typeMmt copy send indicates a send right that should be copied from the sender’s
port name space into the receiver’s port name space. In other words, the sender retains the
existing port right while passing the right to the receiver.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

44
CDRL A005

Basic Kernel State Definition

An element of type Mmt move send indicates a send right that should be moved from the
sender’s port name space into the receiver’s port name space. In other words, the sender’s
reference count is decremented by one and the receiver’s reference count is incremented by
one. If the sender’s reference count was one, then the sender loses the capability associated
with the right. If the receiver’s reference count was zero, then the receiver gains the capability
associated with the right. Similarly,Mmt move send once and Mmt move receive allow send-
once and receive rights to be moved from the sender’s name space to the receiver’s name space.

Mach Definition 66

Mmt make send :MACH MSG TYPE

Mmt copy send :MACH MSG TYPE

Mmt move send :MACH MSG TYPE

Mmt make send once :MACH MSG TYPE

Mmt move send once :MACH MSG TYPE

Mmt move receive :MACH MSG TYPE

Recognized transfer options : �MACH MSG TYPE

hfMmt make sendg; fMmt copy sendg; fMmt move sendg;
fMmt make send onceg; fMmt move send onceg; fMmt move receivegi

partition Recognized transfer options

After the kernel translates the port rights to an internal representation, it is no longer relevant
whether the right was moved, copied or made and the kernel simply records the type of right,
Mach msg type port receive, Mach msg type port send , or Mach msg type port send once.
These values of MACH MSG TYPE comprise the set Mach msg type port rights.

Mach Definition 67

Mach msg type port receive :MACH MSG TYPE

Mach msg type port send :MACH MSG TYPE

Mach msg type port send once :MACH MSG TYPE

Mach msg type port rights : �MACH MSG TYPE

hfMach msg type port receiveg; fMach msg type port sendg;
fMach msg type port send oncegi

partition Mach msg type port rights

4.10.4 Message Headers

The header for a message residing in user-space memory or kernel-space memory contains the
following data:

local port — specifies the reply port when sending a message (Mach port null indicates
no reply port is specified)
local rights — the port rights for the local port (if one is specified)
remote port — specifies the destination port when sending a message
remote rights — the port rights for the remote port
size — specifies the size, in bytes, of a message when receiving
msg sequence no — specifies the sequence number when receiving a message
operation — operation or function id set by message sender

In addition, a message header in kernel space contains a value complex which in-
dicates whether the message carries port rights or memory regions or both. This

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 45

value is a set of elements of type COMPLEX OPTION . In place of complex ,
a message header in user space contains a single value complex boolean indicating
whether the message carries port rights and/or memory regions. The possible val-
ues are Co carries rights and or memory and Co carries neither rights nor memory. If
complex boolean has value Co carries neither rights nor memory, then the message contains
no port rights nor memory regions regardless of what is indicated by the individual data ele-
ments of the message.

Mach Definition 68

[OPERATION]

COMPLEX OPTION BOOLEAN

::= Co carries rights and or memory

j Co carries neither rights nor memory

MachMsgHeader

local port : NAME

local rights : �MACH MSG TYPE

remote port : NAME

remote rights :MACH MSG TYPE

size :
msg sequence no :
operation : OPERATION
complex boolean : COMPLEX OPTION BOOLEAN

#local rights � 1

Messages residing in kernel space contain ports rather than names. Thus, theremote port and
local port fields contain ports instead of names when a message is in transit. IfMach port null

was specified as the name of the local port in theMachMsgHeader , then local port is empty in
the corresponding MachInternalHeader .

Mach Definition 69

MachInternalHeader

local port : �PORT
local rights : �MACH MSG TYPE

remote port : PORT
remote rights :MACH MSG TYPE

size :
msg sequence no :
operation : OPERATION
complex : �COMPLEX OPTION

#local rights = #local port � 1

4.10.5 Outcall Operations

There are several sets of operation identifiers used in messages to external servers (e.g., the
security server) and user tasks. Some of these identifiers are used by the kernel when sending
outcalls. We use

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

46
CDRL A005

Basic Kernel State Definition

Exception ids to denote the set of operations used by the kernel when sending an exception
message, The only element of this set isMach exception id .
Kernel service reply ids to denote the set of operations used by the kernel in reply mes-
sages to kernel service requests,
Security server ids to denote the set of security server operations,
Audit ids to denote the set of audit operations,
Mem obj con�rmation ids to denote the set of operations used by the kernel when sending
confirmations of memory operations to a pager,
Pager request ids to denote the set of pager operations,
Mach notify ids to denote the set of operations used by the kernel in notification messages,
and
Network packet ids to denote the set of operations used by the kernel when forwarding
network packets.

We give a partial description of the identifiers in these sets.

Mach Definition 70

Exception ids : �OPERATION
Mach exception id : OPERATION

Exception ids = fMach exception idg

Mach Definition 71

Kernel service reply ids : �OPERATION

Mach Definition 72

Security server ids : �OPERATION
SSI compute av id :

OPERATION

fSSI compute av idg
� Security server ids

Mach Definition 73

Audit ids : �OPERATION
Audit batch id ;Audit id :

OPERATION

fAudit batch id ;Audit idg
� Audit ids

Mach Definition 74

Mem obj con�rmation ids : �OPERATION
Memory object change completed id ;Memory object lock completed id ;
Memory object supply completed id :

OPERATION

fMemory object change completed id ;Memory object lock completed id ;
Memory object supply completed idg

� Mem obj con�rmation ids

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 47

Mach Definition 75

Pager request ids : �OPERATION
Memory object copy id ;Memory object create id ;Memory object data initialize id ;
Memory object data request id ;Memory object data return id ;
Memory object data unlock id ;Memory object data write id ;
Memory object init id ;Memory object terminate id :

OPERATION

fMemory object copy id ;Memory object create id ;Memory object data initialize id ;
Memory object data request id ;Memory object data return id ;
Memory object data unlock id ;Memory object data write id ;
Memory object init id ;Memory object terminate idg

� Pager request ids

Mach Definition 76

Mach notify ids : �OPERATION
Ipc notify dead name id ; Ipc notify msg accepted id ; Ipc notify no senders id ;
Ipc notify port deleted id ; Ipc notify port destroyed id ;
Ipc notify send once id :

OPERATION

fIpc notify dead name id ; Ipc notify msg accepted id ; Ipc notify no senders id ;
Ipc notify port deleted id ; Ipc notify port destroyed id ;
Ipc notify send once idg

� Mach notify ids

Mach Definition 77

Network packet ids : �OPERATION
Forward net packet id :

OPERATION

fForward net packet idg
� Network packet ids

4.10.6 Message Bodies

The body of a message consists of a sequence of message elements. Each element contains the
following:

the number of data elements contained in the message element
a data type
a collection of data elements or a single address

A triple that contains a collection of data elements represents in-line data. The number of data
elements in the collection is the same as the specified number of data elements, and each such
element is of the specified type. A triple that contains a single address represents out-of-line
data. The address specifies the start of the area of memory containing the data. The data in
that area is interpreted as being a collection of the specified number of data elements of the
specified data type. Each out-of-line element contains a flag indicating whether the memory
should be deallocated from the sender’s address space. The possible values of this flag are
Msg deallocate and Msg dont deallocate.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

48
CDRL A005

Basic Kernel State Definition

Mach Definition 78

[MSG DATA]

OLSD ::=Msg deallocate jMsg dont deallocate

BASE MSG ELEMENT

::= In line� �MACH MSG TYPE � seqMSG DATA�
j Out of line� �MACH MSG TYPE �VIRTUAL ADDRESS � OLSD�

Thus, an in-line message element is denoted by:

In line(n;mach msg type; data seq)

and an out-of-line message element is denoted by:

Out of line(n;mach msg type; va; olsd)

The number of entries specified in a triple representing in-line data must be the same as the
number of entries in the specified sequence of data elements. The setMsg element denotes the
set of valid message elements, and the set MESSAGE BODY denotes the set of sequences of
valid message elements. In other words, MESSAGE BODY denotes the set of valid message
bodies.

Mach Definition 79

Msg element : �BASE MSG ELEMENT

Msg element

= fmsg element : BASE MSG ELEMENT

j (9 n : ; mach msg type :MACH MSG TYPE ; data seq : seqMSG DATA;
va : VIRTUAL ADDRESS ; olsd : OLSD
� (msg element = In line(n;mach msg type; data seq)
^ #data seq = n)

_ msg element = Out of line(n;mach msg type; va; olsd))g

Mach Definition 80

MESSAGE BODY == seqMsg element

When a message is moved into kernel space, the port names appearing in the message are
transformed into port identifiers and the virtual addresses indicating out-of-line data are
transformed into memory-offset pairs. In other words, the client specific names for kernel
entities are transformed into the appropriate global names used internal to the kernel. Thus,
an element in a message body in kernel space is of one of the following forms:

Msg value(n;mach msg type; (task ; value seq)) — an in-line element; if mach msg type is
an element of Recognized transfer options and some elements of value seq have not yet
been resolved to ports then further processing is required to transform the sequence of
data into a sequence of ports.
Note that there are two forms for elements of value seq. An entry of the form
V data(msg data ; v data l) denotes the data msg data while an entry of the form

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 49

V port(port; v data l) denotes a port name that has been resolved into a port. In ei-
ther case, v data l indicates whether the element came from an in-line data element or
an out-of-line data element. The only time v data l will indicate an out-of-line data ele-
ment is when the element is a port name from an out-of-line data element that has been
resolved into a port.
Transit right(n;mach msg type; (task ; port seq ; v data l)) — a sequence of port rights in
transit; task indicates the task that sent the message and v data l indicates whether the
port right was sent in-line or out-of-line
Msg region(n;mach msg type ; (task ; va; olsd)) — an out-of-line element that requires fur-
ther processing to transform the task-address pair into a memory-offset pair; task indi-
cates the task that sent the message and olsd indicates whether the region should be
deallocated from task ’s address space
Transit memory(n;mach msg type; (task ;memory; o�set)) — an out-of-line element that
has been transformed from a task-address pair to a memory-offset pair;task indicates the
task that sent the message

The number of entries specified in a triple representing in-line data must be the same as the
number of entries in the specified sequence of data elements. The typeInternal element denotes
the set of valid message elements internal to the kernel, and the type INTERNAL BODY

denotes the set of sequences of these elements. Thus, INTERNAL BODY denotes the set of
message bodies that can be stored in the kernel.

Mach Definition 81

V DATA LOCATION ::= V data in j V data out

MSG VALUE ::= V data�MSG DATA�V DATA LOCATION�
j V port�PORT �V DATA LOCATION�

BASE INTERNAL ELEMENT

::=Msg value� �MACH MSG TYPE � (TASK � seqMSG VALUE)�
j Transit right� �MACH MSG TYPE

�(TASK � seqPORT �V DATA LOCATION)�
jMsg region� �MACH MSG TYPE � (TASK �VIRTUAL ADDRESS � OLSD)�
j Transit memory� �MACH MSG TYPE � (TASK �MEMORY � OFFSET)�

Editorial Note:
Transit right probably needs to be considered in the following.

Internal element : �BASE INTERNAL ELEMENT

Internal element

= fmsg element : BASE INTERNAL ELEMENT

j (9 n : ; mach msg type :MACH MSG TYPE ; task : TASK ;
value seq : seqMSG VALUE ; port seq : seqPORT ;
memory :MEMORY ; o�set : OFFSET ; va : VIRTUAL ADDRESS ;
olsd : OLSD ; v data l : V DATA LOCATION

� (msg element = Msg value(n;mach msg type; (task ; value seq))
^ #value seq = n)

_ msg element = Msg region(n;mach msg type; (task ; va; olsd))
_ msg element

= Transit memory(n;mach msg type; (task ;memory; o�set)))g

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

50
CDRL A005

Basic Kernel State Definition

INTERNAL BODY == fbody : seq Internal element
j (9 task : TASK
� (8 n : ; mach msg type :MACH MSG TYPE ;

value seq : seqMSG VALUE ;
olsd : OLSD ; task1 : TASK ; va : VIRTUAL ADDRESS

jMsg value(n;mach msg type; (task1; value seq)) 2 ran body
_Msg region(n;mach msg type; (task1; va; olsd)) 2 ran body
� task = task1))g

Review Note:
Should Transit memory be added to the above?

Note that all of the elements in a single message body must contain the same task identifier.
It is intended that this task identifier unambiguously defines the identity of the task that sent
the message.

4.10.7 Message Status

Once a message enters the kernel, it can be in one of three states:

Msg stat send — indicates that the kernel is performing processing to send the message
Msg stat pseudo — indicates that the kernel is performing processing to return the mes-
sage to the message sender as part of a failed send request
Msg stat rcv — indicates that the kernel is performing processing to receive the message

These elements comprise the values of the typeMSG STATUS .

The following error conditions can arise during the process-
ing of a message: Msg error invalid memory, Msg error invalid right, Msg error invalid type,
Msg error msg too small, Msg error notify in progress, and Msg error timed out . These val-
ues comprise the setMSG ERROR.

Mach Definition 82

MSG STATUS ::=Msg stat send jMsg stat pseudo jMsg stat rcv

MSG ERROR ::=Msg error invalid memory jMsg error invalid right

jMsg error invalid type jMsg error msg too small

jMsg error notify in progress jMsg error timed out

4.10.8 Message Structure

Each message is modeled as containing fields header and body . The type Message denotes the
set of user space messages.

Mach Definition 83

Message

header :MachMsgHeader

body :MESSAGE BODY

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 51

In addition to the header and body, messages in transit also contain the following fields:

option — indicates the options specified by the client
time out at — indicates when a given send or receive request will time out
If the set contained in this field is empty, then the message will not time out. Otherwise,
the set contains exactly one value and this value defines the earliest time at which the
associated send or receive request can time out.
status — indicates future processing the kernel must perform on the message
error — indicates the first error (if any) that occurred during the processing of the message.

Editorial Note:
status and error should be removed as the purpose they were intended to serve can now be accomplished
more generally using the tools of the execution model.

The type InternalMessage denotes the possible values of messages in transit.

Mach Definition 84

InternalMessage

header :MachInternalHeader

body : INTERNAL BODY

option : �MACH MSG OPTION

time out at : �
status :MSG STATUS

error : �MSG ERROR

#time out at � 1
#error � 1

4.10.9 Pending Receives

Each port can have clients blocked on message receive requests waiting for messages to arrive
at the port. Each pending receive request has the following associated information:

notify — the notify port name specified by the receiving task
option — the options specified by the receiving task
rcv size — the receive size specified by the receiving task
time out at — the time at which the request will time out; this has the same format as
the time out at component of InternalMessage .

Mach Definition 85

PendingReceive

notify : NAME

option : �MACH MSG OPTION

rcv size :
time out at : �

#time out at � 1

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

52
CDRL A005

Basic Kernel State Definition

4.10.10 Reply Ports

The sender of a message can specify a reply port for the receiver to use to reply to the message.
The sender does so by setting the local port field to its name for the port. For convenience,
the relation reply port rel is used to denote the reply port and transferred right in a message
specifying a reply port. The interpretation of:

(message; (port ; right))

being an element of reply port rel is that message transfers the type of right specified by right
(send or send-once) for port to the receiver of message . The intent is that the receiver use
the transferred right to send a reply message to port. Each message contains at most one
reply port and right for that port. For convenience, the expressions reply port(message) and
reply port right(message) are used to denote the reply port and transferred right contained in
a given message.

Mach Definition 86

ReplyPorts

reply port rel :MESSAGE # (PORT � fSend ; Send onceg)
reply port :MESSAGE � PORT

reply port right :MESSAGE � fSend ; Send onceg

reply port = fmessage : MESSAGE ; port : PORT ; right : RIGHT
j (message ; (port; right)) 2 reply port rel � (message; port)g

reply port right = fmessage : MESSAGE ; port : PORT ; right : RIGHT
j (message ; (port; right)) 2 reply port rel � (message; right)g

4.10.11 Summary

This section has defined the data structures used to model messages. The expression
msg contents(message) is used to denote the internal message structure associated with each
message identifier, and the expression pending receives(task ; name) indicates the receive re-
quests currently pending for threads intask that attempted to receive through the port named
by name. The expression task received msgs(task) denotes the set of user-space messages that
have been received by task .

For convenience, the expressionmsg operation(message) is used to denote the type of operation
requested by message. In other words, the returned value is the operation field of the message
identified by message.

Mach Definition 87

Operations

msg operation :MESSAGE �OPERATION

Mach Definition 88

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 53

Messages

TaskExist

MessageExist

Operations

ReplyPorts

msg contents :MESSAGE � InternalMessage

pending receives : TASK � NAME � seqPendingReceive
task received msgs : TASK "�MESSAGE

domreply port � message exists

dommsg operation = dommsg contents = message exists

8message :MESSAGE j message 2 message exists

� msg operation(message) = (msg contents(message)):header :operation
8message :MESSAGE ; port : PORT j message 2 message exists

� (message ; (port; Send)) 2 reply port rel

, ((msg contents(message)):header :local port = fportg
^ (msg contents(message)):header :local rights
\fMmt make send ;Mmt move send ;Mmt copy send g 6= �)

8message :MESSAGE ; port : PORT j message 2 message exists

� (message ; (port; Send once)) 2 reply port rel

, ((msg contents(message)):header :local port = fportg
^ (msg contents(message)):header :local rights
\fMmt make send once ;Mmt move send once g 6= �)

8 task : TASK
j task =2 task exists

� task received msgs(task) = �

Review Note:
Must figure out what the axioms are on pending receives .

4.11 Processors and Processor Sets

Each host has a default processor set denoted bydefault. Furthermore, each host has a master
processor denoted by master proc.

Mach Definition 89

HostsAndProcessors

ProcessorsAndPorts

default : PROCESSOR SET

master proc : PROCESSOR

default 2 domps control port rel

master proc 2 domprocessor port rel

Each processor is a member of a single processor set. The relationmember rel indicates which
processors belong to each processor set. For convenience, the expressions processors(procset)
and proc assigned procset(proc) are used to denote, respectively, the set of processors that belong
to procset and the processor set to which proc belongs.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

54
CDRL A005

Basic Kernel State Definition

Mach Definition 90

ProcessorAndProcessorSet

ProcessorsAndPorts

member rel : PROCESSOR # PROCESSOR SET

processors : PROCESSOR SET "�PROCESSOR
proc assigned procset : PROCESSOR� PROCESSOR SET

dommember rel � domprocessor port rel

ranmember rel � domps control port rel

proc assigned procset = member rel

processors = (� procset : PROCESSOR SET � member rel��fprocsetg�)

Each task is assigned to a single processor set. The relation task assignment rel indi-
cates the association between tasks and processor sets. For convenience, the expressions
have assigned tasks(procset) and task assigned to(task) are used to denote, respectively, the set
of tasks assigned to procset and processor set to which task is assigned.

Mach Definition 91

TaskAndProcessorSet

SpecialTaskPorts

ProcessorsAndPorts

task assignment rel : TASK # PROCESSOR SET

have assigned tasks : PROCESSOR SET "�TASK
task assigned to : TASK � PROCESSOR SET

dom task assignment rel = ran self task

ran task assignment rel � domps control port rel

task assignment rel = task assigned to

have assigned tasks = (� procset : PROCESSOR SET

� task assignment rel
��fprocsetg�)

Similarly, Each thread is assigned to a single processor set. The relation
thread assignment rel associates threads with processor sets. For convenience, the expressions
have assigned threads(procset) and thread assigned to(thread) are used to denote, respectively,
the set of threads assigned to procset and processor set to which thread is assigned.

Each processor set has a set of enabled scheduling policies, denoted by enabled sp(procset)
and a maximum priority for assigned threads, denoted byps max priority(procset). The set of
enabled scheduling policies for a thread’s processor set is used to constrain the policies that can
be assigned to that thread. The maximum scheduling priority for a processor set constrains
the priorities that can be assigned to a newly created thread associated with that processor set.

Mach Definition 92

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 55

ThreadAndProcessorSet

ProcessorSetExist

ProcessorsAndPorts

SpecialThreadPorts

ThreadSchedPolicy

thread assignment rel : THREAD # PROCESSOR SET

have assigned threads : PROCESSOR SET "�THREAD
thread assigned to : THREAD � PROCESSOR SET

enabled sp : PROCESSOR SET �� SCHED POLICY

ps max priority : PROCESSOR SET ��

thread assignment rel = thread assigned to

have assigned threads = (� procset : PROCESSOR SET

� thread assignment rel��fprocsetg�)
dom thread assignment rel = dom thread self

ran thread assignment rel � domps control port rel

domenabled sp = domps max priority = procset existsS
(ran enabled sp) � supported sp

ran ps max priority � Priority levels

Each processor may have an active thread. The expression active thread(proc) indicates the
thread (if any) that is active on proc.

Mach Definition 93

ThreadsAndProcessors

ThreadExist

Exist

active thread : PROCESSOR� THREAD

domactive thread � proc exists

ran active thread � thread exists

4.12 Time

Each host provides a system clock. The current system time is denoted byhost time.

Mach Definition 94

HostTime

host time :

4.13 Devices

Each device has an associated count indicating how many times the device has been opened
and not closed. We use device open count (dev) to indicate the count associated with dev . This
count is incremented each time dev is opened and decremented each time dev is closed. Each
device with a positive creation count has an associated device port that represents the device.

Mach Definition 95

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

56
CDRL A005

Basic Kernel State Definition

DeviceOpenCount

DevicesAndPorts

device open count : DEVICE "

domdevice port = f dev : DEVICE j device open count (dev) > 0 g

A kernel-space device driver may supply event counters for use by user-space device drivers.
An event counter is used as a semaphore for events produced by kernel-space drivers. The
counter is incremented when a relevant event occurs and decremented when a thread (e.g., a
user-space device driver) indicates via the evc wait trap that it wishes to process an event.
Each task refers to an event by referencing its event counter. The appropriate event counter
is communicated to a thread in a driver-specific way.7 The expression EVENT COUNTER

denotes the set of all event counters.

Mach Definition 96

[EVENT COUNTER]

Each event counter may have at most one thread, denoted by thread waiting(evc), waiting for
it. Furthermore, each thread may be waiting on at most one event counter. The number of
event that are queued and waiting to be processed by a thread is denoted byevent count (evc).
The expression supplying device denotes the kernel-space device driver that supplied the event
counter.

Mach Definition 97

Events

ThreadExecStatus

thread waiting : EVENT COUNTER�THREAD

event count : EVENT COUNTER��
supplying device : EVENT COUNTER�DEVICE

domevent count = dom supplying device

dom thread waiting � domevent count

ran thread waiting �
fthread : THREAD j thread 2 thread exists ^Waiting 2 run state(thread)g

Devices can be associated with memory objects that can then be mapped into address spaces.
We use mapped devices to denote the set of devices that have been associated with memory
objects.

Mach Definition 98

MappedDevices

mapped devices : �DEVICE

Each device has two associated queues of data records. We use device in(dev) and
device out (dev) to denote, respectively, data input and output through the device. Data
read from dev is dequeued from device in(dev), and data written to dev is enqueued to
device out (dev).

7Threads may also wait for events that occur while the system is operating in kernel space (e.g., another thread
becomes suspended). This is handled through a separate waiting mechanism that is not modeled in the FTLS.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 57

Mach Definition 99

[DEVICE RECORD]

Mach Definition 100

DeviceData

device in : DEVICE " seqDEVICE RECORD

device out : DEVICE " seqDEVICE RECORD

Each device can have associated filters that are used to route data received through the device.
Each filter has an associated port to which data accepted by the filter is delivered. Further-
more, a priority can be associated with each port to indicate the ordering when there are
multiple ports associated with the filter. We use device �lter info(dev) to indicate the set of
(device �lter ; port; �lter priority) triples associated with dev .

Mach Definition 101

[DEVICE FILTER;FILTER PRIORITY]
DEVICE FILTER INFO == DEVICE FILTER � PORT � FILTER PRIORITY

Mach Definition 102

DeviceFilterInfo

device �lter info : DEVICE "�DEVICE FILTER INFO

Each device has an associated status. We usedevice status(dev) to denote dev ’s status.

Mach Definition 103

[DEVICE STATUS]

Mach Definition 104

DeviceStatus

device status : DEVICE "DEVICE STATUS

Mach Definition 105

Devices

DeviceOpenCount

Events

MappedDevices

DeviceData

DeviceFilterInfo

DeviceStatus

4.14 Summary

The data structures defined in the previous sections comprise the Mach system state. The type
Mach is used to denote the set of Mach system states.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

58
CDRL A005

Basic Kernel State Definition

Mach Definition 106

Process b= Threads ^ TaskPriority ^ TaskSuspendCount
^ EmulationVector

Ipc b= PortNameSpace ^ RegisteredRights ^ Noti�cations
^ PortSummary ^ PortClasses ^Messages

Processor b= HostsAndProcessors ^ ProcessorAndProcessorSet ^ TaskAndProcessorSet
^ ThreadAndProcessorSet ^ ThreadsAndProcessors

Mach Definition 107

Mach

Exist

Process

Ipc

Processor

MemorySystem

HostTime

Devices

manager = receiver � object port

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 59

Section 5
DTOS State Extensions

This section describes extensions to the base Mach microkernel state that are needed to support
the DTOS kernel. The DTOS kernel is intended to support a wide range of policies. Thus, the
state components described in this section are independent of any specific access control policy.

In general, an access control policy consists of three components. First, security attributes must
be associated with the subjects accessing entities in the system. Second, security attributes
must be associated with the entities in the system that subjects access. Finally, a rule must
be defined that indicates the set of accesses that a subject with a given attribute can make to
an entity with a given attribute. To provide policy flexibility, the DTOS kernel abstracts the
security attributes associated with specific policies into sets ofsecurity identifiers. Although
the kernel relies upon a security server to define the policy to be enforced, the kernel maintains
a cache of accesses previously authorized by the security server.

In addition to providing a framework for access control policies, the DTOS kernel also enhances
the security of the Mach IPC mechanism.

The organization of this section is as follows:

Section 5.1, Subject Security Information, describes the security information recorded
for subjects.
Section 5.2, Object Security Information, describes the security information recorded
for objects.
Section 5.3, Security Identifiers for Access Computations, describes some security
identifiers used only in access computations.
Section 5.4, Permissions, describes the permissions enforced in DTOS.
Section 5.5, Access Vector Cache, describes the DTOS kernel’s access vector cache.
Section 5.6, Message Security Information, describes the security information associ-
ated with messages to enhance the security of the Mach IPC mechanism.
Section 5.7, Task Creation Information, describes information associated with tasks
to enhance the security of the Mach approach for process initiation.
Section 5.8, Server Ports, describes ports used by the kernel for communication with
other servers.
Section 5.9, Memory Region Protections, describes information associated with re-
gions to allow the DTOS kernel to enforce access.

5.1 Subject Security Information

Subjects in DTOS are threads executing within tasks. Each task has asubject security identifier
(SSI). The set SSI denotes the set of all SSIs.

We will occasionally need to identify two distinct components of each SID, amandatory security
identifier (MID) and an authentication identifier (AID). We use the types MID and AID to
denote, respectively, MIDs and AIDs. The functions Ssi to mid and Ssi to aid are used to
map SSIs to MIDs and AIDs.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

60
CDRL A005

DTOS State Extensions

DTOS Kernel Definition 1

[SSI]

[MID ;AID]

Ssi to mid : SSI "MID

Ssi to aid : SSI "AID

The expressions task sid (task), task mid(task) and task aid (task) are used to denote the SSI,
MID and AID associated with a task. The expression thread sid(thread) denotes the SSI asso-
ciated with a thread. It is defined to be the SSI of its parent task.

DTOS Kernel Definition 2

SubjectSid

TaskExist

ThreadExist

TasksAndThreads

task sid : TASK � SSI

task mid : TASK �MID

task aid : TASK � AID

thread sid : THREAD � SSI

dom task sid = dom task mid = dom task aid = task exists

dom thread sid = thread exists

task mid = Ssi to mid � task sid

task aid = Ssi to aid � task sid

thread sid = task sid � owning task

5.2 Object Security Information

Each port has an associated object security identifier (OSI) that represents the security at-
tributes associated with the port. Similarly, each memory region has an associated OSI. The
set OSI denotes the set of all OSIs.

The functions Osi to mid and Osi to aid are used to map OSIs to MIDs and AIDs.

DTOS Kernel Definition 3

[OSI]

Osi to mid : OSI "MID

Osi to aid : OSI "AID

The expressions port sid(port), port mid(port) and port aid(port) are used to denote the OSI,
MID and AID associated with a port.

DTOS Kernel Definition 4

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 61

PortSid

PortExist

port sid : PORT � OSI

port mid : PORT �MID

port aid : PORT �AID

domport sid = domport mid = domport aid = port exists

port mid = Osi to mid � port sid

port aid = Osi to aid � port sid

Each task and thread has a self port on which the kernel receives requests to perform an action
on the task or thread. The OSI of the self ports is derived from the SSI of the corresponding
task. The expressions Task port sid(ssi) and Thread port sid (ssi) indicate the corresponding
OSIs. When memory is allocated, it is labeled with an OSI that is derived from the SSI of the
owning task. The expression Default vm port sid(ssi) indicates the derived OSI. Similarly,
when a port is created, it is labeled with an OSI derived from the SSI of the task in whose IPC
name space it is allocated. The expressionDefault port sid(ssi) indicates the derived OSI.

DTOS Kernel Definition 5

Task port sid : SSI "OSI

Thread port sid : SSI " OSI

Default vm port sid : SSI " OSI

Default port sid : SSI " OSI

disjoint hranTask port sid ; ranThread port sid ;
ranDefault vm port sid ; ranDefault port sidi

KernelPortSid

TasksAndThreads

SpecialPurposePorts

SubjectSid

PortSid

8 task : task exists

� port sid(task self (task)) = Task port sid(task sid (task))
8 thread : thread exists

� port sid(thread self (thread)) = Thread port sid(task sid(owning task (thread)))

The expressions page sid(task ; page index), page mid(task ; page index)
and page aid(task ; page index) are used to denote the OSI, MID and AID associated with a
page. Note that page sid effectively associates an OSI with each allocated address in a task’s
address space. If a page is managed and the manager is not the default memory manager, then
the SID of the page is derived from the SID of the pager port of the object containing the page.
The derivation of page SIDs from pager port SIDs is modeled by the functionPp to page sid .

DTOS Kernel Definition 6

Pp to page sid : OSI � OSI

DTOS Kernel Definition 7

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

62
CDRL A005

DTOS State Extensions

PageSid

AddressSpace

Memory

TasksAndPorts

PortSid

page sid : TASK � PAGE INDEX � OSI

page mid : TASK � PAGE INDEX �MID

page aid : TASK � PAGE INDEX �AID

dompage sid = dompage mid = dompage aid = allocated

page mid = Osi to mid � page sid

page aid = Osi to aid � page sid

(8 task va pair : TASK � PAGE INDEX ; memory :MEMORY ;
port : PORT

j (task va pair ;memory) 2 mapped memory

^ (memory ; port) 2 object port

^ receiver(port) 6= receiver(default mem manager)
� page sid (task va pair) = Pp to page sid(port sid(port)))

Editorial Note:
Need to figure out if their is a better way to check that the memory is not being paged by the default
memory manager.

DTOS Kernel Definition 8

ObjectSid

PortSid

KernelPortSid

PageSid

domPp to page sid � ran port sid

ranPp to page sid � ran page sid

5.3 Security Identifiers for Access Computations

Access computations in the DTOS kernel are generally made based upon the SSI of the task
accessing an object and the OSI of the accessed object. This section discusses a few special
cases in which other security identifiers are used.

Sometimes kernel requests can have side effects resulting in outcalls from the kernel, for
instance, to deliver dead name notifications. For fine grained control over such operations it is
desirable to distinguish between the kernel sending such a message to a port as a side effect
of another request and the client directly sending a message to the port. To provide for this,
such side effects are sometimes controlled based not upon the SSI of the client but upon an SSI
derived from the client’s SSI and indicating that it is the kernel acting on behalf of a client with
the given SSI. The functionDerive kernel as maps an SSI s1 to the derived SSI s2 representing
the kernel acting on behalf of a task with SSI s1. We use kernel as(task) to denote the derived
SSI indicating the kernel acting on behalf of a task task .

DTOS Kernel Definition 9

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 63

Derive kernel as : SSI " SSI

KernelAs

SubjectSid

kernel as : TASK " SSI

kernel as = task sid �Derive kernel as

One of the features of Mach is that it allows tasks to perform operations on other tasks that
have not traditionally been provided by operating systems. For example, Mach allows tasks to
access memory regions in other tasks while one of the features of traditional operating systems
is the separation of address spaces. To provide finer control over task accesses, we define
Task self sid to be a value to be used in access computations governing accesses a task makes
to itself. Similarly, we use Thread self sid to be a value to be used in access computations
governing accesses a task makes to threads that it owns. The security policy should normally
be defined in such a way as to prevent any kernel entities from being assignedTask self sid or
Thread self sid as their SID.8 Instead, these SIDs indicate to security servers that the kernel
requires an access computation to be performed between a task and the task itself or between
a task and one of the task’s threads. One potential use of this finer control would be to contain
a faulty task by preventing it from corrupting other tasks having the same SID.

We define task target(task1; task2) to be the OSI of task2’s self port if task1 and task2 are
different and Task self sid , otherwise. Analogously, we define thread target(task ; thread) to
be the OSI of thread ’s self port if thread does not belong to task and Thread self sid , oth-
erwise. When task1 attempts to operate on task2, the kernel enforces accesses on the pair
(task sid (task1); task target(task1; task2)). Analogously, operations that task performs on thread

are governed by the accesses recorded for (task sid (task); thread target(task ; thread)). This al-
lows separate permissions sets to be applied when a task operates on itself versus operating
on another process with the same SSI.

DTOS Kernel Definition 10

Task self sid : OSI
Thread self sid : OSI

Task self sid 6= Thread self sid

DTOS Kernel Definition 11

8This property is not guaranteed by the kernel. For example, a mach port allocate secure request may specify
a self SID as the SID for the newly created port. If the security server allows the client to add a name to the target
task and allows the target task to hold a receive right for a port with the specified SID, the request will succeed and
the port will be labeled with a self SID.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

64
CDRL A005

DTOS State Extensions

TargetSids

PortSid

TasksAndThreads

SpecialPurposePorts

task target : TASK � TASK � OSI

thread target : TASK �THREAD � OSI

fTask self sid ;Thread self sidg \ ran port sid = �
dom task target = TASK � task exists

dom thread target = TASK � thread exists

8 task1; task2 : TASK
� task target(task1; task2)

= if task1 = task2 then Task self sid

else port sid (task self (task2))
8 task : TASK ; thread : THREAD
� thread target(task ; thread)

= if task = owning task (thread) then Thread self sid

else port sid (thread self (thread))

Editorial Note:
In the prototype Task self sid and Thread self sid are not implemented as constants. Rather, they
are derived from the corresponding subject SID in the same way as the derived SIDs Task port sid ,
Thread port sid , Default vm port sid and Default port sid which are described above. Given the way
the self SIDs are used the two approaches are equivalent.

5.4 Permissions

The DTOS security policy constrains when clients may obtainservices. The security policy is
enforced by:

associating a set of allowed permissions9 with each SSI-OSI pair,
associating a set of required permissions with each service, and
granting service only when the required permissions are contained in the allowed per-
missions for the client to the target for the operation.

The set PERMISSION denotes the set of all permissions. This set contains permissions govern-
ing kernel services as well as permissions governing services provided by user space servers.

The set Kernel permission is used to denote the subset of PERMISSION that governs kernel
services.

DTOS Kernel Definition 12

[PERMISSION]

Kernel permission : �PERMISSION

9Note that the terms access vector, service vector, and permission set are used somewhat interchangeably.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 65

The elements of Kernel permission are enumerated in subsections 5.4.1-5.4.14. The op-
erator Values partition is formally defined in Appendix B. Informally, the expression
hval1; : : : ; valn iValues partition S denotes that the values val1; : : : ; valn are unique values that
together comprise the set val set.

5.4.1 IPC Permissions

The DTOS kernel enforces the following “IPC” permissions: Can receive, Can send ,
Hold receive, Hold send , Hold send once , Interpose, Map vm region, Set reply, Specify ,
Transfer ool , Transfer receive, Transfer rights, Transfer send , Transfer send once . We use
Ipc permissions to denote this set of permissions.

DTOS Kernel Definition 13

Ipc permissions : �PERMISSION

Can receive;Can send ;Hold receive;
Hold send ;Hold send once ; Interpose;
Map vm region; Set reply; Specify ;
Transfer ool ;Transfer receive;Transfer rights;
Transfer send ;Transfer send once :

PERMISSION

hCan receive;Can send ;Hold receive;Hold send ;Hold send once; Interpose;
Map vm region; Set reply; Specify ;Transfer ool ;Transfer receive;
Transfer rights;Transfer send ;Transfer send oncei

Values partition Ipc permissions

5.4.2 Port Permissions

The DTOS kernel enforces the following permissions on port requests: Add name ,
Alter pns info, Extract right, Lookup ports, Manipulate port set , Observe pns info,
Port rename , Register noti�cation , Register ports, Remove name . We use Port permissions to
denote this set of permissions.

DTOS Kernel Definition 14

Port permissions : �PERMISSION

Add name ;Alter pns info;Extract right;
Lookup ports;Manipulate port set ;Observe pns info;
Port rename ;Register noti�cation ;Register ports;
Remove name :

PERMISSION

hAdd name ;Alter pns info;Extract right;Lookup ports;
Manipulate port set ;Observe pns info;Port rename;
Register noti�cation;Register ports;Remove namei

Values partition Port permissions

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

66
CDRL A005

DTOS State Extensions

5.4.3 VM Permissions

The DTOS kernel enforces the following permissions on VM requests:
Access machine attribute, Allocate vm region, Chg vm region prot , Copy vm ,
Deallocate vm region, Get vm region info, Get vm statistics, Read vm region,
Set vm region inherit, Wire vm for task , Write vm region. We use Vm permissions to denote
this set of permissions.

DTOS Kernel Definition 15

Vm permissions : �PERMISSION

Access machine attribute;Allocate vm region;Chg vm region prot;
Copy vm;Deallocate vm region;Get vm region info;
Get vm statistics;Read vm region; Set vm region inherit;
Wire vm for task ;Write vm region :

PERMISSION

hAccess machine attribute;Allocate vm region;Chg vm region prot ;
Copy vm;Deallocate vm region;Get vm region info;Get vm statistics;
Read vm region; Set vm region inherit;Wire vm for task ;
Write vm regioni

Values partition Vm permissions

5.4.4 Memory Object Permissions

The DTOS kernel enforces the following permissions on memory requests:Have execute,
Have read , Have write, Page vm region. We use Memory object permissions to denote this set
of permissions.

DTOS Kernel Definition 16

Memory object permissions : �PERMISSION

Have execute ;Have read ;Have write;
Page vm region :

PERMISSION

hHave execute ;Have read ;Have write;Page vm regioni
Values partition Memory object permissions

5.4.5 Pager Permissions

The DTOS kernel enforces the following permissions on pager requests:Change page locks,
Destroy object , Get attributes, Invoke lock request, Make page precious, Provide data ,
Remove page , Revoke ibac, Save page, Set attributes, Set ibac port , Supply ibac. We use
Pager permissions to denote this set of permissions.

DTOS Kernel Definition 17

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 67

Pager permissions : �PERMISSION

Change page locks;Destroy object ;Get attributes;
Invoke lock request;Make page precious;Provide data ;
Remove page ;Revoke ibac; Save page;
Set attributes; Set ibac port ; Supply ibac :

PERMISSION

hChange page locks;Destroy object ;Get attributes; Invoke lock request ;
Make page precious;Provide data ;Remove page ;Revoke ibac; Save page ;
Set attributes; Set ibac port ; Supply ibaci

Values partition Pager permissions

5.4.6 Thread Permissions

The DTOS kernel enforces the following permissions on thread requests:Abort thread ,
Abort thread depress, Assign thread to pset , Can swtch, Can swtch pri , Depress pri ,
Get thread assignment , Get thread exception port , Get thread info, Get thread kernel port ,
Get thread state, Initiate secure, Raise exception , Resume thread , Sample thread ,
Set max thread priority, Set thread exception port, Set thread kernel port , Set thread policy ,
Set thread priority, Set thread state, Suspend thread , Switch thread , Terminate thread ,
Wait evc, Wire thread into memory . We use Thread permissions to denote this set of
permissions.

DTOS Kernel Definition 18

Thread permissions : �PERMISSION

Abort thread ;Abort thread depress ;Assign thread to pset ;
Can swtch;Can swtch pri ;Depress pri;
Get thread assignment ;Get thread exception port;Get thread info;
Get thread kernel port ;Get thread state; Initiate secure;
Raise exception ;Resume thread ; Sample thread ;
Set max thread priority; Set thread exception port ; Set thread kernel port;
Set thread policy; Set thread priority; Set thread state;
Suspend thread ; Switch thread ;Terminate thread ;
Wait evc;Wire thread into memory :

PERMISSION

hAbort thread ;Abort thread depress ;Assign thread to pset ;Can swtch;
Can swtch pri;Depress pri ;Get thread assignment ;
Get thread exception port ;Get thread info;Get thread kernel port ;
Get thread state; Initiate secure;Raise exception ;Resume thread ;
Sample thread ; Set max thread priority; Set thread exception port ;
Set thread kernel port; Set thread policy ; Set thread priority;
Set thread state; Suspend thread ; Switch thread ;Terminate thread ;
Wait evc;Wire thread into memoryi

Values partition Thread permissions

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

68
CDRL A005

DTOS State Extensions

5.4.7 Task Permissions

The DTOS kernel enforces the following permissions on task requests: Add thread ,
Add thread secure, Assign task to pset , Change sid , Chg task priority, Create task ,
Create task secure, Cross context create, Cross context inherit , Get emulation ,
Get task assignment , Get task boot port , Get task exception port, Get task info,
Get task kernel port, Get task threads , Make sid , Resume task , Sample task , Set emulation ,
Set ras, Set task boot port , Set task exception port , Set task kernel port , Suspend task ,
Terminate task , Transition sid . We use Task task permissions to denote this set of permissions.

DTOS Kernel Definition 19

Task task permissions : �PERMISSION

Add thread ;Add thread secure;Assign task to pset ;
Change sid ;Chg task priority;Create task ;
Create task secure;Cross context create;Cross context inherit;
Get emulation;Get task assignment ;Get task boot port ;
Get task exception port;Get task info;Get task kernel port ;
Get task threads;Make sid ;Resume task ;
Sample task ; Set emulation ; Set ras;
Set task boot port; Set task exception port; Set task kernel port;
Suspend task ;Terminate task ;Transition sid :

PERMISSION

hAdd thread ;Add thread secure;Assign task to pset ;Change sid ;
Chg task priority;Create task ;Create task secure;
Cross context create;Cross context inherit ;Get emulation;
Get task assignment ;Get task boot port;Get task exception port ;
Get task info;Get task kernel port;Get task threads;Make sid ;
Resume task ; Sample task ; Set emulation; Set ras; Set task boot port;
Set task exception port; Set task kernel port; Suspend task ;
Terminate task ;Transition sidi

Values partition Task task permissions

We use Task permissions to denote the union of Task task permissions, Port permissions, and
Vm permissions.

DTOS Kernel Definition 20

Task permissions : �PERMISSION

hPort permissions;Vm permissions;Task task permissionsi partition Task permissions

5.4.8 Host Name Port Permissions

The DTOS kernel enforces the following permissions on host name port requests:Create pset ,
Flush permission, Get audit port, Get authentication port, Get crypto port ,
Get default pset name , Get host control port , Get host info, Get host name,
Get host version, Get negotiation port, Get network ss port , Get security master port ,
Get security client port , Get special port , Get time, Pset names , Set audit port,
Set authentication port, Set crypto port , Set negotiation port , Set network ss port,
Set security master port, Set security client port , Set special port. We use
Host name port permissions to denote this set of permissions.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 69

DTOS Kernel Definition 21

Host name port permissions : �PERMISSION

Create pset ;Flush permission;Get audit port ;
Get authentication port ;Get crypto port ;Get default pset name ;
Get host control port ;Get host info;Get host name ;
Get host version;Get negotiation port ;Get network ss port;
Get security master port ;Get security client port ;Get special port;
Get time;Pset names ; Set audit port;
Set authentication port; Set crypto port; Set negotiation port ;
Set network ss port; Set security master port ; Set security client port;
Set special port :

PERMISSION

hCreate pset ;Flush permission;Get audit port;
Get authentication port ;Get crypto port ;Get default pset name ;
Get host control port ;Get host info;Get host name ;Get host version;
Get negotiation port ;Get network ss port;Get security master port ;
Get security client port ;Get special port ;Get time;
Pset names ; Set audit port ; Set authentication port;
Set crypto port ; Set negotiation port; Set network ss port ;
Set security master port; Set security client port; Set special porti

Values partition Host name port permissions

5.4.9 Host Control Port Permissions

The DTOS kernel enforces the following permissions on host control port requests:
Get boot info, Get host processors, Pset ctrl port , Reboot host , Set default memory mgr ,
Set time, Wire thread , Wire vm. We use Host control port permissions to denote this set of
permissions.

DTOS Kernel Definition 22

Host control port permissions : �PERMISSION

Get boot info;Get host processors;Pset ctrl port ;
Reboot host ; Set default memory mgr ; Set time;
Wire thread ;Wire vm :

PERMISSION

hGet boot info;Get host processors;Pset ctrl port ;Reboot host ;
Set default memory mgr ; Set time;Wire thread ;Wire vmi

Values partition Host control port permissions

5.4.10 Processor Permissions

The DTOS kernel enforces the following permissions on processor requests:
Assign processor to set , Get processor assignment , Get processor info, May control processor .
We use Processor permissions to denote this set of permissions.

DTOS Kernel Definition 23

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

70
CDRL A005

DTOS State Extensions

Processor permissions : �PERMISSION

Assign processor to set ;Get processor assignment ;Get processor info;
May control processor :

PERMISSION

hAssign processor to set ;Get processor assignment ;Get processor info;
May control processori

Values partition Processor permissions

5.4.11 Processor Set Name Port Permissions

The DTOS kernel enforces the following permissions on processor set name port requests:
Get pset info. We use Procset name port permissions to denote this set of permissions.

DTOS Kernel Definition 24

Procset name port permissions : �PERMISSION

Get pset info :
PERMISSION

hGet pset infoi
Values partition Procset name port permissions

5.4.12 Processor Set Control Port Permissions

The DTOS kernel enforces the following permissions on processor set control port requests:
Assign processor , Assign task , Assign thread , Chg pset max pri , De�ne new scheduling policy,
Destroy pset , Invalidate scheduling policy, Observe pset processes. We use
Procset control port permissions to denote this set of permissions.

DTOS Kernel Definition 25

Procset control port permissions : �PERMISSION

Assign processor ;Assign task ;Assign thread ;
Chg pset max pri ;De�ne new scheduling policy;Destroy pset ;
Invalidate scheduling policy ;Observe pset processes :

PERMISSION

hAssign processor ;Assign task ;Assign thread ;Chg pset max pri ;
De�ne new scheduling policy ;Destroy pset ;
Invalidate scheduling policy ;Observe pset processesi

Values partition Procset control port permissions

We use Procset permissions to denote the union of Procset name port permissions and
Procset control port permissions.

DTOS Kernel Definition 26

Procset permissions : �PERMISSION

hProcset name port permissions;Procset control port permissionsi
partition Procset permissions

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 71

5.4.13 Device Permissions

The DTOS kernel enforces the following permissions on device requests: Close device,
Control pager , Get device status, Map device, Open device, Read device, Set device �lter ,
Set device status, Write device. We use Device permissions to denote this set of permissions.

DTOS Kernel Definition 27

Device permissions : �PERMISSION

Close device ;Control pager ;Get device status ;
Map device;Open device;Read device ;
Set device �lter ; Set device status ;Write device :

PERMISSION

hClose device;Control pager ;Get device status ;Map device ;Open device ;
Read device; Set device �lter ; Set device status;Write devicei

Values partition Device permissions

5.4.14 Kernel Reply Port Permissions

The DTOS kernel enforces the following permissions on requests sent to kernel reply ports:
Provide permission. We use Kernel reply permissions to denote this set of permissions.

DTOS Kernel Definition 28

Kernel reply permissions : �PERMISSION

Provide permission :
PERMISSION

hProvide permissioni
Values partition Kernel reply permissions

We do not require that all of the above sets of permissions be non-overlapping. The only
such requirement is that the Ipc permissions do not overlap with any of the other sets. This
is consistent with the current prototype in which permissions are simply integers specifying
positions in access vectors. Because there are different types of access vector depending upon
the type of target object, multiple permissions may specify the same access vector position.
Every vector contains the IPC permissions stored at the same positions.

DTOS Kernel Definition 29

Ipc permissions

\ (Memory object permissions [Pager permissions

[Thread permissions [Task permissions

[Host name port permissions [Host control port permissions

[Processor permissions [Procset permissions

[Device permissions [Kernel reply permissions)
= �

5.5 Access Vector Cache

The kernel receives an access decision from the security server as aRuling . Each ruling consists
of:

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

72
CDRL A005

DTOS State Extensions

ssi — a subject security identifier
osi — an object security identifier
access vector — a set of granted permissions between the ssi and osi

control vector — the set of granted permissions which are allowed to be cached in the
kernel for later access
expiration value — the time at which the cached permissions expire

DTOS Kernel Definition 30

Ruling

ssi : SSI
osi : OSI
access vector : �PERMISSION

control vector : �PERMISSION

expiration value :

Review Note:
We need to be careful not to get bit by using ssi and osi in Ruling , since they are often used as “variables”
also. Or else we could rename them here.

A ruling is usable for a givenssi and osi if the ssi and osi match those in the ruling and the ruling
has not expired. The expression Usable ruling(ssi ; osi ; time) denotes the set of all such rulings
with respect to ssi , osi and time, the time at which the ruling is consulted. When a ruling is
initially received by the kernel, the kernel need only check the access vector and expiration time
to see if a permission is granted. This is reflected by the functionRuling allows(ruling; ssi; osi)
which returns the set of permissions in the access vector ofruling if ssi and osi are the same as
in ruling.

Editorial Note:
The prototype does not currently check the expiration time in these cases, but we plan to correct this.

DTOS Kernel Definition 31

Usable ruling : SSI �OSI � "�Ruling
Ruling allows : Ruling � SSI � OSI � "�PERMISSION

8 ruling : Ruling ; ssi : SSI ; osi : OSI ; time : ; permission : PERMISSION

� (ruling 2 Usable ruling(ssi ; osi ; time)
, (ssi = ruling :ssi
^ osi = ruling:osi
^ time < ruling:expiration value))

^ permission 2 Ruling allows(ruling; ssi ; osi; time)
, (ruling 2 Usable ruling(ssi ; osi ; time)
^ permission 2 ruling:access vector)

To enhance performance, the kernel is permitted to cache the rulings provided by security
servers. A cached ruling is usable for a given ssi , osi and permission if the ssi and osi match
those in the ruling, the permission is in the control vector and the ruling has not expired.
The expression Usable cached ruling(ssi ; osi ; permission; time) denotes the set of all such rul-
ings. Once cached, a ruling grants a particular permission from ssi to osi if the ruling is

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 73

usable and the permission is included in the access vector . This is reflected by the function
Cached ruling allows(ruling ; ssi; osi ; time), where time is the time at which the ruling is con-
sulted.

DTOS Kernel Definition 32

Usable cached ruling : SSI �OSI � PERMISSION � " �Ruling
Cached ruling allows : Ruling � SSI �OSI � " �PERMISSION

8 ruling : Ruling ; ssi : SSI ; osi : OSI ; time : ; permission : PERMISSION

� (ruling 2 Usable cached ruling(ssi ; osi ; permission; time)
, (ruling 2 Usable ruling(ssi ; osi ; time)
^ permission 2 ruling:control vector))

^ (permission 2 Cached ruling allows(ruling; ssi ; osi; time)
, (ruling 2 Usable cached ruling(ssi ; osi; permission; time)
^ permission 2 ruling:access vector))

The kernel cache is a set of rulings, represented by cache . There may only be one unexpired
ruling in the cache for each (ssi ; osi) pair. The function cache allows(ssi ; osi) returns the set of
permissions granted to the (ssi ; osi) pair by the rulings in the cache according to the function
Cached ruling allows. The quadruple (ssi ; osi ; permission; ruling) is in cached ruling avail if and
only if ruling is in the cache and it is usable for ssi , osi and permission at the current time.

DTOS Kernel Definition 33

KernelCache

cache : �Ruling
cache allows : SSI � OSI "�PERMISSION

cached ruling avail : �(SSI � OSI � PERMISSION �Ruling)
HostTime

8 ruling1; ruling2 : Ruling
j f ruling1; ruling2 g � cache

^ ruling1:ssi = ruling2:ssi
^ ruling1:osi = ruling2:osi
^ ruling1:expiration value > host time

^ ruling2:expiration value > host time

� ruling1 = ruling2

8 ssi : SSI ; osi : OSI
� cache allows(ssi ; osi) =

S
fruling : Ruling j ruling 2 cache

� Cached ruling allows(ruling ; ssi; osi ; host time)g

8 ssi : SSI ; osi : OSI ; permission : PERMISSION ; ruling : Ruling
� (ssi ; osi ; permission; ruling) 2 cached ruling avail

, (ruling 2 cache
\Usable cached ruling(ssi ; osi; permission; host time))

5.6 Message Security Information

Each existing message has an SSI associated with it that indicates the SSI of the task that
sent the message. The expressionmsg sending sid(message) indicates the SSI of the task that

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

74
CDRL A005

DTOS State Extensions

sent message. In addition, certain messages have an associated SSI that indicates which tasks
may receive the message. The setmsg receiver speci�ed indicates the set of messages that have
a receiving SID specified, and msg receiving sid(message) indicates the receiving SSI for each
message in this set. As part of the processing of a message, the sender’s permissions to the
destination port are computed and attached to the message. The set msg ruling computed

denotes the set of messages for which the permissions have already been computed, and
msg ruling(message) indicates the associated set of permissions for each such message. A
ruling must be computed for each message before the message can be enqueued at a port. An
“effective” sending SID and access vector may optionally be specified by the sender of a mes-
sage. The expressions msg speci�ed sid(message) and msg speci�ed vector(message) indicate,
respectively, the “effective” SID and access vector specified by the sender.

Editorial Note:
Need to think about how to model the specified vectors. The current specification ignores the cache
control and notification vectors. The prototype currently has all three vectors represented explicitly. It
has been implemented to allow the number of vectors to be easily changed.

DTOS Kernel Definition 34

DtosMessages

MessageExist

MessageQueues

msg sending sid :MESSAGE � SSI

msg receiver speci�ed : �MESSAGE

msg receiving sid :MESSAGE � SSI

msg ruling computed : �MESSAGE

msg ruling :MESSAGE �Ruling

msg speci�ed sid :MESSAGE � SSI

msg speci�ed vector :MESSAGE ��PERMISSION

dommsg sending sid = message exists

dommsg receiving sid = msg receiver speci�ed � message exists

dommsg ruling = msg ruling computed � message exists

domcontaining port � msg ruling computed

dommsg speci�ed sid � message exists

dommsg speci�ed vector � message exists

5.7 Task Creation Information

Each task has a state used in controlling the secure initiation of threads within that task.
The type TASK CREATION STATE is comprised of the possible values of this state. The
recognized values of this type are:

Tcs task empty — indicates a task that was created usingtask create secure and does
not yet have any threads.

Tcs thread created — indicates a task created using task create secure for which a
thread has been created using thread create secure but has not had its initial state
set.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 75

Tcs thread state set — indicates a task created using task create secure for which a
thread has been created using thread create secure that has had its initial state set
using thread set state secure but has not been resumed (i.e., started).

Tcs task ready —- indicates either a task that was not created usingtask create secure
or a task that was created using task create secure and which has a thread
that was created using thread create secure, has had its state set using
thread set state secure, and has been resumed using thread resume secure.

These states are used to ensure that processes initiated usingtask create secure follow the
normal process initiation sequence of:

1. Create the task.
2. Create a thread within the task.
3. Set the state of the thread.
4. Resume the thread.

Review Note:
The above, particularly the description ofTcs task ready , must be checked against the prototype

This allows an untrusted process to create a trusted process usingtask create secure while
prohibiting the untrusted process from (for example) changing the state of threads in the
trusted process after the trusted process has started execution.

The expression task creation state(task) denotes the creation state of task .

DTOS Kernel Definition 35

TASK CREATION STATE ::= Tcs task empty j Tcs thread created

j Tcs thread state set j Tcs task ready

TaskCreationState

TaskExist

task creation state : TASK � TASK CREATION STATE

dom task creation state = task exists

The Mach model of process creation uses an existing task to serve as a “template” for each
new task. This task is the parent task parameter to task create. A newly created task
inherits parts of its environment, such as portions of its address space, from the “parent”
task. To simplify the statement of the security requirements on task creation, we introduce
parent task (task) to denote task ’s parent.10

DTOS Kernel Definition 36

ParentTask

parent task : TASK � TASK

10Note that this information is not actually recorded in the current design. Since we only use this information
for stating requirements on task creation and this information is available at this point in the processing in the
implementation, this deviation between the model and the implementation is tolerable.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

76
CDRL A005

DTOS State Extensions

5.8 Server Ports

The kernel records the ports to be used for communications with certain servers:

security server master port denotes the port used by the kernel to make requests of the
security server.
security server client port denotes the port used by non-kernel clients to make requests
of the security server.
authentication server port denotes the port used to make requests of the authentication
server.
audit server port denotes the port used to make requests of the audit server.
crypto server port denotes the port used to make requests of the crypto server.
negotiation server port denotes the port used to make requests of the negotiation server.
network ss port denotes the port used to make security requests over the network.

DTOS Kernel Definition 37

ServerPorts

security server master port : PORT
security server client port : PORT
authentication server port : PORT
audit server port : PORT
crypto server port : PORT
negotiation server port : PORT
network ss port : PORT

When the kernel requests an access computation from the Security Server, it specifies a reply
port to which the computed accesses should be sent. We use kernel reply ports to denote the
set of ports that the kernel has specified as reply ports for requests to the Security Server.

DTOS Kernel Definition 38

KernelReplyPorts

PortExist

kernel reply ports : �PORT

kernel reply ports � port exists

5.9 Memory Region Protections

The current protection of a region limits a task’s access to that region. It is calculated as the
intersection of the Mach protection together with the accesses allowed for a task to a memory
region by the relevant access vector. We useprotection(task ; index) to denote current protections
of the region denoted by a given task-index pair.11

Mach Definition 108

11The prototype does not currently implement the enforcement of read-only access. The low-level memory routines
in the prototype treat read and execute interchangeably.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 77

Protection

MachProtection

protection : (TASK � PAGE INDEX)��PROTECTION

domprotection = dommach protection

8 task page index : TASK � PAGE INDEX

j task page index 2 domprotection

� protection(task page index) � mach protection(task page index)

5.10 Summary of DTOS Kernel State

The DTOS kernel state is the Mach kernel state augmented with the access vector cache and
the security information associated with subjects, objects, and messages.

DTOS Kernel Definition 39

DtosAdditions

SubjectSid

ObjectSid

TargetSids

KernelAs

KernelCache

DtosMessages

TaskCreationState

ParentTask

ServerPorts

KernelReplyPorts

Protection

DTOS Kernel Definition 40

Dtos

Mach

DtosAdditions

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

78
CDRL A005

Kernel Execution Model

Section 6
Kernel Execution Model

This section describes the computational model used to represent the DTOS kernel requests
and the additional data structures that are required to support this computational model. The
organization of this section is as follows:

Section 6.1, Execution Summary, gives a high level overview of the execution model
and its data structures. The following sections give detailed descriptions of transitions
which occur in the processing of all requests.
Section 6.2, Utility Transitions, discusses several utility transitions that are used in
various specifications.
Section 6.3, Trap Invocation, discusses the transitions which occur at the start of any
request.
Sections 6.4 through 6.6 describe the initial processing common to all kernel requests
which are made through the mach msg trap.
Section 6.7, Definitions, defines the data structures used to implement the transitions
discussed in the previous sections.

6.1 Execution Summary

The DTOS execution model centers on the selection of a set of common “break points” in the
processing of a kernel request. The break points are chosen to highlight significant processing
events such as request invocation and service checking. We address the issue of atomicity by
selecting an appropriate number and type of break points. One advantage of this approach is
flexibility with respect to the level of detail in the model; we can easily change the amount of
concurrency and level of detail by redefining the break points and the transitions which govern
them.

Given a set of break points, every kernel request can be viewed as a sequence of transitions
describing how processing moves from one break point to the next. In order to specify these
transitions we need to know the current execution state for each thread. In the model, we
maintain the execution status of each existing thread by setting the values of a function called
breaks. The domain of this function is the set of existing threads and the values indicate what
type of transitions have occurred as well as what information the thread needs to resume
processing. In a sense the breaks function is analogous to a processor’s stack where information
is stored between context switches, although the particular break points modeled bybreaks do
not in general coincide with actual context switches.

Every thread executing in user space maintains a value ofBk user space . To enter kernel space
a thread issues an instruction to trap into kernel code. We model such a transition by changing
the relevant value of the function breaks from Bk user space to Bk new trap. Similarly, we
model a transition where a thread starts at a break point labeled Bk point A and ends at
a break point labeled Bk point B by changing the relevant value of the function breaks from
Bk point A to Bk point B . The following sections describe the specific break points, their
interpretations in the execution model, the information needed to resume processing, and the
flow of processing from one break point to the next.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 79

In the Mach kernel, many different requests share common features of processing. Another
advantage of our model of execution is that it is easy to specify transitions which are common to
many requests in a reusable manner. In general we begin by discussing transitions which are
common to all requests and then discuss specialized transitions and finally discuss the transi-
tions which are specific to a particular request. This section details the common transitions,
transitions common to a class of requests are discussed in request chapter introductions, while
the request specific transitions are specified in individual request sections.

Now we describe the data structures constituting the execution model. The values ofbreaks
are elements of the free type BREAK STATUS . These values indicate the current processing
status of a thread together with the environment needed to resume processing. The elements of
BREAK STATUS are discussed in the following sections as preconditions and postconditions
to transitions. The formal definition ofBREAK STATUS is given in Section 6.7.5. We use the
schema Breaks to define the breaks function.

Breaks

ThreadExist

breaks : THREAD � BREAK STATUS

dombreaks = thread exists

The state for the DTOS execution model consists of the components present in the DTOS kernel
state together with the function breaks.

DtosExec

Dtos

Breaks

We introduce a special schema Transition which serves as the signature for every main tran-
sition. This schema introduces the DTOS kernel state and declares four variables. The first,
cpu??, is the processor on which the transition is occurring. The other three are derived from
cpu?? and are included as aliases to commonly used state elements. The variablecurr th?? is
the thread which is currently executing oncpu??, curr task?? is curr th??’s parent task, and
curr bk?? is the execution status of curr th??.12

Transition

� DtosExec

cpu?? : PROCESSOR
curr th?? : THREAD
curr task?? : TASK
curr bk?? : BREAK STATUS

cpu?? 2 domactive thread

curr th?? = active thread(cpu??)
curr task?? = owning task (curr th??)
curr bk?? = breaks(curr th??)

12The double questionmark decoration is used to provide a distinct look to these four components, since they have
an interpretation distinct from either elements of the system state or inputs or outputs.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

80
CDRL A005

Kernel Execution Model

6.2 Utility Transitions

We begin our discussion of break points by specifying several transitions, shown in Figure 1,
which are used as utilities. Each box in the diagram represents a complete transition; the
first line in each box gives the name of the corresponding transition schema while the next
two lines describe the break type of the precondition and postcondition, respectively. For
example, the right-most box in Figure 1 describes the transitionRulingInCache which has as
precondition the existence of a break of type Bk check pending , and produces a break of type
Bk have ruling as a postcondition. In these diagrams, a solid arrow from TransitionOne to
TransitionTwo indicates that TransitionOne precedes TransitionTwo and no other transitions
from this request intervene (of course concurrency allows transitions from other requests to
occur.) By contrast, a dashed line indicates that intervening requests may occur. For example,
the line from RulingNotInCache to RulingObtained is dashed to reflect the fact that when the
kernel waits for a ruling from the security server the most general interaction could involve
repeated failures and retries.

Return
 return
 user_space

TransitionName
 pre_break
 post_break

RulingNotInCache
 check_pending
 ruling_pending

RulingObtained
 ruling_pending
 have_ruling

RulingInCache
 check_pending
 have_ruling

Figure 1: Utility Transitions

6.2.1 The Return Utility

Here we discuss the transition associated with request termination. The final transition in the
processing of an IPC based request occurs when the kernel builds a return message containing
status information and a specific kernel reply. We model such a transition with the schema
Return. The precondition for this transition is the existence of a break of typeBk return and
the post condition is the creation of a break of typeBk user space signaling the fact that the
thread has left kernel processing. The break Bk user space does not store any environment
parameters (since no further processing is necessary) whileBk return maintains the following
information:

reply to port — the port where the return message should be enqueued (if dead or null
no message is sent),
operation — the operation identifier for the terminating request,

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 81

reply — an element of the type KERNEL REPLY representing request specific output
parameters supplied by the kernel,
return — an element of the typeKERNEL RETURN describing the error status of request
processing.

The kernel uses these parameters to build the return message. We model message construc-
tion with a set of functions: Outputs to body , Reply size, Reply complex , and Reply op. These
functions and the types KERNEL REPLY and KERNEL RETURN are discussed in detail in
Section 6.7.1. It is worth noting that this reply message is not sent viamach msg; rather the
kernel builds the message and directly enqueues it atreply to port.

Editorial Note:
We do not currently specify enqueueing of the message.

Return

Transition

9message :MESSAGE ; int msg : InternalMessage ;
reply to port : PORT ; operation : OPERATION ;
reply : KERNEL REPLY ; return : KERNEL RETURN

� curr bk?? = Bk return(reply to port; operation; reply; return)
^ message =2 message exists

^ message exists 0 = message exists [fmessage g
^ msg contents(message) = int msg

^ int msg:header :local rights = �
^ int msg:header :complex

= Reply complex (operation;Outputs to body(reply ; return))
^ int msg:header :size

= Reply size(operation ;Outputs to body(reply; return))
^ int msg:header :remote port = reply to port

^ int msg:header :local port = �
^ int msg:header :operation = Reply op(operation)
^ int msg:body = Outputs to body(reply; return)
^ int msg:option = fMach send msg g
^ breaks 0 = breaks � f curr th?? 7! Bk user space g

6.2.2 Permission Checking

Next we define the set of transitions involved in specifying a permission check. There are two
possible transitions at the start of a permission check:RulingInCache orRulingNotInCache . The
precondition for each of these transitions is the existence of a break of typeBk check pending .
The transition RulingInCache examines the cache, determines that a cached ruling is available
for the permission check, and creates a new break of type Bk have ruling. The transition
RulingNotInCache examines the cache, determines that a cached ruling is not available, and
creates a new break of typeBk ruling pending . In this case the kernel continues processing by
consulting the Security Server. We model this transition by the schemaRulingObtained which
has as precondition the existence of a break of typeBk ruling pending and which creates a new
break of type Bk have ruling.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

82
CDRL A005

Kernel Execution Model

The permission checking transitions need to maintain several environment parameters. These
are interpreted as:

ssi — the subject SID of the check,
osi — the object SID of the check,
perm — the required permission,
env — the stored environment needed to resume processing,
op allowed — the boolean flag determining permission.

The first four of these are used in several places so we combine them in a structure called
CheckPending :

CheckPending

ssi : SSI
osi : OSI
perm : PERMISSION

env : ENVIRONMENT

There are three distinct contexts in which a permission check may be required: at the beginning
of a system trap (e.g. mach thread self), at the beginning of an IPC based request (e.g. the
service check for thread get state), or later in the processing of an IPC based request (e.g.
the deferred check in thread get special port.) As such, the parameter env needs to store
one of three different types of data. To handle these three cases we define a free type called
ENVIRONMENT , which is described in Section 6.7.4.

The first permission checking utility transition isRulingInCache . When a permission check
is initiated, the kernel consults the cache to determine if there is an applicable ruling. The
schema RulingInCache models the case where a permission check has been requested, and the
kernel verifies that the cache contains an applicable ruling. The precondition ofRulingInCache
is the existence of a break of typeBk check pending , reflecting the condition that the processing
of some request is waiting for a permission check. The postcondition,Bk have ruling, reflects
the fact that an available ruling was found; in this case the result of the permission check is
stored in the parameter perm. The parameter env is passed along unchanged.

RulingInCache

Transition

9CheckPending ; ruling : Ruling; op allowed : BOOLEAN
� curr bk?? = Bk check pending (ssi ; osi ; perm; env)
^ (ssi ; osi ; perm; ruling) 2 cached ruling avail

^ op allowed

= if perm 2 Cached ruling allows(ruling ; ssi; osi ; host time)
then True

else False

^ breaks 0 = breaks � f curr th?? 7! Bk have ruling(perm; op allowed ; env) g

The schema RulingNotInCache models the case where a permission check has been requested
and the kernel has determined that the cache does not contain an applicable ruling. Again
the precondition is the existence of a break of type Bk check pending , but in this case the
postcondition is a break of typeBk ruling pending reflecting the fact that the kernel is waiting
for a ruling from the Security Server. As before, the parameterenv is passed along unchanged.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 83

RulingNotInCache

Transition

9CheckPending
� curr bk?? = Bk check pending (ssi ; osi ; perm; env)
^ (8 ruling : Ruling j ruling 2 cache
� ruling =2 Usable cached ruling(ssi ; osi ; perm; host time))

^ breaks 0 = breaks � f curr th?? 7! Bk ruling pending (ssi ; osi; perm; env) g

The schema RulingObtained models a transition where the kernel receives a valid ruling from
the Security Server. The precondition is the existence of a break of typeBk have ruling and
the postcondition is the creation of a new break of type Bk have ruling. The result of the
permission check is stored in the parameterperm. As before, the parameter env is passed along
unchanged.

Editorial Note:
The ruling obtained from the Security Server is modeled as a kernel input, but we do not specify how
ruling? gets added to the cache.

RulingObtained

Transition

ruling? : Ruling

9CheckPending ; op allowed : BOOLEAN
� curr bk?? = Bk ruling pending(ssi ; osi ; perm; env)
^ ruling? 2 Usable ruling(ssi ; osi; host time)
^ op allowed

= if perm 2 Ruling allows(ruling?; ssi; osi ; host time)
then True

else False

^ breaks 0 = breaks � f curr th?? 7! Bk have ruling(perm; op allowed ; env) g

It is important to note that there are in fact many transitions betweenRulingNotInCache and
RulingObtained including the sending of a message to the security server and receipt of a
response.

6.3 Trap Invocation

All kernel requests are initiated through invocation of a trap while a thread is executing in
user space. The thread must specify the particular trap identifier as well as some collection of
parameters.

The precondition for this transition is the existence of a break of typeBk user space indicating
that the thread is currently executing in user space. The postcondition is the creation of
a new break of type Bk new trap. A break of type Bk new trap maintains two parameters:
trap id? identifies the type of trap being invoked and user spec? contains components for the
user supplied parameters. These types are described in Section 6.7.2 and Section 6.7.3.1.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

84
CDRL A005

Kernel Execution Model

Invoke

Transition

trap id? : TRAP ID

user spec? : UserSpeci�ed

curr bk?? = Bk user space

trap id? 2 Trap ids

breaks
0 = breaks � f curr th?? 7! Bk new trap(trap id?; user spec?) g

6.4 Initial mach msg processing

In this section we discuss the transitions shown in Figure 2 which specify the early processing
associated with the invocation of a mach msg trap.

Invoke
 user_space
 new_trap

MachMsgTrap
 new_trap
 mach_msg

trap-specific
processing

MachMsgRcv
in IPC section

send

system
trap

receive

ReceiveMessage
 mach_msg
 rcv_message

id indicates
Mach msg

GetKernelMsg
 mach_msg
 have_kernel_msg

MachMsgSend
in IPC section

kernel not
receiver

SendMessage
 have_kernel_msg
 send_message

kernel is
receiver

Figure 2: mach msg Trap Invocation

If trap id? indicates that the new break is Mach msg trap processing continues with
MachMsgTrap; the precondition is the existence of a break of type Bk new trap and the post-
condition is the creation of a new break of typeBk mach msg . The break Bk new trap carries
the trap identifier,Mach msg trap, as well as the user parameters user spec which in this case
contains the user space message.

MachMsg

Transition

9 user spec : UserSpeci�ed
� curr bk?? = Bk new trap(Mach msg trap; user spec)
^ breaks 0 = breaks � f curr th?? 7! Bk mach msg(user spec) g

Now we have two cases: this is a request to receive a message or a request to send a message.

Processing to receive a message is initiated in the transitionReceiveMessage . A client requests
to receive a message by including Mach rcv msg in the set of options. The precondition also

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 85

includes the existence of a break of type Bk mach msg . The postcondition is the creation of a
new break of type Bk rcv message . Subsequent processing of a receive request is described in
Section C.1.

ReceiveMessage

Transition

9 user spec : UserSpeci�ed
� curr bk?? = Bk mach msg(user spec)
^Mach rcv msg 2 user spec:options
^Mach send msg =2 user spec:options
^ breaks 0 = breaks � f curr th?? 7! Bk rcv message(user spec) g

Otherwise this is a request to send a message, in which case processing continues with the con-
version of the user space message into an internal representation. The transitionGetKernelMsg

models a transition where the kernel resolves local name references to port references and vir-
tual memory addresses to physical addresses. Here the precondition is the existence of a
break of type Bk mach msg and the postcondition is a new break of typeBk have kernel msg.
The kernel message is modeled by an element of type InternalMessage; this is discussed in
Section 6.7.3.2.

Editorial Note:
Currently this is modeled as a “black box” transition, but the utilities exist (in the IPC section) to specify
the conversion.

GetKernelMsg

Transition

9 user spec : UserSpeci�ed ; int msg : InternalMessage

� curr bk?? = Bk mach msg(user spec)
^Mach send msg 2 int msg:option
^ breaks 0 = breaks

�f curr th?? 7! Bk have kernel msg(int msg) g

Now there are two cases to consider depending on whether or not the kernel is the receiver for
the message.

If the kernel is not the receiver, this is a request to send a message and we model con-
tinued processing with the transition SendMessage . The precondition is the existence of a
break of type Bk have kernel msg and the postcondition is the creation of a new break of type
Bk send message . Subsequent processing of a send request are described in Section C.1.

SendMessage

Transition

9 int msg : InternalMessage

� curr bk?? = Bk have kernel msg(int msg)
^ kernel 6= receiver(int msg :header :remote port)
^ breaks 0 = breaks � f curr th?? 7! Bk send message(int msg) g

The case in which the kernel is the receiver is considered further in the next section.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

86
CDRL A005

Kernel Execution Model

6.5 Service Checks for IPC Based Kernel Requests

Kernel requests which are received through themach msg trap generally must pass through
an initial service check to determine if the client has permission to make the request. This is
performed whenever the permission required by the request is dependent only upon the client,
the port provided as the “target” port in the request and the operation identifier. For a few
requests, this information is not sufficient and the permission check is deferred.

Figure 3 shows the transitions described within this section.

ServicePending
 have_kernel_msg
 service_pending

PassServiceCheck
 have_ruling
 have_permission

FailServiceCheck
 have_ruling
 return

to
Return

kernel is
receiver

ServiceCheck
 service_pending
 check_pending

CheckDeferred
 service_pending
 have_permission

permission
utilities

permission
utilities

request has a
deferred check

request has a
service check further request

specific processing

Figure 3: Message Transmission

The kernel prepares for the permission check by determining the operation that is being re-
quested. We model this processing with the transitionServicePending . The precondition is the
existence of a break of type Bk have kernel msg and the postcondition is the creation of a new
break of type Bk service pending . As before, the parameter int msg is carried along for future
use. In addition, this transition determines the operation and stores the value in theoperation
parameter of Bk service pending .

ServicePending

Transition

9 int msg : InternalMessage

� curr bk?? = Bk have kernel msg(int msg)
^ kernel = receiver(int msg :header :remote port)
^ breaks 0 = breaks

�f curr th?? 7! Bk service pending (int msg; int msg :header :operation) g

Next the kernel determines whether or not the client has permission to request the opera-
tion. Each operation typically has an associated primary permission that a client must have
in order to successfully call the operation. Checking that the client has this primary per-
mission is referred to as making the service check. For example, the primary permission

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 87

associated with the thread create request is Add thread . The thread create request does
not have any other permissions associated with it. As another example, the primary permis-
sion associated with the mach port allocate request is Add name . However, there are other
permissions such as Hold receive that are also relevant to the mach port allocate request.
The expression Required permission(operation) denotes the primary permission, if any, associ-
ated with operation operation. For certain operations the service check is deferred because
the required permission depends on a parameter that must first be processed. Once the pa-
rameter has been extracted from the message the appropriate permission check is performed.
The set Service check deferred is the set of all such operations. No operation in the domain of
Required permission can be in the set Service check deferred.

DTOS Kernel Definition 41

Required permission : OPERATION � PERMISSION

Service check deferred : �OPERATION

Service check deferred \ domRequired permission = �

The schema CheckDeferred models a transition in which the service check for a request is
deferred until further processing can extract the appropriate parameters for the check. The
precondition is the existence of a break of type Bk service pending and the resulting break,
Bk have permission, takes an element of type PERMISSION as one of its arguments. We
introduce a dummy permission called permission deferred to act as the desired permission in a
deferred service check.

permission deferred : PERMISSION

CheckDeferred

Transition

9 int msg : InternalMessage; operation : OPERATION
� curr bk?? = Bk service pending (int msg ; operation)
^ operation 2 Service check deferred

^ breaks 0 = breaks

�f curr th?? 7! Bk have permission(int msg ; permission deferred) g

If the service check is not deferred, the schema ServiceCheck models a transition where the
current thread waits for the kernel to obtain a ruling from the cache or from the secu-
rity server. The precondition is the existence of a break of type Bk service pending and
the resulting break, Bk check pending , contains the parameters for the permission check.
The break Bk check pending requires an element of type ENVIRONMENT ; the expression
E kern(int msg) packages the internal message into an element of this type. The function
E kern is discussed in Section 6.7.4.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

88
CDRL A005

Kernel Execution Model

ServiceCheck

Transition

9 int msg : InternalMessage; operation : OPERATION ;
ssi : SSI ; osi : OSI ; perm : PERMISSION

� curr bk?? = Bk service pending (int msg ; operation)
^ operation =2 Service check deferred

^ ssi = task sid(curr task??)
^ osi = port sid(int msg:header :remote port)
^ perm = Required permission(operation)
^ breaks 0 = breaks

�f curr th?? 7! Bk check pending(ssi ; osi ; perm;E kern(int msg)) g

Editorial Note:
The OSI in the previous might need more elaboration depending upon the use of the “self” SIDs. Also,
if we ever began to correctly consider specified sender SIDs, that would need to be taken care of around
this point in the processing.

After obtaining a ruling, the kernel examines the access vector to determine if the operation
is allowed. If the check fails, the kernel builds a return message by extracting information
from the internal message. The local port component of the message header specifies the
reply port (Ip null indicates that no reply should be sent.) In the case of a failed permission
check we use the element Null reply of type KERNEL REPLY to represent an empty kernel
reply and the kernel returns the special value Kern insu�cient permission. We model this
processing with the transitionFailServiceCheck . The precondition is the existence of a break of
type Bk have ruling indicating that the permission checking transition(s) have occurred. The
postcondition is either Bk return in the case where a return message has been requested or
Bk user space for an immediate return to user space.

Null reply : KERNEL REPLY

FailServiceCheck

Transition

9 perm : PERMISSION ; op allowed : BOOLEAN ; int msg : InternalMessage ;
reply to port : PORT ; operation : OPERATION ;
reply : KERNEL REPLY ; return : KERNEL RETURN

� curr bk?? = Bk have ruling(perm; op allowed;E kern(int msg))
^ op allowed = False

^ reply to port = int msg :header :local port
^ operation = int msg :header :operation
^ reply = Null reply

^ return = Kern insu�cient permission

^ reply to port = Ip null) breaks
0 = breaks

�f curr th?? 7! Bk user space g
^ reply to port 6= Ip null) breaks 0 = breaks

�f curr th?? 7! Bk return(reply to port ; operation; reply; return) g

Editorial Note:

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 89

The schema is not exactly coherent with the rest of the model. This is because the state model consider
local port to be a set of ports (zero or one element) rather than allowing it to take null values as it should
and as is assumed here.

The transition PassServiceCheck models the case were a ruling has been obtained and the
operation is allowed. The precondition is the existence of a break of type Bk have ruling;
such a break can only be produced be the permission checking utilities so this ensures that
a permission check has occurred. The postcondition is the creation of a new break of type
Bk have permission. The internal message is carried along as a parameter throughout the
permission check as an element of typeENVIRONMENT (in this caseE kern(int msg)); in this
transition we convert back to an element of type InternalMessage .

PassServiceCheck

Transition

9 perm : PERMISSION ; op allowed : BOOLEAN ; int msg : InternalMessage

� curr bk?? = Bk have ruling(perm; op allowed;E kern(int msg))
^ op allowed = True

^ breaks 0 = breaks

�f curr th?? 7! Bk have permission(int msg ; perm) g

In summary, if the service check passes or has been deferred there will be a break of type
Bk have permission. Further processing is described in the next section.

6.6 Request Validation

The final request processing steps which are generally common to all IPC based kernel requests
is validation of the request and extraction of the request parameters from the message body.
These transitions are shown in Figure 4.

ValidRequest
 have_permission
 valid_request

InvalidRequest
 have_permission
 return

ExtractRequest
 valid_request
 have_request

Request specific
transitions in
request sections

to
Return

invalid
operation

valid
operationcontinued

from previous

Figure 4: Request Validation

If the service check passes or is deferred the kernel next verifies that the specified operation
is an allowed Mach operation. The set Allowed kernel ops denotes the set of recognized Mach
operations.

Allowed kernel ops : �OPERATION

If the kernel determines that operation is not an allowed kernel operation, an error message is
generated and sent to the reply port. Again the kernel sends an empty reply, and if the reply port

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

90
CDRL A005

Kernel Execution Model

is null no message is sent. The kernel reply is the special valueMIG BAD ID . This is modeled
by the transition InvalidRequest . The precondition is a break of type Bk have permission and
the two possible postconditions are Bk user space for a return without message or Bk return

for a return with message.

MIG BAD ID : KERNEL REPLY

InvalidRequest

Transition

9 int msg : InternalMessage; perm : PERMISSION ;
reply to port : PORT ; operation : OPERATION ;
reply : KERNEL REPLY ; return : KERNEL RETURN

� curr bk?? = Bk have permission(int msg; perm)
^ operation = int msg :header :operation
^ operation =2 Allowed kernel ops

^ reply to port = int msg :header :local port
^ reply = MIG BAD ID

^ return = Kern invalid value

^ reply to port = Ip null) breaks
0 = breaks

�f curr th?? 7! Bk user space g
^ reply to port 6= Ip null) breaks

0 = breaks

�f curr th?? 7! Bk return(reply to port ; operation; reply; return) g

Editorial Note:
The schema is not exactly coherent with the rest of the model. This is because the state model consider
local port to be a set of ports (zero or one element) rather than allowing it to take null values as it should
and as is assumed here.

If the request is valid, we model processing withValidRequest . The precondition is the existence
of a break of type Bk have permission and the postconditionBk valid request indicates that the
operation is allowed.

ValidRequest

Transition

9 int msg : InternalMessage; perm : PERMISSION

� curr bk?? = Bk have permission(int msg; perm)
^ int msg:header :operation 2 Allowed kernel ops

^ breaks 0 = breaks � f curr th?? 7! Bk valid request(int msg) g

Finally, if the operation is valid, the kernel extracts the request parameters. We model
this with the transition ExtractRequest . The precondition is the existence of a break of type
Bk valid request and the postcondition Bk have request , which maintains an element of type
Request , indicates that a request has been extracted. The componenets ofRequest are discussed
in Section 6.7.3.3.

Editorial Note:
This is modeled as a “black box” conversion. Potentially there are many different extraction transitions,
depending on the types of the parameters. At some point it is also important to deal with the possibility
that the extraction code (MIG) gets too confused about the types.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 91

ExtractRequest

Transition

9 int msg : InternalMessage; request : Request
� curr bk?? = Bk valid request(int msg)
^ breaks 0 = breaks � f curr th?? 7! Bk have request(request) g

Further request processing is discussed in the chapter introductions and request sections.

6.7 Definitions

In this section we define the types and constructors used to describe the break points.

6.7.1 Reply Messages

First we discuss the functions and types connected with kernel reply messages. We have two
types to represent the information returned by the kernel in reply messages. The elements of
KERNEL REPLY represent the various types of output that the kernel can supply to a client
through a reply message. Elements of typeKERNEL REPLY are request dependent, so here
we defineKERNEL REPLY as an abstract set; particular elements are discussed in the request
specifications.

[KERNEL REPLY]

The set KERNEL RETURN is an enumerated type representing the possible return statuses
that a request can generate. The set of statuses in DTOS consists of:

Kern success — the request was successful,
Kern failure — an implementation dependent failure occurred,
Kern invalid argument — an attempt was made to perform an operation on the wrong
type of entity; for example, an attempt was made to perform a task operation on a thread,
Kern protection failure — an attempt was made to access memory in violation of the
protections in force,
Kern invalid address — an invalid address was specified,
Kern no space — an attempt was made to allocate space in a task whose address space
or name space was full,
Kern invalid host — an attempt was made to perform a host operation on an entity other
than a host,
Kern resource shortage — insufficient resources were available for service to be provided,
Kern invalid right — the wrong type of port right was provided,
Kern invalid value — a parameter value that was out of range was provided,
Kern name exists — an attempt was made to reuse a name that was already used in the
target task’s address space,
Kern invalid name — a name provided as a port right was not currently in use,
Kern not in set — a name provided as the element of a port set was not in any port set,
Kern urefs overow — an operation was attempted that would cause a user reference
count to overflow,
Kern memory present —

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

92
CDRL A005

Kernel Execution Model

Review Note:
Need to determine what this is used for if it is really used

Kern invalid task — an attempt was made to perform a task operation on an entity other
than a task,
Kern eml bad cnt — an invalid syscall number was specified for an emulation vector
entry,
Kern invalid capability — a provided name is not a right of the appropriate type,
Kern insu�cient permission — a security checked failed in the processing of the request.

[KERNEL RETURN]

Kern success : KERNEL RETURN

Kern failure : KERNEL RETURN

Kern invalid argument : KERNEL RETURN

Kern protection failure : KERNEL RETURN

Kern invalid address : KERNEL RETURN

Kern no space : KERNEL RETURN

Kern invalid host : KERNEL RETURN

Kern resource shortage : KERNEL RETURN

Kern invalid right : KERNEL RETURN

Kern invalid value : KERNEL RETURN

Kern name exists : KERNEL RETURN

Kern invalid name : KERNEL RETURN

Kern not in set : KERNEL RETURN

Kern urefs overow : KERNEL RETURN

Kern true : KERNEL RETURN

Kern false : KERNEL RETURN

Kern memory present : KERNEL RETURN

Kern invalid task : KERNEL RETURN

Kern insu�cient permission : KERNEL RETURN

Kern eml bad cnt : KERNEL RETURN

Kern invalid capability : KERNEL RETURN

Values disjointhKern success;Kern failure;Kern invalid argument ;
Kern protection failure;Kern invalid address;Kern no space ;Kern invalid host ;
Kern resource shortage;Kern invalid right ;Kern invalid value;Kern name exists;
Kern invalid name;Kern not in set ;Kern urefs overow ;
Kern true;Kern false;Kern memory present ;
Kern eml bad cnt ;Kern invalid task ;
Kern insu�cient permission;Kern invalid capabilityi

Note that all but Kern insu�cient permission are Mach status codes, while
Kern insu�cient permission is a DTOS addition.

Next we define several functions which package the return parameters into a mes-
sage. The expression Outputs to body(reply ; return) converts a group of output param-
eters reply and a status return to the message body structure, and the expression
Reply size(operation;Outputs to body(reply; return)) denotes the size of a message carrying reply
and return as output from a request of type operation.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 93

Outputs to body : KERNEL REPLY � KERNEL RETURN " INTERNAL BODY

Reply size : OPERATION � INTERNAL BODY "

As with general messages in Mach, a reply message can be either simple or com-
plex as specified by the complex field of the message header. The expression
Reply complex (operation;Outputs to body(reply; return)) denotes the value that should be as-
signed to this field when returning reply and return as output from a request of type operation.

Reply complex : OPERATION � INTERNAL BODY "�COMPLEX OPTION

The kernel also needs to assign a value to the operation field of the reply message. The
expression Reply op(operation) denotes the value that is used to indicate a reply message for a
request of type operation.13

Reply op : OPERATION �OPERATION

6.7.2 Trap Identifiers

We define the setTRAP ID which represents the set of all trap operations. The set of identifiers
used to represent traps isTrap ids.

[TRAP ID]

Evc wait trap;Mach thread self trap; Swtch trap; Swtch pri trap;
Thread switch trap;Mach msg trap : TRAP ID

Trap ids : �TRAP ID

hEvc wait trap;Mach thread self trap; Swtch trap; Swtch pri trap;
Thread switch trap;Mach msg trapiValues partition Trap ids

6.7.3 Environment Parameters

As processing of a request progresses, the parameters involved are subject to several transfor-
mations. To handle various data contexts we model three types of parameters: user specified
parameters, kernel parameters, and abstract request parameters. In this section we define
structures which represent these types of data.

As an example, there are three distinct contexts in which a permission check may be required:
at the beginning of a system trap (e.g. mach thread self), at the beginning of an IPC based
request (e.g. the service check for thread get state), or later in the processing of an IPC
based request (e.g. the deferred check in thread get special port.) As such, the parameter
env supplied to the permission checking utilities needs to store one of three different types of
data. To handle these three cases we define a free type called ENVIRONMENT , which uses
three different constructor functions to store the three types of parameters.

6.7.3.1 User Parameters In the case of a system trap, we use the structureUserSpeci�ed . The
components consist of all possible user inputs for the various traps. Most of these inputs come
from Mach msg trap. The components have the following interpretations:
13The current implementation definesReply op(operation) to be operation + 100.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

94
CDRL A005

Kernel Execution Model

trap id — the identifier of the originating trap,
priority — the priority argument to the swtch pri trap,
thread switch name — the name argument to the thread switch trap,
thread switch option — the option to the thread switch trap,
timeout — a timeout parameter, used by the thread switch and mach msg traps,
message — the user message being sent via mach msg,
options — the send/receive options specified in the mach msg trap,
send size — the size of a message being sent,
receive size — the maximum size message that can be received,
receiver — where return messages will be received,
notify — where to send notifications.

The type THREAD SWITCH OPTION consists of the following three values:

THREAD SWITCH OPTION ::= Thread switch none j Thread switch depress

j Thread switch wait

UserSpeci�ed

trap id : TRAP ID

priority : �
thread switch name : NAME

thread switch option : THREAD SWITCH OPTION

timeout :
message :Message

options : �MACH MSG OPTION

send size :
receive size :
receiver : NAME

notify : NAME

6.7.3.2 Kernel Parameters In the case of a service check, the user space parameters contained
in an IPC message have been converted into internal representations—names have become
ports and virtual memory references have become physical addresses. We model this by storing
the relevant processing information in a structure of typeInternalMessage, which is described
in Section 4.10.8.

6.7.3.3 Request Parameters In the case of a deferred check, the kernel has performed addi-
tional processing on the message parameters to extract the request parameters. We use an
element of type Request to represent the parameters of the abstract service being requested.
These values are obtained from the contents of the message and the port through which the
message was received. The components have the following interpretations:

operation — the type of operation specified in the message,
service port — the port through which the message was received,
pc — service port ’s class (task, thread, memory control, …),
reply to port — a set containing the port to which the reply message should be sent, the
empty set indicates no reply should be sent,
message — the received message,
sending sid — the SID of the subject that sent the message ,

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 95

receiver speci�ed — a Boolean indicating whether an intended receiving SID is specified,
receiving sid — the intended receiving SID (if any).

BOOLEAN ::= True j False

Request

operation : OPERATION
service port : PORT
pc : PORT CLASS

reply to port : �PORT
message :MESSAGE

sending sid : SSI
receiver speci�ed : BOOLEAN
receiving sid : SSI

6.7.4 Environment

The three preceding data types are used to build the free typeENVIRONMENT , which is used
to store parameters between transition breaks:

ENVIRONMENT ::= E user�UserSpeci�ed�
j E kern�InternalMessage�
j E req�Request�

6.7.5 Break Status

Finally, we give the formal definition of the free typeBREAK STATUS . All of the constructor
functions defining BREAK STATUS have been discussed in the preceding sections. They
consist of:

Bk return indicates that a return message is being built and processing is terminating
(Section 6.2),
Bk check pending indicates that a thread is waiting to check whether a usable ruling for
a given permission is available in the cache (Section 6.2),
Bk ruling pending indicates that a thread is waiting for a ruling to be received from the
Security Server (Section 6.2),
Bk have ruling indicates that a thread has obtained a ruling and permission (Section 6.2),
Bk user space indicates that a thread is executing in user space (Section 6.3),
Bk new trap indicates that a thread has issued a trap into kernel space (Section 6.3),
Bk mach msg indicates that a thread has issued a trap of type Mach msg trap (Sec-
tion 6.4),
Bk rcv message indicates that a thread is waiting to receive a message (Section 6.4),
Bk have kernel msg indicates that a user space message has been converted to an internal
kernel message (Section 6.4),
Bk send message indicates that a thread is waiting to send a message and the kernel is
not the receiver (Section 6.4),
Bk service pending indicates that a thread has sent a message to the kernel and is waiting
for an IPC based request to be performed (Section 6.5),

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

96
CDRL A005

Kernel Execution Model

Bk have permission indicates that a permission check has terminated and the operation
is allowed (Section 6.5),
Bk valid request indicates that the indicated operation is a recognized Mach operation
(Section 6.6),
Bk have request indicates that the MIG interface has extracted the internal request pa-
rameters (Section 6.6).

The following abbreviations are used for some of the parameters in the constructor functions.
Values of type BK PERM REQUEST indicate the permission check for which a given request
is waiting. Values of type BK PERM RESULT indicate the permission check and its results
for a given request. Values of typeBK RETURN contain the information necessary to build a
return message.

BK PERM REQUEST == SSI � OSI � PERMISSION � ENVIRONMENT

BK PERM RESULT == PERMISSION � BOOLEAN � ENVIRONMENT

BK RETURN == PORT �OPERATION �KERNEL REPLY � KERNEL RETURN

The type BREAK STATUS is defined by:

BREAK STATUS ::= Bk return�BK RETURN�
j Bk check pending�BK PERM REQUEST�
j Bk ruling pending�BK PERM REQUEST�
j Bk have ruling�BK PERM RESULT�
j Bk user space

j Bk new trap�Trap ids � UserSpeci�ed�
j Bk mach msg�UserSpeci�ed�
j Bk rcv message�UserSpeci�ed�
j Bk have kernel msg�InternalMessage�
j Bk send message�InternalMessage�
j Bk service pending�InternalMessage �OPERATION�
j Bk have permission�InternalMessage � PERMISSION �
j Bk valid request�InternalMessage�
j Bk have request�Request�

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 97

Section 7
System Trap Requests

7.1 Introduction to System Trap Requests

This chapter describes the system trap requests in DTOS.

7.1.1 Kernel Processing

Every trap begins with the transition Invoke which produces a new break of type
Bk new trap(trap id?, user spec?). Typically there are no user inputs, but several traps (e.g.
thread switch) require one or more inputs. These parameters are stored in components of the
user spec? structure. Permission checks are handled by the utilities discussed in Section 6.2.

When a trap produces an error, it does not affect the system state. We define the following
transition to describe the situation where trap processing encounters an error and execution
leaves kernel space without changing the state.

TrapOnlyObserves

� Dtos

Transition

breaks
0 = breaks � f curr th?? 7! Bk user space g

We now describe the individual system trap requests.

7.1.2 Adding a Send Right

Editorial Note:
The following schema is used both in this chapter and the thread requests chapter. As currently used, it
forces us to violate the goal of having a common signature for all state transition schemas. It is not clear
that there is a simple way to avoid this, or whether this indicates a weakness in Z or in our use of Z.

The following schema describes a successful addition of a send right with name equal toname
for the port port to the port name space for task task . This action is one result of several thread
requests.

The name for the new right cannot already name a send-once right, dead name or port set. If
it does name either a send or receive right, this right must be forport . If it is does not already
name a send right, then a send right for port port with name name is added to the port name
space for task with a user reference count of 1. If it already names a send right belonging to
task , the user reference count for this send right is incremented by 1.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

98
CDRL A005

System Trap Requests

AddSendRight

� PortNameSpace

� SendRightsCount

name : NAME

task : TASK
port : PORT

(task ; name) =2 so right [dead namep [port set namep

(task ; name) 2 s r right) named port(task ; name) = port

(task ; name) =2 s right

) port right rel 0 = port right rel [f(task ; port; name; Send ; 1)g
(task ; name) 2 s right

) port right rel 0 = port right rel

n f(task ; port; name; Send ; s right ref count(task ; name))g
[f(task ; port; name; Send ; s right ref count(task ; name) + 1)g

7.2 mach thread self

The request mach thread self places a send right for a thread’s kernel port in the name
space of the owning task of the thread. It is a system trap.

7.2.1 Kernel Interface

mach port t mach thread self
();

7.2.1.1 Input Parameters No input parameters are provided to the kernel for a mach -
thread self request.

7.2.1.2 Output Parameters The following output parameters are returned by the kernel for a
mach thread self request:

kernel port name ! — the name for a send right to the thread’s kernel port in the port
name space of the thread’s owning task

MachThreadSelf Outputs

kernel port name ! : NAME

7.2.2 Request Criteria

The following criteria are defined for the mach thread self request.

C1 — Permission Get thread kernel port has been obtained.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 99

C1MachThreadSelfGetThreadKernelPort

Transition

9 env : ENVIRONMENT

� curr bk?? = Bk have ruling(Get thread kernel port;True; env)

NotC1MachThreadSelfGetThreadKernelPort

Transition

9 env : ENVIRONMENT

� curr bk?? = Bk have ruling(Get thread kernel port;False; env)

C2 — The sself port for the current thread is not Ip dead .

C2MachThreadSelfKernelPortNotDead

Transition

thread sself (curr th??) 6= Ip dead

NotC2MachThreadSelfKernelPortNotDead

b= Transition ^ : C2MachThreadSelfKernelPortNotDead

C3 — The sself port for the current thread is not Ip null .

C3MachThreadSelfKernelPortNotNull

Transition

thread sself (curr th??) 6= Ip null

NotC3MachThreadSelfKernelPortNotNull

b= Transition ^ : C3MachThreadSelfKernelPortNotNull

C4 — Either the current task already holds a send or receive right to the thread’s
sself port (so that a new IPC entry need not be created), or the kernel has the avail-
able resources to create an IPC entry in the current task’s name space. We do not
actually model the consumption of resources by the kernel. So, we will use the set
Resources available to create ipc entry to indicate the set of states where there are suffi-
cient resources to create an IPC entry.

Resources available to create ipc entry : �DtosExec

C4MachThreadSelfResourcesAvailable

Transition

((9 name : NAME ; i : 1; right : fSend ;Receiveg
� (curr task??; thread sself (curr th??); name; right; i)

2 port right rel)
_ �DtosExec 2 Resources available to create ipc entry)

NotC4MachThreadSelfResourcesAvailable

b= Transition ^ : C4MachThreadSelfResourcesAvailable

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

100
CDRL A005

System Trap Requests

C5 — Permission Hold send has been obtained.

C5MachThreadSelfHoldSend

Transition

9 env : ENVIRONMENT

� curr bk?? = Bk have ruling(Hold send ;True; env)

NotC5MachThreadSelfHoldSend

Transition

9 env : ENVIRONMENT

� curr bk?? = Bk have ruling(Hold send ;False; env)

7.2.3 Return Values

Table 1 describes the values returned at the completion of the request and the conditions under
which each value is returned. We note that C2 and C3 may not both be false simultaneously.

kernel port name ! C1 C2 C3 C4 C5
name T T T T T
Mach port null T T T T F
Mach port null T T T F -
Mach port null T T F - -
Mach port dead T F T - -
Return status to name(Kern insu�cient permission) F - - - -

Table 1: Return Values for mach thread self

We call attention here to the fact that C1 – C4 are checked in the the transition
MachThreadSelfMiddle (see below) while only C5 is checked in transition MachThreadSelfEnd .
These are distinct transitions between which an arbitrary number of other transitions may
occur. Furthermore, C5 is checked only if in some earlier transition for that trap re-
quest C1 – C4 are all true. We also note that name is constrained by AddSendRight when
RVMachThreadSelfGood is combined with MachThreadSelfState .

RVMachThreadSelfGood

C5MachThreadSelfHoldSend

MachThreadSelf Outputs

Transition

name : NAME

kernel port name ! = name

breaks0 = breaks � f curr th?? 7! Bk user space g

RVMachThreadSelfNoHoldSend

NotC5MachThreadSelfHoldSend

MachThreadSelf Outputs

kernel port name ! = Mach port null

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 101

RVMachThreadSelfResourceShortage

C1MachThreadSelfGetThreadKernelPort

C2MachThreadSelfKernelPortNotDead

C3MachThreadSelfKernelPortNotNull

NotC4MachThreadSelfResourcesAvailable

MachThreadSelf Outputs

kernel port name ! = Mach port null

RVMachThreadSelfKernelPortNull

C1MachThreadSelfGetThreadKernelPort

NotC3MachThreadSelfKernelPortNotNull

MachThreadSelf Outputs

kernel port name ! = Mach port null

RVMachThreadSelfKernelPortDead

C1MachThreadSelfGetThreadKernelPort

NotC2MachThreadSelfKernelPortNotDead

MachThreadSelf Outputs

kernel port name ! = Mach port dead

Return status to name : KERNEL RETURN " NAME

RVMachThreadSelfNoGetThreadKernelPort

NotC1MachThreadSelfGetThreadKernelPort

MachThreadSelf Outputs

kernel port name ! = Return status to name(Kern insu�cient permission)

7.2.4 State Changes

A successful mach thread self request results in the addition of a send right for the kernel
port, port , of curr th?? into the port name space of the task, task , containing curr th??. This is
accomplished by schema AddSendRight which describes the relationships betweenname , task ,
and port when a send right is successfully added to a name space.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

102
CDRL A005

System Trap Requests

MachThreadSelfState

Transition

ThreadInvariants

� ThreadExist

� PortExist

� TaskExist

� DeadRights

� Threads

� SpecialThreadPorts

� ThreadAndProcessorSet

AddSendRight

task = curr task??
port = thread sself (curr th??)

port set rel 0 = port set rel

7.2.5 Complete Request

Here we discuss the transitions shown in Figure 5 which describe the general form of the
mach thread self request.

1. A mach thread self request is invoked through a system trap that has thetrap id? field
set to Mach thread self trap.

InvokeMachThreadSelf

Invoke

trap id? = Mach thread self trap

2. MachThreadSelfPermCheckGTKP suspends processing to wait for the availability of a rul-
ing on the Get thread kernel port permission. The permission check is handled by the
utilities described in Section 6.2 and consists of one or two transitions depending upon
the availability of a ruling in the cache.

Editorial Note:
This should eventually be covered by generic trap processing if possible.

MachThreadSelfPermCheckGTKP

Transition

9CheckPending ; user spec : UserSpeci�ed
� curr bk?? = Bk new trap(Mach thread self trap; user spec)
^ ssi = thread sid(curr th??)
^ osi = Thread self sid

^ breaks0 = breaks

�f curr th?? 7! Bk check pending(ssi ; osi ;Get thread kernel port;E user (user spec)) g

3. Either MachThreadSelfMiddleBad or MachThreadSelfMiddleGood occurs. This models a
transition where a ruling on the Get thread kernel port permission has been obtained

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 103

MachThreadSelfPermCheckGTKP
 new_trap
 check_pending

InvokeMachThreadSelf
 user_space
 new_trap

MachThreadSelfMiddleBad
 have_ruling
 user_space

MachThreadSelfMiddleGood
 have_ruling
 check_pending

MachThreadSelfEndBad
 have_ruling
 user_space

MachThreadSelfEndGood
 have_ruling
 user_space

Figure 5: mach thread self Processing

from the cache or Security Server. ConditionsC1–C4 are checked. If any of them is false,
no state changes are made, an error value is returned and processing terminates with
this step.

MachThreadSelfMiddleBad

b= (RVMachThreadSelfResourceShortage

_ RVMachThreadSelfKernelPortNull

_ RVMachThreadSelfKernelPortDead

_ RVMachThreadSelfNoGetThreadKernelPort)
^ TrapOnlyObserves

If the four conditions are all true, then trap processing is suspended (via
MachThreadSelfPermCheckHS) while waiting to check on the availability of a ruling for
the Hold send permission.

Editorial Note:
The value used for osi in the following schema is not in agreement with the requirements in the
FSPM which state that the osi should be port sid(port). However, this is the value that is being
used in the prototype as of 17 May 1996. CAR# 5024 describes this discrepancy.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

104
CDRL A005

System Trap Requests

Also, env should not be a free variable but should be explicitly specified, in this case most likely as
the “empty” environment.

MachThreadSelfPermCheckHS

Transition

9CheckPending ; env : ENVIRONMENT ; port : PORT
� ssi = thread sid(curr th??)
^ port = thread sself (curr th??)
^ osi = if (curr th??; port) 2 thread self

then Thread self sid

else if (curr task??; port) 2 task self

then Task self sid

else port sid(port)
^ breaks0 = breaks

�f curr th?? 7! Bk check pending(ssi ; osi ;Hold send ; env) g

MachThreadSelfMiddleGood

b= C1MachThreadSelfGetThreadKernelPort

^ C2MachThreadSelfKernelPortNotDead

^ C3MachThreadSelfKernelPortNotNull

^ C4MachThreadSelfResourcesAvailable

^MachThreadSelfPermCheckHS

4. EitherMachThreadSelfEndGood orMachThreadSelfEndBad occurs. This models a transition
where a ruling on the Hold send permission has been obtained from the cache or the
Security Server. TheHold send permission is checked. If it is granted, the state changes
in MachThreadSelfState occur, and the name of the new send right is returned.

MachThreadSelfEndGood b= RVMachThreadSelfGood ^MachThreadSelfState

Otherwise, Mach port null is returned and no state changes occur.

MachThreadSelfEndBad b= RVMachThreadSelfNoHoldSend ^ TrapOnlyObserves

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 105

Section 8
Port Requests

8.1 Introduction to Port Requests

This chapter describes the port kernel requests in DTOS.

8.1.1 Request Identifiers

We first define the identifier that is used to represent each port request. The kernel accepts all
port requests through task self ports.

Mach port allocate id ;Mach port allocate secure id ;Mach port allocate name id ;
Mach port allocate name secure id ;Mach port deallocate id ;
Mach port destroy id ;Mach port extract right id ;
Mach port get receive status id ;Mach port get refs id ;
Mach port get set status id ;Mach port insert right id ;
Mach port mod refs id ;Mach port move member id ;Mach port names id ;
Mach port rename id ;Mach port request noti�cation id ;
Mach port set mscount id ;Mach port set qlimit id ;Mach port set seqno id ;
Mach port type id ;Mach port type secure id : OPERATION

Port operations : �OPERATION

hMach port allocate id ;Mach port allocate secure id ;Mach port allocate name id ;
Mach port allocate name secure id ;Mach port deallocate id ;
Mach port destroy id ;Mach port extract right id ;
Mach port get receive status id ;Mach port get refs id ;
Mach port get set status id ;Mach port insert right id ;
Mach port mod refs id ;Mach port move member id ;Mach port names id ;
Mach port rename id ;Mach port request noti�cation id ;
Mach port set mscount id ;Mach port set qlimit id ;Mach port set seqno id ;
Mach port type id ;Mach port type secure id i

Values partition Port operations

Port operations � Allowed mach services(Pc task)

8.1.2 Required Permissions

For each operation there is a primary permission that is required to perform the operation. We
define here the portion of the Required permission function that pertains to port requests.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

106
CDRL A005

Port Requests

f(Mach port allocate id ;Add name);
(Mach port get receive status id ;Observe pns info);
(Mach port get refs id ;Observe pns info);
(Mach port get set status id ;Observe pns info);
(Mach port names id ;Observe pns info);
(Mach port rename id ;Port rename);
(Mach port set mscount id ;Alter pns info);
(Mach port set qlimit id ;Alter pns info);
(Mach port set seqno id ;Alter pns info)g

� Required permission

8.1.3 Invariant Information

Review Note:
This section will be completed in a future draft when all of the port requests are completed.

8.1.4 General Information

This section contains bits of information which are common to several port requests.

Review Note:
In a future draft, it may be appropriate to move some of this information to the state chapter.

The names Mach port dead and Mach port null are referred to in this chapter as
Reserved names .

Reserved names : �NAME

Reserved names = fMach port dead ;Mach port nullg
Mach port null 6= Mach port dead

Parameters to several of the port requests include a type of right which includes not only send,
send-once and receive rights but also dead rights and port sets. These parameters are given
the type RIGHT TYPE .

[RIGHT TYPE]

Mach port right send ;Mach port right receive;Mach port right send once ;
Mach port right port set ;Mach port right dead name : RIGHT TYPE

Values disjointhMach port right send ;Mach port right receive;
Mach port right send once;Mach port right port set ;
Mach port right dead namei

The mach port request notification request has a parameter of type MACH MSG ID

which indicates which of the three types of notification is being requested.

[MACH MSG ID]

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 107

Mach notify port destroyed ;Mach notify no senders ;Mach notify dead name :MACH MSG ID

Values disjointhMach notify port destroyed ;Mach notify no senders ;Mach notify dead namei

The mach port get receive status request returns a record PortStatus consisting of the
following information:

port set name — if the receive right is a member of a port set, the name of this port set;
otherwise, the nameMach port null

make send count value — the make-send count for the port
port destroyed noti�cation requested — takes on the value True if a port-destroyed notifi-
cation request is currently active for the port; otherwiseFalse
no more senders noti�cation requested — takes on the value True if a no-more-senders
notification request is currently active for the port; otherwiseFalse
msg count value — the number of messages queued at the port
qlimit value — the limit on the number of messages which can be queued to the port
sequence no value — the current sequence number for the port
number of send once rights — the number of send-once rights which exist to the port
any send rights — takes on the valueTrue if there exist send rights to the port; otherwise
False

PortStatus

port set name : NAME

make send count value :
port destroyed noti�cation requested : BOOLEAN
no more senders noti�cation requested : BOOLEAN
msg count value :
qlimit value :
sequence no value : �
number of send once rights :
any send rights : BOOLEAN

The mach port names, mach port type, and mach port type secure requests return
a mask PortTypeMask consisting of the following flags:

mach port type send — equal to True if and only if the name is a send right
mach port type receive — equal to True if and only if the name is a receive right
mach port type send once — equal to True if and only if the name is a send-once right
mach port type port set — equal to True if and only if the name is a port set
mach port type dead name — equal to True if and only if the name is a dead name
mach port type dead name request — equal to True if and only if there is an outstanding
dead name notification request for the name
mach port type msg accepted request — equal to True if and only if the name is not avail-
able for use as a send right since it has been used to force a message on a message
queue

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

108
CDRL A005

Port Requests

PortTypeMask

mach port type send : BOOLEAN
mach port type receive : BOOLEAN
mach port type send once : BOOLEAN
mach port type port set : BOOLEAN
mach port type dead name : BOOLEAN
mach port type dead name request : BOOLEAN
mach port type msg accepted request : BOOLEAN

8.1.5 Parameter Packaging Functions

When invoking a kernel request, the following functions package the input parameters into a
message body:

Mach port allocate inputs to body : RIGHT TYPE "MESSAGE BODY

Mach port extract right inputs to body

: NAME �MACH MSG TYPE "MESSAGE BODY

Mach port get receive status inputs to body : NAME "MESSAGE BODY

Mach port get refs inputs to body : NAME �RIGHT TYPE "MESSAGE BODY

Mach port get set status inputs to body : NAME "MESSAGE BODY

Mach port insert right inputs to body

: NAME � NAME �MACH MSG TYPE "MESSAGE BODY

Mach port move member inputs to body : NAME �NAME "MESSAGE BODY

Mach port rename inputs to body : NAME �NAME "MESSAGE BODY

Mach port request noti�cation inputs to body

: NAME �MACH MSG ID � �NAME �MACH MSG TYPE "MESSAGE BODY

Mach port set mscount inputs to body : NAME � "MESSAGE BODY

Mach port set qlimit inputs to body : NAME � "MESSAGE BODY

Mach port set seqno inputs to body : NAME � "MESSAGE BODY

When creating a reply message from a request, the following functions package the output
parameters into a kernel reply:

Mach port allocate outputs to reply : NAME "KERNEL REPLY

Mach port extract right outputs to reply

: PORT �MACH MSG TYPE " KERNEL REPLY

Mach port get receive status outputs to reply : PortStatus "KERNEL REPLY

Mach port get refs outputs to reply : " KERNEL REPLY

Mach port get set status outputs to reply : �NAME � "KERNEL REPLY

Mach port names outputs to reply

: seqNAME � � seqPortTypeMask � " KERNEL REPLY

Mach port request noti�cation outputs to reply : PORT " KERNEL REPLY

When receiving a reply message from the kernel the following functions unpack the message
body to obtain the output parameters (including the return status):

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 109

Body to mach port allocate outputs

:MESSAGE BODY " KERNEL RETURN � NAME

Body to mach port extract right outputs

:MESSAGE BODY " KERNEL RETURN � NAME �MACH MSG TYPE

Body to mach port get receive status outputs

:MESSAGE BODY " KERNEL RETURN � PortStatus

Body to mach port get refs outputs :MESSAGE BODY " KERNEL RETURN �
Body to mach port get set status outputs

:MESSAGE BODY " KERNEL RETURN � �NAME �
Body to mach port insert right outputs :MESSAGE BODY " KERNEL RETURN

Body to mach port move member outputs

:MESSAGE BODY " KERNEL RETURN

Body to mach port names outputs

:MESSAGE BODY

"KERNEL RETURN � seqNAME � � seqPortTypeMask �
Body to mach port rename outputs :MESSAGE BODY " KERNEL RETURN

Body to mach port request noti�cation outputs

:MESSAGE BODY " KERNEL RETURN � NAME

Body to mach port set mscount outputs :MESSAGE BODY "KERNEL RETURN

Body to mach port set qlimit outputs :MESSAGE BODY " KERNEL RETURN

Body to mach port set seqno outputs :MESSAGE BODY "KERNEL RETURN

8.1.6 Kernel Processing

The initial kernel processing of any request, when removing the request from the bag of
validated requests, is described by the ProcessRequest schema in Section 6. In this section, we
consider additional initial processing which is shared by all port requests.

The service port through which a port request is received must be the self port for some task.
If it is not, then the request immediately terminates and returnsKern invalid task .

ProcessPortRequestBad

ProcessRequest

SpecialTaskPorts

return! : KERNEL RETURN

operation? 2 Port operations

service port? =2 domself task

return! = Kern invalid task

PortRequestBad b= ProcessPortRequestBad >> RequestNoOp

Otherwise, the task owning the self port is identified and the kernel continues to process the
request.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

110
CDRL A005

Port Requests

ProcessPortRequestGood

ProcessRequest

SpecialTaskPorts

task? : TASK

operation? 2 Port operations

service port? 2 domself task

task? = self task (service port?)

Review Note:
Several of the port requests have the potential of returningKern resource shortage . The model cannot
accurately reflect when this is returned, so the original plans were to include another version of the “bad”
schema here which dealt with those cases. However, this has not been done.

Review notes have been added to each of the individual requests for whichKern resource shortage is a
possible return value.

8.1.7 Notifications

Several of the port requests can result in the sending of notifications, messages which inform
about some change to the state of a port or port right. There are six kinds of notifications:

dead-name A dead-name notification for a port right is registered bymach msg or mach -
port request notification. The notification is sent if the port right becomes dead due
to the destruction of the port.

port-deleted A port-deleted notification is registered whenever a dead-name notification is
registered. The notification is sent if the port right becomes unusable due to the right
itself being destroyed or moved.

msg-accepted A msg-accepted notification for a port right is registered when the port right is
used to forcibly enqueue a message on a port using mach msg. The notification is sent
when the message is removed from the queue (either to be received or destroyed).

no-senders A no-senders notification for a port is registered usingmach port request -
notification. The notification is sent when the last send or send-once right for the port
is destroyed (with one exception depending upon the parameter sync to mach port -
request notification; see Section 8.8).

port-destroyed A port-destroyed notification for a port is registered using mach port -
request notification. The notification is sent when the port would otherwise be de-
stroyed, and contains a receive right for the port, thus saving it from destruction.

send-once A send-once notification for a port is sent whenever a send-once right is destroyed
without being used to send a message.

Note that the kernel cannot guarantee to send notifications. It can fail to send a notification,
for instance if it determines that an attempt to send the notification could result in an infinite
loop.

Editorial Note:

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 111

Port-destroyed notifications could interact in interesting ways with the kernel’s ability to identify “circu-
larities” of receive rights in transit.

A cicrularity in receive rights exists when the receive right for port 1 is contained in a message destined
for port 2, the receive right for port 2 is contained in a message destined for port 3, ... and the receive
right for port N is contained in a message for port 1. If this occurs, then none of the messages can be
received and the kernel sets out to clean them all up.

However, if the kernel cleans out a message and finds a receive right with a registered port-destroyed
notification port, it instead sends the receive right to that port, saving the right from destruction. This
breaks the circle, so other messages in the circle may once again be reachable.

We have not spent any time trying to determine how this interesting case is handled. It should be
considered when port-destroyed notifications are modeled.

Sending of each kind of notification is modeled in the following sections.

Review Note:
For now, only dead-name notifications will be considered. When other types of notifications are considered,
processing which is common to multiple notifications should be moved to this introductory section.

8.1.7.1 Dead Name Notifications The internal message header for a dead-name notification
message is filled in as follows:

The local port and local rights fields are empty since there is no expected reply from a
dead-name notification.

The remote port and remote rights fields contain a send-once right to the notification port.

The size field contains the size of a dead-name notification, which is a constant.

The msg sequence no field is initialized to zero. This field is ignored until the message is
received.

The operation field contains the identifier Ipc notify dead name id .

The complex field is empty since the body of a dead-name notification contains no port
rights or out-of-line memory.

Dead name noti�cation header : PORT "MachInternalHeader

Dead name noti�cation size :

8 port : PORT
� (let header == Dead name noti�cation header (port)
� header :local port = �
^ header :local rights = �
^ header :remote port = port

^ header :remote rights = Mach msg type port send once

^ header :size = Dead name noti�cation size

^ header :msg sequence no = 0
^ header :operation = Ipc notify dead name id

^ header :complex = �)

The body of a dead-name notification consists of a single element containing the name of the
now dead port right.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

112
CDRL A005

Port Requests

Review Note:
I tried to specify the body of the message explicitly in terms of the model, but was unable to do so. The
lack of a direct map between the model and the code caused some difficulty, but the final nail was the
fact that the model requires a task to be associated with each message element, and this made no sense
in the current situation.

Dead name noti�cation body : NAME " INTERNAL BODY

The entire dead-name notification message contains a header and body as just described.

Review Note:
Once again, I would like to fill in the other values from the schemaInternalMessage , but these values do
not correspond to anything in the code and it is difficult to determine what values to choose.

Dead name noti�cation message : PORT � NAME " InternalMessage

8 port : PORT ; name : NAME

� (Dead name noti�cation message(port; name)):header = Dead name noti�cation header (port)
^ (Dead name noti�cation message(port; name)):body = Dead name noti�cation body(name)

The following occurs when a dead name notification is sent:

A new message (new message) is created, whose contents are give by
Dead name noti�cation message(notify port ,dead right name).

new message is added to the queue for notify port.

The sending SID for new message is set to reflect the kernel acting as current task .

No receiving, sending SID or access vector is specified for the message.

Review Note:
Failure can occur here if the kernel is unable to allocate memory for the message. In this case the
notification message is not sent and the kernel simply continues processing as if the message were
successfully sent.

Review Note:
There is a permission check here which has not been specified. This check occurs after the message is
allocated, however, in the current prototype the message is not deallocated when the permission check
fails. The kernel simply continues processing as if the message were successfully sent.

This permission check will need to be added later when the execution model is updated. TheRuling
associated with the message will also need to be added at that time.

There is also a much bigger list of invariants that could be added to the following schema.

Review Note:
The code also has to make sure that notify port is not Ip dead . This should come for free whenever the
schema is used in this chapter, but that should be doublechecked. Ifnotify port is Ip dead , then the
message is destroyed.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 113

QueueDeadNameNoti�cation

�Messages

� DtosMessages

KernelAs

current task : TASK
notify port : PORT
dead right name : NAME

9 new message :MESSAGE

� (new message =2 message exists

^ message exists 0 = message exists [fnew messageg
^ msg contents 0 = msg contents

�fnew message 7! Dead name noti�cation message(notify port ; dead right name)g
^ message in port rel

0 = message in port rel

�fnotify port 7! message in port rel(notify port) � hnew messageig
^ msg sending sid 0 = msg sending sid

�fnew message 7! kernel as(current task)g)

msg receiving sid
0 = msg receiving sid

msg speci�ed sid
0 = msg speci�ed sid

msg speci�ed vector
0 = msg speci�ed vector

Review Note:
It’s worth noting that the recipient of a dead-name notification only receives the name of the dead right,
and no indication of which ipc name space contains the dead right.

8.2 mach port allocate

A mach port allocate request creates a new receive right, port set, or dead name in a task’s
name space.

8.2.1 Client Interface

kern return t mach port allocate
(mach port t task name,
mach port right t right type,
mach port t* new name);

kern return t mach port allocate secure
(mach port t task name,
mach port right t right type,
mach port t* new name,
security id t obj sid);

Review Note:
No attempt has been made to integrate mach port allocate secure into this specification.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

114
CDRL A005

Port Requests

8.2.1.1 Input Parameters The following input parameters are provided by the client of a
mach port allocate request:

task name? — the client’s name for the task in whose name space the new receive right,
port set or dead name is created

right type? — the type of right to be created, either Mach port right receive,
Mach port right port set , or Mach port right dead name .

MachPortAllocateClientInputs

task name? : NAME

right type? : RIGHT TYPE

A mach port allocate request is invoked by sending a message to the port indicated by
task name? that has the operation field set toMach port allocate id and has a body consisting
of right type?.

InvokeMachPortAllocate

InvokeMachMsg

MachPortAllocateClientInputs

name? = task name?
operation? = Mach port allocate id

msg body = Mach port allocate inputs to body(right type?)

8.2.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port allocate request:

return! — the status of the request

new name ! — the name of the new right

MachPortAllocateClientOutputs

return! : KERNEL RETURN

new name ! : NAME

MachPortAllocateReceiveReply

InvokeMachMsgRcv

MachPortAllocateClientOutputs

(return!; new name !) = Body to mach port allocate outputs(msg body)

8.2.2 Kernel Interface

8.2.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port allocate request:

task? — the task known to the client by task name?

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 115

right type? — provided by the client

MachPortAllocateInputs

task? : TASK
right type? : RIGHT TYPE

8.2.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach port allocate request:

return! — the status of the request

new name ! — the name of the new right

MachPortAllocateOutputs

return! : KERNEL RETURN

new name ! : NAME

Upon completion of the processing of a mach port allocate request, a reply message is built
from the output parameters.

MachPortAllocateReply

RequestReturn

new name? : NAME

reply? = Mach port allocate outputs to reply(new name?)

8.2.3 Request Criteria

The following criteria are defined for the mach port allocate request:

C1 — right type? is equal to one of the three values Mach port right receive,
Mach port right port set , or Mach port right dead name .

C1MachPortAllocateRightIsValid

right type? : RIGHT TYPE

right type? 2 fMach port right receive;Mach port right port set ;
Mach port right dead nameg

NotC1MachPortAllocateRightIsValid

b= : C1MachPortAllocateRightIsValid

C2 — right type? is equal to Mach port right receive.

C2MachPortAllocateReceive

right type? : RIGHT TYPE

right type? = Mach port right receive

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

116
CDRL A005

Port Requests

C3 — right type? is equal to Mach port right port set .

C3MachPortAllocatePortSet

right type? : RIGHT TYPE

right type? = Mach port right port set

C4 — right type? is equal to Mach port right dead name .

C4MachPortAllocateDeadName

right type? : RIGHT TYPE

right type? = Mach port right dead name

C5 — The number of rights belonging to task? is less than the maximum.

Review Note:
The maximum number of rights per task used to be modeled by a constant value. This
was not correct. However, the correct model has not been determined either. There-
fore there is no predicate in the following schema. Note that this means that the schema
NotC5MachPortAllocateRoomInNameSpace is empty.

C5MachPortAllocateRoomInNameSpace

PortNameSpace

task? : TASK

NotC5MachPortAllocateRoomInNameSpace

b= PortNameSpace ^ : C5MachPortAllocateRoomInNameSpace

8.2.4 Return Values

Table 2 describes the values returned at the completion of the request and the conditions under
which each value is returned.

Review Note:
The table has been checked to agree with the code in CM as of 14Sep94.

Review Note:
This request can also return Kern resource shortage . If there were an attempt to model this, there
would be three separate criteria for each of the three types of possible rights. Moreover, in the case when
there is no room in the name space and no memory available for allocation, it appears that details in the
current state of the name space may determine whether Kern resource shortage or Kern no space is
returned.

Review Note:
According to the KID, there should also be a check that task? has Hold receive privilege to the new port
whenever right type?=mach port type receive . This is not currently in the model nor was it in the code
at the time the model was written.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 117

return! new name! C1 C5
Kern invalid value - F -
Kern no space - T F
Kern success new name! T T

Table 2: Return Values for mach port allocate

RVMachPortAllocateInvalidValue

MachPortAllocateOutputs

NotC1MachPortAllocateRightIsValid

return! = Kern invalid value

RVMachPortAllocateNoSpace

MachPortAllocateOutputs

C1MachPortAllocateRightIsValid

NotC5MachPortAllocateRoomInNameSpace

return! = Kern no space

Review Note:
The way in which new name ! is actually determined is dependent upon the “next” available index in the
name space and the generation number of that index. Since these details do not appear in the model,
we cannot accurately model how new name ! is determined. Therefore all that is done here is to state
properties on new name !.

RVMachPortAllocateSuccess

MachPortAllocateOutputs

C1MachPortAllocateRightIsValid

C5MachPortAllocateRoomInNameSpace

return! = Kern success

new name ! =2 Reserved names

(task?; new name !) =2 local namep

8.2.5 State Changes

Table 3 lists the possible successful executions of a mach port allocate request. Note that
C2, C3 and C4 are mutually exclusive.

Case C2 C3 C4 C5
MachPortAllocateStateReceive T - - T
MachPortAllocateStatePortSet - T - T
MachPortAllocateStateDeadName - - T T

Table 3: State Change Cases for mach port allocate

If the request is to allocate a new receive right, then

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

118
CDRL A005

Port Requests

a new port, port!, is created,
task? is given a receive right toport ! with the name new name !,
the make-send count for port! is initialized to 0,
the queue size limit for port ! is initialized to the default value,
the message queue for port! is initialized to be empty,
the sequence number for port!’s message queue is initialized to 0, and
the SID for port ! is initialized to the default for task?.

MachPortAllocateStateReceive

� PortNameSpace

� PortSummary

� ObjectSid

PortSid

C2MachPortAllocateReceive

C5MachPortAllocateRoomInNameSpace

port! : PORT
new name ! : NAME

fport!g = port exists 0 n port exists

port right rel
0 = port right rel [f(task?; port!; new name !;Receive; 1)g

make send count
0 = make send count � fport! 7! 0g

q limit
0 = q limit � fport ! 7!Mach port q limit defaultg

message in port rel 0 = message in port rel � fport! 7! hig
sequence no 0 = sequence no � fport ! 7! 0g
port sid

0 = port sid � fport! 7! Default port sid(task sid(task?))g

If the request is to allocate a new port set, then an empty port set with the namenew name ! is
added to task?’s name space.

MachPortAllocateStatePortSet

� PortNameSpace

C3MachPortAllocatePortSet

C5MachPortAllocateRoomInNameSpace

new name ! : NAME

port set rel 0 = port set rel [f(task?; new name!;�)g

If the request is to allocate a new dead right, then a dead right with the namenew name! and
a user reference count of 1 is added to task?’s name space.

MachPortAllocateStateDeadName

� PortNameSpace

C4MachPortAllocateDeadName

C5MachPortAllocateRoomInNameSpace

new name ! : NAME

dead right rel
0 = dead right rel [f(task?; new name!; 1)g

Review Note:
Invariants should be stated here as well.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 119

8.2.6 Complete Request

The initial processing by the kernel upon receipt of the mach port allocate request is de-
scribed in Section 8.1.

ProcessingMachPortAllocate

ProcessPortRequestGood

operation? = Mach port allocate id

An unsuccessful mach port allocate request results in no changes to the Mach state and
returns only the appropriate error status.

MachPortAllocateBad

b= (RVMachPortAllocateInvalidValue

_ RVMachPortAllocateNoSpace)
>> RequestNoOp

A successful mach port allocate request alters the Mach state as described in Section 8.2.5
and returns a reply message.

MachPortAllocateGood

b= ((MachPortAllocateStateReceive

_MachPortAllocateStatePortSet

_MachPortAllocateStateDeadName)
^ RVMachPortAllocateSuccess)
>> MachPortAllocateReply

The complete specification of kernel processing of a mach port allocate request consists of
the initial processing followed by an unsuccessful or successful execution.

MachPortAllocate

b= ProcessingMachPortAllocate

� (MachPortAllocateBad

_MachPortAllocateGood)

8.3 mach port get receive status

A mach port get receive status request returns the current status of the port associated
with a receive right.

8.3.1 Client Interface

kern return t mach port get receive status
(mach port t task name,
mach port t right name,
mach port status t* port status);

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

120
CDRL A005

Port Requests

8.3.1.1 Input Parameters The following input parameters are provided by the client of a
mach port get receive status request:

task name? — the client’s name for the task in whose name spaceright name? is located

right name? — the name of a receive right for the port whose status is requested

MachPortGetReceiveStatusClientInputs

task name? : NAME

right name? : NAME

A mach port get receive status request is invoked by sending a message to the port in-
dicated by task name? that has the operation field set toMach port get receive status id and
has a body consisting of right name?.

InvokeMachPortGetReceiveStatus

InvokeMachMsg

MachPortGetReceiveStatusClientInputs

name? = task name?
operation? = Mach port get receive status id

msg body = Mach port get receive status inputs to body(right name?)

8.3.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port get receive status request:

return! — the status of the request

port status ! — the status information for right name?, as described in Section 8.1.4.

MachPortGetReceiveStatusClientOutputs

return! : KERNEL RETURN

port status ! : PortStatus

MachPortGetReceiveStatusReceiveReply

InvokeMachMsgRcv

MachPortGetReceiveStatusClientOutputs

(return!; port status!) = Body to mach port get receive status outputs(msg body)

8.3.2 Kernel Interface

8.3.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port get receive status request:

task? — the task known to the client by task name?

right name? — provided by the client

MachPortGetReceiveStatusInputs

task? : TASK
right name? : NAME

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 121

8.3.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach port get receive status request:

return! — the status of the request

port status ! — the status information for right name?, as described above

MachPortGetReceiveStatusOutputs

return! : KERNEL RETURN

port status ! : PortStatus

Upon completion of the processing of a mach port get receive status request, a reply
message is built from the output parameters.

MachPortGetReceiveStatusReply

RequestOnlyObserves

port status? : PortStatus

reply? = Mach port get receive status outputs to reply(port status?)

8.3.3 Request Criteria

The following criteria are defined for the mach port get receive status request:

C1 — right name? represents a right in task?’s name space.

C1MachPortGetReceiveStatusNameIsARight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 local namep

NotC1MachPortGetReceiveStatusNameIsARight

b= PortNameSpace ^ : C1MachPortGetReceiveStatusNameIsARight

C2 — right name? represents a receive right in task?’s name space.

C2MachPortGetReceiveStatusNameIsAReceiveRight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 r right

NotC2MachPortGetReceiveStatusNameIsAReceiveRight

b= PortNameSpace ^ : C2MachPortGetReceiveStatusNameIsAReceiveRight

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

122
CDRL A005

Port Requests

8.3.4 Return Values

Table 4 describes the values returned at the completion of the request and the conditions under
which each value is returned.

Review Note:
The order of these checks agrees with the code in CM on 14Sep94.

return! port status ! C1 C2
Kern invalid name - F -
Kern invalid right - T F
Kern success as described below T T

Table 4: Return Values for mach port get receive status

RVMachPortGetReceiveStatusInvalidName

MachPortGetReceiveStatusOutputs

NotC1MachPortGetReceiveStatusNameIsARight

return! = Kern invalid name

RVMachPortGetReceiveStatusInvalidRight

MachPortGetReceiveStatusOutputs

C1MachPortGetReceiveStatusNameIsARight

NotC2MachPortGetReceiveStatusNameIsAReceiveRight

return! = Kern invalid right

In the successful case when right name? refers to a receive right in task?’s name space, then
the request returns a record with the following fields. Hereport? refers to the port named by
right name?.

port set name — if right name? is a member of a port set, the name of this port set;
otherwise, the nameMach port null

make send count value — the make-send count for port?
port destroyed noti�cation requested — a boolean value indicating if a port-destroyed no-
tification request is currently active forport?
no more senders noti�cation requested — a boolean value indicating if a no-more-senders
notification request is currently active forport?
msg count value — the number of messages queued at port?
qlimit value — the limit on the number of messages which can be queued atport?
sequence no value — the current sequence number for the message queue atport?
number of send once rights — the number of send-once rights which exist toport?
any send rights — a boolean value indicating if there are existing send rights toport?

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 123

RVMachPortGetReceiveStatusSuccess

MachPortGetReceiveStatusOutputs

C1MachPortGetReceiveStatusNameIsARight

C2MachPortGetReceiveStatusNameIsAReceiveRight

PortSummary

Noti�cations

return! = Kern success

(let port? == named port(task?; right name?)
� port status!:port set name = if port? 2

S
(ran port set)

then containing set(port?)
elseMach port null

^ port status !:make send count value = make send count (port?)
^ (port status!:port destroyed noti�cation requested = True

, port? 2 domport notify destroyed)
^ (port status!:no more senders noti�cation requested = True

, port? 2 domport notify no more senders)
^ port status !:msg count value = port size(port?)
^ port status !:qlimit value = q limit(port?)
^ port status !:sequence no value = sequence no(port?)
^ (port status!:number of send once rights

= #ftask : TASK ; name : NAME ; i : 1
j (task ; port?; name; Send once ; i) 2 port right rel

� nameg)
^ (port status!:any send rights = True

, (9 task : TASK ; name : NAME ; i : 1
� (task ; port?; name; Send ; i) 2 port right rel)))

Review Note:
The values of port status!.number of send once rights and port status!.any send rights may be incor-
rect in the specification, since they only count rights which currently exist in some name space. It is
unclear whether the code also counts rights in transit.

8.3.5 State Changes

A mach port get receive status request does not make any state changes since it only
observes the system state.

8.3.6 Complete Request

The initial processing by the kernel upon receipt of the mach port get receive status
request is described in Section 8.1.

ProcessingMachPortGetReceiveStatus

ProcessPortRequestGood

operation? = Mach port get receive status id

An unsuccessful mach port get receive status request results in no changes to the Mach
state and returns only the appropriate error status.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

124
CDRL A005

Port Requests

MachPortGetReceiveStatusBad

b= (RVMachPortGetReceiveStatusInvalidName

_ RVMachPortGetReceiveStatusInvalidRight)
>> RequestNoOp

A successful mach port get receive status request results in no changes to the Mach state
and returns a reply message.

MachPortGetReceiveStatusGood

b= RVMachPortGetReceiveStatusSuccess

>> MachPortGetReceiveStatusReply

The complete specification of kernel processing of a mach port get receive status request
consists of the initial processing followed by an unsuccessful or successful execution.

MachPortGetReceiveStatus

b= ProcessingMachPortGetReceiveStatus

� (MachPortGetReceiveStatusBad

_MachPortGetReceiveStatusGood)

8.4 mach port get refs

A mach port get refs request returns the number of user references a task has for a right.

8.4.1 Client Interface

kern return t mach port get refs
(mach port t task name,
mach port t right name,
mach port right t right type,
mach port urefs t* refs);

8.4.1.1 Input Parameters The following input parameters are provided by the client of a
mach port get refs request:

task name? — the client’s name for the task in whose name spaceright name? is located

right name? — the name of the right whose reference count is desired

right type? — the type of right for which
the reference count is requested, either Mach port right send , Mach port right receive,
Mach port right send once , Mach port right port set, or Mach port right dead name

MachPortGetRefsClientInputs

task name? : NAME

right name? : NAME

right type? : RIGHT TYPE

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 125

A mach port get refs request is invoked by sending a message to the port indicated by
task name? that has the operation field set toMach port get refs id and has a body consisting
of right name? and right type?.

InvokeMachPortGetRefs

InvokeMachMsg

MachPortGetRefsClientInputs

name? = task name?
operation? = Mach port get refs id

msg body = Mach port get refs inputs to body(right name?; right type?)

8.4.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port get refs request:

return! — the status of the request

refs! — the number of user references to the type of right indicated by right type? and
associated with right name?

MachPortGetRefsClientOutputs

return! : KERNEL RETURN

refs! :

MachPortGetRefsReceiveReply

InvokeMachMsgRcv

MachPortGetRefsClientOutputs

(return!; refs!) = Body to mach port get refs outputs(msg body)

8.4.2 Kernel Interface

8.4.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port get refs request:

task? — the task known to the client by task name?

right name? — provided by the client

right type? — provided by the client

MachPortGetRefsInputs

task? : TASK
right name? : NAME

right type? : RIGHT TYPE

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

126
CDRL A005

Port Requests

8.4.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach port get refs request:

return! — the status of the request

refs! — the number of user references for right type? associated with right name?

MachPortGetRefsOutputs

return! : KERNEL RETURN

refs! :

Upon completion of the processing of a mach port get refs request, a reply message is built
from the output parameters.

MachPortGetRefsReply

RequestOnlyObserves

refs? :

reply? = Mach port get refs outputs to reply(refs?)

8.4.3 Request Criteria

The following criteria are defined for the mach port get refs request:

C1 — The value
of right type? is one of the five values Mach port right send , Mach port right receive,
Mach port right send once , Mach port right port set, or Mach port right dead name .

C1MachPortGetRefsRightIsRecognized

right type? : RIGHT TYPE

right type? 2 fMach port right send ;Mach port right receive;
Mach port right send once ;Mach port right port set ;
Mach port right dead nameg

NotC1MachPortGetRefsRightIsRecognized

b= : C1MachPortGetRefsRightIsRecognized

C2 — right name? represents a right in task?’s name space.

C2MachPortGetRefsNameIsARight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 local namep

NotC2MachPortGetRefsNameIsARight

b= PortNameSpace ^ : C2MachPortGetRefsNameIsARight

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 127

C3 — right type? and right name? both refer to a send right.

C3MachPortGetRefsSend

PortNameSpace

task? : TASK
right name? : NAME

right type? : RIGHT TYPE

right type? = Mach port right send

(task?; right name?) 2 s right

NotC3MachPortGetRefsSend

b= PortNameSpace ^ : C3MachPortGetRefsSend

C4 — right type? and right name? both refer to a dead name.

C4MachPortGetRefsDeadName

PortNameSpace

task? : TASK
right name? : NAME

right type? : RIGHT TYPE

right type? = Mach port right dead name

(task?; right name?) 2 dead namep

NotC4MachPortGetRefsDeadName

b= PortNameSpace ^ : C4MachPortGetRefsDeadName

C5 — right type? and right name? both refer to a receive right, send-once right, or port
set.

C5MachPortGetRefsOther

PortNameSpace

task? : TASK
right name? : NAME

right type? : RIGHT TYPE

(right type? = Mach port right receive

^ (task?; right name?) 2 r right)
_ (right type? = Mach port right send once

^ (task?; right name?) 2 so right)
_ (right type? = Mach port right port set

^ (task?; right name?) 2 port set namep)

NotC5MachPortGetRefsOther

b= PortNameSpace ^ : C5MachPortGetRefsOther

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

128
CDRL A005

Port Requests

8.4.4 Return Values

Table 5 describes the values returned at the completion of the request and the conditions under
which each value is returned. Note that criteria C3 through C5 are mutually exclusive by
definition.

Review Note:
The order of the checks agree with the code in CM as of 14Sep94.

return! refs! C1 C2 C3 C4 C5
Kern invalid value - F - - - -
Kern invalid name - T F - - -
Kern success 0 T T F F F
Kern success s right ref count(task?,right name?) T T T - -
Kern success dead right ref count (task?,right name?) T T - T -
Kern success 1 T T - - T

Table 5: Return Values for mach port get refs

RVMachPortGetRefsInvalidValue

MachPortGetRefsOutputs

NotC1MachPortGetRefsRightIsRecognized

return! = Kern invalid value

RVMachPortGetRefsInvalidName

MachPortGetRefsOutputs

C1MachPortGetRefsRightIsRecognized

NotC2MachPortGetRefsNameIsARight

return! = Kern invalid name

If right name? does not represent a right of type right type?, the value 0 is returned.

RVMachPortGetRefsWrongRight

MachPortGetRefsOutputs

C1MachPortGetRefsRightIsRecognized

C2MachPortGetRefsNameIsARight

NotC3MachPortGetRefsSend

NotC4MachPortGetRefsDeadName

NotC5MachPortGetRefsOther

return! = Kern success

refs! = 0

If right type? = Mach port right send and right name? is a send right, then the number of user
references to the send right is returned.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 129

RVMachPortGetRefsSend

MachPortGetRefsOutputs

C1MachPortGetRefsRightIsRecognized

C2MachPortGetRefsNameIsARight

C3MachPortGetRefsSend

return! = Kern success

refs! = s right ref count (task?; right name?)

If right type? = Mach port right dead name and right name? is a dead right, then the number
of user references to the dead right is returned.

RVMachPortGetRefsDeadName

MachPortGetRefsOutputs

C1MachPortGetRefsRightIsRecognized

C2MachPortGetRefsNameIsARight

C4MachPortGetRefsDeadName

return! = Kern success

refs! = dead right ref count(task?; right name?)

If right type? and right name? both refer to a receive right, send-once right, or port set, then the
value 1 is returned since there is only one receive right, send-once right or port set associated
with any name.

RVMachPortGetRefsOther

MachPortGetRefsOutputs

C1MachPortGetRefsRightIsRecognized

C2MachPortGetRefsNameIsARight

C5MachPortGetRefsOther

return! = Kern success

refs! = 1

8.4.5 State Changes

A mach port get refs request does not make any state changes since it only observes the
system state.

8.4.6 Complete Request

The initial processing by the kernel upon receipt of the mach port get refs request is de-
scribed in Section 8.1.

ProcessingMachPortGetRefs

ProcessPortRequestGood

operation? = Mach port get refs id

An unsuccessful mach port get refs request results in no changes to the Mach state and
returns only the appropriate error status.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

130
CDRL A005

Port Requests

MachPortGetRefsBad

b= (RVMachPortGetRefsInvalidValue

_ RVMachPortGetRefsInvalidValue)
>> RequestNoOp

A successful mach port get refs request results in no changes to the Mach state and returns
a reply message.

MachPortGetRefsGood

b= (RVMachPortGetRefsWrongRight

_ RVMachPortGetRefsSend

_ RVMachPortGetRefsDeadName

_ RVMachPortGetRefsOther)
>> MachPortGetRefsReply

The complete specification of kernel processing of a mach port get refs request consists of
the initial processing followed by an unsuccessful or successful execution.

MachPortGetRefs

b= ProcessingMachPortGetRefs

� (MachPortGetRefsBad

_MachPortGetRefsGood)

8.5 mach port get set status

A mach port get set status request returns the names of the members of a given port set.

8.5.1 Client Interface

kern return t mach port get set status
(mach port t task name,
mach port t right name,
mach port array t* member names,
mach msg type number t* count);

8.5.1.1 Input Parameters The following input parameters are provided by the client of a
mach port get set status request:

task name? — the client’s name for the task in whose name spaceright name? is located

right name? — the name of the port set whose members are returned

MachPortGetSetStatusClientInputs

task name? : NAME

right name? : NAME

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 131

A mach port get set status request is invoked by sending a message to the port indicated
by task name? that has the operation field set to Mach port get set status id and has a body
consisting of right name?.

InvokeMachPortGetSetStatus

InvokeMachMsg

MachPortGetSetStatusClientInputs

name? = task name?
operation? = Mach port get set status id

msg body = Mach port get set status inputs to body(right name?)

8.5.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port get set status request:

return! — the status of the request

member names ! — the names of the members of the port set right name?

count ! — the number of members of the port set right name?

MachPortGetSetStatusClientOutputs

return! : KERNEL RETURN

member names ! : �NAME

count ! :

MachPortGetSetStatusReceiveReply

InvokeMachMsgRcv

MachPortGetSetStatusClientOutputs

(return!;member names !; count !)
= Body to mach port get set status outputs(msg body)

8.5.2 Kernel Interface

8.5.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port get set status request:

task? — the task known to the client by task name?

right name? — provided by the client

MachPortGetSetStatusInputs

task? : TASK
right name? : NAME

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

132
CDRL A005

Port Requests

8.5.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach port get set status request:

return! — the status of the request

member names ! — the names of the members of the port set right name?

count ! — the number of members of the port set right name?

MachPortGetSetStatusOutputs

return! : KERNEL RETURN

member names ! : �NAME

count ! :

Upon completion of the processing of a mach port get set status request, a reply message
is built from the output parameters.

MachPortGetSetStatusReply

RequestOnlyObserves

member names? : �NAME

count? :

reply? = Mach port get set status outputs to reply(member names?; count?)

8.5.3 Request Criteria

The following criteria are defined for the mach port get set status request:

C1 — right name? represents a right in task?’s name space.

C1MachPortGetSetStatusNameIsARight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 local namep

NotC1MachPortGetSetStatusNameIsARight

b= PortNameSpace ^ : C1MachPortGetSetStatusNameIsARight

C2 — right name? represents a port set in task?’s name space.

C2MachPortGetSetStatusNameIsAPortSet

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 port set namep

NotC2MachPortGetSetStatusNameIsAPortSet

b= PortNameSpace ^ : C2MachPortGetSetStatusNameIsAPortSet

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 133

8.5.4 Return Values

Table 6 describes the values returned at the completion of the request and the conditions under
which each value is returned.

Review Note:
The order of the checks agrees with the code in CM on 14Sep94.

Review Note:
This request can also returnKern resource shortage , when allocating memory for member names .

In the code from which this model was produced, one page of memory is allocated for member names

before checking either C1 or C2. If C1 and C2 are both true, then an exhaustive search oftask?’s name
space is performed to search for receive rights to any of the ports in the port set named by right name?.
If more rights are found than will fit on one page of memory, then additional memory is allocated at this
time.

Thus Kern resource shortage may be returned before or after checking C1 and C2. If it is returned after
the other checks, member names will contain a partial list of names.

return! member names ! count ! C1 C2
Kern invalid name - - F -
Kern invalid right - - T F
Kern success as described below as described below T T

Table 6: Return Values for mach port get set status

RVMachPortGetSetStatusInvalidName

MachPortGetSetStatusOutputs

NotC1MachPortGetSetStatusNameIsARight

return! = Kern invalid name

RVMachPortGetSetStatusInvalidRight

MachPortGetSetStatusOutputs

C1MachPortGetSetStatusNameIsARight

NotC2MachPortGetSetStatusNameIsAPortSet

return! = Kern invalid right

RVMachPortGetSetStatusSuccess

MachPortGetSetStatusOutputs

C1MachPortGetSetStatusNameIsARight

C2MachPortGetSetStatusNameIsAPortSet

return! = Kern success

member names ! = fport : PORT
j port 2 port set(task?; right name?) � receiver name(port)g

count ! = #member names !

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

134
CDRL A005

Port Requests

8.5.5 State Changes

A mach port get set status request does not make any state changes since it only observes
the system state.

8.5.6 Complete Request

The initial processing by the kernel upon receipt of the mach port get set status request
is described in Section 8.1.

ProcessingMachPortGetSetStatus

ProcessPortRequestGood

operation? = Mach port get set status id

An unsuccessful mach port get set status request results in no changes to the Mach state
and returns only the appropriate error status.

MachPortGetSetStatusBad

b= (RVMachPortGetSetStatusInvalidName

_ RVMachPortGetSetStatusInvalidRight)
>> RequestNoOp

A successful mach port get set status request results in no changes to the Mach state and
returns a reply message.

MachPortGetSetStatusGood

b= RVMachPortGetSetStatusSuccess

>> MachPortGetSetStatusReply

The complete specification of kernel processing of a mach port get set status request con-
sists of the initial processing followed by an unsuccessful or successful execution.

MachPortGetSetStatus

b= ProcessingMachPortGetSetStatus

� (MachPortGetSetStatusBad

_MachPortGetSetStatusGood)

8.6 mach port names

A mach port names request returns information about all of the rights in a task’s port name
space. The same information for a single right can be retrieved usingmach port type.

8.6.1 Client Interface

kern return t mach port names
(mach port t task name,

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 135

mach port array t* right names,
mach msg type number t* ncount,
mach port type array t* type masks,
mach msg type number t* tcount);

8.6.1.1 Input Parameters The following input parameters are provided by the client of a
mach port names request:

task name? — the client’s name for the task whose port name space is returned

MachPortNamesClientInputs

task name? : NAME

A mach port names request is invoked by sending a message to the port indicated by
task name? that has the operation field set toMach port names id and an empty body.

InvokeMachPortNames

InvokeMachMsg

MachPortNamesClientInputs

name? = task name?
operation? = Mach port names id

8.6.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port names request:

return! — the status of the request

right names ! — a sequence consisting of all names in the port name space oftask name?

ncount ! — the number of elements in the sequence right names !

type masks! — a sequence of port type masks, as described in Section 8.1.4, corresponding
to each element of the sequence right names !

tcount ! — the number of elements in the sequence type masks! (which is the same as
ncount !)

MachPortNamesClientOutputs

return! : KERNEL RETURN

right names ! : seqNAME

ncount ! :
type masks ! : seqPortTypeMask

tcount ! :

MachPortNamesReceiveReply

InvokeMachMsgRcv

MachPortNamesClientOutputs

(return!; right names !; ncount !; type masks !; tcount!)
= Body to mach port names outputs(msg body)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

136
CDRL A005

Port Requests

8.6.2 Kernel Interface

8.6.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port names request:

task? — the task known to the client by task name?

MachPortNamesInputs

task? : TASK

8.6.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach port names request:

return! — the status of the request

right names ! — a sequence consisting of all names in the port name space oftask name?

ncount ! — the number of elements in the sequence right names !

type masks! — a sequence of port type masks, as described in Section 8.1.4, corresponding
to each element of the sequence right names !

tcount ! — the number of elements in the sequence type masks! (which is the same as
ncount !)

MachPortNamesOutputs

return! : KERNEL RETURN

right names ! : seqNAME

ncount ! :
type masks ! : seqPortTypeMask

tcount ! :

Upon completion of the processing of a mach port names request, a reply message is built
from the output parameters.

MachPortNamesReply

RequestOnlyObserves

right names? : seqNAME

ncount? :
type masks? : seqPortTypeMask

tcount? :

reply?
= Mach port names outputs to reply(right names?; ncount?; type masks?; tcount?)

8.6.3 Request Criteria

There are no criteria for the mach port names request.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 137

8.6.4 Return Values

Table 7 describes the values returned at the completion of the request and the conditions under
which each value is returned.

return! right names ! ncount ! type masks ! tcount !
Kern success described below # right names ! described below # type masks!

Table 7: Return Values for mach port names

Review Note:
There is also the possibility that Kern resource shortage can be returned, though this has not been
modeled.

Review Note:
No specification is given for the mach port type msg accepted request field, since the model currently
does not include the necessary information.

Review Note:
There is actually also a COMPAT field in the return mask. However, in the prototype it will always
return false so it need not be modeled.

right names ! is a sequence consisting of all names in the name space fortask?. No element of the
name space is repeated, so the number of elements in right names ! is number of rights(task?).

ncount ! is the number of elements in right names !.

type masks ! is a sequence, whose length tcount ! is the same as ncount !, consisting of a
PortTypeMask for each corresponding name in right names !. Each mask contains boolean flags
indicating the following:

mach port type send— if the name refers to a send right
mach port type receive— if the name refers to a receive right
mach port type send once— if the name refers to a send-once right
mach port type port set— if the name refers to a port set
mach port type dead name— if the name refers to a dead right
mach port type dead name request— if there is an outstanding dead-name notification
request for the name

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

138
CDRL A005

Port Requests

RVMachPortNamesSuccess

MachPortNamesOutputs

PortNameSpace

Noti�cations

task? : TASK

return! = Kern success

ran right names ! = local namep�ftask?g�
ncount ! = #right names ! = number of rights(task?)
tcount ! = #type masks! = ncount !
8 i : 1 : : ncount !
� (((type masks!(i)):mach port type send = True

, (task?; right names !(i)) 2 s right)
^ ((type masks !(i)):mach port type receive = True

, (task?; right names !(i)) 2 r right)
^ ((type masks !(i)):mach port type send once = True

, (task?; right names !(i)) 2 so right)
^ ((type masks !(i)):mach port type port set = True

, (task?; right names !(i)) 2 port set namep)
^ ((type masks !(i)):mach port type dead name = True

, (task?; right names !(i)) 2 dead namep)
^ ((type masks !(i)):mach port type dead name request = True

, (task?; right names !(i)) 2 domport notify dead))

8.6.5 State Changes

A mach port names request does not make any state changes since it only observes the
system state.

8.6.6 Complete Request

The initial processing by the kernel upon receipt of themach port names request is described
in Section 8.1.

ProcessingMachPortNames

ProcessPortRequestGood

operation? = Mach port names id

A mach port names request results in no changes to the Mach state and returns a reply
message.

MachPortNamesGood

b= RVMachPortNamesSuccess

>> MachPortNamesReply

The complete specification of kernel processing of amach port names request consists of the
initial processing followed by execution.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 139

MachPortNames

b= ProcessingMachPortNames

�MachPortNamesGood

8.7 mach port rename

A mach port rename request allows a client to change the name by which a task knows a
port, port set or dead name.

8.7.1 Client Interface

kern return t mach port rename
(mach port t task name,
mach port t old name,
mach port t new name);

8.7.1.1 Input Parameters The following input parameters are provided by the client of a
mach port rename request:

task name? — the client’s name for the task whose port name space is to be changed

old name? — the current name of the right to be renamed

new name? — the new name for the right

MachPortRenameClientInputs

task name? : NAME

old name? : NAME

new name? : NAME

A mach port rename request is invoked by sending a message to the port indicated by
task name? that has the operation field set toMach port rename id and has a body consisting
of old name? and new name?.

InvokeMachPortRename

InvokeMachMsg

MachPortRenameClientInputs

name? = task name?
operation? = Mach port rename id

msg body = Mach port rename inputs to body(old name?; new name?)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

140
CDRL A005

Port Requests

8.7.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port rename request:

return! — the status of the request

MachPortRenameClientOutputs

return! : KERNEL RETURN

MachPortRenameReceiveReply

InvokeMachMsgRcv

MachPortRenameClientOutputs

return! = Body to mach port rename outputs(msg body)

8.7.2 Kernel Interface

8.7.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port rename request:

task? — the task known to the client by task name?

old name? — the current name of the right to be renamed

new name? — the new name for the right

MachPortRenameInputs

task? : TASK
old name? : NAME

new name? : NAME

8.7.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach port rename request:

return! — the status of the request

MachPortRenameOutputs

return! : KERNEL RETURN

8.7.3 Request Criteria

The following criteria are defined for the mach port rename request:

C1 — new name? is not a reserved name.

C1MachPortRenameNewNameNotReserved

new name? : NAME

new name? =2 Reserved names

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 141

NotC1MachPortRenameNewNameNotReserved

b= : C1MachPortRenameNewNameNotReserved

C2 — new name? is not currently in the name space of task?.

C2MachPortRenameNewNameNotInUse

PortNameSpace

task? : TASK
new name? : NAME

(task?; new name?) =2 local namep

NotC2MachPortRenameNewNameNotInUse

b= PortNameSpace ^ : C2MachPortRenameNewNameNotInUse

C3 — old name? is currently in the name space of task?.

C3MachPortRenameOldNameInUse

PortNameSpace

task? : TASK
old name? : NAME

(task?; old name?) 2 local namep

NotC3MachPortRenameOldNameInUse

b= PortNameSpace ^ : C3MachPortRenameOldNameInUse

8.7.4 Return Values

Table 8 describes the values returned at the completion of the request and the conditions under
which each value is returned.

Review Note:
The criteria are in the correct order according to the code in CM on 16Sep94.

Review Note:
This request can also returnKern resource shortage , because it may need to create a new entry. This
check, if it occurs, comes between C1 and C2.

RVMachPortRenameInvalidValue

MachPortRenameOutputs

NotC1MachPortRenameNewNameNotReserved

return! = Kern invalid value

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

142
CDRL A005

Port Requests

return! C1 C2 C3
Kern invalid value F - -
Kern name exists T F -
Kern invalid name T T F
Kern success T T T

Table 8: Return Values for mach port rename

RVMachPortRenameNameExists

MachPortRenameOutputs

C1MachPortRenameNewNameNotReserved

NotC2MachPortRenameNewNameNotInUse

return! = Kern name exists

RVMachPortRenameInvalidName

MachPortRenameOutputs

C1MachPortRenameNewNameNotReserved

C2MachPortRenameNewNameNotInUse

NotC3MachPortRenameOldNameInUse

return! = Kern invalid name

RVMachPortRenameSuccess

MachPortRenameOutputs

C1MachPortRenameNewNameNotReserved

C2MachPortRenameNewNameNotInUse

C3MachPortRenameOldNameInUse

return! = Kern success

8.7.5 State Changes

If all of the criteria are satisfied, then the name space for task? is changed so that the name of
any right currently with the nameold name? is changed to new name?. Here right refers to a
send, receive, or send once right, port set or dead name.

In addition, if there is an outstanding dead-name request for the right old name?, then the
request must be renamed.

Review Note:
In addition, the name of a message accepted request may need to be changed. However, that is not
currently in the model.

There are several things in the model that should be changed by this request, but are not because the
model is incorrect.

A name in a port set. The model is incorrect, since the kernel actually considers port sets as a set
of ports, not a set of names.
A name in the set of registered rights (registered rights) for a task. Again, the model is incorrect
since this is really a set of ports, not a set of names. (This is modeled correctly in the FSPM.)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 143

The data structures associated with threads blocked for a pending receive (PendingReceiveand
pending receives). Again, the model is incorrect in considering a port to be a name.

MachPortRenameState

� PortNameSpace

� Noti�cations

C1MachPortRenameNewNameNotReserved

C2MachPortRenameNewNameNotInUse

C3MachPortRenameOldNameInUse

port right rel
0 = port right rel

nf port : PORT ; right : RIGHT ; i : 1 � (task?; port; old name?; right; i)g
[f port : PORT ; right : RIGHT ; i : 1
j (task?; port; old name?; right; i) 2 port right rel

� (task?; port; new name?; right; i)g
port set rel

0 = port set rel

nfset of ports : �PORT � (task?; old name?; set of ports)g
[fset of ports : �PORT
j (task?; old name?; set of ports) 2 port set rel

� (task?; new name?; set of ports)g
dead right rel

0 = dead right rel

nf i : 1 � (task?; old name?; i)g
[f i : 1 j (task?; old name?; i) 2 dead right rel

� (task?; new name?; i)g
port notify dead rel

0 = port notify dead rel

nf port : PORT � (port; task?; old name?)g
[f port : PORT j (port ; task?; old name?) 2 port notify dead rel

� (port ; task?; new name?)g

Review Note:
Invariants should be stated here as well.

8.7.6 Complete Request

The initial processing by the kernel upon receipt of the mach port rename request is de-
scribed in Section 8.1.

ProcessingMachPortRename

ProcessPortRequestGood

operation? = Mach port rename id

An unsuccessful mach port rename request results in no changes to the Mach state and
returns only the appropriate error status.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

144
CDRL A005

Port Requests

MachPortRenameBad

b= (RVMachPortRenameNameExists

_ RVMachPortRenameInvalidName

_ RVMachPortRenameInvalidValue)
>> RequestNoOp

A successful mach port rename request alters the Mach state as described in Section 8.7.5
and returns a reply message.

MachPortRenameGood

b= (MachPortRenameState

^ RVMachPortRenameSuccess)
>> RequestReturnOnlyStatus

The complete specification of kernel processing of a mach port rename request consists of
the initial processing followed by an unsuccessful or successful execution.

MachPortRename

b= ProcessingMachPortRename

� (MachPortRenameBad

_MachPortRenameGood)

8.8 mach port request notification

A mach port request notification request registers a notification message to be sent when
a particular port event occurs. If a notification has already been requested, it returns the
send-once right associated with the existing notification request.

Notifications are described in Section 8.1.7.

8.8.1 Client Interface

kern return t mach port request notification
(mach port t task name,
mach port t right name,
mach msg id t variant,
mach port mscount t sync,
mach port t notify name,
mach msg type name t notify type,
mach port t* previous name);

8.8.1.1 Input Parameters The following input parameters are provided by the client of a
mach port request notification request:

task name? — the client’s name for the task in whose name spaceright name? is located

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 145

right name? — the name of a right, in task name?’s name space, for which the notification
is requested. If variant? is set to Mach notify port destroyed or Mach notify no senders,
this must be a receive right.

variant? — the type of event for which notification is requested, either
Mach notify port destroyed , Mach notify no senders, or Mach notify dead name

sync? — When variant? is set to Mach notify dead name, this must be set to zero. When
variant? is set to Mach notify no senders , this value is used to overcome race conditions

notify name? — the name of a right, in the client’s name space, for the port to which the
notification should be send

notify type? — the manner in which a send-once right should be extracted from
notify name?, either Mmt make send once or Mmt move send once

MachPortRequestNoti�cationClientInputs

task name? : NAME

right name? : NAME

variant? :MACH MSG ID

sync? :
notify name? : NAME

notify type? :MACH MSG TYPE

A mach port request notification request is invoked by sending a message to the port
indicated by task name? that has the operation field set to Mach port request noti�cation id

and has a body consisting of right name?, variant?, sync?, notify name?, and notify type?.

InvokeMachPortRequestNoti�cation

InvokeMachMsg

MachPortRequestNoti�cationClientInputs

name? = task name?
operation? = Mach port request noti�cation id

msg body = Mach port request noti�cation inputs to body(right name?; variant?;
sync?; notify name?; notify type?)

8.8.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port request notification request:

return! — the status of the request

previous name ! — if the notification has already been requested, the previously registered
send-once right; otherwiseMach port null

MachPortRequestNoti�cationClientOutputs

return! : KERNEL RETURN

previous name ! : NAME

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

146
CDRL A005

Port Requests

MachPortRequestNoti�cationReceiveReply

InvokeMachMsgRcv

MachPortRequestNoti�cationClientOutputs

(return!; previous name !) = Body to mach port request noti�cation outputs(msg body)

8.8.2 Kernel Interface

8.8.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port request notification request:

task? — the task known to the client by task name?

right name? — provided by the client

variant? — provided by the client

sync? — provided by the client

notify? — the port known to the client by notify name?

MachPortRequestNoti�cationInputs

task? : TASK
right name? : NAME

variant? :MACH MSG ID

sync? :
notify? : PORT

8.8.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach port request notification request:

return! — the status of the request

previous! — if the notification has already been requested, the previously registered
notification port; otherwise Ip null

MachPortRequestNoti�cationOutputs

return! : KERNEL RETURN

previous! : PORT

Upon completion of the processing of a mach port request notification request, a reply
message is built from the output parameters.

MachPortRequestNoti�cationReply

RequestReturn

previous? : PORT

reply? = Mach port request noti�cation outputs to reply(previous?)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 147

8.8.3 Request Criteria

The following criteria are defined for the mach port request notification request:

Review Note:
There is a number missing in the list because of improvements to the model. It doesn’t seem to be
worthwhile to renumber the criteria.

C1 — notify? is not Ip dead .

C1MachPortRequestNoti�cationNotifyNotDead

notify? : PORT

notify? 6= Ip dead

NotC1MachPortRequestNoti�cationNotifyNotDead

b= : C1MachPortRequestNoti�cationNotifyNotDead

C2 — variant? is set to Mach notify port destroyed .

C2MachPortRequestNoti�cationPortDestroyed

variant? :MACH MSG ID

variant? = Mach notify port destroyed

NotC2MachPortRequestNoti�cationPortDestroyed

b= : C2MachPortRequestNoti�cationPortDestroyed

C3 — variant? is set to Mach notify no senders.

C3MachPortRequestNoti�cationNoSenders

variant? :MACH MSG ID

variant? = Mach notify no senders

NotC3MachPortRequestNoti�cationNoSenders

b= : C3MachPortRequestNoti�cationNoSenders

C4 — variant? is set to Mach notify dead name.

C4MachPortRequestNoti�cationDeadName

variant? :MACH MSG ID

variant? = Mach notify dead name

NotC4MachPortRequestNoti�cationDeadName

b= : C4MachPortRequestNoti�cationDeadName

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

148
CDRL A005

Port Requests

C5 — sync? is equal to zero.

C5MachPortRequestNoti�cationSyncIsZero

sync? :

sync? = 0

NotC5MachPortRequestNoti�cationSyncIsZero

b= : C5MachPortRequestNoti�cationSyncIsZero

C6 — right name? represents a right in task?’s name space.

C6MachPortRequestNoti�cationNameIsARight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 local namep

NotC6MachPortRequestNoti�cationNameIsARight

b= PortNameSpace ^ : C6MachPortRequestNoti�cationNameIsARight

C7 — right name? represents a receive right in task?’s name space.

C7MachPortRequestNoti�cationNameIsAReceiveRight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 r right

NotC7MachPortRequestNoti�cationNameIsAReceiveRight

b= PortNameSpace ^ : C7MachPortRequestNoti�cationNameIsAReceiveRight

C8 — This criteria only applies if right name? indicates a receive right in task?’s name
space, in which case it is true whenever:

– There are no send rights for the port indicated byright name?,
– sync? is less than the make-send count value for that port, and
– notify? is not Ip null .

Review Note:
This criteria is not completely defined in the schema because the state model does not capture the
total number of send rights associated with a port.

C8MachPortRequestNoSendersNoti�cationSendNow

C7MachPortRequestNoti�cationNameIsAReceiveRight

SendRightsCount

sync? :
notify? : PORT

sync? � make send count(named port(task?; right name?))
notify? 6= Ip null

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 149

NotC8MachPortRequestNoSendersNoti�cationSendNow

b= C7MachPortRequestNoti�cationNameIsAReceiveRight ^ SendRightsCount
^ : C8MachPortRequestNoSendersNoti�cationSendNow

C10 — right name? represents a send, send-once or receive right in task?’s name space.

C10MachPortRequestNoti�cationNameIsAPortRight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 port right namep

NotC10MachPortRequestNoti�cationNameIsAPortRight

b= PortNameSpace ^ : C10MachPortRequestNoti�cationNameIsAPortRight

C11 — right name? represents a deadname in task?’s name space.

C11MachPortRequestNoti�cationNameIsADeadName

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 dead namep

NotC11MachPortRequestNoti�cationNameIsADeadName

b= PortNameSpace ^ : C11MachPortRequestNoti�cationNameIsADeadName

C12 — notify? is not Ip null and sync? is non-zero.

C12MachPortRequestNoti�cationNotifySyncNotZero

notify? : PORT
sync? :

notify? 6= Ip null

sync? 6= 0

NotC12MachPortRequestNoti�cationNotifyAndSyncNonZero

b= : C12MachPortRequestNoti�cationNotifySyncNotZero

C13 — The number of user references for right name? is less than the maximum allowed.

C13MachPortRequestNoti�cationURefsNotAtMax

PortNameSpace

task? : TASK
right name? : NAME

dead right ref count (task?; right name?) < Max right refs

NotC13MachPortRequestNoti�cationURefsNotAtMax

b= PortNameSpace ^ : C13MachPortRequestNoti�cationURefsNotAtMax

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

150
CDRL A005

Port Requests

8.8.4 Return Values

Table 9 describes those values returned at the completion of the request which are common
to all three values of variant?. Tables 10, 11 and 12 describe the return values specific to
the cases in which variant? is set to Mach notify port destroyed , Mach notify no senders , and
Mach notify dead name, respectively.

Review Note:
The order of the checks in this section is accurate based upon the code in CM on 19Sep94.

Review Note:
In Table 9, note that C2, C3, and C4 are mutually exclusive.

return! previous! C1 C2 C3 C4
Kern invalid capability - F - - -
Kern invalid value - T F F F

See Table 10 T T - -
See Table 11 T - T -
See Table 12 T - - T

Table 9: Return Values for mach port request notification

RVMachPortRequestNoti�cationInvalidCapability

MachPortRequestNoti�cationOutputs

NotC1MachPortRequestNoti�cationNotifyNotDead

return! = Kern invalid capability

RVMachPortRequestNoti�cationInvalidValue

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

NotC2MachPortRequestNoti�cationPortDestroyed

NotC3MachPortRequestNoti�cationNoSenders

NotC4MachPortRequestNoti�cationDeadName

return! = Kern invalid value

8.8.4.1 Port-Destroyed Notification Request Table 10 describes the return values for the case
in which variant? is set to Mach notify port destroyed .

RVMachPortRequestPortDestroyedNoti�cationInvalidValue

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C2MachPortRequestNoti�cationPortDestroyed

NotC5MachPortRequestNoti�cationSyncIsZero

return! = Kern invalid value

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 151

return! previous! C1 C2 C5 C6 C7
Kern invalid value - T T F - -
Kern invalid name - T T T F -
Kern invalid right - T T T T F
Kern success port notify destroyed(T T T T T

named port(task?,right name?))

Table 10: Return Values for mach port request notification, port-destroyed notification

RVMachPortRequestPortDestroyedNoti�cationInvalidName

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C2MachPortRequestNoti�cationPortDestroyed

C5MachPortRequestNoti�cationSyncIsZero

NotC6MachPortRequestNoti�cationNameIsARight

return! = Kern invalid name

RVMachPortRequestPortDestroyedNoti�cationInvalidRight

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C2MachPortRequestNoti�cationPortDestroyed

C5MachPortRequestNoti�cationSyncIsZero

C6MachPortRequestNoti�cationNameIsARight

NotC7MachPortRequestNoti�cationNameIsAReceiveRight

return! = Kern invalid right

RVMachPortRequestPortDestroyedNoti�cationSuccess

Noti�cations

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C2MachPortRequestNoti�cationPortDestroyed

C5MachPortRequestNoti�cationSyncIsZero

C6MachPortRequestNoti�cationNameIsARight

C7MachPortRequestNoti�cationNameIsAReceiveRight

return! = Kern success

previous! = port notify destroyed(named port(task?; right name?))

8.8.4.2 No-Senders Notification Request Table 11 describes the return values for the case in
which variant? is set to Mach notify no senders .

RVMachPortRequestNoSendersNoti�cationInvalidName

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C3MachPortRequestNoti�cationNoSenders

NotC6MachPortRequestNoti�cationNameIsARight

return! = Kern invalid name

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

152
CDRL A005

Port Requests

return! previous ! C1 C3 C6 C7
Kern invalid name - T T F -
Kern invalid right - T T T F
Kern success port notify no more senders(T T T T

named port(task?,right name?))

Table 11: Return Values for mach port request notification, no-senders notification

RVMachPortRequestNoSendersNoti�cationInvalidRight

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C3MachPortRequestNoti�cationNoSenders

C6MachPortRequestNoti�cationNameIsARight

NotC7MachPortRequestNoti�cationNameIsAReceiveRight

return! = Kern invalid right

RVMachPortRequestNoSendersNoti�cationSuccess

Noti�cations

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C3MachPortRequestNoti�cationNoSenders

C6MachPortRequestNoti�cationNameIsARight

C7MachPortRequestNoti�cationNameIsAReceiveRight

return! = Kern success

previous! = port notify no more senders(named port(task?; right name?))

8.8.4.3 Dead-Name Notification Request Table 12 describes the return values for the case in
which variant? is set to Mach notify dead name .

Review Note:
In Table 12, note that C10 and C11 are mutually exclusive.

return! previous ! C1 C4 C6 C10 C11 C12 C13
Kern invalid name - T T F - - - -
Kern invalid right - T T T F F - -
Kern success port notify dead (T T T T - - -

task?,right name?)
Kern invalid argument - T T T - T F -
Kern urefs overow - T T T - T T F
Kern success Ip null T T T - T T T

Table 12: Return Values for mach port request notification, dead-name notification

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 153

RVMachPortRequestDeadNameNoti�cationInvalidName

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C4MachPortRequestNoti�cationDeadName

NotC6MachPortRequestNoti�cationNameIsARight

return! = Kern invalid name

RVMachPortRequestDeadNameNoti�cationInvalidRight

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C4MachPortRequestNoti�cationDeadName

C6MachPortRequestNoti�cationNameIsARight

NotC10MachPortRequestNoti�cationNameIsAPortRight

NotC11MachPortRequestNoti�cationNameIsADeadName

return! = Kern invalid right

RVMachPortRequestDeadNameNoti�cationSuccessOne

Noti�cations

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C4MachPortRequestNoti�cationDeadName

C6MachPortRequestNoti�cationNameIsARight

C10MachPortRequestNoti�cationNameIsAPortRight

return! = Kern success

previous! = port notify dead (task?; right name?)

Review Note:
Note that this case could also result in a resource shortage. This is due to the fact that many dead
name notifications can be active for the same port, so memory is allocated for each additional notification
request.

RVMachPortRequestDeadNameNoti�cationInvalidArgument

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C4MachPortRequestNoti�cationDeadName

C6MachPortRequestNoti�cationNameIsARight

C11MachPortRequestNoti�cationNameIsADeadName

NotC12MachPortRequestNoti�cationNotifyAndSyncNonZero

return! = Kern invalid argument

Editorial Note:
It seems rather surprising that the request fails when name? is a dead name and notify? is Ip null?
That seems like a case that Mach would usually allow, though the request in this case would do nothing.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

154
CDRL A005

Port Requests

RVMachPortRequestDeadNameNoti�cationUrefsOverow

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C4MachPortRequestNoti�cationDeadName

C6MachPortRequestNoti�cationNameIsARight

C11MachPortRequestNoti�cationNameIsADeadName

C12MachPortRequestNoti�cationNotifySyncNotZero

NotC13MachPortRequestNoti�cationURefsNotAtMax

return! = Kern urefs overow

RVMachPortRequestDeadNameNoti�cationSuccessTwo

MachPortRequestNoti�cationOutputs

C1MachPortRequestNoti�cationNotifyNotDead

C4MachPortRequestNoti�cationDeadName

C6MachPortRequestNoti�cationNameIsARight

C11MachPortRequestNoti�cationNameIsADeadName

C12MachPortRequestNoti�cationNotifySyncNotZero

C13MachPortRequestNoti�cationURefsNotAtMax

return! = Kern success

previous! = Ip null

In this last case, previous! returns Ip null since right name? identifies a dead right.

8.8.5 State Changes

Table 13 lists the possible successful executions of a mach port request notification re-
quest.

Case C1 C2 C3 C4 C5 C6 C7 C8 C10 C11 C12 C13
MachPortRequestPortDestroyedNoti�cationStateChanges T T - - T T T - - - - -
MachPortRequestNoSendersNoti�cationStateChangesOne T - T - - T T F - - - -
MachPortRequestNoSendersNoti�cationStateChangesTwo T - T - - T T T - - - -
MachPortRequestDeadNameNoti�cationStateChangesOne T - - T - T - - T - - -
MachPortRequestDeadNameNoti�cationStateChangesTwo T - - T - T - - - T T T

Table 13: State Change Cases for mach port request notification

8.8.5.1 Port-Destroyed Notification Request A request for a port-destroyed notification is suc-
cessful if the following are true:

notify? is not Ip dead

variant? is set to Mach notify port destroyed

sync? is zero
right name? is a receive right in task?’s name space

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 155

If the request is successful, the kernel replaces the existing port-destroyed notification request
port for the port named by right name? with notify?. Note that either the existing notification
request port or notify? could be Ip null .

MachPortRequestPortDestroyedNoti�cationStateChanges

� Noti�cations

C1MachPortRequestNoti�cationNotifyNotDead

C2MachPortRequestNoti�cationPortDestroyed

C5MachPortRequestNoti�cationSyncIsZero

C6MachPortRequestNoti�cationNameIsARight

C7MachPortRequestNoti�cationNameIsAReceiveRight

port notify destroyed
0 = port notify destroyed

�fnamed port(task?; right name?) 7! notify?g

8.8.5.2 No-Senders Notification Request A request for a no-senders notification is successful
if the following are true:

notify? is not Ip dead

variant? is set to Mach notify no senders

right name? is a receive right in task?’s name space

If the request is successful, then kernel further determines whether a no-senders notification
should immediately be sent, by checking if all of the following are true:

There are no send rights for the port indicated byright name?
sync? is less than the make-send count value for that port
notify? is not Ip null

If any of these are not true, the kernel replaces the existing no-senders notification request
port for the port named by right name? with notify?. Note that either the existing notification
request port or notify? could be Ip null .

MachPortRequestNoSendersNoti�cationStateChangesOne

� Noti�cations

C1MachPortRequestNoti�cationNotifyNotDead

C3MachPortRequestNoti�cationNoSenders

C6MachPortRequestNoti�cationNameIsARight

C7MachPortRequestNoti�cationNameIsAReceiveRight

NotC8MachPortRequestNoSendersNoti�cationSendNow

port notify no more senders 0 = port notify no more senders

�fnamed port(task?; right name?) 7! notify?g

If the kernel determines that it must immediately send a no-senders notification, it first removes
any existing notification request port and then attempts to send the notification.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

156
CDRL A005

Port Requests

MachPortRequestNoSendersNoti�cationStateChangesTwo

� Noti�cations

C1MachPortRequestNoti�cationNotifyNotDead

C3MachPortRequestNoti�cationNoSenders

C6MachPortRequestNoti�cationNameIsARight

C7MachPortRequestNoti�cationNameIsAReceiveRight

C8MachPortRequestNoSendersNoti�cationSendNow

port notify no more senders
0 = port notify no more senders

�fnamed port(task?; right name?) 7! Ip nullg

Review Note:
This second case still needs to be completed. Four things are missing, all of which should eventually be
handled in the port chapter introduction:

Make sure that a notification message can be allocated. If not, no notification is sent.
Build the notification message.
Check for send permission
Queue the message

Review Note:
It’s interesting to note that the sync? value is used to determine whether a no-senders notification is
immediately sent, but it has no relevance to notifications sent after the notification is registered. In
that respect it seems that the race condition that sync? is apparently intended to prevent is not really
prevented. The only way to truly avoid it is for the recipient of the notification to check the make send
count returned with the notification.

MachPortRequestNoSendersNoti�cationStateChanges

b= MachPortRequestNoSendersNoti�cationStateChangesOne

_MachPortRequestNoSendersNoti�cationStateChangesTwo

8.8.5.3 Dead-Name Notification Request A request for a dead-name notification can be suc-
cessful in two distinct cases.

The first successful case occurs if the following are true:

notify? is not Ip dead

variant? is set to Mach notify dead name

right name? is a send, send-once or receive right in task?’s name space

In this case, the kernel replaces the existing dead-name notification request port forright name?
with notify?. Note that either the existing notification request port ornotify? could be Ip null .

MachPortRequestDeadNameNoti�cationStateChangesOne

� Noti�cations

C1MachPortRequestNoti�cationNotifyNotDead

C4MachPortRequestNoti�cationDeadName

C6MachPortRequestNoti�cationNameIsARight

C10MachPortRequestNoti�cationNameIsAPortRight

port notify dead
0 = port notify dead � f(task?; right name?) 7! notify?g

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 157

The second successful case occurs if the following are true:

notify? is not Ip dead

variant? is set to Mach notify dead name

right name? is a dead right in task?’s name space
sync? is non-zero
dead right ref count (task?,right name?) is not at the maximum value (Max right refs)

In this case, the kernel immediately attempts to send a dead-name notification. Prior to doing
this however, it increments thedead right ref count for the dead right.

MachPortRequestDeadNameNoti�cationStateChangesTwo

� DeadRights

C1MachPortRequestNoti�cationNotifyNotDead

C4MachPortRequestNoti�cationDeadName

C6MachPortRequestNoti�cationNameIsARight

C11MachPortRequestNoti�cationNameIsADeadName

C12MachPortRequestNoti�cationNotifySyncNotZero

C13MachPortRequestNoti�cationURefsNotAtMax

dead right ref count 0 = dead right ref count

�f(task?; right name?) 7! dead right ref count (task?; right name?) + 1g

Editorial Note:
It is unclear why dead right ref count is being incremented in this case. That does not agree with the
understanding of this field presented in the state model. It might also be interesting to look and see
whether it is decremented in the case that the send of the notification message fails.

Review Note:
This second case still needs to be completed. Four things are missing, all of which should eventually be
handled in the port chapter introduction:

Make sure that a notification message can be allocated. If not, no notification is sent.
Build the notification message.
Check for send permission
Queue the message

MachPortRequestDeadNameNoti�cationStateChanges

b= MachPortRequestDeadNameNoti�cationStateChangesOne

_MachPortRequestDeadNameNoti�cationStateChangesTwo

8.8.6 Complete Request

The initial processing by the kernel upon receipt of the mach port request notification
request is described in Section 8.1.

ProcessingMachPortRequestNoti�cation

ProcessPortRequestGood

operation? = Mach port request noti�cation id

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

158
CDRL A005

Port Requests

An unsuccessful mach port request notification request results in no changes to the Mach
state and returns only the appropriate error status.

MachPortRequestNoti�cationBad

b= (RVMachPortRequestNoti�cationInvalidCapability

_ RVMachPortRequestNoti�cationInvalidValue

_ RVMachPortRequestPortDestroyedNoti�cationInvalidValue

_ RVMachPortRequestPortDestroyedNoti�cationInvalidName

_ RVMachPortRequestPortDestroyedNoti�cationInvalidRight

_ RVMachPortRequestNoSendersNoti�cationInvalidName

_ RVMachPortRequestNoSendersNoti�cationInvalidRight

_ RVMachPortRequestDeadNameNoti�cationInvalidName

_ RVMachPortRequestDeadNameNoti�cationInvalidRight

_ RVMachPortRequestDeadNameNoti�cationInvalidArgument

_ RVMachPortRequestDeadNameNoti�cationUrefsOverow)
>> RequestNoOp

A successful mach port request notification request alters the Mach state as described in
Section 8.8.5 and returns a reply message.

MachPortRequestNoti�cationGood

b= ((MachPortRequestPortDestroyedNoti�cationStateChanges

_MachPortRequestNoSendersNoti�cationStateChanges

_MachPortRequestDeadNameNoti�cationStateChanges)
^ (RVMachPortRequestPortDestroyedNoti�cationSuccess

_ RVMachPortRequestNoSendersNoti�cationSuccess

_ RVMachPortRequestDeadNameNoti�cationSuccessOne

_ RVMachPortRequestDeadNameNoti�cationSuccessTwo))
>> MachPortRequestNoti�cationReply

The complete specification of kernel processing of a mach port request notification re-
quest consists of the initial processing followed by an unsuccessful or successful execution.

MachPortRequestNoti�cation

b= ProcessingMachPortRequestNoti�cation

� (MachPortRequestNoti�cationBad

_MachPortRequestNoti�cationGood)

8.9 mach port set mscount

A mach port set mscount request changes the make-send count for the port associated
with a specified receive right in a task’s port name space.

8.9.1 Client Interface

kern return t mach port set mscount
(mach port t task name,
mach port t right name,
mach port mscount t mscount);

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 159

8.9.1.1 Input Parameters The following input parameters are provided by the client of a
mach port set mscount request:

task name? — the client’s name for the task in whose name spaceright name? is located

right name? — the name of a receive right for the port whose make-send count is to be
changed

mscount? — the value to be assigned to the make-send count for the port associated with
right name?

MachPortSetMscountClientInputs

task name? : NAME

right name? : NAME

mscount? :

A mach port set mscount request is invoked by sending a message to the port indicated
by task name? that has the operation field set to Mach port set mscount id and has a body
consisting of right name? and mscount?.

InvokeMachPortSetMscount

InvokeMachMsg

MachPortSetMscountClientInputs

name? = task name?
operation? = Mach port set mscount id

msg body = Mach port set mscount inputs to body (right name?;mscount?)

8.9.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port set mscount request:

return! — the status of the request

MachPortSetMscountClientOutputs

return! : KERNEL RETURN

MachPortSetMscountReceiveReply

InvokeMachMsgRcv

MachPortSetMscountClientOutputs

return! = Body to mach port set mscount outputs(msg body)

8.9.2 Kernel Interface

8.9.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port set mscount request:

task? — the task known to the client by task name?

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

160
CDRL A005

Port Requests

right name? — provided by the client

mscount? — provided by the client

MachPortSetMscountInputs

task? : TASK
right name? : NAME

mscount? :

8.9.2.2 Output Parameters The following output parameters are returned by the kernel for a
mach port set mscount request:

return! — the status of the request

MachPortSetMscountOutputs

return! : KERNEL RETURN

8.9.3 Request Criteria

The following criteria are defined for the mach port set mscount request:

C1 — right name? represents a right in task?’s name space.

C1MachPortSetMscountNameIsARight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 local namep

NotC1MachPortSetMscountNameIsARight

b= PortNameSpace ^ : C1MachPortSetMscountNameIsARight

C2 — right name? represents a receive right in task?’s name space.

C2MachPortSetMscountNameIsAReceiveRight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 r right

NotC2MachPortSetMscountNameIsAReceiveRight

b= PortNameSpace ^ : C2MachPortSetMscountNameIsAReceiveRight

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 161

8.9.4 Return Values

Table 14 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:
The order of the checks agrees with the code in CM as of 20Sep94.

return! C1 C2
Kern invalid name F -
Kern invalid right T F
Kern success T T

Table 14: Return Values for mach port set mscount

RVMachPortSetMscountInvalidName

MachPortSetMscountOutputs

NotC1MachPortSetMscountNameIsARight

return! = Kern invalid name

RVMachPortSetMscountInvalidRight

MachPortSetMscountOutputs

C1MachPortSetMscountNameIsARight

NotC2MachPortSetMscountNameIsAReceiveRight

return! = Kern invalid right

RVMachPortSetMscountSuccess

MachPortSetMscountOutputs

C1MachPortSetMscountNameIsARight

C2MachPortSetMscountNameIsAReceiveRight

return! = Kern success

8.9.5 State Changes

If all of the criteria are satisfied, then the make-send count for the port associated with
right name? in task?’s name space is given the valuemscount?.

MachPortSetMscountState

� PortSummary

MachPortSetMscountInputs

C1MachPortSetMscountNameIsARight

C2MachPortSetMscountNameIsAReceiveRight

make send count 0

= make send count � fnamed port(task?; right name?) 7! mscount?g

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

162
CDRL A005

Port Requests

Review Note:
Invariants should be stated here as well.

8.9.6 Complete Request

The initial processing by the kernel upon receipt of the mach port set mscount request is
described in Section 8.1.

ProcessingMachPortSetMscount

ProcessPortRequestGood

operation? = Mach port set mscount id

An unsuccessful mach port set mscount request results in no changes to the Mach state
and returns only the appropriate error status.

MachPortSetMscountBad

b= (RVMachPortSetMscountInvalidName

_ RVMachPortSetMscountInvalidRight)
>> RequestNoOp

A successful mach port set mscount request alters the Mach state as described in Sec-
tion 8.9.5 and returns a reply message.

MachPortSetMscountGood

b= (MachPortSetMscountState

^ RVMachPortSetMscountSuccess)
>> RequestReturnOnlyStatus

The complete specification of kernel processing of amach port set mscount request consists
of the initial processing followed by an unsuccessful or successful execution.

MachPortSetMscount

b= ProcessingMachPortSetMscount

� (MachPortSetMscountBad

_MachPortSetMscountGood)

8.10 mach port set qlimit

A mach port set qlimit request changes the message queue limit for the port associated
with a specified receive right in a task’s port name space.

8.10.1 Client Interface

kern return t mach port set qlimit
(mach port t task name,
mach port t rightname,
mach port msgcount t qlimit value);

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 163

8.10.1.1 Input Parameters The following input parameters are provided by the client of a
mach port set qlimit request:

task name? — the client’s name for the task in whose name spaceright name? is located

right name? — the name of a receive right for the port whose message queue limit is to
be changed

qlimit value? — the value to be assigned to the message queue limit for the port associated
with right name?

MachPortSetQlimitClientInputs

task name? : NAME

right name? : NAME

qlimit value? :

A mach port set qlimit request is invoked by sending a message to the port indicated by
task name? that has the operation field set toMach port set qlimit id and has a body consisting
of right name? and qlimit value?.

InvokeMachPortSetQlimit

InvokeMachMsg

MachPortSetQlimitClientInputs

name? = task name?
operation? = Mach port set qlimit id

msg body = Mach port set qlimit inputs to body(right name?; qlimit value?)

8.10.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port set qlimit request:

return! — the status of the request

MachPortSetQlimitClientOutputs

return! : KERNEL RETURN

MachPortSetQlimitReceiveReply

InvokeMachMsgRcv

MachPortSetQlimitClientOutputs

return! = Body to mach port set qlimit outputs(msg body)

8.10.2 Kernel Interface

8.10.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port set qlimit request:

task? — the task known to the client by task name?

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

164
CDRL A005

Port Requests

right name? — provided by the client

qlimit value? — provided by the client

MachPortSetQlimitInputs

task? : TASK
right name? : NAME

qlimit value? :

8.10.2.2 Output Parameters The following output parameters are returned by the kernel for
a mach port set qlimit request:

return! — the status of the request

MachPortSetQlimitOutputs

return! : KERNEL RETURN

8.10.3 Request Criteria

The following criteria are defined for the mach port set qlimit request:

C1 — qlimit value? is no larger than the specified maximum,Mach port q limit max .

C1MachPortSetQlimitNameIsARight

qlimit value? :

qlimit value? � Mach port q limit max

NotC1MachPortSetQlimitNameIsARight

b= : C1MachPortSetQlimitNameIsARight

C2 — right name? represents a right in task?’s name space.

C2MachPortSetQlimitNameIsAReceiveRight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 local namep

NotC2MachPortSetQlimitNameIsAReceiveRight

b= PortNameSpace ^ : C2MachPortSetQlimitNameIsAReceiveRight

C3 — right name? represents a receive right in task?’s name space.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 165

C3MachPortSetQlimitValueIsValid

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 r right

NotC3MachPortSetQlimitValueIsValid

b= PortNameSpace ^ : C3MachPortSetQlimitValueIsValid

8.10.4 Return Values

Table 15 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:
The order of the checks agrees with the code in CM as of 20Sep94.

return! C1 C2 C3
Kern invalid value F - -
Kern invalid name T F -
Kern invalid right T T F
Kern success T T T

Table 15: Return Values for mach port set qlimit

RVMachPortSetQlimitInvalidValue

MachPortSetQlimitOutputs

NotC1MachPortSetQlimitNameIsARight

return! = Kern invalid value

RVMachPortSetQlimitInvalidName

MachPortSetQlimitOutputs

C1MachPortSetQlimitNameIsARight

NotC2MachPortSetQlimitNameIsAReceiveRight

return! = Kern invalid name

RVMachPortSetQlimitInvalidRight

MachPortSetQlimitOutputs

C1MachPortSetQlimitNameIsARight

C2MachPortSetQlimitNameIsAReceiveRight

NotC3MachPortSetQlimitValueIsValid

return! = Kern invalid right

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

166
CDRL A005

Port Requests

RVMachPortSetQlimitSuccess

MachPortSetQlimitOutputs

C1MachPortSetQlimitNameIsARight

C2MachPortSetQlimitNameIsAReceiveRight

C3MachPortSetQlimitValueIsValid

return! = Kern success

8.10.5 State Changes

If all of the criteria are satisfied, then the message queue limit for the port associated with
right name? in task?’s name space is given the value qlimit value?.

Review Note:
This request may wake up threads which are blocked trying to send to the port, if the queue limit is
increased. This does not currently fit into the model.

MachPortSetQlimitState

� PortSummary

C1MachPortSetQlimitNameIsARight

C2MachPortSetQlimitNameIsAReceiveRight

C3MachPortSetQlimitValueIsValid

q limit
0 = q limit � fnamed port(task?; right name?) 7! qlimit value?g

Review Note:
Invariants should be stated here as well.

8.10.6 Complete Request

The initial processing by the kernel upon receipt of the mach port set qlimit request is
described in Section 8.1.

ProcessingMachPortSetQlimit

ProcessPortRequestGood

operation? = Mach port set qlimit id

An unsuccessful mach port set qlimit request results in no changes to the Mach state and
returns only the appropriate error status.

MachPortSetQlimitBad

b= (RVMachPortSetQlimitInvalidName

_ RVMachPortSetQlimitInvalidRight

_ RVMachPortSetQlimitInvalidValue)
>> RequestNoOp

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 167

A successful mach port set qlimit request alters the Mach state as described in Sec-
tion 8.10.5 and returns a reply message.

MachPortSetQlimitGood

b= (MachPortSetQlimitState

^ RVMachPortSetQlimitSuccess)
>> RequestReturnOnlyStatus

The complete specification of kernel processing of a mach port set qlimit request consists
of the initial processing followed by an unsuccessful or successful execution.

MachPortSetQlimit

b= ProcessingMachPortSetQlimit

� (MachPortSetQlimitBad

_MachPortSetQlimitGood)

8.11 mach port set seqno

A mach port set seqno request changes the current sequence number for the port associated
with a specified receive right in a task’s port name space.

8.11.1 Client Interface

kern return t mach port set seqno
(mach port t task name,
mach port t right name,
mach port seqno t seqno);

8.11.1.1 Input Parameters The following input parameters are provided by the client of a
mach port set seqno request:

task name? — the client’s name for the task in whose name spaceright name? is located

right name? — the name of a receive right for the port whose current sequence number
is to be changed

seqno? — the value to be assigned to the current sequence number for the port associated
with right name?

MachPortSetSeqnoClientInputs

task name? : NAME

right name? : NAME

seqno? : �

A mach port set seqno request is invoked by sending a message to the port indicated by
task name? that has the operation field set toMach port set seqno id and has a body consisting
of right name? and seqno?.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

168
CDRL A005

Port Requests

InvokeMachPortSetSeqno

InvokeMachMsg

MachPortSetSeqnoClientInputs

name? = task name?
operation? = Mach port set seqno id

msg body = Mach port set seqno inputs to body(right name?; seqno?)

8.11.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a mach port set seqno request:

return! — the status of the request

MachPortSetSeqnoClientOutputs

return! : KERNEL RETURN

MachPortSetSeqnoReceiveReply

InvokeMachMsgRcv

MachPortSetSeqnoClientOutputs

return! = Body to mach port set seqno outputs(msg body)

8.11.2 Kernel Interface

8.11.2.1 Input Parameters The following input parameters are provided to the kernel for a
mach port set seqno request:

task? — the task known to the client by task name?

right name? — provided by the client

seqno? — provided by the client

MachPortSetSeqnoInputs

task? : TASK
right name? : NAME

seqno? : �

8.11.2.2 Output Parameters The following output parameters are returned by the kernel for
a mach port set seqno request:

return! — the status of the request

MachPortSetSeqnoOutputs

return! : KERNEL RETURN

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 169

8.11.3 Request Criteria

The following criteria are defined for the mach port set seqno request:

C1 — right name? represents a right in task?’s name space.

C1MachPortSetSeqnoNameIsARight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 local namep

NotC1MachPortSetSeqnoNameIsARight

b= PortNameSpace ^ : C1MachPortSetSeqnoNameIsARight

C2 — right name? represents a receive right in task?’s name space.

C2MachPortSetSeqnoNameIsAReceiveRight

PortNameSpace

task? : TASK
right name? : NAME

(task?; right name?) 2 r right

NotC2MachPortSetSeqnoNameIsAReceiveRight

b= PortNameSpace ^ : C2MachPortSetSeqnoNameIsAReceiveRight

8.11.4 Return Values

Table 16 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:
The order of the checks agrees with the code in CM as of 20Sep94.

return! C1 C2
Kern invalid name F -
Kern invalid right T F
Kern success T T

Table 16: Return Values for mach port set seqno

RVMachPortSetSeqnoInvalidName

MachPortSetSeqnoOutputs

NotC1MachPortSetSeqnoNameIsARight

return! = Kern invalid name

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

170
CDRL A005

Port Requests

RVMachPortSetSeqnoInvalidRight

MachPortSetSeqnoOutputs

C1MachPortSetSeqnoNameIsARight

NotC2MachPortSetSeqnoNameIsAReceiveRight

return! = Kern invalid right

RVMachPortSetSeqnoSuccess

MachPortSetSeqnoOutputs

C1MachPortSetSeqnoNameIsARight

C2MachPortSetSeqnoNameIsAReceiveRight

return! = Kern success

8.11.5 State Changes

If all of the criteria are satisfied, then the current sequence number for the port associated with
right name? in task?’s name space is given the value seqno?.

MachPortSetSeqnoState

� PortSummary

MachPortSetSeqnoInputs

C1MachPortSetSeqnoNameIsARight

C2MachPortSetSeqnoNameIsAReceiveRight

sequence no 0 = sequence no � fnamed port(task?; right name?) 7! seqno?g

Review Note:
Invariants should be stated here as well.

8.11.6 Complete Request

The initial processing by the kernel upon receipt of the mach port set seqno request is
described in Section 8.1.

ProcessingMachPortSetSeqno

ProcessPortRequestGood

operation? = Mach port set seqno id

An unsuccessful mach port set seqno request results in no changes to the Mach state and
returns only the appropriate error status.

MachPortSetSeqnoBad

b= (RVMachPortSetSeqnoInvalidName

_ RVMachPortSetSeqnoInvalidRight)
>> RequestNoOp

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 171

A successful mach port set seqno request alters the Mach state as described in Sec-
tion 8.11.5 and returns a reply message.

MachPortSetSeqnoGood

b= (MachPortSetSeqnoState

^ RVMachPortSetSeqnoSuccess)
>> RequestReturnOnlyStatus

The complete specification of kernel processing of a mach port set seqno request consists
of the initial processing followed by an unsuccessful or successful execution.

MachPortSetSeqno

b= ProcessingMachPortSetSeqno

� (MachPortSetSeqnoBad

_MachPortSetSeqnoGood)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

172
CDRL A005

Thread Requests

Section 9
Thread Requests

9.1 Introduction to Thread Requests

This chapter describes the thread kernel requests in DTOS.

9.1.1 Constants and Types

We first define the identifier that is used to represent each thread request. The kernel accepts
two thread requests through task kernel ports (Thread task port ops) and most of the others
through thread kernel ports (Thread thread port ops).

Thread abort id ;Thread assign id ;Thread assign default id ;
Thread depress abort id ;Thread disable pc sampling id ;
Thread enable pc sampling id ;Thread get assignment id ;
Thread get sampled pcs id ;Thread get special port id ;
Thread get state id ;Thread info id ;Thread max priority id ;
Thread policy id ;Thread priority id ;Thread resume id ;
Thread resume secure id ;Thread set special port id ;
Thread set state id ;Thread set state secure id ;
Thread suspend id ;Thread terminate id : OPERATION
Thread thread port ops : �OPERATION

hThread abort id ;Thread assign id ;Thread assign default id ;
Thread depress abort id ;Thread disable pc sampling id ;
Thread enable pc sampling id ;Thread get assignment id ;
Thread get sampled pcs id ;Thread get special port id ;
Thread get state id ;Thread info id ;Thread max priority id ;
Thread policy id ;Thread priority id ;Thread resume id ;
Thread resume secure id ;Thread set special port id ;
Thread set state id ;Thread set state secure id ;
Thread suspend id ;Thread terminate idi

Values partition Thread thread port ops

Thread create id ;Thread create secure id : OPERATION
Thread task port ops : �OPERATION

hThread create id ;Thread create secure idi
Values partition Thread task port ops

Together these two disjoint sets of operations form the setThread operations denoting all thread
operations. Each thread request must be received through a port of the appropriate port class.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 173

Thread operations : �OPERATION

hThread thread port ops ;Thread task port opsi partition Thread operations

Thread thread port ops � Allowed mach services(Pc thread)
Thread task port ops � Allowed mach services(Pc task)

9.1.2 Required Permissions

For each operation there is a primary permission that is required to perform the operation.
We define here the portion of the Required permission function that pertains to thread re-
quests. The Abort thread implementation service permission implies the Set thread priority

and Abort thread depress permissions are automatically granted since the thread abort re-
quest can set priorities and abort priority depression. Thethread priority request requires
Set thread priority permission, but Set max thread priority permission is also needed if the
set max parameter has value True. We also assume that Initiate secure permission is granted
whenever Resume thread or Set thread state permission is granted.

Review Note:
Here are the full sets of permissions that are currently needed for each request (except the special port
ones).

f(Thread abort id ;Abort thread ;Set thread priority;Abort thread depress);
(Thread assign id ;Assign thread to pset ;Set max thread priority;

Set thread priority;Set thread policy ;Assign thread);
(Thread assign default id;Assign thread to pset;Set max thread priority ;

Set thread priority;Set thread policy ;Assign thread);
(Thread create id;Add thread);
(Thread depress abort id;Abort thread depress;Set thread priority);
(Thread disable pc sampling id ;Sample thread);
(Thread enable pc sampling id;Sample thread);
(Thread get assignment id ;Get thread assignment);
(Thread get sampled pcs id;Sample thread);
(Thread get state id ;Get thread state);
(Thread info id;Get thread info);
(Thread max priority id; Set max thread priority ;Set thread priority);
(Thread policy id;Set thread policy);
(Thread priority id ;Set thread priority ;Set max thread priority);
(Thread resume id;Resume thread ; Initiate secure);
(Thread set state id;Set thread state; Initiate secure);
(Thread suspend id ;Suspend thread);
(Thread terminate id;Terminate thread ;Sample thread)g

This will be simplified when the FSPM is modified so services do not overlap so often.

Review Note:
Does thread assign default also require Assign thread permission? I suspect so.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

174
CDRL A005

Thread Requests

f(Thread abort id ;Abort thread);
(Thread assign id ;Assign thread to pset);
(Thread assign default id ;Assign thread to pset);
(Thread create id ;Add thread);
(Thread create secure id ;Add thread secure);
(Thread depress abort id ;Abort thread depress);
(Thread disable pc sampling id ; Sample thread);
(Thread enable pc sampling id ; Sample thread);
(Thread get assignment id ;Get thread assignment);
(Thread get sampled pcs id ; Sample thread);
(Thread get state id ;Get thread state);
(Thread info id ;Get thread info);
(Thread max priority id ; Set max thread priority);
(Thread policy id ; Set thread policy);
(Thread priority id ; Set thread priority);
(Thread resume id ;Resume thread);
(Thread resume secure id ; Initiate secure);
(Thread set state id ; Set thread state);
(Thread set state secure id ; Initiate secure);
(Thread suspend id ; Suspend thread);
(Thread terminate id ;Terminate thread)g

� Required permission

The permission required for a Thread get special port id or Thread set special port id opera-
tion depends upon the value of thewhich port? parameter. Therefore the permission cannot be
checked in the common processing, and the two operations are in the setService check deferred.

fThread get special port id ;Thread set special port idg � Service check deferred

9.1.3 Invariant Information

The thread requests operate on only certain components of the state. We use the following
schema to provide a general framework for describing thread requests.

Review Note:
This list has problems in that some schemas are indirectly pulled in where they should not be. For
example, � SpecialTaskPorts includes � PortExist which we do not want. Might be possible to get a
better handle on this problem by doing fuzz -t and comparing� DtosExec to a schema with all of the
ThreadInvariants except � DtosExec .

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 175

ThreadInvariants

� DtosExec

� TaskExist

�MessageExist

�MemoryExist

� PageExist

� ProcessorExist

� ProcessorSetExist

� DeviceExist

� TaskSuspendCount

� Kernel

� RegisteredRights

�MemoriesAndPorts

� HostsAndPorts

� ProcessorsAndPorts

� SpecialTaskPorts

� DevicesAndPorts

� Noti�cations

�MessageQueues

�MemorySystem

�Messages

� HostsAndProcessors

� ProcessorAndProcessorSet

� TaskAndProcessorSet

� PortClasses

� TaskPriority

� EmulationVector

�MasterDevicePort

� HostTime

9.1.4 General Information

9.1.4.1 Special Ports The
requests thread get special port and thread set special port each have an input pa-
rameter specifying the type of special port to be processed. The following type is used for these
input parameters:

[THREAD SPECIAL PORTS]

There are two recognized values of this type. They are:

Thread exception port — indicates the exception port

Thread kernel port — indicates the sself port

We require these two values to be disjoint, but place no restrictions on other values of type
THREAD SPECIAL PORTS .

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

176
CDRL A005

Thread Requests

Thread exception port : THREAD SPECIAL PORTS

Thread kernel port : THREAD SPECIAL PORTS

Recognized thread special ports : �THREAD SPECIAL PORTS

hThread exception port ;Thread kernel porti
Values partition Recognized thread special ports

9.1.4.2 Thread Information Types The request thread info returns an array of information
describing a thread. The array used to hold the information is of typeTHREAD INFO .

[THREAD INFO]

There are two recognized types of thread information.

Thread basic info — information on execution statistics, execution status and priority

Thread sched info — information on scheduling priorities and policies

These two types of information are in the setTHREAD INFO TYPE .

[THREAD INFO TYPE]

We require the two values Thread basic info and Thread sched info of this type to be disjoint,
but place no restrictions on other values ofTHREAD INFO TYPE .

Thread basic info : THREAD INFO TYPE

Thread sched info : THREAD INFO TYPE

Recognized thread info types : �THREAD INFO TYPE

hThread basic info;Thread sched infoi
Values partition Recognized thread info types

9.1.4.3 Execution Status Changes Several requests (e.g., thread suspend and swtch) can
cause the execution of the current thread to be blocked. We describe here the changes that take
place when a thread is blocked.

The blocking of a thread results in the thread being swapped out, and another thread moving
onto the processor, unless there is nothing else for the processor to swap in. The run states will
change for the thread moved off the processor and for the thread moved onto the processor. The
thread moved onto the processor is determined by the scheduling algorithm. The algorithm
may select the blocking thread in which case the thread remains on the processor. We model
this selection of a new thread by the functionSelect next thread .

Review Note:
This function should be related to the RunQueue which is currently in the specification of the swtch
request but which should probably be moved to the state chapter. Also, what is the relationship between
Select next thread and thread sched priority? Would it be useful to model this relationship?

Select next thread : PROCESSOR SET �THREAD

If the scheduling algorithm selects the blocking thread then that thread is marked as not
swapped out and not uninterruptibly waiting, and the blocking operation is completed. Other-
wise, the new thread selected by the scheduling algorithm receives these markings and, unless
the blocking thread is being terminated, the following changes are made to the blocking thread:

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 177

1. It is added to swapped threads.

2. It is marked as not Running if it is not in idle threads, and it was either marked as

(a) Stopped , but not Uninterruptible, or

(b) Waiting .

The schema ThreadBlock describes these changes. The component blocking thread is the thread
that is being blocked, and init run state is the run state in effect when the thread blocking
occurs. This may differ from the run state function depending upon the context in which the
blocking occurs. For example, when blocking occurs as part of athread suspend request the
Stopped state will have been added to run state(blocking thread) to obtain init run state. In
the case where the blocking thread is being terminatedblocking thread is not in the domain of
init run state.

Review Note:
The need for init run state originates in our level of granularity in the specification. There are changes
that various requests make to the run state of a thread in preparation for blocking the thread. Since
ThreadBlock models only a portion of this processing, we need a way to specify what changes have been
made to the run state in the request processing that precedes the blocking.

ThreadBlock

� ThreadExecStatus

ProcessorAndProcessorSet

blocking thread : THREAD
cpu?? : PROCESSOR
init run state : THREAD ��RUN STATES

cpu?? 2 domproc assigned procset

let new thread == Select next thread(proc assigned procset(cpu??))
� new thread =2 swapped threads

0

^ run state0(new thread) = init run state(new thread) n fUninterruptibleg
^ ((new thread 6= blocking thread ^ blocking thread =2 dom init run state)
) (blocking thread 2 swapped threads 0

^ run state0(blocking thread)
= if blocking thread =2 idle threads

^ (init run state(blocking thread)
\ fStopped ;Uninterruptibleg = fStoppedg
_Waiting 2 init run state(blocking thread))

then init run state(blocking thread) n fRunningg
else init run state(blocking thread)))

^ (8 thread : THREAD j thread =2 fnew thread ; blocking threadg
� run state0(thread) = init run state(thread)
^ thread 2 swapped threads

0 , thread 2 swapped threads

^ thread 2 idle threads 0 , thread 2 idle threads)

A request may also wait for a given thread to stop running. The componentstopping thread is
the thread being stopped, and init run state is defined as for ThreadBlock .

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

178
CDRL A005

Thread Requests

ThreadDoWait

� ThreadExecStatus

stopping thread : THREAD
init run state : THREAD ��RUN STATES

run state0 = init run state

� fstopping thread 7! init run state(stopping thread) n fRunninggg
swapped threads

0 = swapped threads

idle threads
0 = idle threads

Some requests (e.g., thread set state and thread get state) must wait for a thread to stop
before they can do their work. When they are done modifying or observing the characteristics of
the stopped thread they allow the thread to start again. For example,thread get state stops
the thread, examines its machine state (e.g., machine registers) and then allows the thread to
run again. The cumulative effect of this sequence of operations might include the side-effect
of altering the run state. The run state will contain Running when it previously contained
neither Waiting nor Stopped . It will contain Halted when it previously contained both Halted

and Stopped . The Stopped , Waiting and Uninterruptible characteristics are unchanged.

Review Note:
We believe that Halted) Stopped at the termination of a request. If this is true then the thread will
be halted if and only if it was halted before the request. We also believe that at least one of the states
Running , Stopped and Waiting must be contained in the run state. This means thatRunning could be
removed from the run state by this operation, but never added.

ThreadDoWaitThenRelease

� ThreadExecStatus

stopping thread : THREAD

8 thread : THREAD j thread 2 domrun state ^ thread 6= stopping thread

� run state0(thread) = run state(thread)
run state0(stopping thread) \ fStopped ;Waiting ;Uninterruptibleg

= run state(stopping thread) \ fStopped ;Waiting ;Uninterruptibleg
Halted 2 run state0(stopping thread)

, fHalted; Stoppedg � run state(stopping thread)
Running 2 run state 0(stopping thread)

, run state(stopping thread) \ fWaiting; Stoppedg = �

9.1.4.4 Parameter Packaging Functions When invoking a kernel request, the following func-
tions package the input parameters into a message body:

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 179

Name and number to text : NAME � �"MESSAGE BODY

Name to text : NAME "MESSAGE BODY

Number and boolean to text : �� BOOLEAN "MESSAGE BODY

Policy and data to text : SCHED POLICY � SCHED POLICY DATA

"MESSAGE BODY

Sample type set to text : � SAMPLE TYPES "MESSAGE BODY

Sequence number to text : "MESSAGE BODY

Thread info type and count to text : THREAD INFO TYPE �
"MESSAGE BODY

Thread set state params to text :
THREAD STATE INFO TYPES �THREAD STATE INFO �

"MESSAGE BODY

Thread special port and name to text : THREAD SPECIAL PORTS � NAME

"MESSAGE BODY

Thread special ports to text : THREAD SPECIAL PORTS "MESSAGE BODY

Thread state info type and number to text : THREAD STATE INFO TYPES �
"MESSAGE BODY

When creating a reply message from a request, the following functions package the output
parameters into a kernel reply:

Return capability : Capability " KERNEL REPLY

Return sample cnt : " KERNEL REPLY

Return samples : (� (seq SAMPLE)� �)" KERNEL REPLY

Return thread info : THREAD INFO � "KERNEL REPLY

Return thread state info : THREAD STATE INFO � "KERNEL REPLY

Return ticks : 1 " KERNEL REPLY

When receiving a reply message from the kernel the following functions unpack the message
body to obtain the output parameters (including the return status):

Text to count and status :MESSAGE BODY " (� KERNEL RETURN)
Text to info and count and status :MESSAGE BODY

" (THREAD INFO � �KERNEL RETURN)
Text to name and status :MESSAGE BODY " (NAME � KERNEL RETURN)
Text to seqno and PCs and count and status :MESSAGE BODY

" (� seq SAMPLE � � �KERNEL RETURN)
Text to state and count and status :MESSAGE BODY

" (THREAD STATE INFO � �KERNEL RETURN)
Text to status :MESSAGE BODY " KERNEL RETURN

Text to ticks and status :MESSAGE BODY " (1 �KERNEL RETURN)

9.1.4.5 Destroying a Port

Review Note:
The following may fit more naturally in the port requests chapter.

The following schema describes the destruction of a port. This is required to describe the
thread terminate request. The port destroyed is removed from the set of existing ports, and

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

180
CDRL A005

Thread Requests

all send, receive, and send-once rights to this port are removed from all port name spaces.
New dead names are created for all previous send or send-once rights to this port. Note that
the creation of notifications when these names turn into dead names should be added to this
schema.

Editorial Note:
Destruction of a port representing a message queue for IPC can cause a chain reaction not represented
in this schema. Whether the same chain reaction is possible for ports representing kernel objects (as the
schema is used in this chapter) is unclear.

PortDestroy

� Ipc

port : PORT

port exists 0 = port exists n fportg
port right rel

0 = port right rel

n ftask : TASK ; name : NAME ; right : RIGHT ; i : 1
� (task ; port; name ; right; i)g

make send count 0 = fportg�make send count

dead right rel 0 = dead right rel

[ftask : TASK ; name : NAME

j named port(task ; name) = port

� (task ; name ; 1)g

9.1.4.6 Miscellaneous The function Thread port to s right takes a port and returns a send
right to the port.

Thread port to s right : PORT �Capability

8 port : PORT
� (Thread port to s right(port)):right = Send

^ (Thread port to s right(port)):port = port

The function Thread state count returns the size of a given type of thread state information.

Thread state count : THREAD STATE INFO TYPES "

9.1.5 Kernel Processing

The kernel performs processing for a thread request only when it detects a break indicating that
a request has been received through a port of the appropriate class,Pc task or Pc thread . If the
specified service port no longer exists, then aKern invalid argument status code is returned.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 181

ProcessThreadRequestBadAux

ProcessRequest

�Mach

reply to port ! : �PORT
reply! : KERNEL REPLY

return! : KERNEL RETURN

((pc? = Pc thread ^ operation? 2 Thread thread port ops

^ service port? =2 domself thread)
_ (pc? = Pc task ^ operation? 2 Thread task port ops

^ service port? =2 domself task))

reply to port ! = reply to port?
return! = Kern invalid argument

ProcessThreadRequestBad b= ProcessThreadRequestBadAux >> RequestNoOp

Otherwise, the kernel processes the request. In this case, we use the following schema to
represent the parameters to thread requests which are processed via thread ports:

Editorial Note:
avor? is omitted because it is used with two different types in different requests.

ThreadParameters

data? : SCHED POLICY DATA

new state? : THREAD STATE INFO

new state cnt? :
old state cnt? :
policy? : SCHED POLICY

priority? : �
procset? : PROCESSOR SET

seqno? :
set max? : BOOLEAN
special port? : PORT
task? : TASK
thread? : THREAD
target thread? : THREAD
thread infoCnt? :
which port? : THREAD SPECIAL PORTS

The interpretations of the components of these schemas are:

data? — policy specific data used with the scheduling policy to determine the scheduling
priority of a thread (thread policy)

avor? — specific type of information (thread info) or state information (thread -
get state, thread set state and thread set state secure)

new state? — state information to be assigned to a thread (thread set state and
thread set state secure)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

182
CDRL A005

Thread Requests

new state cnt? — amount of storage provided by a client to hold state information to be
assigned to a thread (thread set state and thread set state secure)

old state cnt? — amount of storage provided by a client to hold state information
(thread get state)

policy? — desired scheduling policy (thread policy)

priority? — desired priority for a thread (thread priority and thread max priority)

procset? — desired processor set for a thread (thread assign); the control port for the
processor set to which a thread is currently assigned (thread max priority)

seqno? — the sequence number of the first sample that should be returned (thread -
get sampled pcs)

set max ? — a flag indicating whether the maximum priority should be reset when the
priority is changed (thread priority)

special port? — a port specified by the client to become the special port for the target
thread (for thread set special port)

task? — the target task for the request (thread create and thread create secure)

target thread? — the target thread for the request (an alternative name forthread? that is
used in some requests)

thread? — the target thread for the request

thread infoCnt? — amount of storage provided by a client to hold information on a thread
(thread info)

which port? — the type of special port specified by the client (thread get special port
and thread set special port)

The following schema maps a message sent to a thread port to a value of typeThreadParameters:

ThreadMessageToThreadParameters

Request?
SpecialThreadPorts

ThreadParameters

pc? = Pc thread

operation? 2 Thread thread port ops

service port? 2 domself thread

thread? = self thread(service port?)
target thread? = thread?

Review Note:
ThreadInvariants really belongs in the state changes schemas rather than here in the message processing.
What I want here is �almosteverything. The same goes for the use a couple schemas further down.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 183

ProcessThreadViaThreadPortRequestGood

ProcessRequest

ThreadInvariants

ThreadMessageToThreadParameters

Similarly, we use the following function to map a message sent to a task port to a value of type
ThreadParameters:

TaskMessageToThreadParameters

Request?
SpecialTaskPorts

ThreadParameters

pc? = Pc task

operation? 2 Thread task port ops

service port? 2 domself task

task? = self task (service port?)

ProcessThreadViaTaskPortRequestGood

ProcessRequest

ThreadInvariants

TaskMessageToThreadParameters

We now describe the individual thread requests.

9.2 thread abort

The request thread abort helps to cleanly stop a thread by interrupting page faults and any
mach msg calls in progress by the thread. It causes an interrupt return code to be returned
from any system trap in progress on behalf of the thread (even though the execution of the
trap may finish). It also aborts any priority depressions. Note that thread abort does not
suspend a thread. If the thread did not already have theStopped state, then at the conclusion
of a thread abort request it is neither Stopped nor Halted .

9.2.1 Client Interface

kern return t thread abort
(mach port t target thread name);

9.2.1.1 Input Parameters The following input parameters are provided by the client of a
thread abort request:

target thread name? — the client’s name for the thread to which the abort will be applied

ThreadAbortClientInputs

target thread name? : NAME

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

184
CDRL A005

Thread Requests

A thread abort request is invoked by sending a message to the port indicated by
target thread name? that has the operation field set toThread abort id and has no body.

InvokeThreadAbort

InvokeMachMsg

ThreadAbortClientInputs

name? = target thread name?
operation? = Thread abort id

9.2.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread abort request:

return! — the status of the request

ThreadAbortClientOutputs

return! : KERNEL RETURN

ThreadAbortReceiveReply

InvokeMachMsgRcv

ThreadAbortClientOutputs

return! = Text to status(msg body)

9.2.2 Kernel Interface

9.2.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread abort request:

target thread? — the thread to which the abort will be applied

ThreadAbortInputs

target thread? : THREAD

9.2.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread abort request:

return! — the status of the request

ThreadAbortOutputs

return! : KERNEL RETURN

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 185

9.2.3 Request Criteria

The following criteria are defined for the thread abort request.

C1 — The parameter target thread? is the client thread (i.e., the thread currently active
on the CPU).

C1ThreadAbortClientThread
ThreadsAndProcessors

cpu?? : PROCESSOR
target thread? : THREAD

cpu?? 2 domactive thread

target thread? = active thread(cpu??)

NotC1ThreadAbortClientThread
b= ThreadsAndProcessors ^ : C1ThreadAbortClientThread

9.2.4 Return Values

Table 17 describes the values returned at the completion of the request and the conditions
under which each value is returned.

return! C1
Kern invalid argument T
Kern success F

Table 17: Return Values for thread abort

Review Note:
thread abort can return Kern aborted when

there is a cycle of halt operations, or

the client thread is interrupted while waiting for the target thread to halt.

IPC will convert Kern aborted to an IPC interrupted error code. This behavior is not modeled.

RVThreadAbortInvalidArgument

C1ThreadAbortClientThread
ThreadAbortOutputs

return! = Kern invalid argument

RVThreadAbortGood

NotC1ThreadAbortClientThread
ThreadAbortOutputs

return! = Kern success

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

186
CDRL A005

Thread Requests

9.2.5 State Changes

A successful thread abort request will interrupt page faults and message primitive calls in
use by the thread. The thread will resume execution at the point of return from the interrupted
system call. This will occur upon return from this request unless the thread is in aStopped
state, in which case it will occur when the thread is resumed viathread resume.

Review Note:
The granularity of the FTLS is not fine enough to model the interruption of page faults and message
primitive calls in use by the thread.

As stated above, thread abort does not suspend a thread. If the thread does not already
have the Stopped state, then at the conclusion of a thread abort request it is neither Stopped
nor Halted . If the thread has been previously Stopped , the thread will remain Stopped upon
completion of the thread abort request until it is resumed. The thread will also beHalted
at this point since thread abort has insured that it is stopped at a clean point. A thread
that is not already Stopped and is not Waiting will have Running added to its run state by
thread abort (assuming it is not already there).

ThreadAbortExecStatus

� ThreadExecStatus

target thread? : THREAD

8 thread : THREAD j thread 2 domrun state ^ thread 6= target thread?
� run state0(thread) = run state(thread)

run state0(target thread?) \ fStopped ;Waiting ;Uninterruptibleg
= run state(target thread?) \ fStopped ;Waiting;Uninterruptibleg

Halted 2 run state0(target thread?), Stopped 2 run state(target thread?)
Running 2 run state 0(target thread?)

, run state(target thread?) \ fWaiting ; Stoppedg = �
swapped threads

0 = swapped threads

idle threads
0 = idle threads

thread suspend count 0 = thread suspend count

threads wired 0 = threads wired

The sending of the return from this request means that the thread has received an interrupt
return code from the program it was executing. It follows from the specification for the pro-
cessing of invokable requests and mach msg that the receipt of the return of Kern success

from this request will therefore occur only if the thread is not inStopped state. If the target
thread is in a stopped state, it will receive the return value when (and if) it is resumed (via
thread resume).

Any priority depression is also aborted. This returns the priority of the thread to its value
before the depression. Note that the scheduling priority may also change, but since we do not
have enough detail in our model to compute its value we will leave it unspecified.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 187

ThreadAbortPriority

� ThreadPri

target thread? : THREAD

target thread? 2 dompriority before depression

thread priority
0 = thread priority

� ftarget thread? 7! priority before depression(target thread?)g
thread max priority

0 = thread max priority

depressed threads 0 = depressed threads n ftarget thread?g
priority before depression 0 = priority before depression

When the target thread resumes execution it will be at the return point from any interrupt
of trap it might have been executing. The componentat call return represents the address at
which execution will resume if the thread is resumed.

Editorial Note:
Our model is not detailed enough to formally describe the value of at call return .

ThreadAbortState

ThreadInvariants

ThreadAbortExecStatus

ThreadAbortPriority

� ThreadExist

� PortExist

� Threads

� TasksAndThreads

� ThreadSchedPolicy

� ThreadInstruction

� Events

� PortNameSpace

� SpecialPurposePorts

target thread? : THREAD
at call return : VIRTUAL ADDRESS

instruction pointer 0 = instruction pointer � ftarget thread? 7! at call returng

Review Note:
How can we represent here the fact that the execution of messages and traps might not be completed?

There might be some delay in halting the thread. Is this important?

9.2.6 Complete Request

The following schema defines the general form of a thread abort request.

ProcessingThreadAbort

ProcessThreadViaThreadPortRequestGood

operation? = Thread abort id

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

188
CDRL A005

Thread Requests

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadAbortGood b= (RVThreadAbortGood ^ ThreadAbortState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadAbortBad b= RVThreadAbortInvalidArgument >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadAbort b= (ThreadAbortGood _ ThreadAbortBad) n (at call return)

The full specification for kernel processing of a validated thread abort request consists of
processing the request followed by its execution.

ThreadAbort b= ProcessingThreadAbort � ExecuteThreadAbort

9.3 thread create and thread create secure

The requests thread create and thread create secure create a new thread within an ex-
isting task. The name of a send right to the kernel port of the new thread is returned. The
thread create secure request (which is used in the secure initiation of threads within a
task) expects the parent task to have task creation stateTcs task empty (see Section 5.7). It
modifies the state to Tcs thread created .

9.3.1 Client Interface

kern return t thread create
(mach port t parent task name,
mach port t* child thread name);

kern return t thread create secure
(mach port t parent task name,
mach port t* child thread name);

9.3.1.1 Input Parameters The following input parameters are provided by the client of a
thread create or thread create secure request:

parent task name? — the client’s name for the task that will be the parent for the newly
created thread

ThreadCreateClientInputs

parent task name? : NAME

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 189

A thread create request is invoked by sending a message to the port indicated by
parent task name? that has the operation field set toThread create id and has no body.

InvokeThreadCreate

InvokeMachMsg

ThreadCreateClientInputs

name? = parent task name?
operation? = Thread create id

A thread create secure request is invoked by sending a message to the port indicated by
parent task name? that has the operation field set toThread create secure id and has no body.

InvokeThreadCreateSecure

InvokeMachMsg

ThreadCreateClientInputs

name? = parent task name?
operation? = Thread create secure id

9.3.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread create or thread create secure request:

child thread name! — the name of a send right to the kernel port of the new thread

return! — the status of the request

ThreadCreateClientOutputs

child thread name! : NAME

return! : KERNEL RETURN

ThreadCreateReceiveReply

InvokeMachMsgRcv

ThreadCreateClientOutputs

(child thread name !; return!) = Text to name and status(msg body)

9.3.2 Kernel Interface

9.3.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread create or thread create secure request:

parent task? — the task that will be the parent for the newly created thread

ThreadCreateInputs

parent task? : TASK

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

190
CDRL A005

Thread Requests

9.3.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread create or thread create secure request:

child thread ! — the new thread

return! — the status of the request

ThreadCreateOutputs

child thread ! : THREAD
return! : KERNEL RETURN

Upon completion of the processing of a thread create or thread create secure request a
reply message is built from the output parameters. The reply message will contain a send right
for the created thread’s kernel port.

ThreadCreateReply

RequestReturn

child thread? : THREAD

reply? = Return capability(Thread port to s right(thread sself (child thread?)))

9.3.3 Request Criteria

The following criteria are defined for thethread create and thread create secure requests.

C1 — The kernel has the necessary resources available to create the thread. We do
not actually model the consumption of resources by the kernel. So, we will use the set
Resources available to create thread to indicate the set of states where there are sufficient
resources to create a thread.

Resources available to create thread : �DtosExec

C1ThreadCreateResourcesAvailable
DtosExec

�DtosExec 2 Resources available to create thread

NotC1ThreadCreateResourcesAvailable b=
DtosExec ^ : C1ThreadCreateResourcesAvailable

C2 — The task creation state of the parent task must beTcs task empty . This criterion
applies only to the thread create secure request.

C2ThreadCreateSecureTaskEmpty
TaskCreationState

parent task? : TASK

parent task? 2 dom task creation state

task creation state(parent task?) = Tcs task empty

NotC2ThreadCreateSecureTaskEmpty
b= TaskCreationState ^ : C2ThreadCreateSecureTaskEmpty

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 191

9.3.4 Return Values

Table 18 describes the values returned at the completion of thethread create request and the
conditions under which each value is returned. The value thread is the newly created thread
(see the State Changes section). The design does not specify the value ofchild thread ! when an
error occurs. It depends on the implementation, and we leave it unspecified.

child thread ! return! C1
thread Kern success T

— Kern resource shortage F

Table 18: Return Values for thread create

RVThreadCreateGood

C1ThreadCreateResourcesAvailable
ThreadCreateOutputs

thread : THREAD

child thread ! = thread

return! = Kern success

RVThreadCreateResourceShortage

NotC1ThreadCreateResourcesAvailable
ThreadCreateOutputs

return! = Kern resource shortage

Table 19 describes the values returned at the completion of thethread create secure request
and the conditions under which each value is returned. In the case where both C1 and C2 are
false we assume that Kern insu�cient permission is returned.

Review Note:
In the prototype the conditions are checked in the order C2, C1.

child thread ! return! C1 C2
thread Kern success T T

— Kern resource shortage F T
— Kern insu�cient permission - F

Table 19: Return Values for thread create secure

RVThreadCreateSecureGood

C1ThreadCreateResourcesAvailable
C2ThreadCreateSecureTaskEmpty
ThreadCreateOutputs

thread : THREAD

child thread ! = thread

return! = Kern success

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

192
CDRL A005

Thread Requests

RVThreadCreateSecureResourceShortage

NotC1ThreadCreateResourcesAvailable
C2ThreadCreateSecureTaskEmpty
ThreadCreateOutputs

return! = Kern resource shortage

RVThreadCreateSecureInsu�cientPermission

NotC2ThreadCreateSecureTaskEmpty
ThreadCreateOutputs

return! = Kern insu�cient permission

9.3.5 State Changes

A successful thread create or thread create secure request creates a new thread. The
OSF documentation for this request states that, in addition, a send right to the thread’s kernel
port is given to the containing task. This is not shown explicitly here. We believe that the
existence of a new thread self port is an “implicit” send right, not in the port name space (and
not usable) for the containing task until the thread executes amach thread self request.

The creation of a new thread affects much of the state information associated with threads.
We will consider each type of state information individually. We first define the things that
do not change in a successful thread create or thread create secure request. Note that
the port name space of the receiving task on the reply port for this request will change after
the invokable request created by the schema Return is processed, and not immediately upon
completion of this request.

ThreadCreateInvariants

ThreadInvariants

� PortNameSpace

A new thread is created and added to the list of threads associated with the parent task.

ThreadCreateTasksAndThreads

� ThreadExist

� TasksAndThreads

parent task? : TASK
thread : THREAD

thread =2 thread exists

thread exists
0 = thread exists [fthreadg

task thread rel
0 = task thread rel [f(parent task?; thread)g

A newly created thread takes its maximum priority to be the lower of the following two priori-
ties:

the maximum priority of the processor set to which it is assigned, or

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 193

the Base user priority constant.

It takes its priority to be the lower of its parent task’s priority and its own maximum priority.
No other thread’s priorities change due solely to the creation of this thread.

ThreadCreatePriority

� ThreadPri

TaskPriority

� ThreadAndProcessorSet

parent task? : TASK
thread : THREAD

thread 2 dom thread assigned to
0

thread assigned to
0(thread) 2 domps max priority

parent task? 2 dom task priority

thread max priority
0 = thread max priority

[fthread 7! Lowest priority(fps max priority(thread assigned to
0(thread));

Base user priorityg)g
thread priority

0 = thread priority

[fthread 7! Lowest priority(ftask priority(parent task?);
thread max priority

0(thread)g)g
dom thread sched priority

0 = dom thread sched priority [fthreadg
thread sched priority � thread sched priority 0

depressed threads 0 = depressed threads

priority before depression 0

= priority before depression [fthread 7! thread priority 0(thread)g

The new thread’s scheduling policy isTimeshare. Since the Timeshare policy does not require
any scheduling policy data, there is no change tothread sched policy data.

ThreadCreateSchedPolicy

� ThreadSchedPolicy

thread : THREAD

thread sched policy
0 = thread sched policy [fthread 7! Timeshareg

thread sched policy data 0 = thread sched policy data

The thread is created in a Stopped run state, and it is swapped out. Its suspend count is one
larger than the suspend count of its parent task.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

194
CDRL A005

Thread Requests

ThreadCreateExecStatus

� ThreadExecStatus

TaskSuspendCount

thread : THREAD
parent task? : TASK

parent task? 2 dom task suspend count

run state0 = run state [fthread 7! fStoppedgg
swapped threads 0 = swapped threads [fthreadg
thread suspend count 0 = thread suspend count

[fthread 7! task suspend count(parent task?) + 1g
threads wired 0 = threads wired

All of the thread’s timing statistics are set to zero.

ThreadCreateStatistics

� ThreadStatistics

thread : THREAD

user time 0 = user time [fthread 7! 0g
system time 0 = system time [fthread 7! 0g
cpu time 0 = cpu time [fthread 7! 0g
sleep time0 = sleep time [fthread 7! 0g

A new self port is created for the thread. This port is assigned to be the kernel (sself) port as
well. There is no exception port assigned to the thread.

ThreadCreateSpecialPorts

� PortExist

� SpecialThreadPorts

thread : THREAD
port : PORT

port =2 port exists

port exists 0 = port exists [fportg
thread self 0 = thread self [fthread 7! portg
thread sself

0 = thread sself [fthread 7! portg
thread eport

0 = thread eport

The thread will be assigned to the processor set to which its parent task is assigned.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 195

ThreadCreateThreadAndProcessorSet

� ThreadAndProcessorSet

TaskAndProcessorSet

parent task? : TASK
thread : THREAD

parent task? 2 dom task assigned to

thread assignment rel
0 = thread assignment rel

[f(thread ; task assigned to(parent task?))g
enabled sp

0 = enabled sp

ps max priority 0 = ps max priority

ThreadCreateState

� Threads

ThreadCreateInvariants

ThreadCreateTasksAndThreads

ThreadCreatePriority

ThreadCreateSchedPolicy

ThreadCreateExecStatus

ThreadCreateStatistics

ThreadCreateSpecialPorts

ThreadCreateThreadAndProcessorSet

� SpecialPurposePorts

For the thread create secure request the task creation state of the parent task is changed
to Tcs thread created . There is no change to the task creation state of the parent task for a
thread create request.

ThreadCreateSecureState

� TaskCreationState

parent task? : TASK
operation? : OPERATION

(operation? = Thread create secure id

^ task creation state
0 = task creation state

� fparent task? 7! Tcs thread createdg)
_ (operation? = Thread create id

^ task creation state
0 = task creation state)

The new port gets a SID based upon the parent task.

ThreadCreateDtosState

� PortSid

SubjectSid

port : PORT
parent task? : TASK

port sid
0 = port sid [fport 7! Thread port sid (task sid(parent task?))g

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

196
CDRL A005

Thread Requests

9.3.6 Complete Request

The following schemas define the general form of the thread create and thread create -
secure requests.

ProcessingThreadCreate

ProcessThreadViaTaskPortRequestGood

operation? = Thread create id

ProcessingThreadCreateSecure

ProcessThreadViaTaskPortRequestGood

operation? = Thread create secure id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadCreateGood b=
(RVThreadCreateGood ^ ThreadCreateState

^ ThreadCreateSecureState ^ ThreadCreateDtosState)
>> ThreadCreateReply

ThreadCreateSecureGood b=
(RVThreadCreateSecureGood ^ ThreadCreateState

^ ThreadCreateSecureState ^ ThreadCreateDtosState)
>> ThreadCreateReply

An unsuccessful request returns an error status.

ThreadCreateBad

b= RVThreadCreateResourceShortage >> RequestNoOp

ThreadCreateSecureBad

b= (RVThreadCreateSecureResourceShortage
_ RVThreadCreateSecureInsu�cientPermission)

>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadCreate b= (ThreadCreateGood _ ThreadCreateBad) n (port ; thread)
ExecuteThreadCreateSecure

b= (ThreadCreateSecureGood _ ThreadCreateSecureBad) n (port ; thread)

The full specification for kernel processing of a validatedthread create or thread create -
secure request consists of processing the request followed by its execution.

ThreadCreate b= ProcessingThreadCreate � ExecuteThreadCreate
ThreadCreateSecure b= ProcessingThreadCreateSecure � ExecuteThreadCreateSecure

9.4 thread depress abort

The request thread depress abort restores the original scheduling priority to a thread whose
priority has been set to the lowest possible value by aswtch pri or thread switch request.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 197

9.4.1 Client Interface

kern return t thread depress abort
(mach port t thread name);

9.4.1.1 Input Parameters The following input parameters are provided by the client of a
thread depress abort request:

thread name? — the client’s name for the thread whose priority depression will be canceled

ThreadDepressAbortClientInputs

thread name? : NAME

A thread depress abort request is invoked by sending a message to the port indicated by
thread name? that has the operation field set toThread depress abort id and has no body.

InvokeThreadDepressAbort

InvokeMachMsg

ThreadDepressAbortClientInputs

name? = thread name?
operation? = Thread depress abort id

9.4.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread depress abort request:

return! — the status of the request

ThreadDepressAbortClientOutputs

return! : KERNEL RETURN

ThreadDepressAbortReceiveReply

InvokeMachMsgRcv

ThreadDepressAbortClientOutputs

return! = Text to status(msg body)

9.4.2 Kernel Interface

9.4.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread depress abort request:

thread? — the thread whose priority depression will be canceled

ThreadDepressAbortInputs

thread? : THREAD

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

198
CDRL A005

Thread Requests

9.4.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread depress abort request:

return! — the status of the request

ThreadDepressAbortOutputs

return! : KERNEL RETURN

9.4.3 Request Criteria

No criteria are defined for the thread depress abort request.

9.4.4 Return Values

Table 20 describes the values returned at the completion of the request and the conditions
under which each value is returned.

return!
Kern success

Table 20: Return Values for thread depress abort

RVThreadDepressAbortGood

ThreadDepressAbortOutputs

return! = Kern success

9.4.5 State Changes

A successful thread depress abort request returns the priority of the thread to its value
before the depression. If the priority of the thread is not currently depressed, no changes occur.
Note that the scheduling priority may also change, but since we do not have enough detail in
our model to compute its value we will leave it unspecified.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 199

ThreadDepressAbortState

� ThreadPri

� Threads

� ThreadExist

� PortExist

� TasksAndThreads

� ThreadSchedPolicy

� ThreadInstruction

� ThreadMachineState

� ThreadStatistics

� Events

� PortNameSpace

� SpecialPurposePorts

� ThreadAndProcessorSet

ThreadInvariants

thread? : THREAD

thread? 2 dompriority before depression

thread priority0 = thread priority

� fthread? 7! priority before depression(thread?)g
thread max priority0 = thread max priority

depressed threads
0 = depressed threads n fthread?g

priority before depression
0 = priority before depression

9.4.6 Complete Request

The following schemas define the general form of a thread depress abort request.

ProcessingThreadDepressAbort

ProcessThreadViaThreadPortRequestGood

operation? = Thread depress abort id

A request makes the state changes described in the previous section.

ThreadDepressAbortGood b= (RVThreadDepressAbortGood ^ ThreadDepressAbortState)
>> RequestReturnOnlyStatus

Review Note:
This definition is included only for consistency with other request specifications.

Execution of the request consists of a good execution.

ExecuteThreadDepressAbort b= ThreadDepressAbortGood

The full specification for kernel processing of a validated thread depress abort request
consists of processing the request followed by its execution.

ThreadDepressAbort b= ProcessingThreadDepressAbort � ExecuteThreadDepressAbort

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

200
CDRL A005

Thread Requests

9.5 thread disable pc sampling

The request thread disable pc sampling turns off all sampling for a thread.

9.5.1 Client Interface

kern return t thread disable pc sampling
(mach port t thread name,
int *sample cnt);

Review Note:
The DTOS KID incorrectly includes avor as an input parameter of thread disable pc sampling.
This parameter is not present in the prototype. The request disables sampling of all types, not for just a
particular type, and therefore there is no need for a avor parameter.

9.5.1.1 Input Parameters The following input parameters are provided by the client of a
thread disable pc sampling request:

thread name? — the client’s name for the thread for which sampling will be turned off

ThreadDisablePCSamplingClientInputs

thread name? : NAME

A thread disable pc sampling request is invoked by sending a message to the port indicated
by thread name? that has the operation field set to Thread disable pc sampling id and has no
body.

InvokeThreadDisablePCSampling

InvokeMachMsg

ThreadDisablePCSamplingClientInputs

name? = thread name?
operation? = Thread disable pc sampling id

9.5.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread disable pc sampling request:

return! — the status of the request

sample cnt ! — the number of sample elements in the kernel for the thread

Editorial Note:
In the prototype this parameter is present, but unused. Thus, its output value will be whatever the
input value is. The parameter should probably not be present at all since with the current semantics
of thread sampling all samples are discarded when sampling is disabled for a thread. To reflect this
we will define this value to be zero.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 201

ThreadDisablePCSamplingClientOutputs

return! : KERNEL RETURN

sample cnt ! :

ThreadDisablePCSamplingReceiveReply

InvokeMachMsgRcv

ThreadDisablePCSamplingClientOutputs

(sample cnt !; return!) = Text to count and status(msg body)

9.5.2 Kernel Interface

9.5.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread disable pc sampling request:

thread? — the thread for which sampling will be turned off

ThreadDisablePCSamplingInputs

thread? : THREAD

9.5.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread disable pc sampling request:

return! — the status of the request

sample cnt ! — the number of sample elements in the kernel for the thread

ThreadDisablePCSamplingOutputs

return! : KERNEL RETURN

sample cnt ! :

Upon completion of the processing of athread disable pc sampling request a reply message
is built from the output parameters.

ThreadDisablePCSamplingReply

RequestReturn

sample cnt? :

reply? = Return sample cnt(sample cnt?)

9.5.3 Request Criteria

No criteria are defined for the thread disable pc sampling request.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

202
CDRL A005

Thread Requests

sample cnt ! return!
0 Kern success

Table 21: Return Values for thread disable pc sampling

9.5.4 Return Values

Table 21 describes the values returned at the completion of the request and the conditions
under which each value is returned.

RVThreadDisablePCSamplingGood

ThreadDisablePCSamplingOutputs

sample cnt ! = 0
return! = Kern success

9.5.5 State Changes

A successful thread disable pc sampling request removes the thread from the set of sam-
pled threads and from the domains of the functions describing sampling. All samples are
discarded.

ThreadDisablePCSamplingState

� Threads

� ThreadSampling

� ThreadPri

� TasksAndThreads

� ThreadSchedPolicy

� ThreadInstruction

� ThreadMachineState

� ThreadExecStatus

� Events

� ThreadExist

� ThreadAndProcessorSet

� PortExist

� PortNameSpace

� SpecialPurposePorts

ThreadInvariants

thread? : THREAD

sampled threads
0 = sampled threads n fthread?g

thread sample types 0 = fthread?g� thread sample types

thread sample sequence number 0 = fthread?g� thread sample sequence number

thread samples
0 = fthread?g� thread samples

9.5.6 Complete Request

The following schemas define the general form of a thread disable pc sampling request.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 203

ProcessingThreadDisablePCSampling

ProcessThreadViaThreadPortRequestGood

operation? = Thread disable pc sampling id

A request makes the state changes described in the previous section and creates a kernel reply.

ThreadDisablePCSamplingGood

b= (RVThreadDisablePCSamplingGood ^ ThreadDisablePCSamplingState)
>> ThreadDisablePCSamplingReply

Execution of the request consists of a good execution.

ExecuteThreadDisablePCSampling b= ThreadDisablePCSamplingGood

The full specification for kernel processing of a validated thread disable pc sampling re-
quest consists of processing the request followed by its execution.

ThreadDisablePCSampling b= ProcessingThreadDisablePCSampling

� ExecuteThreadDisablePCSampling

9.6 thread enable pc sampling

The request thread enable pc sampling turns on a given type of sampling for a thread.

9.6.1 Client Interface

kern return t thread enable pc sampling
(mach port t thread name,
int *ticks,
sampled pc flavor t flavor);

9.6.1.1 Input Parameters The following input parameters are provided by the client of a
thread enable pc sampling request:

thread name? — the client’s name for the thread for which sampling will be turned on

avor? — the type of samples to collect

ThreadEnablePCSamplingClientInputs

thread name? : NAME

avor? : � SAMPLE TYPES

A thread enable pc sampling request is invoked by sending a message to the port indicated
by thread name? that has the operation field set to Thread enable pc sampling id and has a
body consisting of avor?.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

204
CDRL A005

Thread Requests

InvokeThreadEnablePCSampling

InvokeMachMsg

ThreadEnablePCSamplingClientInputs

name? = thread name?
operation? = Thread enable pc sampling id

msg body = Sample type set to text(avor?)

9.6.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread enable pc sampling request:

return! — the status of the request

ticks! — the clock granularity (ticks per second) according to the kernel

ThreadEnablePCSamplingClientOutputs

return! : KERNEL RETURN

ticks! : 1

ThreadEnablePCSamplingReceiveReply

InvokeMachMsgRcv

ThreadEnablePCSamplingClientOutputs

(ticks!; return!) = Text to ticks and status(msg body)

9.6.2 Kernel Interface

9.6.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread enable pc sampling request:

thread? — the thread for which sampling will be turned on

avor? — the type of samples to collect

ThreadEnablePCSamplingInputs

thread? : THREAD
avor? : � SAMPLE TYPES

9.6.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread enable pc sampling request:

return! — the status of the request

ticks! — the clock granularity (ticks per second) according to the kernel

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 205

ThreadEnablePCSamplingOutputs

return! : KERNEL RETURN

ticks! : 1

Upon completion of the processing of a thread enable pc sampling request a reply message
is built from the output parameters.

ThreadEnablePCSamplingReply

RequestReturn

ticks? : 1

reply? = Return ticks(ticks?)

9.6.3 Request Criteria

The following criteria are defined for the thread enable pc sampling request.

C1 — There are sufficient resources to create a sampling buffer. We do not ac-
tually model the consumption of resources by the kernel. So, we will use the set
Resources available to create sampling bu�er to indicate the set of states where there are
sufficient resources to create a sampling buffer.

Resources available to create sampling bu�er : �DtosExec

C1ThreadEnablePCSamplingResourcesAvailable
DtosExec

�DtosExec 2 Resources available to create sampling bu�er

NotC1ThreadEnablePCSamplingResourcesAvailable b=
DtosExec ^ : C1ThreadEnablePCSamplingResourcesAvailable

Note that no criterion is defined to check thatavor? is a set of recognized sample types. If an
unrecognized type is included in avor?, no error will occur. Unrecognized sample types will
simply be ignored and produce no samples.

9.6.4 Return Values

Table 22 describes the values returned at the completion of the request and the conditions
under which each value is returned. The design does not specify the value ofticks! when an
error occurs. It depends on the implementation, and we leave it unspecified.

Ticks per second : 1

Editorial Note:
Even though C1 examines resource availability, the kernel returnsKern invalid argument when C1 is
false. In addition the following message is printed to standard output: “thread enable pc sampling:
kalloc failed”.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

206
CDRL A005

Thread Requests

ticks! return! C1
Ticks per second Kern success T

— Kern invalid argument F

Table 22: Return Values for thread enable pc sampling

RVThreadEnablePCSamplingGood

C1ThreadEnablePCSamplingResourcesAvailable
ThreadEnablePCSamplingOutputs

ticks! = Ticks per second

return! = Kern success

RVThreadEnablePCSamplingResourceShortage

NotC1ThreadEnablePCSamplingResourcesAvailable
ThreadEnablePCSamplingOutputs

return! = Kern invalid argument

9.6.5 State Changes

A successful thread enable pc sampling request adds the thread to the set of sampled
threads and records the type of samples to be collected. It also sets the sample sequence
number for the thread to zero. If the thread was already being sampled, the flavor is reset, but
the sequence number is unchanged. In this case, any samples currently in the buffer remain
there.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 207

ThreadEnablePCSamplingState

� Threads

� ThreadSampling

� ThreadPri

� TasksAndThreads

� ThreadSchedPolicy

� ThreadInstruction

� ThreadMachineState

� ThreadExecStatus

� Events

� ThreadExist

� ThreadAndProcessorSet

� PortExist

� PortNameSpace

� SpecialPurposePorts

ThreadInvariants

thread? : THREAD
avor? : � SAMPLE TYPES

sampled threads
0 = sampled threads [fthread?g

thread sample types
0 = thread sample types � fthread? 7! avor?g

thread sample sequence number 0 = fthread? 7! 0g
� thread sample sequence number

thread samples
0 = fthread? 7! hig � thread samples

9.6.6 Complete Request

The following schemas define the general form of a thread enable pc sampling request.

ProcessingThreadEnablePCSampling

ProcessThreadViaThreadPortRequestGood

operation? = Thread enable pc sampling id

A request makes the state changes described in the previous section and creates a kernel reply.

ThreadEnablePCSamplingGood

b= (RVThreadEnablePCSamplingGood ^ ThreadEnablePCSamplingState)
>> ThreadEnablePCSamplingReply

An unsuccessful request returns an error status.

ThreadEnablePCSamplingBad

b= RVThreadEnablePCSamplingResourceShortage >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadEnablePCSampling b= ThreadEnablePCSamplingGood

^ ThreadEnablePCSamplingBad

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

208
CDRL A005

Thread Requests

The full specification for kernel processing of a validated thread enable pc sampling re-
quest consists of processing the request followed by its execution.

ThreadEnablePCSampling b= ProcessingThreadEnablePCSampling

� ExecuteThreadEnablePCSampling

9.7 thread get assignment

The request thread get assignment returns a send right to the name port of the processor
set to which a thread is assigned. This port can only be used to obtain information about the
processor set.

9.7.1 Client Interface

kern return t thread get assignment
(mach port t thread name,
mach port t* processor set name);

9.7.1.1 Input Parameters The following input parameters are provided by the client of a
thread get assignment request:

thread name? — the client’s name for the thread whose processor set name port is re-
quested

ThreadGetAssignmentClientInputs

thread name? : NAME

A thread get assignment request is invoked by sending a message to the port indicated by
thread name? that has the operation field set toThread get assignment id and has no body.

InvokeThreadGetAssignment

InvokeMachMsg

ThreadGetAssignmentClientInputs

name? = thread name?
operation? = Thread get assignment id

9.7.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread get assignment request:

processor set name ! — a send right to the name port of the desired processor set

return! — the status of the request

ThreadGetAssignmentClientOutputs

processor set name ! : NAME

return! : KERNEL RETURN

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 209

ThreadGetAssignmentReceiveReply

InvokeMachMsgRcv

ThreadGetAssignmentClientOutputs

(processor set name !; return!) = Text to name and status(msg body)

9.7.2 Kernel Interface

9.7.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread get assignment request:

thread? — the thread whose processor set name port is requested

ThreadGetAssignmentInputs

thread? : THREAD

9.7.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread get assignment request:

processor set ! — the desired processor set

return! — the status of the request

ThreadGetAssignmentOutputs

processor set! : PROCESSOR SET

return! : KERNEL RETURN

Upon completion of the processing of a thread get assignment request a reply message is
built from the output parameters.

ThreadGetAssignmentReply

RequestOnlyObserves

processor set? : PROCESSOR SET

let port == ps name port rel(processor set?)
� reply? = Return capability(Thread port to s right(port))

9.7.3 Request Criteria

No criteria are defined for the thread get assignment request.

9.7.4 Return Values

Table 23 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

210
CDRL A005

Thread Requests

processor set ! return!
thread assigned to(thread?) Kern success

Table 23: Return Values for thread get assignment

RVThreadGetAssignmentGood

ThreadAndProcessorSet

ProcessorsAndPorts

ThreadGetAssignmentOutputs

thread? : THREAD

thread? 2 dom thread assigned to

return! = Kern success

processor set! = thread assigned to(thread?)

9.7.5 State Changes

A thread get assignment request does not make any state changes since it only observes
the system state.

9.7.6 Complete Request

The thread get assignment request has the following general form.

ProcessingThreadGetAssignment

ProcessThreadViaThreadPortRequestGood

operation? = Thread get assignment id

The full specification for kernel processing of a validated thread get assignment request
consists of processing the request, execution of the request, and the creation of a kernel reply.

ThreadGetAssignment b= ProcessingThreadGetAssignment

� (RVThreadGetAssignmentGood >> ThreadGetAssignmentReply)

9.8 thread get sampled pcs

The request thread get sampled pcs returns the samples collected for a given thread.

9.8.1 Client Interface

kern return t thread get sampled pcs
(mach port t thread name,
unsigned *seqno,
sampled pc t sampled pcs[],
int *sample cnt);

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 211

9.8.1.1 Input Parameters The following input parameters are provided by the client of a
thread get sampled pcs request:

thread name? — the client’s name for the thread whose samples will be returned

seqno? — the sequence number of the first sample that should be returned. If this sample
is no longer available due to insufficient space in the sampling buffer, the earliest available
sample will be the starting point.

Review Note:
The DTOS KID reports seqno as an output parameter only. In the prototype it is used for both input
and output.

ThreadGetSampledPCsClientInputs

thread name? : NAME

seqno? :

A thread get sampled pcs request is invoked by sending a message to the port indicated
by thread name? that has the operation field set toThread get sampled pcs id and has a body
consisting of seqno?.

InvokeThreadGetSampledPCs

InvokeMachMsg

ThreadGetSampledPCsClientInputs

name? = thread name?
operation? = Thread get sampled pcs id

msg body = Sequence number to text(seqno?)

9.8.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread get sampled pcs request:

return! — the status of the request

seqno! — the sequence number of the most recently collected sample

sampled pcs ! — the samples returned

sample cnt ! — the number of samples returned

ThreadGetSampledPCsClientOutputs

return! : KERNEL RETURN

seqno! :
sampled pcs ! : seq SAMPLE

sample cnt ! : �

ThreadGetSampledPCsReceiveReply

InvokeMachMsgRcv

ThreadGetSampledPCsClientOutputs

(seqno!; sampled pcs !; sample cnt !; return!)
= Text to seqno and PCs and count and status(msg body)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

212
CDRL A005

Thread Requests

9.8.2 Kernel Interface

9.8.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread get sampled pcs request:

thread? — the thread whose samples will be returned

seqno? — the sequence number of the first sample that should be returned. If this sample
is no longer available due to insufficient space in the sampling buffer, the earliest available
sample will be the starting point.

Review Note:
The DTOS KID reports seqno as an output parameter only. In the prototype it is used for both input
and output.

ThreadGetSampledPCsInputs

thread? : THREAD
seqno? :

9.8.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread get sampled pcs request:

return! — the status of the request

seqno! — the sequence number of the most recently collected sample

sampled pcs ! — the samples returned

sample cnt ! — the number of samples returned

ThreadGetSampledPCsOutputs

return! : KERNEL RETURN

seqno! :
sampled pcs ! : seq SAMPLE

sample cnt ! : �

Upon completion of the processing of a thread get sampled pcs request a reply message is
built from the output parameters.

ThreadGetSampledPCsReply

RequestOnlyObserves

seqno? :
sampled pcs? : seq SAMPLE

sample cnt? : �

reply? = Return samples(seqno?; sampled pcs?; sample cnt?)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 213

9.8.3 Request Criteria

The following criteria are defined for the thread get sampled pcs request.

C1 — Sampling is currently enabled for the thread.

C1ThreadSamplingEnabled
ThreadSampling

thread? : THREAD

thread? 2 sampled threads

NotC1ThreadSamplingEnabled
b= ThreadSampling ^ : C1ThreadSamplingEnabled

9.8.4 Return Values

Tables 24–27 describe the values returned at the completion of the request and the conditions
under which each value is returned. The specification does not state what should be returned
in seqno!, sampled pcs ! and sample cnt ! when the thread is not being sampled. So, these values
depend on the implementation and we leave them unspecified.

seqno! C1
thread sample sequence number (thread?) T

— F

Table 24: Return Values for thread get sampled pcs

sampled pcs! C1
Samples returned(thread samples(thread?), seqno?,

thread sample sequence number (thread?)) T

— F

Table 25: Return Values for thread get sampled pcs

sample cnt ! C1
sampled pcs ! T

— F

Table 26: Return Values for thread get sampled pcs

The function Samples returned count (from; to) returns the number of samples in the range
from to to or the buffer size Max samples , whichever is smaller. A negative return value is
interpreted as zero samples. The function Samples returned(sample sequence ; from; to) returns
a number of samples as indicated by Samples returned count (from; to) from sample sequence

ending with the sample with sequence number to.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

214
CDRL A005

Thread Requests

return! C1
Kern success T
Kern failure F

Table 27: Return Values for thread get sampled pcs

Samples returned : (seq SAMPLE)� � � seq SAMPLE

Samples returned count : (�)��

8 sample sequence : seq SAMPLE ; from; to :
� Samples returned count (from; to) = min fMax samples ; to � from + 1g
^ Samples returned(sample sequence ; from; to)

= fj : j to � Samples returned count(from; to) < j � tog sample sequence

RVThreadGetSampledPCsGood

C1ThreadSamplingEnabled
ThreadGetSampledPCsOutputs

ThreadGetSampledPCsInputs

seqno! = thread sample sequence number (thread?)
sampled pcs ! = Samples returned(thread samples(thread?);

seqno?; thread sample sequence number(thread?))
sample cnt ! = #sampled pcs!
return! = Kern success

RVThreadGetSampledPCsBad

NotC1ThreadSamplingEnabled
ThreadGetSampledPCsOutputs

ThreadGetSampledPCsInputs

return! = Kern failure

9.8.5 State Changes

A thread get sampled pcs request does not make any state changes since it only observes
the system state.

9.8.6 Complete Request

The following schemas define the general form of a thread get sampled pcs request.

ProcessingThreadGetSampledPCs

ProcessThreadViaThreadPortRequestGood

operation? = Thread get sampled pcs id

A successful request creates a kernel reply.

ThreadGetSampledPCsGood b= RVThreadGetSampledPCsGood

>> ThreadGetSampledPCsReply

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 215

An unsuccessful request returns an error status.

ThreadGetSampledPCsBad b= RVThreadGetSampledPCsBad >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadGetSampledPCs b= ThreadGetSampledPCsGood _ ThreadGetSampledPCsBad

The full specification for kernel processing of a validated thread get sampled pcs request
consists of processing the request followed by its execution.

ThreadGetSampledPCs b= ProcessingThreadGetSampledPCs

� ExecuteThreadGetSampledPCs

9.9 thread get special port

The request thread get special port allows a task to obtain a send right to a specified
special port for a specified thread.

9.9.1 Client Interface

kern return t thread get special port
(mach port t thread name,
int which port,
mach port t* special port name);

thread get exception port
Macro form

kern return t thread get exception port
(mach port t thread name,
mach port t* special port name);

) thread get special port (thread name, THREAD EXCEPTION PORT,
special port name)

thread get kernel port
Macro form

kern return t thread get kernel port
(mach port t thread name,
mach port t* special port name);

) thread get special port (thread name, THREAD KERNEL PORT,
special port name)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

216
CDRL A005

Thread Requests

9.9.1.1 Input Parameters The following input parameters are provided by the client of a
thread get special port request:

thread name? — the client’s name for the thread whose special port is to be returned

which port? — the type of special port that is to be returned

ThreadGetSpecialPortClientInputs

thread name? : NAME

which port? : THREAD SPECIAL PORTS

A thread get special port request is invoked by sending a message to the port indicated
by thread name? that has the operation field set toThread get special port id and has a body
consisting of which port?.

InvokeThreadGetSpecialPort

Invoke

ThreadGetSpecialPortClientInputs

trap id? = Mach msg trap

user spec?:message:header :operation = Thread get special port id

user spec?:message:header :remote port = thread name?
user spec?:message:body

= Thread special ports to text(which port?)

9.9.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread get special port request:

special port name ! — the name of a send right (capability) for the requested special port

return! — the status of the request

ThreadGetSpecialPortClientOutputs

special port name ! : NAME

return! : KERNEL RETURN

ThreadGetSpecialPortReceiveReply

InvokeMachMsgRcv

ThreadGetSpecialPortClientOutputs

(special port name !; return!) = Text to name and status(msg body)

9.9.2 Kernel Interface

9.9.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread get special port request:

thread? — the thread whose special port is to be returned

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 217

which port? — the type of special port that is to be returned

ThreadGetSpecialPortInputs

thread? : THREAD
which port? : THREAD SPECIAL PORTS

9.9.2.2 Output Parameters The following output parameters are returned by the kernel for a
thread get special port request:

special port! — the requested special port

return! — the status of the request

ThreadGetSpecialPortOutputs

special port! : PORT
return! : KERNEL RETURN

Upon completion of the processing of a thread get special port request a reply message is
built from the output parameters. The reply message will contain a send right to the requested
special port.

ThreadGetSpecialPortReply

OnlyObserves

special port? : PORT

reply? = Return capability(Thread port to s right(special port?))

9.9.3 Request Criteria

The following criteria are defined for the thread get special port request.

C1 — An exception port request is made.

C1ThreadGetExceptionPort
which port? : THREAD SPECIAL PORTS

which port? = Thread exception port

NotC1ThreadGetExceptionPort b= : C1ThreadGetExceptionPort

C2 — A kernel port request is made.

C2ThreadGetKernelPort
which port? : THREAD SPECIAL PORTS

which port? = Thread kernel port

NotC2ThreadGetKernelPort b= : C2ThreadGetKernelPort

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

218
CDRL A005

Thread Requests

C3 — The client has Get thread exception port permission to the target thread.

Review Note:
In C3 and C4, we’ve begun the process of dealing with deferred permission checks under the new
execution model. The first schema is used to initiate the permission checking routine and the
criteria schemas will be used after the permission has been retrieved.

ThreadGetSpecialPortPermCheckGTEP

Transition

9 request : Request ; CheckPending ; ThreadGetSpecialPortInputs
� curr bk?? = Bk have request(request)
^ request:operation = Thread get special port id

^ thread self (thread?) = request :service port

^ ssi = task sid (curr task??)
^ osi = thread target(curr task??; thread?)
^ breaks0 = breaks

�f curr th?? 7! Bk check pending(ssi ; osi ;Get thread exception port ; env)g

C3ThreadCanGetExceptionPort
Transition

env : ENVIRONMENT

curr bk?? = Bk have ruling(Get thread exception port ;True; env)

NotC3ThreadCanGetExceptionPort
Transition

env : ENVIRONMENT

curr bk?? = Bk have ruling(Get thread exception port ;False; env)

C4 — The client has Get thread kernel port permission to the target thread.

ThreadGetSpecialPortPermCheckGTKP

Transition

9 request : Request ; CheckPending ; ThreadGetSpecialPortInputs
� curr bk?? = Bk have request(request)
^ request:operation = Thread get special port id

^ thread self (thread?) = request :service port

^ ssi = task sid (curr task??)
^ osi = thread target(curr task??; thread?)
^ breaks0 = breaks

�f curr th?? 7! Bk check pending(ssi ; osi ;Get thread kernel port; env)g

C4ThreadCanGetKernelPort
Transition

env : ENVIRONMENT

curr bk?? = Bk have ruling(Get thread kernel port ;True; env)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 219

NotC4ThreadCanGetKernelPort
Transition

env : ENVIRONMENT

curr bk?? = Bk have ruling(Get thread kernel port ;False; env)

C5 — The exception port of the thread is defined.

C5ThreadExceptionPortDe�ned
SpecialThreadPorts

thread? : THREAD

thread? 2 dom thread eport

NotC5ThreadExceptionPortDe�ned
b= SpecialThreadPorts ^ : C5ThreadExceptionPortDe�ned

C6 — The kernel port of the thread is defined.

C6ThreadKernelPortDe�ned
SpecialThreadPorts

thread? : THREAD

thread? 2 dom thread sself

NotC6ThreadKernelPortDe�ned
b= SpecialThreadPorts ^ : C6ThreadKernelPortDe�ned

9.9.4 Return Values

Tables 28 and 29 describe the values returned at the completion of the request and the con-
ditions under which each value is returned. Note that C1 and C2 are mutually exclusive. It
is possible that a thread has no exception or kernel (sself) port since the port may have been
deleted. The design does not specify the value of special port! in this case. We assume that
the null port is returned by the kernel routine, and that IPC will convert this into the name
Mach port null . We leave unspecified the value returned in special port! when the client does
not have permission to get the requested special port or when the client does not ask for a valid
type of special port. Note that C5 and C6 do not affect the return status.

Review Note:
We assume that the prototype will check the conditions in the order {C1, C2 }, {C3 or C4}, {C5 or C6}.
However, the prototype is currently not checking C3 and C4.

Review Note:
It might make more sense to permit Null port in the range of thread eport and thread sself . (Note that
the exception port is actually initialized toNull port by the thread create request in the prototype and
that thread set special port can set an exception or kernel port to Null port .) This would remove the
need for criteria C5 and C6.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

220
CDRL A005

Thread Requests

return! C1 C2 C3 C4
Kern success T F T -
Kern success F T - T
Kern insu�cient permission T F F -
Kern insu�cient permission F T - F
Kern invalid argument F F - -

Table 28: Return Values for thread get special port

special port ! C1 C2 C3 C4 C5 C6
thread eport(thread?) T F T - T -
Null port T F T - F -
thread sself (thread?) F T - T - T
Null port F T - T - F

— otherwise

Table 29: Return Values for thread get special port

RVThreadGetExceptionPortGood

C1ThreadGetExceptionPort
NotC2ThreadGetKernelPort
C3ThreadCanGetExceptionPort
C5ThreadExceptionPortDe�ned
ThreadGetSpecialPortOutputs

thread? : THREAD

return! = Kern success

special port! = thread eport(thread?)

RVThreadGetExceptionPortNull

C1ThreadGetExceptionPort
NotC2ThreadGetKernelPort
C3ThreadCanGetExceptionPort
NotC5ThreadExceptionPortDe�ned
ThreadGetSpecialPortOutputs

return! = Kern success

special port! = Null port

RVThreadGetKernelPortGood

NotC1ThreadGetExceptionPort
C2ThreadGetKernelPort
C4ThreadCanGetKernelPort
C6ThreadKernelPortDe�ned
ThreadGetSpecialPortOutputs

thread? : THREAD

return! = Kern success

special port! = thread sself (thread?)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 221

RVThreadGetKernelPortNull

NotC1ThreadGetExceptionPort
C2ThreadGetKernelPort
C4ThreadCanGetKernelPort
NotC6ThreadKernelPortDe�ned
ThreadGetSpecialPortOutputs

return! = Kern success

special port! = Null port

RVThreadCannotGetExceptionPort

C1ThreadGetExceptionPort
NotC2ThreadGetKernelPort
NotC3ThreadCanGetExceptionPort
ThreadGetSpecialPortOutputs

return! = Kern insu�cient permission

RVThreadCannotGetKernelPort

NotC1ThreadGetExceptionPort
C2ThreadGetKernelPort
NotC4ThreadCanGetKernelPort
ThreadGetSpecialPortOutputs

return! = Kern insu�cient permission

RVThreadGetSpecialPortInvalidArgument

NotC1ThreadGetExceptionPort
NotC2ThreadGetKernelPort
ThreadGetSpecialPortOutputs

return! = Kern invalid argument

9.9.5 State Changes

A thread get special port request does not make any state changes since it only observes
the system state.

9.9.6 Complete Request

The thread get special port request has the following general form.

ProcessingThreadGetSpecialPort

ProcessThreadViaThreadPortRequestGood

operation? = Thread get special port id

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

222
CDRL A005

Thread Requests

A successful thread get special port request causes the creation of a kernel reply.

ThreadGetSpecialPortGood

b= (RVThreadGetExceptionPortGood _ RVThreadGetExceptionPortNull
_ RVThreadGetKernelPortGood _ RVThreadGetKernelPortNull)

>> ThreadGetSpecialPortReply

ThreadGetSpecialPortBad

b= (RVThreadCannotGetExceptionPort _ RVThreadCannotGetKernelPort
_ RVThreadGetSpecialPortInvalidArgument)

>> NoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadGetSpecialPort b= (ThreadGetSpecialPortGood _ ThreadGetSpecialPortBad)

The full specification for kernel processing of a validated thread get special port request
consists of processing the request followed by its execution.

ThreadGetSpecialPort b= ProcessingThreadGetSpecialPort � ExecuteThreadGetSpecialPort

9.10 thread get state

The request thread get state returns an array containing state information about a specified
thread (other than the client thread).

9.10.1 Client Interface

kern return t thread get state
(mach port t target thread name,
int flavor,
thread state t old state,
mach msg type number t* old state cnt);

9.10.1.1 Input Parameters The following input parameters are provided by the client of a
thread get state request:

target thread name? — the client’s name for the thread whose state information is to be
returned

avor? — the type of state information that is to be returned

old state cnt? — the maximum size of the array to be returned

ThreadGetStateClientInputs

target thread name? : NAME

avor? : THREAD STATE INFO TYPES

old state cnt? :

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 223

A thread get state request is invoked by sending a message to the port indicated by
target thread name? that has the operation field set to Thread get state id and has a body
consisting of avor? and old state cnt?.

InvokeThreadGetState

InvokeMachMsg

ThreadGetStateClientInputs

name? = target thread name?
operation? = Thread get state id

msg body = Thread state info type and number to text(avor?; old state cnt?)

9.10.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread get state request:

old state! — state information of the specified type about the target thread

old state cnt ! — the size of the full array of available state information of the type
specified

return! — the status of the request

ThreadGetStateClientOutputs

old state! : THREAD STATE INFO

old state cnt ! :
return! : KERNEL RETURN

ThreadGetStateReceiveReply

InvokeMachMsgRcv

ThreadGetStateClientOutputs

(old state!; old state cnt !; return!)
= Text to state and count and status(msg body)

9.10.2 Kernel Interface

9.10.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread get state request:

target thread? — the thread whose state information is to be returned

avor? — the type of state information that is to be returned

old state cnt? — the maximum size of the array to be returned

ThreadGetStateInputs

target thread? : THREAD
avor? : THREAD STATE INFO TYPES

old state cnt? :

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

224
CDRL A005

Thread Requests

9.10.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread get state request:

old state! — state information of the specified type about the target thread

old state cnt ! — the size of the full array of available state information of the type
specified

return! — the status of the request

ThreadGetStateOutputs

old state! : THREAD STATE INFO

old state cnt ! :
return! : KERNEL RETURN

Upon completion of the processing of a thread get state request a reply message is built from
the output parameters.

ThreadGetStateReply

RequestReturn

old state? : THREAD STATE INFO

old state cnt? :

reply? = Return thread state info(old state?; old state cnt?)

9.10.3 Request Criteria

The following criteria are defined for the thread get state request.

C1 — The parameter thread? is not equal to the client thread, avor? is a valid type of
state information, and old state cnt? is large enough for the requested state information.
(The function Thread state count returns the size required for the given type of state
information.)

Editorial Note:
Nothing in the design states the reason that the client thread may not get its own state information.
We believe that it is merely an implementation difficulty in that in order to get state information
the thread must be temporarily stopped. If the client thread stopped itself, it could not collect the
state information.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 225

C1ThreadGetStateGoodArgs
ThreadMachineState

ThreadsAndProcessors

cpu?? : PROCESSOR
thread? : THREAD
avor? : THREAD STATE INFO TYPES

old state cnt? :

cpu?? 2 domactive thread

avor? 2 domThread state count

thread? 6= active thread(cpu??)
(thread?;avor?) 2 dom thread state

old state cnt? � Thread state count (avor?)

NotC1ThreadGetStateGoodArgs
b= ThreadMachineState ^ ThreadsAndProcessors ^ : C1ThreadGetStateGoodArgs

9.10.4 Return Values

Tables 30–32 describe the values returned at the completion of the request and the conditions
under which each value is returned. The design does not specify the values ofold state! and
old state cnt ! when an error occurs. These values therefore depend on the implementation
algorithm and we leave them unspecified.

return C1
Kern success T
Kern invalid argument F

Table 30: Return Values for thread get state

old state! C1
thread state(thread?, avor?) T

— F

Table 31: Return Values for thread get state

old state cnt ! C1
Thread state count(avor?) T

— F

Table 32: Return Values for thread get state

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

226
CDRL A005

Thread Requests

RVThreadGetStateGood

C1ThreadGetStateGoodArgs
ThreadMachineState

ThreadGetStateOutputs

old state cnt ! = Thread state count (avor?)
old state! = thread state(thread?;avor?)
return! = Kern success

RVThreadGetStateInvalidArgument

NotC1ThreadGetStateGoodArgs
ThreadGetStateOutputs

return! = Kern invalid argument

9.10.5 State Changes

A successful thread get state request gets the state of the thread to the supplied state
information. The run state of the thread may also change since the request must ensure that
the thread is temporarily suspended and then perhaps restart it.

ThreadGetStateState

� Threads

� TasksAndThreads

� ThreadPri

� ThreadSchedPolicy

� ThreadInstruction

� ThreadExecStatus

� ThreadStatistics

� ThreadMachineState

� Exist

� SpecialPurposePorts

� ThreadAndProcessorSet

ThreadInvariants

ThreadGetStateInputs

target thread? : THREAD

ThreadDoWaitThenRelease [target thread?=stopping thread]
swapped threads 0 = swapped threads

idle threads 0 = idle threads

thread suspend count
0 = thread suspend count

threads wired
0 = threads wired

9.10.6 Complete Request

The following schemas define the general form of a thread get state request.

ProcessingThreadGetState

ProcessThreadViaThreadPortRequestGood

operation? = Thread get state id

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 227

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadGetStateGood b= (RVThreadGetStateGood ^ ThreadGetStateState)
>> ThreadGetStateReply

An unsuccessful request returns an error status.

ThreadGetStateBad b= RVThreadGetStateInvalidArgument >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadGetState b= ThreadGetStateGood _ ThreadGetStateBad

The full specification for kernel processing of a validated thread get state request consists
of processing the request followed by its execution.

ThreadGetState b= ProcessingThreadGetState � ExecuteThreadGetState

9.11 thread info

The request thread info returns a specified type of information about a thread. The two valid
choices for information types are the thread’s execution status and statistics, or its scheduling
parameters.

9.11.1 Client Interface

kern return t thread info
(mach port t target thread name,
int flavor,
thread info t thread info,
mach msg type number t* thread infoCnt);

9.11.1.1 Input Parameters The following input parameters are provided by the client of a
thread info request:

target thread name? — the client’s name for the thread whose information is to be re-
turned

avor? — the type of information that is to be returned. The recognized information types
are Thread basic info and Thread sched info.

thread infoCnt? — the maximum amount of return information that can be handled by
the client

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

228
CDRL A005

Thread Requests

ThreadInfoClientInputs

target thread name? : NAME

avor? : THREAD INFO TYPE

thread infoCnt? :

A thread info request is invoked by sending a message to the port indicated by
target thread name? that has the operation field set to Thread info id and has a body con-
sisting of avor? and thread infoCnt?.

InvokeThreadInfo

InvokeMachMsg

ThreadInfoClientInputs

name? = target thread name?
operation? = Thread info id

msg body = Thread info type and count to text(avor?; thread infoCnt?)

9.11.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread info request:

return! — the status of the request

thread info! — the information about the target thread

thread infoCnt! — the size of the information returned in thread info!

ThreadInfoClientOutputs

return! : KERNEL RETURN

thread info! : THREAD INFO

thread infoCnt ! :

ThreadInfoReceiveReply

InvokeMachMsgRcv

ThreadInfoClientOutputs

(thread info!; thread infoCnt !; return!)
= Text to info and count and status(msg body)

9.11.2 Kernel Interface

9.11.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread info request:

target thread? — the thread whose information is to be returned

avor? — the type of information that is to be returned. The recognized information types
are Thread basic info and Thread sched info.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 229

thread infoCnt? — the maximum amount of return information that can be handled by
the client

ThreadInfoInputs

target thread? : THREAD
avor? : THREAD INFO TYPE

thread infoCnt? :

9.11.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread info request:

return! — the status of the request

thread info! — the information about the target thread

thread infoCnt! — the size of the information returned in thread info!

ThreadInfoOutputs

return! : KERNEL RETURN

thread info! : THREAD INFO

thread infoCnt ! :

Upon completion of the processing of a thread info request a reply message is built from the
output parameters.

ThreadInfoReply

RequestOnlyObserves

thread info? : THREAD INFO

thread infoCnt? :

reply? = Return thread info(thread info?; thread infoCnt?)

The information returned forThread basic info is comprised of the following items:

user time value — the total user run time for the thread

system time value — the total system run time for the thread

cpu time value — the cpu time used for the thread

thread base priority value — the base user-setable priority for the thread

thread sched priority value — the priority value used by the system to make scheduling
decisions. This is calculated by the system based on the thread base priority value , the
scheduling policy for the thread, and other system conditions.

run state value — a set which either contains one of the valuesRunning , Stopped , Waiting ,
Uninterruptible, and Halted , or is empty

ags — a set which either contains one of the values Thread ags swapped or
Thread ags idle, or is empty

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

230
CDRL A005

Thread Requests

thread suspend count value — a thread may execute user level instructions only if this
value is zero

sleep time value — the amount of time for which a thread has been sleeping

THREAD FLAGS ::= Thread ags swapped j Thread ags idle

ThreadBasicInfo

user time value :
system time value :
cpu time value :
thread base priority value : �
thread sched priority value : �
run state value : �RUN STATES

ags : �THREAD FLAGS

thread suspend count value :
sleep time value :

#run state value � 1
#ags � 1

The information returned forThread sched info is comprised of the following items:

thread policy value — the scheduling policy in force for the thread

thread sched policy data value — policy-specific data that may influence the functioning
of the policy in force

thread base priority value — see above

thread max priority value — the highest priority to which thread base priority value can
be set

thread sched priority value — see above

depressed indicator value — equal to True if the thread’s scheduling priority is currently
depressed to the lowest possible value, and equal toFalse otherwise. Priority depression
is accomplished via thread switch or swtch pri.

priority before depression value — if the thread’s scheduling priority is currently de-
pressed, the scheduling priority of the thread before it was depressed; otherwise, equal to
thread base priority value

ThreadSchedInfo

thread policy value : SCHED POLICY

thread sched policy data value : SCHED POLICY DATA

thread base priority value : �
thread max priority value : �
thread sched priority value : �
depressed indicator value : BOOLEAN
priority before depression value : �

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 231

The actual space required for each type of thread information is represented by the constants
Thread basic info count and Thread sched info count .

Thread basic info count :
Thread sched info count :

9.11.3 Request Criteria

The following criteria are defined for the thread info request.

C1 — Basic information (i.e., execution statistics, status and priorities) is requested, and
the client has provided enough space to hold the information.

C1BasicInfo
avor? : THREAD INFO TYPE

thread infoCnt? :

avor? = Thread basic info

thread infoCnt? � Thread basic info count

NotC1BasicInfo b= : C1BasicInfo

C2 — Scheduling information (i.e., priorities and policies) is requested, and the client has
provided enough space to hold the information.

C2SchedInfo
avor? : THREAD INFO TYPE

thread infoCnt? :

avor? = Thread sched info

thread infoCnt? � Thread sched info count

NotC2SchedInfo b= : C2SchedInfo

9.11.4 Return Values

Tables 33–35 describe the values returned at the completion of the request and the conditions
under which each value is returned. The specification does not state what should be returned
in thread infoCnt ! and thread info! when there is an error. These values depend in the im-
plementation, and we leave them unspecified. Note that C1 and C2 cannot simultaneously be
true.

thread infoCnt ! C1 C2
Thread basic info count T F
Thread sched info count F T

— F F

Table 33: Return Values for thread info

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

232
CDRL A005

Thread Requests

thread info! C1 C2
Format basic info(basic info) T F
Format sched info(sched info) F T

— F F

Table 34: Return Values for thread info

return! C1 C2
Kern success T F
Kern success F T
Kern invalid argument F F

Table 35: Return Values for thread info

Each of the two types of information must be reformatted into thread info! to be returned. This
formatting is represented by the functionsFormat basic info and Format sched info.

Format basic info : ThreadBasicInfo "THREAD INFO

Format sched info : ThreadSchedInfo "THREAD INFO

The kernel maintains for each thread a set of run states drawn from the valuesHalted , Running ,
Uninterruptible, Stopped and Waiting . At most one of these values is returned with the basic
information. The value selected is the first one in the above list that is in the run state of
the thread. In the event the run state set is empty, an empty set is returned. The function
Primary run state represents this mapping from internal run state to basic information.

Similarly, the kernel will only return one of the flagsThread ags swapped or Thread ags idle.
If thread? is in swapped threads , then Thread ags swapped is always returned regardless of the
value of idle threads.

Primary run state : �RUN STATES "�RUN STATES

Run state order : seqRUN STATES

Run state order = hHalted ;Running ;Uninterruptible; Stopped ;Waitingi
8 r : �RUN STATES

� Primary run state(r) = (Run state order � r)�f1g�

Review Note:
It is important to take the relational image under f1g rather than taking the head of the sequence since
the sequence might be empty.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 233

RVThreadBasicInfo

ThreadStatistics

ThreadPri

ThreadExecStatus

C1BasicInfo
NotC2SchedInfo
ThreadInfoOutputs

thread? : THREAD

(9 basic info : ThreadBasicInfo
� basic info:user time value = user time(thread?)
^ basic info:system time value = system time(thread?)
^ basic info:cpu time value = cpu time(thread?)
^ basic info:thread base priority value = thread priority(thread?)
^ basic info:thread sched priority value = thread sched priority(thread?)
^ basic info:run state value = Primary run state(run state(thread?))
^ basic info:ags = if thread? 2 swapped threads

then fThread ags swappedg
else (if thread? 2 idle threads

then fThread ags idleg
else �)

^ basic info:thread suspend count value = thread suspend count (thread?)
^ basic info:sleep time value = sleep time(thread?)
^ thread info! = Format basic info(basic info))

thread infoCnt ! = Thread basic info count

return! = Kern success

RVThreadSchedInfo

ThreadPri

ThreadSchedPolicy

NotC1BasicInfo
C2SchedInfo
ThreadInfoOutputs

thread? : THREAD

(9 sched info : ThreadSchedInfo
� sched info:thread policy value = thread sched policy(thread?)
^ sched info:thread sched policy data value

= thread sched policy data(thread?)
^ sched info:thread base priority value = thread priority(thread?)
^ sched info:thread max priority value = thread max priority(thread?)
^ sched info:thread sched priority value = thread sched priority(thread?)
^ sched info:depressed indicator value = if thread? 2 depressed threads

then True

else False

^ sched info:priority before depression value = priority before depression(thread?)
^ thread info! = Format sched info(sched info))

thread infoCnt ! = Thread sched info count

return! = Kern success

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

234
CDRL A005

Thread Requests

RVThreadInfoBad

NotC1BasicInfo
NotC2SchedInfo
ThreadInfoOutputs

return! = Kern invalid argument

9.11.5 State Changes

A thread info request does not make any state changes since it only observes the system
state.

9.11.6 Complete Request

The following schemas define the general form of a thread info request.

ProcessingThreadInfo

ProcessThreadViaThreadPortRequestGood

operation? = Thread info id

A successful request creates a kernel reply.

ThreadInfoGood b= (RVThreadBasicInfo _ RVThreadSchedInfo)
>> ThreadInfoReply

An unsuccessful request returns an error status.

ThreadInfoBad b= RVThreadInfoBad >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadInfo b= ThreadInfoGood _ ThreadInfoBad

The full specification for kernel processing of a validated thread info request consists of
processing the request followed by its execution.

ThreadInfo b= ProcessingThreadInfo � ExecuteThreadInfo

9.12 thread max priority

The request thread max priority sets the maximum scheduling priority of a specified thread.
This value limits the value to which the user can set the priority of the thread (usingthread -
priority). Since the client thread must have access to the control port of the processor set to
which the thread is assigned, the request may set the maximum priority to any legal value
including one that is higher than the current value. This contrasts withthread priority
which does not require control port access and can only lower the maximum priority.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 235

9.12.1 Client Interface

kern return t thread max priority
(mach port t thread name,
mach port t processor set name,
int priority);

9.12.1.1 Input Parameters The following input parameters are provided by the client of a
thread max priority request:

thread name? — the client’s name for the the thread whose maximum priority is to be set

processor set name? — the client’s name for the control port of the processor set to which
the target thread is currently assigned

priority? — the desired maximum priority

ThreadMaxPriorityClientInputs

thread name? : NAME

processor set name? : NAME

priority? : �

A thread max priority request is invoked by sending a message to the port indicated by
thread name? that has the operation field set to Thread max priority id and has a body con-
sisting of processor set name? and priority?.

InvokeThreadMaxPriority

InvokeMachMsg

ThreadMaxPriorityClientInputs

name? = thread name?
operation? = Thread max priority id

msg body = Name and number to text(processor set name?; priority?)

9.12.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread max priority request:

return! — the status of the request

ThreadMaxPriorityClientOutputs

return! : KERNEL RETURN

ThreadMaxPriorityReceiveReply

InvokeMachMsgRcv

ThreadMaxPriorityClientOutputs

return! = Text to status(msg body)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

236
CDRL A005

Thread Requests

9.12.2 Kernel Interface

9.12.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread max priority request:

thread? — the thread whose maximum priority is to be set

processor set? — the processor set to which the target thread is currently assigned

priority? — the desired maximum priority

ThreadMaxPriorityInputs

thread? : THREAD
processor set? : PROCESSOR SET

priority? : �

9.12.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread max priority request:

return! — the status of the request

ThreadMaxPriorityOutputs

return! : KERNEL RETURN

9.12.3 Request Criteria

The following criteria are defined for the thread max priority request.

Review Note:
It is assumed here that the existence of processor set? has been verified by the IPC processing of the
request. However, since an arbitrary time delay might occur between the IPC processing and the kernel
request processing, we should probably have an additional check here that theprocessor set? still exists.

C1 — The parameter priority? is a valid priority level.

C1ThreadMaxPriorityValidArguments

priority? : �

priority? 2 Priority levels

NotC1ThreadMaxPriorityValidArguments

b= : C1ThreadMaxPriorityValidArguments

C2 — The parameter processor set? is the processor set to which thread? is assigned.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 237

C2ThreadMaxPriorityAssignedProcessorSet

ThreadAndProcessorSet

thread? : THREAD
processor set? : PROCESSOR SET

(thread?; processor set?) 2 thread assigned to

NotC2ThreadMaxPriorityAssignedProcessorSet

b= ThreadAndProcessorSet ^ : C2ThreadMaxPriorityAssignedProcessorSet

9.12.4 Return Values

Table 36 describes the values returned at the completion of the request and the conditions
under which each value is returned. In the case where both C1 and C2 are false, we assume
Kern invalid argument is returned.

Review Note:
The prototype checks the conditions in the order C1, C2.

return! C1 C2
Kern success T T
Kern failure T F
Kern invalid argument F -

Table 36: Return Values for thread max priority

RVThreadMaxPriorityGood

C1ThreadMaxPriorityValidArguments

C2ThreadMaxPriorityAssignedProcessorSet

ThreadMaxPriorityOutputs

return! = Kern success

RVThreadMaxPriorityWrongProcessorSet

C1ThreadMaxPriorityValidArguments

NotC2ThreadMaxPriorityAssignedProcessorSet

ThreadMaxPriorityOutputs

return! = Kern failure

RVThreadMaxPriorityInvalidArgument

NotC1ThreadMaxPriorityValidArguments

ThreadMaxPriorityOutputs

return! = Kern invalid argument

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

238
CDRL A005

Thread Requests

9.12.5 State Changes

A successful thread max priority request sets the maximum priority of the thread as re-
quested. If the thread’s priority is higher than this new maximum value, it is reset to the
new maximum value. If the thread is currently depressed and if its priority before depres-
sion is higher than the new maximum, then the priority before depression is reset to the new
maximum value. In this way the modification of thread max priority will be reflected in the
priority of the thread when its priority depression is removed. Note that if the thread is cur-
rently depressed thread priority(thread?) will be equal to the lowest possible priority. Thus,
Lowest priorityfthread priority(thread?); priority?gg = thread priority(thread?) and no change is
made to thread priority. The thread’s current scheduling priority may or may not change as a
result of this request, so we state no constraint on the value ofthread sched priority.

ThreadMaxPriorityState

� Threads

� TasksAndThreads

� ThreadPri

� ThreadSchedPolicy

� ThreadInstruction

� ThreadExecStatus

� ThreadStatistics

� ThreadMachineState

� Exist

� SpecialPurposePorts

� ThreadAndProcessorSet

ThreadInvariants

thread? : THREAD
priority? : �

depressed threads
0 = depressed threads

thread max priority0 = thread max priority � fthread? 7! priority?g
priority before depression 0 = if thread? 2 depressed threads

then priority before depression � fthread?
7! Lowest priorityfpriority before depression(thread?); priority?gg

else priority before depression � fthread? 7! thread priority
0(thread?)g

thread priority0 = thread priority

� fthread? 7! Lowest priorityfthread priority(thread?); priority?gg

9.12.6 Complete Request

The following schemas define the general form of a thread max priority request.

ProcessingThreadMaxPriority

ProcessThreadViaThreadPortRequestGood

operation? = Thread max priority id

A successful request makes the state changes described in the previous section.

ThreadMaxPriorityGood b= (RVThreadMaxPriorityGood ^ ThreadMaxPriorityState)
>> RequestReturnOnlyStatus

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 239

An unsuccessful request returns an error status.

ThreadMaxPriorityBad

b= (RVThreadMaxPriorityWrongProcessorSet _ RVThreadMaxPriorityInvalidArgument)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadMaxPriority

b= ThreadMaxPriorityGood _ ThreadMaxPriorityBad

The full specification for kernel processing of a validated thread max priority request con-
sists of processing the request followed by its execution.

ThreadMaxPriority b= ProcessingThreadMaxPriority � ExecuteThreadMaxPriority

9.13 thread policy

The request thread policy sets the scheduling policy for a specified thread. This value is
used by the system (together with the thread priority and current conditions) to determine the
current scheduling priority of the thread.

9.13.1 Client Interface

kern return t thread policy
(mach port t thread name,
int policy,
int data);

9.13.1.1 Input Parameters The following input parameters are provided by the client of a
thread policy request:

thread name? — the client’s name for the thread whose scheduling policy is to be set

policy? — the desired scheduling policy

data? — policy specific data which may influence the operation of the scheduling policy

ThreadPolicyClientInputs

thread name? : NAME

policy? : SCHED POLICY

data? : SCHED POLICY DATA

A thread policy request is invoked by sending a message to the port indicated bythread name?
that has the operation field set toThread policy id and has a body consisting ofpolicy? and data?.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

240
CDRL A005

Thread Requests

InvokeThreadPolicy

InvokeMachMsg

ThreadPolicyClientInputs

name? = thread name?
operation? = Thread policy id

msg body = Policy and data to text(policy?; data?)

9.13.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread policy request:

return! — the status of the request

ThreadPolicyClientOutputs

return! : KERNEL RETURN

ThreadPolicyReceiveReply

InvokeMachMsgRcv

ThreadPolicyClientOutputs

return! = Text to status(msg body)

9.13.2 Kernel Interface

9.13.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread policy request:

thread? — the thread whose scheduling policy is to be set

policy? — the desired scheduling policy

data? — policy specific data which may influence the operation of the scheduling policy

ThreadPolicyInputs

thread? : THREAD
policy? : SCHED POLICY

data? : SCHED POLICY DATA

9.13.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread policy request:

return! — the status of the request

ThreadPolicyOutputs

return! : KERNEL RETURN

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 241

9.13.3 Request Criteria

The following criteria are defined for the thread policy request.

C1 — The parameter policy? is an existing policy.

C1ThreadPolicyValidPolicy
ThreadSchedPolicy

policy? : SCHED POLICY

policy? 2 supported sp

NotC1ThreadPolicyValidPolicy b= ThreadSchedPolicy ^ : C1ThreadPolicyValidPolicy

C2 — The parameter policy? is a permitted scheduling policy for the processor set to which
thread? is assigned.

C2ThreadPolicyProcessorSetPermits
ThreadAndProcessorSet

thread? : THREAD
policy? : SCHED POLICY

thread? 2 dom thread assigned to

thread assigned to(thread?) 2 dom enabled sp

policy? 2 enabled sp(thread assigned to(thread?))

NotC2ThreadPolicyProcessorSetPermits b= ThreadAndProcessorSet

^ : C2ThreadPolicyProcessorSetPermits

9.13.4 Return Values

Table 37 describes the values returned at the completion of the request and the conditions
under which each value is returned. In the case where both C1 and C2 are false, we assume
Kern invalid argument is returned.

Review Note:
The prototype checks the conditions in the order C1, C2.

return! C1 C2
Kern success T T
Kern failure T F
Kern invalid argument F -

Table 37: Return Values for thread policy

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

242
CDRL A005

Thread Requests

RVThreadPolicyGood

C1ThreadPolicyValidPolicy
C2ThreadPolicyProcessorSetPermits
ThreadPolicyOutputs

return! = Kern success

RVThreadPolicyNotPermitted

C1ThreadPolicyValidPolicy
NotC2ThreadPolicyProcessorSetPermits
ThreadPolicyOutputs

return! = Kern failure

RVThreadPolicyInvalidPolicy

NotC1ThreadPolicyValidPolicy
ThreadPolicyOutputs

return! = Kern invalid argument

9.13.5 State Changes

A successful thread policy request sets the target thread’s policy and policy specific data as
requested.

ThreadPolicyNewPolicy

� ThreadSchedPolicy

thread? : THREAD
policy? : SCHED POLICY

data? : SCHED POLICY DATA

thread sched policy
0 = thread sched policy � fthread? 7! policy?g

thread sched policy data
0 = thread sched policy data

� f thread? 7! data? g
supported sp0 = supported sp

The priority and maximum priority of the thread are not modified. However, the thread’s
current scheduling priority may or may not change as a result of this request, so we state no
constraint on the value of thread sched priority.

ThreadPolicyPriority

� ThreadPri

thread priority
0 = thread priority

thread max priority0 = thread max priority

depressed threads 0 = depressed threads

priority before depression
0 = priority before depression

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 243

ThreadPolicyState

ThreadPolicyNewPolicy

ThreadPolicyPriority

� Threads

� TasksAndThreads

� ThreadInstruction

� ThreadExecStatus

� ThreadStatistics

� ThreadMachineState

� Exist

� SpecialPurposePorts

� ThreadAndProcessorSet

ThreadInvariants

9.13.6 Complete Request

The following schema defines the general form of thread policy.

ProcessingThreadPolicy

ProcessThreadViaThreadPortRequestGood

operation? = Thread policy id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadPolicyGood b= (RVThreadPolicyGood ^ ThreadPolicyState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadPolicyBad

b= (RVThreadPolicyNotPermitted _ RVThreadPolicyInvalidPolicy)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadPolicy

b= ThreadPolicyGood _ ThreadPolicyBad

The full specification for kernel processing of a validated thread policy request consists of
processing the request followed by its execution.

ThreadPolicy b= ProcessingThreadPolicy � ExecuteThreadPolicy

9.14 thread priority

The request thread priority sets the priority of a specified thread. This priority is used by the
system (together with the thread scheduling policy and current conditions) to determine the

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

244
CDRL A005

Thread Requests

current scheduling priority of the thread used when scheduling threads to run. If the priority
of the thread is currently depressed, the priority before depression will be reset instead so that
this request will take effect when the priority depression is aborted. Optionally, the request
may also lower the thread maximum priority, which limits the value of the priority. The request
thread max priority also changes the priority and maximum priority. However,thread -
max priority requires access to the control port of the processor set to which the thread is
assigned, and it may raise the maximum priority.

9.14.1 Client Interface

kern return t thread priority
(mach port t thread name,
int priority,
boolean t set max);

9.14.1.1 Input Parameters The following input parameters are provided by the client of a
thread priority request:

thread name? — the client’s name for the thread whose priority is to be set

priority? — the desired priority

set max ? — a boolean parameter equal to True if the thread’s maximum priority value
should also be set (lowered) to priority?

ThreadPriorityClientInputs

thread name? : NAME

priority? : �
set max? : BOOLEAN

A thread priority request is invoked by sending a message to the port indicated by
thread name? that has the operation field set to Thread priority id and has a body consist-
ing of priority? and set max ?.

InvokeThreadPriority

InvokeMachMsg

ThreadPriorityClientInputs

name? = thread name?
operation? = Thread priority id

msg body = Number and boolean to text(priority?; set max?)

9.14.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread priority request:

return! — the status of the request

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 245

ThreadPriorityClientOutputs

return! : KERNEL RETURN

ThreadPriorityReceiveReply

InvokeMachMsgRcv

ThreadPriorityClientOutputs

return! = Text to status(msg body)

9.14.2 Kernel Interface

9.14.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread priority request:

thread? — the thread whose priority is to be set

priority? — the desired priority

set max ? — a boolean parameter equal to True if the thread’s maximum priority value
should also be set to priority?

ThreadPriorityInputs

thread? : THREAD
priority? : �
set max? : BOOLEAN

9.14.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread priority request:

return! — the status of the request

ThreadPriorityOutputs

return! : KERNEL RETURN

9.14.3 Request Criteria

The following criteria are defined for the thread priority request.

C1 — The parameter priority? is a valid priority level.

C1ThreadPriorityValidPriority
priority? : �

priority? 2 Priority levels

NotC1ThreadPriorityValidPriority
b= : C1ThreadPriorityValidPriority

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

246
CDRL A005

Thread Requests

C2 — The new priority is no higher than the maximum priority forthread?.

C2ThreadPriorityAllowedPriority
ThreadPri

thread? : THREAD
priority? : �

(priority?; thread max priority(thread?)) =2 Higher priority

NotC2ThreadPriorityAllowedPriority
b= ThreadPri ^ : C2ThreadPriorityAllowedPriority

9.14.4 Return Values

Table 38 describes the values returned at the completion of the request and the conditions
under which each value is returned. In the case where both C1 and C2 are false we assume
Kern invalid argument is returned.

Review Note:
The prototype checks the conditions in the order C1, C2.

return! C1 C2
Kern success T T
Kern failure T F
Kern invalid argument F -

Table 38: Return Values for thread priority

RVThreadPriorityGood

C1ThreadPriorityValidPriority
C2ThreadPriorityAllowedPriority
ThreadPriorityOutputs

return! = Kern success

RVThreadPriorityPriorityTooHigh

C1ThreadPriorityValidPriority
NotC2ThreadPriorityAllowedPriority
ThreadPriorityOutputs

return! = Kern failure

RVThreadPriorityInvalidPriority

NotC1ThreadPriorityValidPriority
ThreadPriorityOutputs

return! = Kern invalid argument

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 247

9.14.5 State Changes

A successful thread priority request makes the following changes to the system state.
The priority before depression for the thread is reset to priority?. If the thread priority is
not currently depressed, thread priority for the thread is also reset to priority?. Otherwise,
thread priority does not change. In addition, if set max? is True, the thread max priority for
the thread will also be reset to priority?. Note that the thread’s current scheduling priority
may or may not change as a result of this request, so we state no constraint on the value of
thread sched priority.

ThreadPriorityInvariants

ThreadInvariants

� TasksAndThreads

� ThreadSchedPolicy

� ThreadInstruction

� ThreadExecStatus

� ThreadStatistics

� ThreadMachineState

� Exist

� SpecialPurposePorts

� ThreadAndProcessorSet

ThreadPriorityState

� Threads

� ThreadPri

ThreadPriorityInvariants

thread? : THREAD
priority? : �
set max? : BOOLEAN

depressed threads
0 = depressed threads

thread priority0 = if thread? 2 depressed threads

then thread priority

else thread priority � fthread? 7! priority?g
priority before depression

0 = priority before depression

� fthread? 7! priority?g
thread max priority

0 = if set max? = True

then thread max priority � fthread? 7! priority?g
else thread max priority

9.14.6 Complete Request

The following schemas define the general form of a thread priority request.

ProcessingThreadPriority

ProcessThreadViaThreadPortRequestGood

operation? = Thread priority id

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

248
CDRL A005

Thread Requests

A successful request makes the state changes described in the previous section, and creates a
kernel reply.

ThreadPriorityGood b= (RVThreadPriorityGood ^ ThreadPriorityState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadPriorityBad

b= (RVThreadPriorityPriorityTooHigh _ RVThreadPriorityInvalidPriority)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadPriority

b= ThreadPriorityGood _ ThreadPriorityBad

The full specification for kernel processing of a validated thread priority request consists of
processing the request followed by its execution.

ThreadPriority b= ProcessingThreadPriority � ExecuteThreadPriority

9.15 thread resume and thread resume secure

The requests thread resume and thread resume secure decrement the suspend count of
a thread by 1. They may impact the thread’s run states as a result. Thethread resume -
secure request (which is used in the secure initiation of threads within a task) expects the
parent task to have task creation stateTcs thread state set (see Section 5.7). It modifies the
state to Tcs task ready.

9.15.1 Client Interface

kern return t thread resume
(mach port t target thread name);

kern return t thread resume secure
(mach port t target thread name);

9.15.1.1 Input Parameters The following input parameters are provided by the client of a
thread resume or thread resume secure request:

target thread name? — the client’s name for the thread that is to be resumed

ThreadResumeClientInputs

target thread name? : NAME

A thread resume request is invoked by sending a message to the port indicated by
target thread name? that has the operation field set toThread resume id and has no body.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 249

InvokeThreadResume

InvokeMachMsg

ThreadResumeClientInputs

name? = target thread name?
operation? = Thread resume id

A thread resume secure request is invoked by sending a message to the port indicated by
target thread name? that has the operation field set to Thread resume secure id and has no
body.

InvokeThreadResumeSecure

InvokeMachMsg

ThreadResumeClientInputs

name? = target thread name?
operation? = Thread resume secure id

9.15.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread resume or thread resume secure request:

return! — the status of the request

ThreadResumeClientOutputs

return! : KERNEL RETURN

ThreadResumeReceiveReply

InvokeMachMsgRcv

ThreadResumeClientOutputs

return! = Text to status(msg body)

9.15.2 Kernel Interface

9.15.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread resume or thread resume secure request:

target thread? — the thread that is to be resumed

ThreadResumeInputs

target thread? : THREAD

9.15.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread resume or thread resume secure request:

return! — the status of the request

ThreadResumeOutputs

return! : KERNEL RETURN

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

250
CDRL A005

Thread Requests

9.15.3 Request Criteria

The following criteria are defined for the thread resume and thread resume secure re-
quests.

C1 — The suspend count of the target thread is positive.

C1ThreadResumeSuspendCountPositive
ThreadExecStatus

target thread? : THREAD

target thread? 2 dom thread suspend count

thread suspend count(target thread?) > 0

NotC1ThreadResumeSuspendCountPositive b=
ThreadExecStatus ^ : C1ThreadResumeSuspendCountPositive

C2 — The task creation state of the target thread’s owning task must be
Tcs thread state set . This criterion applies only to the thread resume secure request.

C2ThreadResumeThreadStateSet
TasksAndThreads

TaskCreationState

target thread? : THREAD

target thread? 2 domowning task

owning task (target thread?) 2 dom task creation state

task creation state(owning task(target thread?)) = Tcs thread state set

NotC2ThreadResumeThreadStateSet
b= TasksAndThreads ^ TaskCreationState ^ : C2ThreadResumeThreadStateSet

9.15.4 Return Values

Table 39 describes the values returned at the completion of the thread resume request and
the conditions under which each value is returned.

return! C1
Kern success T
Kern failure F

Table 39: Return Values for thread resume

RVThreadResumeGood

C1ThreadResumeSuspendCountPositive
ThreadResumeOutputs

return! = Kern success

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 251

RVThreadResumeFailure

NotC1ThreadResumeSuspendCountPositive
ThreadResumeOutputs

return! = Kern failure

Table 40 describes the values returned at the completion of the thread resume secure
request and the conditions under which each value is returned. In the case where C1 and C2
are both false we assume Kern insu�cient permission is returned.

Review Note:
C2 is checked first in the prototype.

return! C1 C2
Kern success T T
Kern failure F T
Kern insu�cient permission - F

Table 40: Return Values for thread resume secure

RVThreadResumeSecureGood

C1ThreadResumeSuspendCountPositive
C2ThreadResumeThreadStateSet
ThreadResumeOutputs

return! = Kern success

RVThreadResumeSecureFailure

NotC1ThreadResumeSuspendCountPositive
C2ThreadResumeThreadStateSet
ThreadResumeOutputs

return! = Kern failure

RVThreadResumeSecureInsu�cientPermission

NotC2ThreadResumeThreadStateSet
ThreadResumeOutputs

return! = Kern insu�cient permission

9.15.5 State Changes

A successful thread resume or thread resume secure request decrements the thread’s
suspend count. If, as a result, the thread’s suspend count becomes zero, the run state of the
thread will be modified as follows. First, the thread will be taken out of theStopped and Halted

states. In addition, if the thread is not in the Waiting state, it will be placed in the Running

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

252
CDRL A005

Thread Requests

state. The state Uninterruptible is not affected by this request. (Note that a thread may have
the state Uninterruptible without having the state Waiting .) If the suspend count is not zero
after it is decremented, the run state does not change. Nothing else changes due to the request.

ThreadResumeInvariants

ThreadInvariants

� ThreadExist

� TasksAndThreads

� ThreadPri

� ThreadSchedPolicy

� SpecialPurposePorts

� ThreadAndProcessorSet

ThreadResumeState

ThreadResumeInvariants

� ThreadExecStatus

� Threads

target thread? : THREAD

thread suspend count
0 = thread suspend count

� ftarget thread? 7! thread suspend count(target thread?)� 1g
(thread suspend count 0(target thread?) = 0 ^Waiting =2 run state(target thread?))

) run state0 = run state

� ftarget thread? 7! ((run state(target thread?) n fStopped ;Haltedg)
[fRunningg)g

(thread suspend count
0(target thread?) = 0 ^Waiting 2 run state(target thread?))

) run state0 = run state

� ftarget thread? 7! (run state(target thread?) n fStopped ;Haltedg)g
thread suspend count

0(target thread?) 6= 0) run state 0 = run state

swapped threads
0 = swapped threads

idle threads
0 = idle threads

threads wired 0 = threads wired

For the thread resume secure request the task creation state of the parent task is changed
to Tcs task ready . There is no change to the task creation state of the parent task for a
thread resume request.

ThreadResumeSecureState

� TaskCreationState

� TasksAndThreads

target thread? : THREAD
operation? : OPERATION

(operation? = Thread resume secure id

^ target thread? 2 domowning task

^ task creation state
0 = task creation state

� fowning task (target thread?) 7! Tcs task readyg)
_ (operation? = Thread resume id

^ task creation state
0 = task creation state)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 253

9.15.6 Complete Request

The following schemas define the general forms of the thread resume and thread -
resume secure requests.

ProcessingThreadResume

ProcessThreadViaThreadPortRequestGood

operation? = Thread resume id

ProcessingThreadResumeSecure

ProcessThreadViaThreadPortRequestGood

operation? = Thread resume secure id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadResumeGood

b= (RVThreadResumeGood ^ ThreadResumeState ^ ThreadResumeSecureState)
>> RequestReturnOnlyStatus

ThreadResumeSecureGood

b= (RVThreadResumeSecureGood ^ ThreadResumeState ^ ThreadResumeSecureState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadResumeBad b= RVThreadResumeFailure >> RequestNoOp

ThreadResumeSecureBad

b= (RVThreadResumeSecureFailure _ RVThreadResumeSecureInsu�cientPermission)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadResume b= ThreadResumeGood _ ThreadResumeBad
ExecuteThreadResumeSecure b= ThreadResumeSecureGood _ ThreadResumeSecureBad

The full specification for kernel processing of a validated thread resume or thread -
resume secure request consists of processing the request followed by its execution.

ThreadResume b= ProcessingThreadResume � ExecuteThreadResume
ThreadResumeSecure b= ProcessingThreadResumeSecure � ExecuteThreadResumeSecure

9.16 thread set special port

The thread set special port request allows a task to set a specified special port for a speci-
fied thread to be the port associated with one of the task’s send rights.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

254
CDRL A005

Thread Requests

9.16.1 Client Interface

kern return t thread set special port
(mach port t thread name,
int which port,
mach port t special port name);

thread set exception port
Macro form

kern return t thread set exception port
(mach port t thread name,
mach port t special port name);

) thread set special port (thread name, THREAD EXCEPTION PORT,
special port name)

thread set kernel port
Macro form

kern return t thread set kernel port
(mach port t thread name,
mach port t special port name);

) thread set special port (thread name, THREAD KERNEL PORT,
special port name)

9.16.1.1 Input Parameters The following input parameters are provided by the client of a
thread set special port request:

thread name? — the client’s name for the thread whose special port is to be set

which port? — the type of special port that is to be set

special port name? — the client’s name for the port to which the target thread’s specified
special port should be set

ThreadSetSpecialPortClientInputs

thread name? : NAME

which port? : THREAD SPECIAL PORTS

special port name? : NAME

A thread set special port request is invoked by sending a message to the port indicated
by thread name? that has the operation field set toThread set special port id and has a body
consisting of which port? and special port name?.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 255

InvokeThreadSetSpecialPort

Invoke

ThreadSetSpecialPortClientInputs

trap id? = Mach msg trap

user spec?:message:header :operation = Thread set special port id

user spec?:message:header :remote port = thread name?
user spec?:message:body

= Thread special port and name to text(which port?; special port name?)

9.16.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread set special port request:

return! — the status of the request

ThreadSetSpecialPortClientOutputs

return! : KERNEL RETURN

ThreadSetSpecialPortReceiveReply

InvokeMachMsgRcv

ThreadSetSpecialPortClientOutputs

return! = Text to status(msg body)

9.16.2 Kernel Interface

9.16.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread set special port request:

thread? — the thread whose special port is to be set

which port? — the type of special port that is to be set

special port? — the port to which the target thread’s specified special port should be set

ThreadSetSpecialPortInputs

thread? : THREAD
which port? : THREAD SPECIAL PORTS

special port? : PORT

9.16.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread set special port request:

return! — the status of the request

ThreadSetSpecialPortOutputs

return! : KERNEL RETURN

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

256
CDRL A005

Thread Requests

9.16.3 Request Criteria

The following criteria are defined for the thread set special port request.

C1 — An exception port request is made.

C1ThreadSetExceptionPort
which port? : THREAD SPECIAL PORTS

which port? = Thread exception port

NotC1ThreadSetExceptionPort b= : C1ThreadSetExceptionPort

C2 — A kernel port request is made.

C2ThreadSetKernelPort
which port? : THREAD SPECIAL PORTS

which port? = Thread kernel port

NotC2ThreadSetKernelPort b= : C2ThreadSetKernelPort

C3 — The client has Set thread exception port permission to the target thread.

Review Note:
In C3 and C4, we’ve begun the process of dealing with deferred permission checks under the new
execution model. The first schema is used to initiate the permission checking routine and the
criteria schemas will be used after the permission has been retrieved.

ThreadSetSpecialPortPermCheckSTEP

Transition

9 request : Request ; CheckPending ; ThreadSetSpecialPortInputs
� curr bk?? = Bk have request(request)
^ request:operation = Thread set special port id

^ thread self (thread?) = request :service port

^ ssi = task sid (curr task??)
^ osi = thread target(curr task??; thread?)
^ breaks0 = breaks

�f curr th?? 7! Bk check pending(ssi ; osi ; Set thread exception port; env)g

C3ThreadCanSetExceptionPort
Transition

env : ENVIRONMENT

curr bk?? = Bk have ruling(Set thread exception port ;True; env)

NotC3ThreadCanSetExceptionPort
Transition

env : ENVIRONMENT

curr bk?? = Bk have ruling(Set thread exception port ;False; env)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 257

C4 — The client has Set thread kernel port permission to the target thread.

ThreadSetSpecialPortPermCheckSTKP

Transition

9 request : Request ; CheckPending ; ThreadSetSpecialPortInputs
� curr bk?? = Bk have request(request)
^ request:operation = Thread set special port id

^ thread self (thread?) = request :service port

^ ssi = task sid (curr task??)
^ osi = thread target(curr task??; thread?)
^ breaks 0 = breaks

�f curr th?? 7! Bk check pending(ssi ; osi ; Set thread kernel port; env)g

C4ThreadCanSetKernelPort
Transition

env : ENVIRONMENT

curr bk?? = Bk have ruling(Set thread kernel port ;True; env)

NotC4ThreadCanSetKernelPort
Transition

env : ENVIRONMENT

curr bk?? = Bk have ruling(Set thread kernel port ;False; env)

9.16.4 Return Values

Table 41 describes the values returned at the completion of the request and the conditions
under which each value is returned. Note that C1 and C2 are mutually exclusive.

Review Note:
We assume that the prototype will check the conditions in the order {C1, C2 }, {C3 or C4}. However, the
prototype is currently not checking C3 and C4.

return C1 C2 C3 C4
Kern success T F T -
Kern success F T - T
Kern insu�cient permission T F F -
Kern insu�cient permission F T - F
Kern invalid argument F F - -

Table 41: Return Values for thread set special port

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

258
CDRL A005

Thread Requests

RVThreadSetExceptionPort

C1ThreadSetExceptionPort
NotC2ThreadSetKernelPort
C3ThreadCanSetExceptionPort
ThreadSetSpecialPortOutputs

return! = Kern success

RVThreadSetKernelPort

NotC1ThreadSetExceptionPort
C2ThreadSetKernelPort
C4ThreadCanSetKernelPort
ThreadSetSpecialPortOutputs

return! = Kern success

RVThreadCannotSetExceptionPort

C1ThreadSetExceptionPort
NotC2ThreadSetKernelPort
NotC3ThreadCanSetExceptionPort
ThreadSetSpecialPortOutputs

return! = Kern insu�cient permission

RVThreadCannotSetKernelPort

NotC1ThreadSetExceptionPort
C2ThreadSetKernelPort
NotC4ThreadCanSetKernelPort
ThreadSetSpecialPortOutputs

return! = Kern insu�cient permission

RVThreadSetSpecialPortInvalidPortType

NotC1ThreadSetExceptionPort
NotC2ThreadSetKernelPort
ThreadSetSpecialPortOutputs

return! = Kern invalid argument

9.16.5 State Changes

A successful thread set special port request sets the exception or kernel port of the thread
to the given port.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 259

ThreadSetExceptionPortState

ThreadInvariants

� Exist

� Threads

� PortNameSpace

� SpecialPurposePorts

� SpecialThreadPorts

� ThreadAndProcessorSet

thread? : THREAD
special port? : PORT

thread self 0 = thread self

thread sself
0 = thread sself

thread eport
0 = thread eport � fthread? 7! special port?g

ThreadSetKernelPortState

ThreadInvariants

� Exist

� Threads

� PortNameSpace

� SpecialPurposePorts

� SpecialThreadPorts

� ThreadAndProcessorSet

thread? : THREAD
special port? : PORT

thread self
0 = thread self

thread sself 0 = thread sself � fthread? 7! special port?g
thread eport 0 = thread eport

Review Note:
The prototype also releases a send right on the former kernel or exception port. This can cause no-sender
notifications to be sent if the number of send rights becomes zero. We have attempted to model the total
number of send rights inTotalSendRights . However, we have not yet modeled the sending of notifications.

9.16.6 Complete Request

The general form of a thread set special port request is

ProcessingThreadSetSpecialPort

ProcessThreadViaThreadPortRequestGood

operation? = Thread set special port id

A successful request makes the state changes described in the previous section and creates a

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

260
CDRL A005

Thread Requests

kernel reply.

ThreadSetSpecialPortGood

b= ((RVThreadSetExceptionPort ^ ThreadSetExceptionPortState)
_ (RVThreadSetKernelPort ^ ThreadSetKernelPortState))

>> ReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadSetSpecialPortBad

b= (RVThreadCannotSetExceptionPort _ RVThreadCannotSetKernelPort
_ RVThreadSetSpecialPortInvalidPortType)

>> NoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadSetSpecialPort b= (ThreadSetSpecialPortGood _ ThreadSetSpecialPortBad)

The full specification for the kernel processing of a validatedthread set special port request
consists of processing the request followed its execution.

ThreadSetSpecialPort b= ProcessingThreadSetSpecialPort � ExecuteThreadSetSpecialPort

9.17 thread set state and thread set state secure

The requests thread set state and thread set state secure set the machine state of a
specified thread. thread set state secure can be used only if the thread was created using
thread create secure.

9.17.1 Client Interface

kern return t thread set state
(mach port t target thread name,
int flavor,
thread state t new state,
mach msg type number t new state cnt);

kern return t thread set state secure
(mach port t target thread name,
int flavor,
thread state t new state,
mach msg type number t new state cnt);

9.17.1.1 Input Parameters The following input parameters are provided by the client of a
thread set state or thread set state secure request:

target thread name? — the client’s name for the thread whose state information is to be
set

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 261

avor? — the type of state information that is to be set

new state? — state information of the specified type for the target thread

new state cnt? — the maximum size that should be assumed for the state information
supplied

ThreadSetStateClientInputs

target thread name? : NAME

avor? : THREAD STATE INFO TYPES

new state? : THREAD STATE INFO

new state cnt? :

A thread set state request is invoked by sending a message to the port indicated by
target thread name? that has the operation field set to Thread set state id and has a body
consisting of avor?, new state? and new state cnt?.

InvokeThreadSetState

InvokeMachMsg

ThreadSetStateClientInputs

name? = target thread name?
operation? = Thread set state id

msg body = Thread set state params to text(avor?; new state?; new state cnt?)

A thread set state secure request is invoked by sending a message to the port indicated
by target thread name? that has the operation field set toThread set state secure id and has a
body consisting of avor?, new state? and new state cnt?

InvokeThreadSetStateSecure

InvokeMachMsg

ThreadSetStateClientInputs

name? = target thread name?
operation? = Thread set state secure id

msg body = Thread set state params to text(avor?; new state?; new state cnt?)

9.17.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread set state or thread set state secure request:

return! — the status of the request

ThreadSetStateClientOutputs

return! : KERNEL RETURN

ThreadSetStateReceiveReply

InvokeMachMsgRcv

ThreadSetStateClientOutputs

return! = Text to status(msg body)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

262
CDRL A005

Thread Requests

9.17.2 Kernel Interface

9.17.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread set state or thread set state secure request:

target thread? — the thread whose state information is to be set

avor? — the type of state information that is to be set

new state? — state information of the specified type for the target thread

new state cnt? — the maximum size that should be assumed for the state information
supplied

ThreadSetStateInputs

target thread? : THREAD
avor? : THREAD STATE INFO TYPES

new state? : THREAD STATE INFO

new state cnt? :

9.17.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread set state or thread set state secure request:

return! — the status of the request

ThreadSetStateOutputs

return! : KERNEL RETURN

9.17.3 Request Criteria

The following criteria are defined for the thread set state and thread set state secure
requests.

C1 — The parameter target thread? is not equal to the client thread.

Editorial Note:
Nothing in the design states the reason that the client thread may not set its own state information.
We believe that it is merely an implementation difficulty in that in order to set state information
the thread must be temporarily stopped. If the client thread stopped itself, it could not set the state
information.

C1ThreadSetStateNotClientThread
ThreadsAndProcessors

cpu?? : PROCESSOR
target thread? : THREAD

(cpu??; target thread?) =2 active thread

NotC1ThreadSetStateNotClientThread
b= ThreadsAndProcessors ^ : C1ThreadSetStateNotClientThread

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 263

C2 — The parameter avor? is a valid type of state information, and new state cnt? is
large enough for the requested state information.

C2ThreadSetStateGoodFlavorAndCount
ThreadMachineState

target thread? : THREAD
avor? : THREAD STATE INFO TYPES

new state cnt? :

avor? 2 domThread state count

(target thread?;avor?) 2 dom thread state

new state cnt? � Thread state count (avor?)

NotC2ThreadSetStateGoodFlavorAndCount
b= ThreadMachineState ^ : C2ThreadSetStateGoodFlavorAndCount

C3 — The task creation state of the target thread’s owning task must be
Tcs thread created. This criterion applies only to the thread set state secure request.

C3ThreadSetStateSecureThreadCreated
TasksAndThreads

TaskCreationState

target thread? : THREAD

target thread? 2 domowning task

owning task (target thread?) 2 dom task creation state

task creation state(owning task(target thread?)) = Tcs thread created

NotC3ThreadSetStateSecureThreadCreated
b= TasksAndThreads ^ TaskCreationState
^ : C3ThreadSetStateSecureThreadCreated

9.17.4 Return Values

Table 42 describes the values returned at the completion of thethread set state request and
the conditions under which each value is returned.

return! C1 C2
Kern success T T
Kern invalid argument otherwise

Table 42: Return Values for thread set state

RVThreadSetStateGood

C1ThreadSetStateNotClientThread
C2ThreadSetStateGoodFlavorAndCount
ThreadSetStateOutputs

return! = Kern success

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

264
CDRL A005

Thread Requests

RVThreadSetStateInvalidFlavorOrCount

C1ThreadSetStateNotClientThread
NotC2ThreadSetStateGoodFlavorAndCount
ThreadSetStateOutputs

return! = Kern invalid argument

RVThreadSetStateInvalidThread

NotC1ThreadSetStateNotClientThread
ThreadSetStateOutputs

return! = Kern invalid argument

Table 43 describes the values returned at the completion of the thread set state secure
request and the conditions under which each value is returned. In all cases where C1 is false
we assume Kern invalid argument is returned. In the case where C1 is true and both C2 and
C3 are false we assume Kern insu�cient permission is returned.

Review Note:
In the prototype the order in which conditions are checked is C1, C3, C2.

return! C1 C2 C3
Kern success T T T
Kern insu�cient permission T - F
Kern invalid argument otherwise

Table 43: Return Values for thread set state secure

RVThreadSetStateSecureGood

C1ThreadSetStateNotClientThread
C2ThreadSetStateGoodFlavorAndCount
C3ThreadSetStateSecureThreadCreated
ThreadSetStateOutputs

return! = Kern success

RVThreadSetStateSecureInsu�cientPermission

C1ThreadSetStateNotClientThread
NotC3ThreadSetStateSecureThreadCreated
ThreadSetStateOutputs

return! = Kern insu�cient permission

RVThreadSetStateSecureInvalidFlavorOrCount

C1ThreadSetStateNotClientThread
NotC2ThreadSetStateGoodFlavorAndCount
C3ThreadSetStateSecureThreadCreated
ThreadSetStateOutputs

return! = Kern invalid argument

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 265

RVThreadSetStateSecureInvalidThread

NotC1ThreadSetStateNotClientThread
ThreadSetStateOutputs

return! = Kern invalid argument

9.17.5 State Changes

A successful thread set state or thread set state secure request sets the state of the
thread to the supplied state information. Any information in new state? in addition to that
expected for avor? is ignored. The run state of the thread may also change since the request
must ensure that the thread is temporarily suspended and then perhaps restart it.

ThreadSetStateState

� Threads

� TasksAndThreads

� ThreadPri

� ThreadSchedPolicy

� ThreadInstruction

� ThreadExecStatus

� ThreadStatistics

� ThreadMachineState

� Exist

� SpecialPurposePorts

� ThreadAndProcessorSet

ThreadInvariants

ThreadSetStateInputs

target thread? : THREAD

thread state0 = thread state � f(target thread?;avor?) 7! new state?g
ThreadDoWaitThenRelease [target thread?=stopping thread]
swapped threads

0 = swapped threads

idle threads
0 = idle threads

thread suspend count
0 = thread suspend count

threads wired 0 = threads wired

ThreadSetStateSecureState

� TaskCreationState

� TasksAndThreads

target thread? : THREAD
operation? : OPERATION

(operation? = Thread set state secure id

^ target thread? 2 domowning task

^ task creation state
0 = task creation state

� fowning task (target thread?) 7! Tcs thread state setg)
_ (operation? = Thread set state id

^ task creation state
0 = task creation state)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

266
CDRL A005

Thread Requests

9.17.6 Complete Request

The following schemas define the general forms of the thread set state and thread set -
state secure requests.

ProcessingThreadSetState

ProcessThreadViaThreadPortRequestGood

operation? = Thread set state id

ProcessingThreadSetStateSecure

ProcessThreadViaThreadPortRequestGood

operation? = Thread set state secure id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

ThreadSetStateGood

b= (RVThreadSetStateGood ^ ThreadSetStateState
^ ThreadSetStateSecureState)

>> RequestReturnOnlyStatus

ThreadSetStateSecureGood

b= (RVThreadSetStateSecureGood ^ ThreadSetStateState
^ ThreadSetStateSecureState)

>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

ThreadSetStateBad

b= (RVThreadSetStateInvalidFlavorOrCount _ RVThreadSetStateInvalidThread)
>> RequestNoOp

ThreadSetStateSecureBad

b= (RVThreadSetStateSecureInvalidFlavorOrCount
_ RVThreadSetStateSecureInsu�cientPermission

_ RVThreadSetStateSecureInvalidThread)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteThreadSetState b= (ThreadSetStateGood _ ThreadSetStateBad)
ExecuteThreadSetStateSecure b= (ThreadSetStateSecureGood _ ThreadSetStateSecureBad)

The full specification for kernel processing of a validatedthread set state or thread set -
state secure request consists of processing the request followed by its execution.

ThreadSetState b= ProcessingThreadSetState � ExecuteThreadSetState
ThreadSetStateSecure b= ProcessingThreadSetStateSecure � ExecuteThreadSetState

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 267

9.18 thread suspend

The request thread suspend increments the suspend count of a thread by 1. If the thread
was not already stopped, it will cause the thread to be stopped.

9.18.1 Client Interface

kern return t thread suspend
(mach port t target thread name);

9.18.1.1 Input Parameters The following input parameters are provided by the client of a
thread suspend request:

target thread name? — the client’s name for the thread that is to be suspended

ThreadSuspendClientInputs

target thread name? : NAME

A thread suspend request is invoked by sending a message to the port indicated by
target thread name? that has the operation field set toThread suspend id and has no body.

InvokeThreadSuspend

InvokeMachMsg

ThreadSuspendClientInputs

name? = target thread name?
operation? = Thread suspend id

9.18.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread suspend request:

return! — the status of the request

ThreadSuspendClientOutputs

return! : KERNEL RETURN

ThreadSuspendReceiveReply

InvokeMachMsgRcv

ThreadSuspendClientOutputs

return! = Text to status(msg body)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

268
CDRL A005

Thread Requests

9.18.2 Kernel Interface

9.18.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread suspend request:

target thread? — the thread that is to be suspended

ThreadSuspendInputs

target thread? : THREAD

9.18.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread suspend request:

return! — the status of the request

ThreadSuspendOutputs

return! : KERNEL RETURN

9.18.3 Request Criteria

No criteria are defined for the thread suspend request.

9.18.4 Return Values

Table 44 describes the values returned at the completion of the request and the conditions
under which each value is returned.

return!
Kern success

Table 44: Return Values for thread suspend

RVThreadSuspendGood

ThreadSuspendOutputs

return! = Kern success

9.18.5 State Changes

A successful thread suspend request increments the thread’s suspend count. The thread will
obtain the run state of Stopped . (Note it is possible that the thread already has this state.) A
thread in Stopped status cannot execute any user level instructions or system traps. If a thread
is suspending itself, then it will block (see Section 9.1.4.3). Otherwise, the run stateRunning
will be removed by ThreadDoWait (see Section 9.1.4.3). The OSF documentation states that
any system traps which are in progress when a thread is suspended will return after the thread
resumes (via thread resume).

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 269

ThreadSuspendState

ThreadInvariants

� ThreadExist

� Threads

� TasksAndThreads

� ThreadPri

� ThreadSchedPolicy

� ThreadStatistics

� ThreadExecStatus

� Events

� ThreadSampling

� SpecialPurposePorts

� ThreadAndProcessorSet

ThreadsAndProcessors

target thread? : THREAD
cpu?? : PROCESSOR

cpu?? 2 domactive thread

threads wired
0 = threads wired

thread suspend count
0 = thread suspend count

� ftarget thread? 7! thread suspend count(target thread?) + 1g

let rs == run state � ftarget thread? 7! run state(target thread?) [fStoppedgg
� ((thread suspend count (target thread?) = 0

^ target thread? = active thread(cpu??))
) ThreadBlock [target thread?=blocking thread ; rs=init run state])

^ ((thread suspend count (target thread?) = 0
^ target thread? 6= active thread(cpu??))
) ThreadDoWait [target thread?=stopping thread ; rs=init run state])

^ (thread suspend count (target thread?) 6= 0
) run state 0 = run state

^ swapped threads 0 = swapped threads

^ idle threads 0 = idle threads)

Review Note:
The DTOS KID states that unpredictable results may occur if a program suspends a thread and alters
its user state so that its direction is changed upon resuming.

9.18.6 Complete Request

The following schema defines the general form of thread suspend.

ProcessingThreadSuspend

ProcessThreadViaThreadPortRequestGood

operation? = Thread suspend id

A successful request makes the state changes described in the previous section and creates a

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

270
CDRL A005

Thread Requests

kernel reply.

ThreadSuspendGood b= (RVThreadSuspendGood ^ ThreadSuspendState)
>> RequestReturnOnlyStatus

Execution of the request consists of a good execution.

ExecuteThreadSuspend b= ThreadSuspendGood

The full specification for kernel processing of a validatedthread suspend request consists of
processing the request followed by its execution.

ThreadSuspend b= ProcessingThreadSuspend � ExecuteThreadSuspend

9.19 thread terminate

The request thread terminate permanently stops execution of a thread.

9.19.1 Client Interface

kern return t thread terminate
(mach port t target thread name);

9.19.1.1 Input Parameters The following input parameters are provided by the client of a
thread terminate request:

target thread name? — the client’s name for the thread to be destroyed

ThreadTerminateClientInputs

target thread name? : NAME

A thread terminate request is invoked by sending a message to the port indicated by
target thread name? that has the operation field set toThread terminate id and has no body.

InvokeThreadTerminate

InvokeMachMsg

ThreadTerminateClientInputs

name? = target thread name?
operation? = Thread terminate id

9.19.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a thread terminate request:

return! — the status of the request

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 271

ThreadTerminateClientOutputs

return! : KERNEL RETURN

ThreadTerminateReceiveReply

InvokeMachMsgRcv

ThreadTerminateClientOutputs

return! = Text to status(msg body)

9.19.2 Kernel Interface

9.19.2.1 Input Parameters The following input parameters are provided to the kernel for a
thread terminate request:

target thread? — the thread to be destroyed

ThreadTerminateInputs

target thread? : THREAD

9.19.2.2 Output Parameters The following output parameters are returned by the kernel for
a thread terminate request:

return! — the status of the request

ThreadTerminateOutputs

return! : KERNEL RETURN

9.19.3 Request Criteria

No criteria are defined for the thread terminate request.

9.19.4 Return Values

Table 45 describes the values returned at the completion of the request and the conditions
under which each value is returned.

return!
Kern success

Table 45: Return Values for thread terminate

Review Note:
It is actually possible for the prototype to return Kern failure . There are two cases where this appears
to happen.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

272
CDRL A005

Thread Requests

1. Someone else has already initiated a thread terminate request on target thread name?. Al-
though the current request returns Kern failure and does not itself destroy the target thread, the
thread is still destroyed by the other request which is in progress.

2. The client thread is currently being terminated itself. In this case, the client thread seems to hasten
its own termination rather than finishing the current request. Thus, unless there were additional
termination requests in progress for the target thread, it is not terminated.

It doesn’t appear that our model is deep enough to handle either of these cases.

RVThreadTerminateGood

ThreadTerminateOutputs

return! = Kern success

9.19.5 State Changes

A successful thread terminate request destroys the thread. The terminated thread is re-
moved from the set of existing threads, and from its relationship with its parent task.

ThreadTerminateStateExist

� ThreadExist

� TasksAndThreads

target thread? : THREAD

thread exists
0 = thread exists n ftarget thread?g

task thread rel 0 = task thread rel � ftarget thread?g

The processor assignment of the thread is also removed.

ThreadTerminateStateThreadAndProcessorSet

� ThreadAndProcessorSet

target thread? : THREAD

thread assignment rel 0 = ftarget thread?g� thread assignment rel

enabled sp
0 = enabled sp

ps max priority 0 = ps max priority

The thread no longer has information associated with it regarding priorities, scheduling policies,
statistics and sampling.

ThreadTerminateStatePriority

� ThreadPri

target thread? : THREAD

thread priority
0 = ftarget thread?g� thread priority

thread max priority
0 = ftarget thread?g� thread max priority

thread sched priority 0 = ftarget thread?g� thread sched priority

depressed threads 0 = depressed threads n ftarget thread?g
priority before depression 0 = ftarget thread?g� priority before depression

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 273

ThreadTerminateStateSchedPolicy

� ThreadSchedPolicy

target thread? : THREAD

thread sched policy
0 = ftarget thread?g� thread sched policy

thread sched policy data = ftarget thread?g� thread sched policy data

supported sp0 = supported sp

ThreadTerminateStateStatistics

� ThreadStatistics

target thread? : THREAD

user time 0 = ftarget thread?g� user time

system time 0 = ftarget thread?g� system time

cpu time 0 = ftarget thread?g� cpu time

sleep time0 = ftarget thread?g� sleep time

ThreadTerminateStateSampling

� ThreadSampling

target thread? : THREAD

sampled threads
0 = sampled threads n ftarget thread?g

thread sample types
0 = ftarget thread?g� thread sample types

thread sample sequence number
0

= ftarget thread?g� thread sample sequence number

thread samples0 = ftarget thread?g� thread samples

The thread no longer has information associated with it regarding execution status. If the cur-
rent thread is terminating itself, then it uses thread blocking to start another thread running.

Review Note:
The active thread on the CPU might change too. We have not modeled this change at all in the FTLS
and say nothing about it here either.

ThreadTerminateStateExecStatus

� ThreadExecStatus

ThreadsAndProcessors

ProcessorAndProcessorSet

target thread? : THREAD
cpu?? : PROCESSOR

((cpu??; target thread?) 2 active thread

) (let init run state == ftarget thread?g� run state

� ThreadBlock [target thread?=blocking thread]))
((cpu??; target thread?) =2 active thread

) run state0 = ftarget thread?g� run state

^ swapped threads 0 = swapped threads n ftarget thread?g)
thread suspend count 0 = ftarget thread?g� thread suspend count

threads wired
0 = threads wired n ftarget thread?g

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

274
CDRL A005

Thread Requests

All special ports are removed from the thread.

Review Note:
The prototype releases send rights on the sself port and exception port. This can cause no-sender
notifications to be sent if the number of send rights becomes zero. We have attempted to model the total
number of send rights inTotalSendRights . However, we have not yet modeled the sending of notifications.

ThreadTerminateStateSpecialPorts

� SpecialPurposePorts

� SpecialThreadPorts

target thread? : THREAD

thread self 0 = ftarget thread?g� thread self

thread sself 0 = ftarget thread?g� thread sself

thread eport
0 = ftarget thread?g� thread eport

The self port of the thread is destroyed.

ThreadTerminateStateSelfPort

� Ipc

SpecialThreadPorts

target thread? : THREAD

let port == thread self (target thread?)
� PortDestroy

Any event for which the thread was waiting is disassociated from the thread. The corresponding
event count is also incremented by 1.

Review Note:
I purposely violated the indentation conventions in this schema to show the nesting of the logical formulas.

ThreadTerminateStateEvent

� Events

target thread? : THREAD

thread waiting 0 = thread waiting � ftarget thread?g
event count 0

= fevent : EVENT COUNTER; count :
j event 2 domevent count

^ (((event ; target thread?) =2 thread waiting

^ count = event count(event))
_ ((event ; target thread?) 2 thread waiting

^ count = event count(event) + 1))
� (event ; count)g

State information is no longer available for the thread.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 275

ThreadTerminateStateMachineState

� ThreadMachineState

target thread? : THREAD

thread state
0

= f info : THREAD STATE INFO TYPES

� (target thread?; info) g
� thread state

The thread no longer has an instruction pointer.

ThreadTerminateStateInstr

� ThreadInstruction

target thread? : THREAD

instruction pointer 0 = ftarget thread?g� instruction pointer

No other changes occur in the system state.

ThreadTerminateState

ThreadInvariants

� Threads

� SpecialTaskPorts

ThreadTerminateStateExist

ThreadTerminateStatePriority

ThreadTerminateStateSchedPolicy

ThreadTerminateStateExecStatus

ThreadTerminateStateStatistics

ThreadTerminateStateSampling

ThreadTerminateStateSpecialPorts

ThreadTerminateStateThreadAndProcessorSet

ThreadTerminateStateEvent

ThreadTerminateStateMachineState

ThreadTerminateStateInstr

9.19.6 Complete Request

The following schema defines the general form of thread terminate.

ProcessingThreadTerminate

ProcessThreadViaThreadPortRequestGood

operation? = Thread terminate id

A request makes the state changes described in the previous section and creates a kernel reply.

ThreadTerminateGood b= (RVThreadTerminateGood ^ ThreadTerminateState)
>> RequestReturnOnlyStatus

Execution of the request consists of a good execution.

ExecuteThreadTerminate b= ThreadTerminateGood

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

276
CDRL A005

Thread Requests

The full specification for kernel processing of a validated thread terminate request consists
of processing the request followed by its execution.

ThreadTerminate b= ProcessingThreadTerminate � ExecuteThreadTerminate

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 277

Section 10
Virtual Memory Requests

10.1 Introduction to Virtual Memory Requests

This chapter describes the virtual memory kernel requests in DTOS.

10.1.1 Constants and Types

The following defines identifiers that are used to represent each of the requests. They are
partitioned into Vm task ops and Vm wire id :

Vm allocate id ;Vm allocate secure id ;Vm copy id ;Vm deallocate id ;
Vm inherit id ;Vm machine attribute id ;Vm map id ;Vm protect id ;
Vm read id ;Vm region id ;Vm region secure id ;Vm statistics id ;
Vm write id : OPERATION

Vm wire id : OPERATION
Vm task ops : �OPERATION

hVm allocate id ;Vm allocate secure id ;Vm copy id ;Vm deallocate id ;
Vm inherit id ;Vm machine attribute id ;Vm map id ;Vm protect id ;
Vm read id ;Vm region id ;Vm region secure id ;Vm statistics id ;Vm write idi

Values partition Vm task ops

Vm task ops � Allowed mach services(Pc task)
Vm wire id 2 Allowed mach services(Pc host control)

10.1.2 Required Permissions

For each operation there is a primary permission that is required to perform the operation. We
define here the portion of the Required permission function that pertains to vm requests.

f(Vm allocate id ;Allocate vm region);
(Vm allocate secure id ;Allocate vm region);
(Vm copy id ;Copy vm);
(Vm deallocate id ;Deallocate vm region);
(Vm inherit id ; Set vm region inherit);
(Vm machine attribute id ;Access machine attribute);
(Vm map id ;Map vm region);
(Vm protect id ;Chg vm region prot);
(Vm read id ;Read vm region);
(Vm region id ;Get vm region info);
(Vm region secure id ;Get vm region info);
(Vm statistics id ;Get vm statistics);
(Vm write id ;Write vm region)g

� Required permission

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

278
CDRL A005

Virtual Memory Requests

10.1.3 Invariant Information

No invariants are stated in this version of the VM Requests chapter.

10.1.4 General Information

10.1.4.1 Regions The following functions are needed to determine the pages specified by a
request.

Get page(va) — determines the page index for the page of a virtual address va.

Get o�set (va) — determines the offset on the page of a virtual address va.

Page start(va) — maps a virtual address va to the virtual address at the beginning of its
page.

Address num(va) — maps a virtual address va to a number on which calculations can be
performed.

Relative addr (addr ; n) — calculates the address n bytes past the address addr if such an
address exists.

Page aligned — denotes the set of virtual addresses that are the beginning of a virtual
page.

We assume that Vm start and Relative addr(Vm end ; 1) are page aligned.

Review Note:
It might make sense to move these axioms and the VAWord schema to the state chapter.

Editorial Note:
The definition of these functions as globals implies that there is a single global page size. This may not
be true in a distributed environment with multiple processors of different types. The prototype uses a
single global page size.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 279

Get page : VIRTUAL ADDRESS � PAGE INDEX

Get o�set : VIRTUAL ADDRESS � PAGE OFFSET

Page start : VIRTUAL ADDRESS " VIRTUAL ADDRESS

Page aligned : �VIRTUAL ADDRESS

Address num : VIRTUAL ADDRESS �
Relative addr : VIRTUAL ADDRESS � " VIRTUAL ADDRESS

Page start � Page start = Page start

8 va1; va2 : VIRTUAL ADDRESS

� Get page(va1) = Get page(va2), Page start(va1) = Page start(va2)
^ va1 2 Page aligned , va1 = Page start(va1)

8 va1; va2 : VIRTUAL ADDRESS

j Get page(va1) = Get page(va2) ^ Get o�set (va1) = Get o�set (va2)
� va1 = va2
domRelative addr = f addr : VIRTUAL ADDRESS ; n :
j Address num(addr) + n 2 ranAddress num g

8 addr : VIRTUAL ADDRESS ; n :
j (addr ; n) 2 domRelative addr

� Relative addr (addr ; n) = Address num
�(Address num(addr) + n)

Vm start 2 Page aligned

Relative addr(Vm end ; 1) 2 Page aligned

The contents of a task’s address space at a particular virtual address is denoted by the function
va word .

VAWord

PageAndMemory

AddressSpace

va word : TASK � VIRTUAL ADDRESS "WORD

8 task : TASK ; va : VIRTUAL ADDRESS

j (task ;Get page(va)) 2 dommap rel

^ map rel(task ;Get page(va)) 2 domrepresenting page

^ representing page(map rel(task ;Get page(va))) 2 dompage word fun

� va word(task ; va)
= (page word fun(representing page(map rel(task ;

Get page(va)))))(Get o�set (va))

We use Region of (va; size) to denote the region of size bytes starting at the page containing va
in some task’s address space. Since a region consists of a sequence of pages, the return from
this function is the set of page indices denoting pages containing an address betweenva and
va + size � 1. Because of this rounding to virtual page boundaries, the amount of memory in a
region may be greater than size.

Region of : VIRTUAL ADDRESS � "�PAGE INDEX

8 va : VIRTUAL ADDRESS ; size :
� Region of (va ; size) = f va1 : VIRTUAL ADDRESS

j Address num(va1) 2 Address num(va) : : (Address num(va) + size � 1)
� Get page(va1) g

VmRegionInUse [task ; address; size] denotes that Region of (address; size) contains at least one
page that is allocated in task ’s address space, and VmRegionNotInUse denotes that none of the

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

280
CDRL A005

Virtual Memory Requests

pages are allocated.

VmRegionInUse

AddressSpace

task : TASK
address : VIRTUAL ADDRESS

size :

Region of (address ; size) \ allocated�f task g� 6= �

VmRegionNotInUse b= AddressSpace ^ : VmRegionInUse

All addresses within a valid region must lie in the range Vm start..Vm end . We use
VmGoodRegion[address,size] to denote that the region of length size starting at address is valid.

Review Note:
Since we are assuming Vm start and Vm end +1 are page aligned we do not need to round address and
size.

VmGoodRegion

address : VIRTUAL ADDRESS

size :

Address num(address) : :Address num(address) + size � 1
� Address num(Vm start) : :Address num(Vm end)

Set region attr defines a function that maps all of the pages in a virtual memory region to a
particular attribute.

[R]
Set region attr : (�(TASK � PAGE INDEX)�R)

"((TASK � PAGE INDEX)� R)

8 region : �(TASK � PAGE INDEX); x : R
� Set region attr(region; x) =
f task va pair : TASK � PAGE INDEX j task va pair 2 region
� task va pair 7! x g

The vm write request takes a vm map copy parameter that describes a region of virtual
memory including the offset, the size and the task from whose address space the memory was
copied. We model this with MapCopy .

Review Note:
In the prototype, a map copy does not contain a direct reference to the task. Although we are uncertain,
it is even possible that the task from whose address space the map copy was produced no longer exists.
It is conceivable that the task was destroyed after the map copy was created, and the map entries are
still present since the map copy holds a reference to them. The correct solution here would be to model
maps as entities in there own right independent of tasks. This would require significant changes to the
state description.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 281

MapCopy

task : TASK
o�set : VIRTUAL ADDRESS

size :

10.1.4.2 Parameter Packaging Functions When invoking a kernel request, the following func-
tions package the parameters into a message body:

Address to body : VIRTUAL ADDRESS "MESSAGE BODY

Region to body : (VIRTUAL ADDRESS �)"MESSAGE BODY

Region bool to body : (VIRTUAL ADDRESS � � BOOLEAN)
"MESSAGE BODY

Region inheritance to body :
(VIRTUAL ADDRESS � � INHERITANCE OPTION)"MESSAGE BODY

Region bool sid to body :
(VIRTUAL ADDRESS � � BOOLEAN �OSI)"MESSAGE BODY

Region bool prot to body :
(VIRTUAL ADDRESS � � BOOLEAN � �PROTECTION)

"MESSAGE BODY

Address data to body :
(VIRTUAL ADDRESS �MapCopy �)"MESSAGE BODY

Name region prot to body :
(NAME � VIRTUAL ADDRESS � � �PROTECTION)"MESSAGE BODY

When creating a reply message from a request, the following functions package the output
parameters into a kernel reply:

Address to reply : VIRTUAL ADDRESS "KERNEL REPLY

Attributes to reply : (VIRTUAL ADDRESS � � �PROTECTION
��PROTECTION � INHERITANCE OPTION

�BOOLEAN � Capability �OFFSET)
"KERNEL REPLY

Secure attributes to reply : (VIRTUAL ADDRESS � � �PROTECTION
�INHERITANCE OPTION � BOOLEAN � Capability

��PROTECTION �OFFSET
�OSI � �Kernel permission)

"KERNEL REPLY

When receiving a reply message from the kernel the following functions unpack the message
body to obtain the output parameters (including the return status):

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

282
CDRL A005

Virtual Memory Requests

Text to address and status :MESSAGE BODY

"(VIRTUAL ADDRESS � KERNEL RETURN)
Text to region info and status :MESSAGE BODY

"(VIRTUAL ADDRESS � � �PROTECTION
��PROTECTION � INHERITANCE OPTION � BOOLEAN
�Capability �OFFSET � KERNEL RETURN)

Text to region secure info and status :MESSAGE BODY

"(VIRTUAL ADDRESS � � �PROTECTION
��PROTECTION � INHERITANCE OPTION � BOOLEAN
�Capability �OFFSET � �PROTECTION
�OSI � �Kernel permission �KERNEL RETURN)

Review Note:
The command Text to status is also used in this chapter. It is declared in the Thread Request chapter
introduction.

10.1.5 Kernel Processing

The kernel performs processing for a VM request only when it detects a break indicating that
a request has been received through a port of the appropriate class,Pc task or Pc host control.

For a request sent to a task port, if the specified service port no longer exists, then a
Kern invalid argument status code is returned.

NotTaskPort

ProcessRequest

�Mach

reply to port ! : �PORT
reply! : KERNEL REPLY

return! : KERNEL RETURN

pc? = Pc task

operation? 2 Vm task ops

service port? =2 domself task

reply to port ! = reply to port?
return! = Kern invalid argument

For a vm wire request, which must be sent to a host control port, if the service port no longer
exists, then a Kern invalid host status code is returned.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 283

NotHostTaskPort

ProcessRequest

�Mach

reply to port ! : �PORT
reply! : KERNEL REPLY

return! : KERNEL RETURN

pc? = Pc host control

operation? = Vm wire id

service port? 6= host control port

reply to port ! = reply to port?
return! = Kern invalid host

ProcessVMRequestBad b= (NotTaskPort _ NotHostTaskPort) >> RequestNoOp

Otherwise, the kernel processes the request. In this case, we use the following schema to
represent the parameters to the requests:

VMParameters

address? : VIRTUAL ADDRESS

anywhere? : BOOLEAN
copy? : BOOLEAN
count? :
cur protection? : �PROTECTION
data? :MapCopy

data count? :
dest address? : VIRTUAL ADDRESS

host priv? : HOST
inheritance? : INHERITANCE OPTION

mask? : VIRTUAL ADDRESS

max protection? : �PROTECTION
memory object? : Capability
new inheritance? : INHERITANCE OPTION

new protection? : �PROTECTION
protection? : �PROTECTION
obj sid? : OSI
o�set? : OFFSET
set maximum? : BOOLEAN
shared? : BOOLEAN
size? :
source address? : VIRTUAL ADDRESS

target task? : TASK
wired access? : �PROTECTION

The interpretation of the components of this schema are:

address? — starting address for a region.

anywhere? — a Boolean indicating whether the region can be anywhere in the target task’s
address space.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

284
CDRL A005

Virtual Memory Requests

copy? — a Boolean indicating whether a copy is made of an area of a memory object.

count? — the number of bytes in a region.

cur protection? — the initial current protection for a region.

data? — a copy of a portion of a memory map.

data count? — the number of bytes in a data array (ignored).

dest address? — starting address for the destination region.

host priv? — the host on which the target task executes.

inheritance? — the inheritance attribute for the region.

mask? — alignment restrictions for the starting address of a region.

max protection? — the maximum protection for a region.

memory object? — the port naming a memory object.

new inheritance? — the new inheritance attribute for the region.

new protection? — the new protection for the region.

protection? — the current protection for a region including those protections

obj sid? — the security identifier for a region.

o�set? — an offset within a memory object, in bytes.

set maximum? — a Boolean indicating whether the maximum protection or the current pro-
tection should be set.

shared? — a Boolean indicating whether the region is shared with another task.

size? — the number of bytes in a region.

source address? — starting address for the source region.

target task? — the task to whose address space the command applies.

wired access? — the pageability of a region.

The following schema determines the target task based upon the task service port to which a
task operation request has been sent.

MessageToVMParameters

ProcessRequest

SpecialTaskPorts

VMParameters

pc? = Pc task

operation? 2 Vm task ops

service port? 2 domself task

target task? = self task (service port?)

The following schema verifies that a vm wire request has been sent to the host control port.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 285

MessageToHostParameters

ProcessRequest

HostsAndPorts

VMParameters

pc? = Pc host control

operation? = Vm wire id

service port? = host control port

10.1.6 Security Server Request

For some requests (e.g., vm allocate) a second security check is needed. In this case the access
vector cache will be checked for the needed information. If the information is not present (or
not valid for the client thread) the security server is queried, and the kernel must wait for the
response before continuing the execution of the request. We represent this waiting time by
adding an element to the set of pending requests that contains the current request, the client
thread, and the OSI associated with the security server request. The schemaVmSecurityRequest
checks the cache for permission perm from the subject ssi to the object osi . If it is not found
(i.e., Cache unde�ned), the request is placed in PENDINGREQUEST .

Vm request to pending request : Request � THREAD � OSI

" PENDREQUEST

VmSecurityRequest

Transition

KernelAllows

� PendingRequests

ThreadsAndProcessors

Request?
perm : PERMISSION

ssi : SSI
osi : OSI

let thread == active thread(cpu??)
� cache allows(thread ; ssi; osi ; perm) = Cache unde�ned

^ PENDINGREQUEST 0 = PENDINGREQUEST

] �Vm request to pending request(�Request?; thread; osi)�

After the security request has been processed, the kernel request is removed from the set of
pending requests by the schemaVmContinue . The client thread and the OSI supplied in the
security server request are also retrieved.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

286
CDRL A005

Virtual Memory Requests

VmContinue

� PendingRequests

SpecialTaskPorts

VMParameters

Request?
thread

0 : THREAD
obj sid 0 : OSI

9 pending request : PENDREQUEST
� pending request � PENDINGREQUEST

^ pending request

= Vm request to pending request(�Request?; thread 0; obj sid 0)
^ PENDINGREQUEST 0 = PENDINGREQUEST ! �pending request�
^ pc? = Pc task

^ operation? 2 Vm task ops

If the required permission is already in the access vector cache, the security server request will
not be necessary. VmNoSecurityRequest describes this case.

VmNoSecurityRequest

Transition

KernelAllows

ThreadsAndProcessors

Request?
perm : PERMISSION

ssi : SSI
osi : OSI

let thread == active thread(cpu??)
� cache allows(thread ; ssi; osi ; perm) 6= Cache unde�ned

We now describe the individual virtual memory requests.

10.2 vm allocate and vm allocate secure

The vm allocate and vm allocate secure task requests allocate a zero-filled region of mem-
ory in the target task’s address space. The physical memory is not allocated until an executing
thread references the new virtual memory, and a memory object managed by the default man-
ager is not created until the region must be swapped out. vm allocate secure allows the
client to specify a security identifier for the allocated region, whilevm allocate uses a default
security identifier.

10.2.1 Client Interface

kern return t vm allocate
(mach port t target task name,
vm address t* address,
vm size t size,
boolean t anywhere);

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 287

kern return t vm allocate secure
(mach port t target task name,
vm address t* address,
vm size t size,
boolean t anywhere,
security id t obj sid);

10.2.1.1 Input Parameters The following input parameters are provided by the client of a
vm allocate request:

target task name? — the client’s name for the task in whose virtual address space the
region is to be allocated

address? — the requested starting address for the region. This parameter is ignored if
anywhere? is True. Otherwise, it is rounded down to the start of a page boundary.

size? — the number of bytes to allocate. It is rounded up to an integer number of pages.
(This differs from the interpretation of size? used in the other VM requests.)

anywhere? — a Boolean indicating whether the allocated region can be placed anywhere
in the target task’s address space or must be placed ataddress?

VmAllocateClientInputs

target task name? : NAME

address? : VIRTUAL ADDRESS

size? :
anywhere? : BOOLEAN

The following additional parameter must be provided by the client of a vm allocate secure
request:

obj sid? — security identifier that will be attached to the newly allocated region.

VmAllocateSecureClientInputs

VmAllocateClientInputs

obj sid? : OSI

A vm allocate request is invoked by sending a message to the port indicated by
target task name? that has the operation field set toVm allocate id and has a body consisting
of address?, size?, and anywhere?.

InvokeVmAllocate

InvokeMachMsg

VmAllocateClientInputs

name? = target task name?
operation? = Vm allocate id

msg body = Region bool to body (address?; size?; anywhere?)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

288
CDRL A005

Virtual Memory Requests

A vm allocate secure request is invoked by sending a message to the port indicated by
target task name? that has the operation field set to Vm allocate secure id and has a body
consisting of address?, size?, anywhere?, and obj sid?.

InvokeVmAllocateSecure

InvokeMachMsg

VmAllocateSecureClientInputs

name? = target task name?
operation? = Vm allocate secure id

msg body = Region bool sid to body (address?; size?; anywhere?; obj sid?)

10.2.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm allocate or vm allocate secure request:

address! — the actual starting address for the memory object

return! — the status of the request

VmAllocateClientOutputs

address! : VIRTUAL ADDRESS

return! : KERNEL RETURN

VmAllocateReceiveReply

InvokeMachMsgRcv

VmAllocateClientOutputs

(address !; return!) = Text to address and status(msg body)

10.2.2 Kernel Interface

10.2.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm allocate request:

target task? — the task in whose virtual address space the region is to be allocated

address? — the requested starting address for the region. This parameter is ignored if
anywhere? is True. Otherwise, it is rounded down to the start of a page boundary.

size? — the number of bytes to allocate. It is rounded up to an integer number of pages.
(This differs from the interpretation of size? used in the other VM requests.)

anywhere? — a Boolean indicating whether the allocated region can be placed anywhere
in the target task’s address space or must be placed ataddress?

VmAllocateInputs

target task? : TASK
address? : VIRTUAL ADDRESS

size? :
anywhere? : BOOLEAN

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 289

The following additional parameter must be provided by the client of a vm allocate secure
request:

obj sid? — security identifier that will be attached to the newly allocated region.

VmAllocateSecureInputs

VmAllocateInputs

obj sid? : OSI

10.2.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm allocate or vm allocate secure request:

address! — the actual starting address for the memory object

return! — the status of the request

VmAllocateOutputs

address! : VIRTUAL ADDRESS

return! : KERNEL RETURN

Upon completion of the processing of either avm allocate or a vm allocate secure request,
a reply message is built from the output parameters.

VmAllocateReply

RequestReturn

address? : VIRTUAL ADDRESS

reply? = Address to reply(address?)

10.2.3 Request Criteria

The following criteria are defined for the vm allocate and vm allocate secure requests.

C1 — The security identifier for the new region can be specified by the client thread,
active thread(cpu??), as determined from the result of a security policy query. The value
of obj sid is either vm port sid (target task?) for a vm allocate request or the input pa-
rameter obj sid? for a vm allocate secure request. The binding ofobj sid is determined
by the appropriate processing schema from Section 10.2.6.

C1VmAllocateGoodSecurityId
SubjectSid

KernelAllows

ThreadsAndProcessors

thread : THREAD
obj sid : OSI
cpu?? : PROCESSOR

thread = active thread(cpu??)
thread 2 dom thread sid

cache allows(thread ; thread sid (thread); obj sid ;Map vm region)
= Cache allowed

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

290
CDRL A005

Virtual Memory Requests

NotC1VmAllocateGoodSecurityId b= SubjectSid ^ KernelAllows
^ ThreadsAndProcessors ^ : C1VmAllocateGoodSecurityId

C2 — The task remains after a possible second security server query has been made. The
port service port? is the port through which the request was received.

C2VmAllocateTaskRemains
SpecialTaskPorts

target task? : TASK
service port? : PORT

(service port?; target task?) 2 self task

NotC2VmAllocateTaskRemains b= SpecialTaskPorts ^ : C2VmAllocateTaskRemains

C3 — The parameter size? is greater than zero.

C3VmAllocatePositiveSize
size? :

size? > 0

NotC3VmAllocatePositiveSize b= : C3VmAllocatePositiveSize

C4 — The parameter anywhere? = True, or the addresses specified for the region (when
rounded) are valid.

C4VmAllocateGoodAddress
address? : VIRTUAL ADDRESS

size? :
anywhere? : BOOLEAN

anywhere? = True

_ (let address == Page start(address?); size == size?
� VmGoodRegion)

NotC4VmAllocateGoodAddress b= : C4VmAllocateGoodAddress

C5 — There is room in target task?’s address space to allocate a region of length size?
starting at a page boundary. If anywhere? = False, there is room starting at the beginning
of the page containing address?.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 291

C5VmAllocateRoomToAllocate
AddressSpace

target task? : TASK
address? : VIRTUAL ADDRESS

size? :
anywhere? : BOOLEAN
address : VIRTUAL ADDRESS

9 size :
� (anywhere? = True _ address = Page start(address?))
^ address 2 Page aligned

^ size = size?
^ VmGoodRegion
^ VmRegionNotInUse [target task?=task]

NotC5VmAllocateRoomToAllocate b= AddressSpace ^ : C5VmAllocateRoomToAllocate

Review Note:
Do we also require Have execute , Have read and Have write permissions for the target task?

10.2.4 Return Values

Table 46 describes the values returned at the completion of the request and the conditions under
which each value is returned. The value address is any address that satisfied the criterion C5.
When anywhere? is False, this is the address at the start of the page containingaddress?. When
anywhere? is True, the starting address of the allocated region depends uponaddress?, size? and
the allocated pages of target task?. The relationship between these three items and the address
returned depends upon the implementation algorithm. In the prototype if C3 if false and C1
and C2 are true, the zero address, Address num

�(0), is returned. We leave unspecified the
precise address returned in cases where return! 6= Kern success .

Editorial Note:
The algorithm currently used in the prototype will never yield a page that starts earlier in the memory
than the beginning of the page containing address?. Thus, if the client specifies the last page and it is
already allocated, the return value will beKern no space even if there are pages available earlier in the
address space.

The value of address ! when an error occurs is undefined in the design and therefore also depends
on the implementation algorithm and is left unspecified. In the case where more than one error
occurs we assume that the first applicable return status from the following list is returned:
Kern insu�cient permission, Kern invalid argument , Kern invalid address and Kern no space.

Review Note:
The prototype checks the conditions in the order C1, C2, C3, C4 and C5.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

292
CDRL A005

Virtual Memory Requests

address! return! C1 C2 C3 C4 C5
address Kern success T T T T T

— Kern no space T T T T F
— Kern invalid address T T T F -

Address num�(0) Kern success T T F - -
— Kern invalid argument T F - - -
— Kern insu�cient permission F - - - -

Table 46: Return Values for vm allocate and vm allocate secure

RVVmAllocateSuccessful

AddressSpace

VmAllocateOutputs

C1VmAllocateGoodSecurityId
C2VmAllocateTaskRemains
C3VmAllocatePositiveSize
C4VmAllocateGoodAddress
C5VmAllocateRoomToAllocate

address! = address

return! = Kern success

RVVmAllocateNoSpace

AddressSpace

VmAllocateOutputs

C1VmAllocateGoodSecurityId
C2VmAllocateTaskRemains
C3VmAllocatePositiveSize
C4VmAllocateGoodAddress
NotC5VmAllocateRoomToAllocate

return! = Kern no space

RVVmAllocateBadAddress

AddressSpace

VmAllocateOutputs

C1VmAllocateGoodSecurityId
C2VmAllocateTaskRemains
C3VmAllocatePositiveSize
NotC4VmAllocateGoodAddress

return! = Kern invalid address

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 293

RVVmAllocateVacuous

AddressSpace

VmAllocateOutputs

C1VmAllocateGoodSecurityId
C2VmAllocateTaskRemains
NotC3VmAllocatePositiveSize

address! = Address num
�(0)

return! = Kern success

RVVmAllocateBadArgument

AddressSpace

VmAllocateOutputs

C1VmAllocateGoodSecurityId
NotC2VmAllocateTaskRemains

return! = Kern invalid argument

RVVmAllocateBadSecurityId

AddressSpace

VmAllocateOutputs

NotC1VmAllocateGoodSecurityId

return! = Kern insu�cient permission

10.2.5 State Changes

When the request is successful, a new region size? in length is added to the mapped address
space for target task? starting at address! (one of the outputs calculated above). This region is
initially mapped to the null memory object. The maximum protections for the new region are
set so that they allow all accesses, and the current protections allow reading and writing. The
inheritance for the region is initialized to Inheritance option copy . The initial value of 0 will be
set later when the region is first accessed.

Review Note:
The c protection ’ should take into account the access vector contents. It should be the intersection of
read and write with the permissions allowed from the target task to its vm port sid.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

294
CDRL A005

Virtual Memory Requests

VmAllocateState

� AddressSpace

� Protection

� Inheritance

Memory

address! : VIRTUAL ADDRESS

size? :
target task? : TASK

let region == f target task? g �Region of (address !; size?)
� allocated 0 = allocated [region
^ map rel 0�region� � (fNull memoryg �OFFSET)
^ m protection 0 = m protection

�Set region attr(region; fRead ;Write;Executeg)
^ c protection 0 = c protection � Set region attr(region; fRead ;Writeg)
^ inheritance 0 = inheritance � Set region attr(region; Inheritance option copy)

VmAllocateSecureState

� PageSid

address! : VIRTUAL ADDRESS

size? :
target task? : TASK
obj sid : OSI

page sid
0 = page sid

�Set region attr((f target task? g �Region of (address !; size?)); obj sid)

10.2.6 Complete Request

The general form of a vm allocate request received through a task port has the following
form. If a security server request is needed, then after the processing is begun the security
request is made and the kernel request is marked as pending. It will later be continued by
VmContinue. Note that obj sid 0 is set to the default virtual memory security identifier for the
target task.

ProcessingVmAllocateSignature

PortSid

MessageToVMParameters

� DtosExec

�Mach

� DtosAdditions

� ValidatedRequests

obj sid
0 : OSI

thread
0 : THREAD

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 295

ProcessingVmAllocateNoRequest

Transition

ProcessingVmAllocateSignature

operation? = Vm allocate id

thread 0 = active thread(cpu??)
obj sid 0 = vm port sid(target task?)
let subject == thread sid(thread 0)
� VmNoSecurityRequest [subject=ssi; obj sid

0=osi ;Map vm region=perm]

ProcessingVmAllocateWithRequest

Transition

ProcessingVmAllocateSignature

operation? = Vm allocate id

thread
0 = active thread(cpu??)

obj sid
0 = vm port sid(target task?)

let subject == thread sid(thread 0)
� VmSecurityRequest [subject=ssi; obj sid 0=osi ;Map vm region=perm]

The general form of a vm allocate secure request received through a task port has the
following form. If a security server request is needed, then after the processing is begun the
security request is made and the kernel request is marked as pending. It will later be continued
by VmContinue. Note that obj sid

0 is set to the security identifier specified byobj sid?.

ProcessingVmAllocateSecureNoRequest

Transition

ProcessingVmAllocateSignature

operation? = Vm allocate secure id

thread
0 = active thread(cpu??)

obj sid
0 = obj sid?

let subject == thread sid(thread 0)
� VmNoSecurityRequest [subject=ssi; obj sid 0=osi ;Map vm region=perm]

ProcessingVmAllocateSecureWithRequest

Transition

ProcessingVmAllocateSignature

operation? = Vm allocate secure id

thread 0 = active thread(cpu??)
obj sid 0 = obj sid?
let subject == thread sid(thread 0)
� VmSecurityRequest [subject=ssi; obj sid

0=osi ;Map vm region=perm]

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmAllocateGood

b= ((RVVmAllocateSuccessful _ RVVmAllocateVacuous)
^ VmAllocateState ^ VmAllocateSecureState)

>> VmAllocateReply

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

296
CDRL A005

Virtual Memory Requests

An unsuccessful request returns an error status.

VmAllocateBad

b= (RVVmAllocateBadSecurityId _ RVVmAllocateBadArgument
_ RVVmAllocateBadAddress _ RVVmAllocateNoSpace)

>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

Review Note:
The component address is hidden so that ExecuteVmAllocate has a signature consistent with other
requests.

ExecuteVmAllocate b= (VmAllocateGood _ VmAllocateBad) n (address)

The full specification for kernel processing of a validated vm allocate or vm allocate -
secure request consists of processing the request, waiting until the correct information is in
the access vector cache (if necessary), and then executing the request.

VmAllocate

b= ([VmContinue j operation? = Vm allocate id] _ ProcessingVmAllocateNoRequest)
� ExecuteVmAllocate

VmAllocateSecure

b= ([VmContinue j operation? = Vm allocate secure id]
_ ProcessingVmAllocateSecureNoRequest)

� ExecuteVmAllocate

10.3 vm deallocate

The vm deallocate task request deallocates a region of memory in the target task’s address
space.

10.3.1 Client Interface

kern return t vm deallocate
(mach port t target task name,
vm address t address,
vm size t size);

10.3.1.1 Input Parameters The following input parameters are provided by the client of a
vm deallocate request:

target task name? — the client’s name for the task in whose virtual address space the
region is to be deallocated

address? — starting address for the region

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 297

size? — the number of bytes to deallocate. Any page that contains an address in the range
address? : : (address? + size?� 1) will be deallocated.

VmDeallocateClientInputs

target task name? : NAME

address? : VIRTUAL ADDRESS

size? :

A vm deallocate request is invoked by sending a message to the port indicated by
target task name? that has the operation field set to Vm deallocate id and has a body con-
sisting of address? and size?.

InvokeVmDeallocate

InvokeMachMsg

VmDeallocateClientInputs

name? = target task name?
operation? = Vm deallocate id

msg body = Region to body (address?; size?)

10.3.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm deallocate request:

return! — the status of the request

VmDeallocateClientOutputs

return! : KERNEL RETURN

VmDeallocateReceiveReply

InvokeMachMsgRcv

VmDeallocateClientOutputs

return! = Text to status(msg body)

10.3.2 Kernel Interface

10.3.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm deallocate request:

target task? — the task in whose virtual address space the region is to be deallocated

address? — starting address for the region

size? — the number of bytes to deallocate. Any page that contains an address in the range
address? : : (address? + size?� 1) will be deallocated.

VmDeallocateInputs

target task? : TASK
address? : VIRTUAL ADDRESS

size? :

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

298
CDRL A005

Virtual Memory Requests

10.3.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm deallocate request:

return! — the status of the request

VmDeallocateOutputs

return! : KERNEL RETURN

10.3.3 Request Criteria

No criteria are defined for the vm deallocate request.

10.3.4 Return Values

Table 47 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Editorial Note:
As noted by CLI, the OSF KID states thatKern invalid address is returned if there are any unallocated
pages in the region to be deallocated. The prototype always returnsKern success .

return!
Kern success

Table 47: Return Values for vm deallocate

RVVmDeallocateSuccessful

VmDeallocateOutputs

return! = Kern success

10.3.5 State Changes

A successful vm deallocate request deallocates virtual memory. It also deletes any system
attributes that are only defined for allocated memory (protections, inheritance, security iden-
tifier).

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 299

VmDeallocateState

� AddressSpace

� Protection

� Inheritance

address? : VIRTUAL ADDRESS

size? :
target task? : TASK

let region == f target task? g �Region of (address?; size?)
� allocated 0 = allocated n region
^ map rel 0 = region �map rel

^ m protection 0 = region �m protection

^ c protection 0 = region � c protection

^ inheritance 0 = region � inheritance

VmDeallocateSecureState

� PageSid

address? : VIRTUAL ADDRESS

size? :
target task? : TASK

page sid
0 = (f target task? g � Region of (address?; size?))� page sid

10.3.6 Complete Request

The general form of a vm deallocate request received through a task port has the following
form.

ProcessingVmDeallocate

MessageToVMParameters

operation? = Vm deallocate id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmDeallocateGood b= (RVVmDeallocateSuccessful ^ VmDeallocateState)
>> RequestReturnOnlyStatus

Execution of the request consists of a good execution.

ExecuteVmDeallocate b= VmDeallocateGood

The full specification for kernel processing of a validated vm deallocate request consists of
processing the request followed by its execution.

VmDeallocate b= ProcessingVmDeallocate � ExecuteVmDeallocate

10.4 vm inherit

The vm inherit task request sets the inheritance attribute for a region within a specified
task’s address space.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

300
CDRL A005

Virtual Memory Requests

10.4.1 Client Interface

kern return t vm inherit
(mach port t target task name,
vm address t address,
vm size t size,
vm inherit t new inheritance);

10.4.1.1 Input Parameters The following input parameters are provided by the client of a
vm inherit request:

target task name? — the client’s name for the task in whose virtual address space the
region is contained

address? — starting address for the region

size? — the number of bytes in the region. The inheritance attributes will be modified for
any page that contains an address in the rangeaddress? : : (address? + size?� 1).

new inheritance? — the new inheritance attribute for the region

VmInheritClientInputs

target task name? : NAME

address? : VIRTUAL ADDRESS

size? :
new inheritance? : INHERITANCE OPTION

A vm inherit request is invoked by sending a message to the port indicated by
target task name? that has the operation field set to Vm inherit id and has a body consist-
ing of address?, size?, and new inheritance?.

InvokeVmInherit

InvokeMachMsg

VmInheritClientInputs

name? = target task name?
operation? = Vm inherit id

msg body = Region inheritance to body (address?; size?; new inheritance?)

10.4.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm inherit request:

return! — the status of the request

VmInheritClientOutputs

return! : KERNEL RETURN

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 301

VmInheritReceiveReply

InvokeMachMsgRcv

VmInheritClientOutputs

return! = Text to status(msg body)

10.4.2 Kernel Interface

10.4.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm inherit request:

target task? — the task in whose virtual address space the region is contained

address? — starting address for the region

size? — the number of bytes in the region. The inheritance attributes will be modified for
any page that contains an address in the rangeaddress? : : (address? + size?� 1).

new inheritance? — the new inheritance attribute for the region

VmInheritInputs

target task? : TASK
address? : VIRTUAL ADDRESS

size? :
new inheritance? : INHERITANCE OPTION

10.4.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm inherit request:

return! — the status of the request

VmInheritOutputs

return! : KERNEL RETURN

10.4.3 Request Criteria

The following criteria are defined for the vm inherit request.

C1 — The value of new inheritance? is valid.

C1VmInheritGoodInheritance
new inheritance? : INHERITANCE OPTION

new inheritance? 2 f Inheritance option share; Inheritance option copy ; Inheritance option none g

NotC1VmInheritGoodInheritance b= : C1VmInheritGoodInheritance

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

302
CDRL A005

Virtual Memory Requests

10.4.4 Return Values

Table 48 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:
Although the OSF KID states thatKern invalid address is returned if the address is illegal or specifies
a non-allocated region, in the prototype, Kern invalid address is never returned for this request. It
appears thatKern success is returned in the case of a bad address. CLI has also noted this discrepancy.

return! C1
Kern success T
Kern invalid argument F

Table 48: Return Values for vm inherit

RVVmInheritSuccessful

VmInheritOutputs

C1VmInheritGoodInheritance

return! = Kern success

RVVmInheritBadInheritance

VmInheritOutputs

NotC1VmInheritGoodInheritance

return! = Kern invalid argument

10.4.5 State Changes

A successful vm inherit sets the inheritance attribute for the region defined byaddress? and
size? to the value specified by new inheritance?.

VmInheritState

� Inheritance

� AddressSpace

target task? : TASK
address? : VIRTUAL ADDRESS

size? :
new inheritance? : INHERITANCE OPTION

let region == f page index : PAGE INDEX

j page index 2 Region of (address?; size?)
^ (target task?; page index) 2 allocated

� (target task?; page index) g
� inheritance 0 = inheritance � Set region attr(region; new inheritance?)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 303

10.4.6 Complete Request

The general form of a vm inherit request received through a task port has the following form.

ProcessingVmInherit

MessageToVMParameters

operation? = Vm inherit id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmInheritGood b= (RVVmInheritSuccessful ^ VmInheritState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

VmInheritBad

b= RVVmInheritBadInheritance >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteVmInherit b= VmInheritGood _ VmInheritBad

The full specification for kernel processing of a validated vm inherit request consists of pro-
cessing the request followed by its execution.

VmInherit b= ProcessingVmInherit � ExecuteVmInherit

10.5 vm protect

The vm protect task request sets the current and/or maximum protections for a region within
a specified task’s address space. If the parameter set maximum? is False, only the current
protections are set. If set maximum? is True, the maximum protections are set, and the current
protections are also set so that they do not exceed the new maximum. Note that this request
cannot be used to increase the maximum protections but only to decrease them.

10.5.1 Client Interface

kern return t vm protect
(mach port t target task name,
vm address t address,
vm size t size,
boolean t set maximum,
vm prot t new protection);

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

304
CDRL A005

Virtual Memory Requests

10.5.1.1 Input Parameters The following input parameters are provided by the client of a
vm protect request:

target task name? — the client’s name for the task in whose virtual address space the
region is contained

address? — starting address for the region

size? — the number of bytes in the region. The protections will be modified for any page
that contains an address in the rangeaddress? : : (address? + size?� 1).

set maximum? — a Boolean indicating whether the maximum protection should be set.
A value of True indicates the maximum protection should be set. (The current protection
is also set if it violates the new maximum.) A value of False indicates only the current
protection is set.

new protection? — the new protection for the region

VmProtectClientInputs

target task name? : NAME

address? : VIRTUAL ADDRESS

size? :
set maximum? : BOOLEAN
new protection? : �PROTECTION

A vm protect request is invoked by sending a message to the port indicated by
target task name? that has the operation field set toVm protect id and has a body consisting
of address?, size?, set maximum?, and new protection?.

InvokeVmProtect

InvokeMachMsg

VmProtectClientInputs

name? = target task name?
operation? = Vm protect id

msg body

= Region bool prot to body(address?; size?; set maximum?; new protection?)

10.5.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm protect request:

return! — the status of the request

VmProtectClientOutputs

return! : KERNEL RETURN

VmProtectReceiveReply

InvokeMachMsgRcv

VmProtectClientOutputs

return! = Text to status(msg body)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 305

10.5.2 Kernel Interface

10.5.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm protect request:

target task? — the task in whose virtual address space the region is contained

address? — starting address for the region

size? — the number of bytes in the region. The protections will be modified for any page
that contains an address in the rangeaddress? : : (address? + size?� 1).

set maximum? — a Boolean indicating whether the maximum protection should be set.
A value of True indicates the maximum protection should be set. (The current protection
is also set if it violates the new maximum.) A value of False indicates only the current
protection is set.

new protection? — the new protection for the region

VmProtectInputs

target task? : TASK
address? : VIRTUAL ADDRESS

size? :
set maximum? : BOOLEAN
new protection? : �PROTECTION

10.5.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm protect request:

return! — the status of the request

VmProtectOutputs

return! : KERNEL RETURN

10.5.3 Request Criteria

The following criteria are defined for the vm protect request.

C1 — The new protection is less than the existing maximum protection.

C1VmProtectGoodProtection
Protection

target task? : TASK
address? : VIRTUAL ADDRESS

size? :
new protection? : �PROTECTION

8 page index : PAGE INDEX

j page index 2 Region of (address?; size?)
� (target task?; page index) 2 domm protection

^ new protection? � m protection (target task?; page index)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

306
CDRL A005

Virtual Memory Requests

NotC1VmProtectGoodProtection b= Protection ^ : C1VmProtectGoodProtection

10.5.4 Return Values

Table 49 describes the values returned at the completion of the request and the conditions
under which each value is returned.

Review Note:
Although the OSF KID states thatKern invalid address is returned if the address is illegal or specifies
a non-allocated region, in the prototype, Kern invalid address is never returned for this request. It
appears that Kern success is returned in the case of an unallocated page. CLI has also noted this
discrepancy.

return! C1
Kern success T
Kern protection failure F

Table 49: Return Values for vm protect

RVVmProtectSuccessful

VmProtectOutputs

C1VmProtectGoodProtection

return! = Kern success

RVVmProtectBadProtection

VmProtectOutputs

NotC1VmProtectGoodProtection

return! = Kern protection failure

10.5.5 State Changes

A successful vm protect sets either the maximum or the current memory protection (read,
write, and/or execute) allowed for the region, depending on whether set maximum? is True or
False. If the maximum is set below the current protection, the current protection must also be
adjusted to remove any permissions that are not within the new maximum.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 307

VmProtectState

� Protection

� AddressSpace

target task? : TASK
address? : VIRTUAL ADDRESS

size? :
set maximum? : BOOLEAN
new protection? : �PROTECTION

let region == f page index : PAGE INDEX

j page index 2 Region of (address?; size?)
^ (target task?; page index) 2 allocated

� (target task?; page index) g
� (set maximum? = True

^ m protection 0 = m protection � Set region attr(region; new protection?)
^ c protection 0 = c protection

�f task va pair : TASK � PAGE INDEX j task va pair 2 region
� task va pair 7! c protection(task va pair) \ new protection? g)

_ (set maximum? = False

^ c protection 0 = c protection � Set region attr(region; new protection?))

Review Note:
This ignores the protections coming from the security server. Right now these protections are not in the
model of the state.

10.5.6 Complete Request

The general form of a vm protect request received through a task port has the following form.

ProcessingVmProtect

MessageToVMParameters

operation? = Vm protect id

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmProtectGood b= (RVVmProtectSuccessful ^ VmProtectState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

VmProtectBad

b= RVVmProtectBadProtection >> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteVmProtect b= VmProtectGood _ VmProtectBad

The full specification for kernel processing of a validated vm protect request consists of
processing the request followed by its execution.

VmProtect b= ProcessingVmProtect � ExecuteVmProtect

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

308
CDRL A005

Virtual Memory Requests

10.6 vm write

The vm write task request writes an allocated region in the target task’s address space.

10.6.1 Client Interface

kern return t vm write
(mach port t target task name,
vm address t address,
vm offset t data,
mach msg type number t data count);

10.6.1.1 Input Parameters The following input parameters are provided by the client of a
vm write request:

target task name? — the client’s name for the task in whose virtual address space the
region is to be written

address? — starting address for the destination region, which must be the start of a page
boundary

data? — the data to be written

Editorial Note:
In the DTOS KID, this parameter is described as a page-aligned array of data. However, in the
prototype the data? parameter is a pointer to a vm map copy structure which encodes information
about the source region to copy including its offset, size, a type and a memory map. The type
describes how this structure represents the data. The three possibilities are an entry list, an object
and a page list (only entry lists are currently supported by the prototype). This structure is returned
by a vm read request. We will model this structure as aMapCopy containing the offset, the size
and the task from whose address space the copy was made.

data count? — ignored

Editorial Note:
In the DTOS KID this parameter denotes the number of bytes in the array pointed to by the data?
parameter. However, the number of bytes is included in the vm map copy structure, and the
data count? parameter is ignored in the prototype.

VmWriteClientInputs

target task name? : NAME

address? : VIRTUAL ADDRESS

data? :MapCopy

data count? :

A vm write request is invoked by sending a message to the port indicated bytarget task name?
that has the operation field set toVm write id and has a body consisting ofaddress?, data?, and
data count?.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 309

InvokeVmWrite

InvokeMachMsg

VmWriteClientInputs

name? = target task name?
operation? = Vm write id

msg body = Address data to body (address?; data?; data count?)

10.6.1.2 Output Parameters The following output parameters are received through the reply
port provided by the client of a vm write request:

return! — the status of the request

VmWriteClientOutputs

return! : KERNEL RETURN

VmWriteReceiveReply

InvokeMachMsgRcv

VmWriteClientOutputs

return! = Text to status(msg body)

10.6.2 Kernel Interface

10.6.2.1 Input Parameters The following input parameters are provided to the kernel for a
vm write request:

target task? — the task in whose virtual address space the region is to be written

address? — starting address for the destination region, which must be the start of a page
boundary

data? — the data to be written

Editorial Note:
In the DTOS KID, this parameter is described as a page-aligned array of data. However, in the
prototype the data? parameter is a pointer to a vm map copy structure which encodes information
about the source region to copy including its offset, size, a type and a memory map. The type
describes how this structure represents the data. The three possibilities are an entry list, an object
and a page list (only entry lists are currently supported by the prototype). This structure is returned
by a vm read request. We will model this structure as aMapCopy containing the offset, the size
and the task from whose address space the copy was made.

data count? — ignored

Editorial Note:
In the DTOS KID this parameter denotes the number of bytes in the array pointed to by the data?
parameter. However, the number of bytes is included in the vm map copy structure, and the
data count? parameter is ignored in the prototype.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

310
CDRL A005

Virtual Memory Requests

VmWriteInputs

target task? : TASK
address? : VIRTUAL ADDRESS

data? :MapCopy

data count? :

10.6.2.2 Output Parameters The following output parameters are returned by the kernel for
a vm write request:

return! — the status of the request

VmWriteOutputs

return! : KERNEL RETURN

10.6.3 Request Criteria

The following criteria are defined for the vm write request.

C1 — The parameter address? and the offset included in the parameter data? are on a
page boundary. Also, the size included in data? is an integer number of pages.

C1VmWritePageAligned

address? : VIRTUAL ADDRESS

data? : MapCopy

faddress?; data?:o�set;Address num
�(data?:size)g � Page aligned

NotC1VmWritePageAligned b= : C1VmWritePageAligned

C2 — The addresses specified for the destination region are valid and are allocated.

C2VmWriteGoodAddress

AddressSpace

target task? : TASK
address? : VIRTUAL ADDRESS

data? : MapCopy

let data size == data?:size
� VmGoodRegion [address?=address; data size=size]
^ Region of (address?; data size) � allocated�f target task? g�

NotC2VmWriteGoodAddress b= AddressSpace ^ : C2VmWriteGoodAddress

C3 — The target task has permission to write to the region.

Review Note:
I believe the security server should be queried to make sure the target task still has write permission.
However, I don’t think the prototype currently makes this check (11/15/94).

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 311

C3VmWriteWritable

Protection

target task? : TASK
address? : VIRTUAL ADDRESS

data? : MapCopy

8 page : PAGE INDEX

j page 2 Region of (address?; data?:size)
^ (target task?; page) 2 dom c protection

�Write 2 c protection(target task?; page)

NotC3VmWriteWritable b= Protection ^ : C3VmWriteWritable

Review Note:
Should we state that read permission is required on the source region? The prototype does require this,
but I am not certain what protections there will be on the map copy object.

10.6.4 Return Values

Table 50 describes the values returned at the completion of the request and the conditions
under which each value is returned.

return! C1 C2 C3
Kern success T T T
Kern protection failure T T F
Kern invalid address T F -
Kern invalid argument F - -

Table 50: Return Values for vm write

RVVmWriteSuccessful

VmWriteOutputs

C1VmWritePageAligned

C2VmWriteGoodAddress

C3VmWriteWritable

return! = Kern success

RVVmWriteProtectFail

VmWriteOutputs

C1VmWritePageAligned

C2VmWriteGoodAddress

NotC3VmWriteWritable

return! = Kern protection failure

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

312
CDRL A005

Virtual Memory Requests

RVVmWriteBadAddress

VmWriteOutputs

C1VmWritePageAligned

NotC2VmWriteGoodAddress

return! = Kern invalid address

RVVmWriteInvalidArg

VmWriteOutputs

NotC1VmWritePageAligned

return! = Kern invalid argument

Review Note:
The prototype also checks (after C1) whether the size of the MapCopy is zero. If so, it returns
Kern success without checking conditions C2 and C3. No changes are made to the state. Since, when
the size is zero, conditions C2 and C3 are automatically true and no words are changed below, this cir-
cumstance is covered by the Kern success case, and we do not state the extra criterion.

10.6.5 State Changes

A successful vm write request writes the data to the memory pages associated with the
specified area of virtual memory. The data written into the address space of the target task
originated from the address space of some task (e.g., it was read from that address space using
vm read).

VmWriteState

� VAWord

target task? : TASK
address? : VIRTUAL ADDRESS

data? :MapCopy

8 x : 0 : : data?:size � 1
j (address?; x) 2 domRelative addr

� va word 0 (target task?;Relative addr (address?; x))
= va word (data?:task ;Relative addr (data?:o�set; x))

Review Note:
It would be better to model memory maps explicitly (independent of tasks) in the state description instead
of just associating virtual addresses with tasks. This would allow map copies to be modeled as a special
memory map that has no directly associated task.

10.6.6 Complete Request

The general form of a vm write request received through a task port has the following form.

ProcessingVmWrite

MessageToVMParameters

operation? = Vm write id

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 313

A successful request makes the state changes described in the previous section and creates a
kernel reply.

VmWriteGood b= (RVVmWriteSuccessful ^ VmWriteState)
>> RequestReturnOnlyStatus

An unsuccessful request returns an error status.

VmWriteBad

b= (RVVmWriteInvalidArg _ RVVmWriteBadAddress _ RVVmWriteProtectFail)
>> RequestNoOp

Execution of the request consists of a good execution or an error execution.

ExecuteVmWrite b= VmWriteGood _ VmWriteBad

The full specification for kernel processing of a validated vm write request consists of pro-
cessing the request followed by its execution.

VmWrite b= ProcessingVmWrite � ExecuteVmWrite

Review Note:
No interaction with memory managers for the region being written is specified. Any pages not backed
by Null memory must not be locked against writing, but we only have locking information for cached
segments of the memory objects.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

314
CDRL A005

Notes

Section 11
Notes

11.1 Acronyms

CCA Covert Channel Analysis

CMU Carnegie Mellon University

DTOS Distributed Trusted Operating System

FSPM Formal Security Policy Model

IPC Interprocess Communication

KID Kernel Interface Document

MLS Multi-Level Secure

OSC Object Security Context

OSF Open Software Foundation

OSI Object Security Identifier

SID Security Identifier

SSC Subject Security Context

SSI Subject Security Identifier

VM Virtual Memory

11.2 Glossary

dirty page A page in kernel memory is dirty if the pager associated with the page has not yet
been made aware of modifications that have been made to the page.

permission A permission is an access mode enforced by the kernel. The kernel ensures that
a service is provided only when the client of the service has the appropriate permission.

precious page A page in kernel memory is precious if the pager associated with the page has
indicated that it is not maintaining a copy of the page. Regardless of whether the page
is dirty, the kernel must send the contents of the page to the pager before removing the
page from memory.

security server A security server is a user space task that provides access computations to
the kernel.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 315

Appendix A
Bibliography

[1] William R. Bevier and Lawrence M. Smith. A Mathematical Description of the Mach
Kernel: Virtual Memory Services (Draft). Technical report, Computational Logic, Incor-
porated, August 1993.

[2] William R. Bevier and Lawrence M. Smith. A Mathematical Model of the Mach Kernel:
Entities and Relations (Draft). Technical report, Computational Logic, Incorporated, April
1993.

[3] William R. Bevier and Lawrence M. Smith. A Mathematical Model of the Mach Kernel:
Port Services (Draft). Technical report, Computational Logic, Incorporated, August 1993.

[4] William R. Bevier and Lawrence M. Smith. A Mathematical Model of the Mach Kernel:
Task and Thread Services (Draft). Technical report, Computational Logic, Incorporated,
August 1993.

[5] Todd Fine, Carol Muehrcke, and Edward A. Schneider. Formal Top Level Specification for
Distributed Trusted Mach. Technical report, Secure Computing Corporation, 2675 Long
Lake Road, Roseville, Minnesota 55113-2536, April 1993. DTMach CDRL A012.

[6] Keith Loepere. Mach 3 Kernel Interfaces. Open Software Foundation and Carnegie Mellon
University, November 1992.

[7] Keith Loepere. OSF Mach Kernel Principles. Open Software Foundation and Carnegie
Mellon University, final draft edition, May 1993.

[8] Secure Computing Corporation. DTOS Kernel Interfaces Document. Technical report,
Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536,
April 1995. DTOS CDRL A003.

[9] Secure Computing Corporation. DTOS Formal Security Policy Model (FSPM). Technical
report, Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-
2536, September 1996. DTOS CDRL A004.

[10] Secure Computing Corporation. DTOS Lessons Learned Report. Technical report, Secure
Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536, October
1996. DTOS CDRL A008.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

316
CDRL A005

Z Extensions

Appendix B
Z Extensions

This section describes “extensions” to the Z specification language that are used in the DTOS
FTLS. All of these extensions are defined in terms of constructs in the Z specification language,
so they are not technically extensions to the language.

B.1 Disjointness and Partitions

It is often necessary to indicate that each element of a collection of values is unique. For
example, consider specifying that val1; : : : ; valn are unique values. Since n might be relatively
large, it is undesirable to enumerate each pair:

val1 6= val2 ^ val1 6= val3 ^ val1 6= val4 : : :

Although disjoint is part of the Z mathematical toolkit, it addresses disjointness of sets instead
of disjointness of values. While we could convert values to singleton sets of values as follows:

disjoint hf val1 g; : : : ; f valn gi

this is somewhat inconvenient. Another possibility would be to specify that:

hval1; : : : ; valn i

is, when viewed as a function, injective. However, the expression:

hval1; : : : ; valn i 2 � X

is a rather unintuitive way to express disjointness.

Instead, the generic predicate Values disjoint is defined to state such disjointness properties.
The expression Values disjointhval1; : : : ; valni denotes that val1; : : : ; valn are unique values.

Mach Definition 109

[X]
Values disjoint : �(seqX)

8 val seq : seqX
� Values disjoint val seq

, (8 i1; i2 : j i1 2 domval seq ^ i2 2 domval seq ^ i1 6= i2
� val seq(i1) 6= val seq(i2))

Similarly, the expression hval1; : : : ; valn iValues partition S denotes that the values val1; : : : ; valn
are unique values that together comprise the setval set.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 317

Mach Definition 110

[X]
Values partition : (seqX)#�X

8 val seq : seqX ; val set : �X
� val seq Values partition val set

, (Values disjoint val seq ^ val set = ran val seq)

B.2 Partial Orders

A partial ordering is a relation that is reflexive, antisymmetric, and transitive.

A reflexive relation is one that relates each element to itself; in other words, the identity
relation is contained in every reflexive relation.

An antisymmetric relation is a relation containing no cycles of the form (val1; val2) 2 R ^
(val2; val1) 2 R for distinct val1 and val2. Since (val2; val1) 2 R is equivalent to (val1; val2) 2 R�,
a relation is antisymmetric exactly when (val1; val2) 2 R ^ (val1; val2) 2 R� only holds for
val1 = val2. In other words, a relation is antisymmetric when its intersection with its inverse
is contained in id .

A relation is transitive when:

(val1; val2) 2 R ^ (val2; val3) 2 R) (val1; val3) 2 R

In other words, whenever it is possible to get fromval1 to val3 through repeated iteration ofR,
R relates val1 to val3 directly. This is equivalent toR2 being contained in R. For each type X ,
the following sets of relations are defined:

Reexive [X] — the set of all reflexive relations onX

Anti symmetric[X] — the set of all antisymmetric relations onX

Transitive[X] — the set of all transitive relations onX

Poset [X] — the set of all relations on X that are posets; this is simply the intersection of
Reexive [X], Anti symmetric[X], and Transitive[X]

Mach Definition 111

[X]
Poset : �(X #X)
Reexive : �(X #X)
Anti symmetric : �(X #X)
Transitive : �(X #X)

Poset = Reexive \Anti symmetric \Transitive
Reexive = fR : X # X j id X � Rg
Anti symmetric = fR : X # X j R \R� � id Xg
Transitive = fR : X # X j R2 � Rg

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

318
CDRL A005

Z Extensions

B.3 Sequences

The expression val seq Add value val is used to denote the sequence resulting from adding the
element val to the end of the sequence val seq. The expression s Wrap value val is used to denote
the sequence resulting from replacing the first element ofval seq with val .

Mach Definition 112

[X]
Add value : (seqX)� X " (seqX)
Wrap value : (seqX) �X " (seqX)

8 val seq : seqX ; val : X
� val seq Add value val = val seq � f1 7! valg
^ (#val seq > 0) val seq Wrap value val = val seq � f1 7! valg)

The expression Seq plus(S) where S is a sequence of numbers returns the sum of the numbers
in S .

Mach Definition 113

Seq plus : seq �" �

Seq plus(hi) = 0
8 S : seq1 �
� Seq plus(S) = head(S) + Seq plus(tail(S))

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 319

Appendix C
IPC

C.1 IPC Requests

This section describes the mach msg request.

Review Note:
This section has not yet been updated for DTOS. Currently, this section is a direct copy of the correspond-
ing DTMach section with minor changes required for DTOS sections that depend on this section.

C.1.1 Constants and Types

We use the following type to denote mach msg return codes:

[MACH MSG RETURN]

The return values defined in Mach are:

Mm no op :MACH MSG RETURN

Mm send msg too small :MACH MSG RETURN

Mm send no bu�er :MACH MSG RETURN

Mm send invalid header :MACH MSG RETURN

Mm send invalid dest :MACH MSG RETURN

Mm send invalid reply :MACH MSG RETURN

Mm send invalid notify :MACH MSG RETURN

Mm rcv invalid notify :MACH MSG RETURN

Mm rcv invalid name :MACH MSG RETURN

Mm rcv in set :MACH MSG RETURN

Mm rcv timed out :MACH MSG RETURN

Mm rcv too large :MACH MSG RETURN

Mm send will notify :MACH MSG RETURN

Mm success :MACH MSG RETURN

Mm send invalid right :MACH MSG RETURN

Mm send invalid memory :MACH MSG RETURN

Mm send invalid type : MACH MSG RETURN

Mm rcv port died :MACH MSG RETURN

Mm rcv port changed :MACH MSG RETURN

Values disjointhMm no op;Mm send msg too small ;Mm send invalid header ;
Mm send invalid dest ;Mm send invalid reply;Mm send invalid notify ;
Mm rcv invalid name ;Mm rcv in set ;Mm rcv timed out ;
Mm rcv too large;Mm send will notify;Mm success ;
Mm send invalid right;Mm send invalid memory ;Mm send invalid type;
Mm rcv port died ;Mm rcv port changed i

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

320
CDRL A005

IPC

C.2 mach msg

Review Note:
This section has not yet been updated for DTOS. Currently, this section is a direct copy of the correspond-
ing DTMach section with minor changes required for DTOS sections that depend on this section.

The request mach msg allows a thread to send and receive messages.14

The request has the following input parameters:

client? — the thread sending or receiving a message

msgh? — the message header; note that this is only relevant when a message is being
sent

option? — message options

send size? — specifies the size of msgh? when a message is being sent

rcv size? — specifies the size of msgh? when a message is being received

rcv name? — specifies the port or port set from which to receive a message when a
message is being received

time out? — specifies the amount of time to wait for the operation to complete before
giving up

notify? — specifies the notification port to use in the case in which notifications are
requested

msg body? — the message body; note that this is only relevant when a message is being
sent

The request has the following output parameters:

msgh! — the message buffer; note that this is only relevant when a message is being
received

rcv size! — specifies the size of the message when an attempt is made to receive a message
that is too large

msg body ! — the in-line data portion of the message; note that this is only an output in
the case when a message is being received

msg return! — the status of the request

The request is initiated by a schema of the following form.

14The specification of this request is incomplete. See Section C.2.3 for a description of the work that remains to be
done.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 321

MachMsgSignature

� DtosExec

client? : THREAD
msgh :MachMsgHeader

option? : �MACH MSG OPTION

send size? :
rcv size? :
rcv size! :
rcv name? : NAME

time out? :
notify? : NAME

msg body :MESSAGE BODY

msg return! :MACH MSG RETURN

client? 2 domowning task

owning task client? 2 task exists

where the meaning of the parameters is as described earlier.15

If option? includes neitherMach send msg nor Mach rcv msg , then no processing occurs.16

MachMsgNoOp

� DtosExec

MachMsgSignature

fMach send msg ;Mach rcv msg g \ option? = �
msg return! = Mm no op

C.2.1 Message Send

The mach msg request can be used to send a message by includingMach send msg in option?
and not including Mach rcv msg .

MachMsgSend

MachMsgSignature

Mach send msg 2 option?
Mach rcv msg =2 option?

There are four general cases to consider:

An error condition occurs during the initial processing, and the request is a no-op.

A subsequent error condition occurs and the message is returned through a pseudo-receive
operation.

A subsequent error condition occurs and some of the message is lost during delivery.

15Note that the msgh? and msgh ! parameters are both represented by msgh . Similarly, msg body ? and msg body !
are both represented by msg body .
16The DTMach Kernel Interface does not define a return status for this case. We have introduced the return status

Mm no op to denote the return status in this case.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

322
CDRL A005

IPC

The message is successfully delivered.

The first case is discussed in Section C.2.1.1. The remaining cases are described in Sec-
tion C.2.1.2.

C.2.1.1 Initial Processing We use the following schema to describe send operations that are
processed as no-ops due to error conditions that arise during the initial processing of the
request:

MachMsgSendNoOp

� Dtos

MachMsgSend

If send size? is too small, then an error message is returned and no further processing occurs.
We define the following constant to denote the minimum send size.

Min send size :

The case in which the message is too small is specified as follows:

MachMsgSendMsgTooSmall

MachMsgSendNoOp

send size? <Min send size

msg return! = Mm send msg too small

If there is not enough memory available for the kernel to process the request, then an error
message is returned and no further processing occurs. We use the following predicate to indicate
when there is insufficient memory available:

cannot allocate send bu�er : �Mach

The specification of the processing is as follows:17

MachMsgSendSizeOk

send size? :

send size? �Min send size

MachMsgSendNoBu�er

MachMsgSendNoOp

MachMsgSendSizeOk

cannot allocate send bu�er (�Mach)
msg return! = Mm send no bu�er

17For convenience, we define a schema representing the negation of the earlier tests before defining the schema repre-
senting the processing for a given case. For example, the schemaMachMsgSendSizeOk is the negation of the previously
described test of whether send size? is too small. The schemaMachMsgSendNoBu�er uses MachMsgSendSizeOk to
define the processing for the case in which there is insufficient memory available to process the request.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 323

If the rights specified for the local or remote port are invalid, then an error message is returned
and no further processing occurs. The rights specified for the remote port are valid only if they
provide the receiver with either aSend or Send once right. Thus, the rights are invalid if they do
not include any of Mmt make send , Mmt copy send , Mmt move send , Mmt make send once,
and Mmt move send once . We define the set TRANSFER SEND RIGHTS to denote this set of
values of type MACH MSG TYPE .

TRANSFER SEND RIGHTS == fMmt make send ;Mmt copy send ;Mmt move send ;
Mmt make send once ;Mmt move send once g

The remote port rights are valid exactly when they contain an element of this set. Similarly,
the local port rights are valid when they contain an element ofTRANSFER SEND RIGHTS .
In addition, the local port rights are also valid when they are empty and the local port is null.

The specification for the case in which either the remote or local port rights are invalid is as
follows:

MachMsgSendCanAllocateBu�er

Mach

MachMsgSendSizeOk

: cannot allocate send bu�er (�Mach)

MachMsgSendInvalidHeader

MachMsgSendCanAllocateBu�er

MachMsgSendNoOp

(msgh :remote rights =2 TRANSFER SEND RIGHTS _
TRANSFER SEND RIGHTS \msgh:local rights = � ^

(msgh :local rights 6= � _
msgh:local port 6=Mach port null) _

: msgh :remote rights 2 Recognized transfer options _
: msgh :local rights � Recognized transfer options)

msg return! = Mm send invalid header

Otherwise, if the client task does not have the right required bymsgh.remote rights, then an
error message is returned and no further processing occurs. We use the following function to
denote the right required for each type of transfer:

Required right : Recognized transfer options "RIGHT

Required right =
fMmt make send 7! Receive;
Mmt move send 7! Send ;
Mmt copy send 7! Send ;
Mmt make send once 7! Receive;
Mmt move send once 7! Send once ;
Mmt move receive 7! Receive g

This function captures the following semantics of port right transfers in Mach:

A receive right can be moved or used to create a send or send-once right.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

324
CDRL A005

IPC

A send right can be moved or copied.

A send-once right can be moved.

Using this function, we specify the case in which the destination port is valid as follows:

MachMsgSendValidHeader

MachMsgSendCanAllocateBu�er

msgh :MachMsgHeader

msgh:remote rights 2 TRANSFER SEND RIGHTS

(TRANSFER SEND RIGHTS \msgh:local rights 6= � _
(msgh :local rights = � ^
msgh:local port =Mach port null))

msgh:remote rights 2 Recognized transfer options

msgh:local rights � Recognized transfer options

MachMsgSendInvalidDest

MachMsgSendValidHeader

MachMsgSendNoOp

(let needed rights == Required right(msgh:remote rights);
port == named port(owning task (client?);msgh:remote port) �
8 i : �

(owning task(client?); port;msgh:remote port; needed rights; i)
=2 port right rel)

msg return! = Mm send invalid dest

Otherwise, if the client task does not have the right specified in msgh .local rights, then an
error message is returned and no further processing occurs. Note that if the client task spec-
ifies Mmt move send or Mmt move send once in msgh .remote rights, then it loses a reference
to msgh.remote port. This change in the number of references must be accounted for when
determining whether the client has sufficient rights formsgh.local port .

Before defining the functions for manipulating the port name space, we first define the following
schema to denote that the previous checks were successful:

MachMsgSendValidDest

MachMsgSendValidHeader

client? : THREAD

(let needed rights == Required right(msgh:remote rights);
port == named port(owning task (client?);msgh:remote port) �
9 i : �

(owning task(client?); port;msgh:remote port; needed rights; i)
2 port right rel)

We use the following type to denote the kernel data structure defining the port name spaces
for each task. This structure has the same format and meaning as the relationport right rel

in the definition of the Mach system state.

PORT NAME SPACE == �(TASK � PORT �NAME �RIGHT � 1)

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 325

The function Change ref count is used to change the reference count associated with a name
and a right in a task’s port name space by a specified amount. If subtracting the specified
amount from the current count results in a positive value, then the new count is that positive
value. Otherwise, the name and right are not present in the port name space returned by this
function.

Change ref count : � �TASK � NAME � RIGHT � PORT NAME SPACE"
PORT NAME SPACE

8 task ; task1 : TASK ; port : PORT ; name ; name1 : NAME ; right; right1 : RIGHT ;
i : 1; n : �; pns : PORT NAME SPACE �

(task ; port; name; right; i) 2
Change ref count (n; task1; name1; right1; pns),

((task ; port; name; right; i) 2 pns ^
(task ; name; right) 6= (task1; name1; right1)) _

((task ; port; name; right; i + n) 2 pns ^
(task ; name; right) = (task1; name1; right1))

The functions Change receive count , Change send count , and Change send once count use
Change ref count to change the count associated with a receive, send, or send-once right.

Change receive count : �� TASK �NAME � PORT NAME SPACE"
PORT NAME SPACE

8 n : �; task : TASK ; name : NAME ; pns : PORT NAME SPACE �
Change receive count(n; task ; name; pns) =

Change ref count (n; task ; name ;Receive; pns)

Change send count : � �TASK � NAME � PORT NAME SPACE

"PORT NAME SPACE

8 n : �; task : TASK ; name : NAME ; pns : PORT NAME SPACE �
Change send count (n; task ; name ; pns) =

Change ref count (n; task ; name ; Send ; pns)

Change send once count : �� TASK �NAME � PORT NAME SPACE"
PORT NAME SPACE

8 n : �; task : TASK ; name : NAME ; pns : PORT NAME SPACE �
Change send once count(n; task ; name; pns) =

Change ref count (n; task ; name ; Send once ; pns)

The function Process right computes a new port name space from an old port name space, a
task, a name, and a set of transfer options. If none of the transfer options requires moving
a right, then the resulting name space is the same as the input name space. Otherwise, the
count for each type of right that is moved is decremented.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

326
CDRL A005

IPC

Process right : �Recognized transfer options �TASK � NAME�
PORT NAME SPACE " PORT NAME SPACE

8mmt set : �Recognized transfer options ; task : TASK ; name : NAME ;
pns : PORT NAME SPACE �

(fMmt move receive;Mmt move send ;Mmt move send once g \mmt set = �)
Process right(mmt set; task ; name ; pns) = pns) ^

(Mmt move receive 2 mmt set)
(letmmt set1 == mmt set n fMmt move receive g;
pns

1
== Change receive count(1; task ; name ; pns) �
Process right(mmt set; task ; name ; pns) =

Process right(mmt set1; task ; name; pns1))) ^
(Mmt move send 2 mmt set)

(letmmt set1 == mmt set n fMmt move send g;
pns1 == Change send count (1; task ; name; pns) �

Process right(mmt set; task ; name ; pns) =
Process right(mmt set1; task ; name; pns1))) ^

(Mmt move send once 2 mmt set)
(letmmt set1 == mmt set n fMmt move send once g;
pns1 == Change send once count(1; task ; name; pns) �

Process right(mmt set; task ; name ; pns) =
Process right(mmt set1; task ; name; pns1)))

Using these functions, the case in which the reply port is invalid can be specified as follows.

MachMsgSendInvalidReply

MachMsgSendValidHeader

MachMsgSendNoOp

let needed rights == Required right�msgh :local rights�;
new port right rel ==
Process right(fmsgh:remote rightsg; owning task client?;

msgh:remote port ; port right rel);
port == named port(owning task client?;msgh:local port) �
9 right : RIGHT j

right 2 needed rights �
8 i : �

(owning task client?; port;msgh:local port; right; i)
=2 new port right rel

msg return! = Mm send invalid reply

This is analogous to the case in which the destination port is invalid. The main difference is
that the reference counts for the destination port are decremented, if necessary, before testing
the reply port. When the reply and destination ports are the same, this decrementing can
influence whether the reply port is valid.

If the client specifies the Mach send cancel option and msgh.notify does not denote a receive
right, then an error message is returned and no further processing takes place. As before,
it is necessary to decrement reference counts associated with earlier right transfers before
performing this test.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 327

MachMsgSendValidReply

MachMsgSendValidHeader

MachMsgSendNoOp

let needed rights == Required right�msgh :local rights�;
new port right rel ==
Process right(fmsgh:remote rightsg; owning task client?;

msgh:remote port ; port right rel);
port == named port(owning task client?;msgh:local port) �
8 right : RIGHT j

right 2 needed rights �
9 i : �

(owning task client?; port;msgh:local port; right; i)
2 new port right rel

MachMsgSendInvalidNotify

MachMsgSendValidReply

MachMsgSendNoOp

Mach send cancel 2 option?
let new port right rel ==
Process right(fmsgh:remote rightsg; owning task client?;

msgh:remote port ; port right rel)
� let new port right rel

1
==

Process right(msgh :local rights; owning task client?;
msgh:local port ; new port right rel) �

(8 port : PORT ; i : �
(owning task client?; port; notify?;Receive; i) =2 new port right rel1)

msg return! = Mm send invalid notify

The following schema denotes the case in which the kernel can continue processing the message.

MachMsgSendValid

MachMsgSignature

MachMsgSendValidReply

option? : �MACH MSG OPTION

notify? : NAME

Mach send cancel =2 option? _
(let new port right rel ==
Process right(fmsgh:remote rightsg; owning task client?;

msgh:remote port ; port right rel)
� let new port right rel1 ==

Process right(msgh :local rights; owning task client?;
msgh:local port ; new port right rel) �

(9 port : PORT ; i : �
(owning task client?; port; notify?;Receive; i) 2 new port right rel1))

In this case, the message specified by the client is added to the set of messages in user space.
Before describing this processing, we first describe functions that convert a message from its
format in user space to its format in kernel space.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

328
CDRL A005

IPC

The function Msgh to internal msgh converts the message header. The remote port and
local port fields are filled in as specified by the two port parameters to the function. The
remaining fields are copied without change.

Msgh to internal msgh : PORT � �PORT �MachMsgHeader "MachInternalHeader

8msgh :MachMsgHeader ; int msgh :MachInternalHeader ; port
1
: PORT ; port

2
: �PORT j

Msgh to internal msgh(port
1
; port

2
;msgh) = int msgh �

msgh:local rights = int msgh :local rights ^
msgh:remote rights = int msgh:remote rights ^
msgh:size = int msgh:size ^
msgh:operation = int msgh :operation ^
port

1
= int msgh:remote port ^

port
2
= int msgh:local port

Editorial Note:
The previous definition used to state that the complex field of the internal message header was copied
from the user space message header. It appears that it is really generated by the kernel parsing the
message.

The function Msg data to msg value converts an element of typeMSG DATA to an element of
type MSG VALUE .

Msg data to msg value :MSG DATA"MSG VALUE

8msg data :MSG DATA �
Msg data to msg value msg data = V data(msg data ;V data in)

The function Msg data seq to msg value seq converts an element of type seqMSG DATA to an
element of type seqMSG VALUE .

Msg data seq to msg value seq : seqMSG DATA" seqMSG VALUE

8 data seq : seqMSG DATA �
Msg data seq to msg value seq data seq = Msg data to msg value � data seq

The functionMsge to internal msge converts a single element of a message body. Elements in a
message in user space are either In line or Out of line. The former are converted toMsg value

entries, and the latter are converted to Msg region entries. The function’s task parameter is
associated with the element to record the task in whose space out-of-line data and port rights
should later be resolved.

Msge to internal msge : TASK �Msg element " Internal element

8 n : ; mach msg type :MACH MSG TYPE ; data seq : seqMSG DATA;
va : VIRTUAL ADDRESS ; int msge : Internal element ; task : TASK ; olsd : OLSD �

(let value seq == Msg data seq to msg value seq data seq �
(Msge to internal msge(task ; In line(n;mach msg type; data seq))

= int msge

) int msge = Msg value(n;mach msg type ; (task ; value seq)))
^ (Msge to internal msge(task ;Out of line(n;mach msg type; va; olsd))

= int msge

) int msge = Msg region(n;mach msg type; (task ; va; olsd))))

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 329

The function Msgb to internal msgb converts a message body by applying
Msge to internal msge to each element in the body.

Msgb to internal msgb : TASK �MESSAGE BODY " INTERNAL BODY

8msgb :MESSAGE BODY ; int msgb : INTERNAL BODY ; task : TASK j
Msgb to internal msgb(task ;msgb) = int msgb �

#msgb = #int msgb ^
(8 i : j i 2 dommsgb �

int msgb(i) = Msge to internal msge(task ;msgb(i)))

Finally, a message in user space is converted to a message in user space by using
Msgh to internal msgh to convert the header and using Msgb to internal msgb to convert the
body.

Msg to internal msg : � � �MACH MSG OPTION � PORT � PORT � TASK�
Message " InternalMessage

8 task : TASK ; port
1
; port

2
: PORT ; msg :Message ; int msg : InternalMessage ;

current time; time out : ; option? : �MACH MSG OPTION

jMsg to internal msg(current time; time out ; option?; port
1
; port

2
; task ;msg)

= int msg

�Msgh to internal msgh(port1; fport2g;msg:header) = int msg :header ^
Msgb to internal msgb(task ;msg:body) = int msg :body ^

int msg:option = option? ^
int msg:time out at = if Mach send timeout 2 option?

then f current time + time out g
else � ^

int msg:status = Msg stat send ^
int msg:error = �

Note that:

The time out at field is set to indicate the earliest time at which the send request can
time out.

If the client specified a time out was desired, then this field is set to the current time plus
the specified time out duration. Otherwise, the time out at field is set to � to denote that
the send request should block rather than time out.

The status field is set to indicate that the message should be processed as part of a send
request.

The error field is initialized to �.

The functionMsgh to internal msgh requires inputs indicating the remote and local ports. The
remote port can be determined by using named port to resolve the remote port name in the
task’s name space. When the local port name is not null, the same approach can be used to
determine the local port. In the cases in which the local port name is null, we useNull port to
denote the local port.

Null port : PORT

Before the message is moved into kernel space, the appropriate reference counts are decre-
mented and the make send count is incremented for any port for which a send right was made.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

330
CDRL A005

IPC

The function Update ms count defines the changes that need to be made tomake send count .
The count for the remote port must be incremented by 1 if a send right was made. Similarly,
the count for the local port must be incremented by 1 if it exists and a send right was made for
it.

Update ms count : (PORT � �Recognized transfer options)�
(PORT � �Recognized transfer options) � �PORT�

(PORT �)" (PORT �)

8 port
1
; port

2
: PORT ; old ms count : PORT �;

mmt set1;mmt set2 : �MACH MSG TYPE ; port set : �PORT �
Update ms count ((port

1
;mmt set1); (port2;mmt set2); port set ; old ms count) =

if port
2
=2 port set

then old ms count � f port
1
7!

old ms count port
1
+#(fMmt make send g \mmt set1) g

else if port
1
= port

2

then old ms count � f port
1
7!

old ms count port
1
+#(fMmt make send g \mmt set1)+

#(fMmt make send g \mmt set2) g
else

old ms count � f port1 7!
old ms count port1 +#(fMmt make send g \mmt set1);
port2 7! old ms count port2 +#(fMmt make send g \mmt set2) g

Note that the above definition accounts for the possibility that the local and remote ports are
the same by counting the send rights made for either port against the common port.

The function Update name space performs any necessary decrementing of the reference counts
for the local and remote ports. It does so by first usingProcess right to address the remote port
and then using Process right on the result to address the local port.

Update name space : (�MACH MSG TYPE � NAME)�
(�MACH MSG TYPE �NAME)�

TASK � PORT NAME SPACE " PORT NAME SPACE

8mmt set1;mmt set2 : �MACH MSG TYPE ; task : TASK ; name1; name2 : NAME ;
pns : PORT NAME SPACE �

Update name space((mmt set1; name1); (mmt set2; name2); task ; pns) =
(let pns1 == Process right(mmt set1; task ; name1; pns) �

Process right(mmt set2; task ; name2; pns1))

Using the previously defined functions, the entering of a send message request into kernel
space can be specified as follows:

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 331

MachMsgSendStart

MachMsgSendValid

9message :MESSAGE ; msg :Message ;
port1; port2 : PORT ; task : TASK �

message 2 message exists 0 nmessage exists ^
msg :header = msgh ^
msg :body = msg body ^
task = owning task client? ^
port

1
= named port(task ;msgh:remote port) ^

(port
2
= if (task ;msgh:local port) 2 domnamed port

then named port(task ;msgh:local port)
else Null port) ^

msg contents 0 = msg contents [fmessage 7!
Msg to internal msg(host time; time out?; option?; port1; port2;

task ;msg) g
^ make send count 0 =

(let pair1 == (port1; fmsgh:remote rightsg);
pair2 == (port2;msgh:local rights) �

Update ms count (pair1; pair2; port exists;make send count))
(let pair

1
== (fmsgh:remote rightsg;msgh:remote port);

pair
2
== (msgh :local rights;msgh:local port) �
port right rel

0 = Update name space(pair
1
; pair

2
; owning task client?;

port right rel))

C.2.1.2 Kernel Processing In this section, we describe the processing of messages in kernel
space that are not yet queued at a port.

The function Unprocessed rights returns the set of port rights in transit that must be processed
before a message can be enqueued. An element(message ; i ; j)belongs to the resulting set exactly
when the i th element of message ’s body is a data element whose j th entry is an unresolved
port right. Note that regardless of the types of the data elements in a message body, no
rights are transferred unless thecomplex field of the message header indicates rights are being
transferred.

Unprocessed rights :Mach "�(MESSAGE � �)

8mach st :Mach �
Unprocessed rights mach st = fmessage :MESSAGE ; i ; j : j

message 2 mach st:message exists ^
Co carries rights 2 (mach st :msg contents message):header :complex ^
(mach st:msg contents message):status = Msg stat send ^
(let int msgb == (mach st :msg contents message):body �

i 2 dom int msgb ^
(9 n : ; mach msg type :MACH MSG TYPE ;
value seq : seqMSG VALUE ; task : TASK ;
msg data :MSG DATA; v data l : V DATA LOCATION

� int msgb(i) = Msg value(n;mach msg type ; (task ; value seq)) ^
mach msg type 2 Recognized transfer options ^
j 2 domvalue seq ^
value seq(j) = V data(msg data; v data l)))g

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

332
CDRL A005

IPC

The function Unprocessed memories returns the set of memory objects in transit that must
be processed before a message can be enqueued. An element (message ; i) belongs to the re-
sulting set exactly when the i th element of message ’s body is an unprocessed out-of-line data
element. Note that regardless of the types of the data elements in a message body, no memories
are transferred unless the complex field of the message header indicates memories are being
transferred.

Unprocessed memories :Mach "�(MESSAGE �)

8mach st :Mach �
Unprocessed memories mach st = fmessage :MESSAGE ; i : j

message 2 mach st:message exists ^
Co carries memory 2 (mach st :msg contents message):header :complex ^
(mach st:msg contents message):status = Msg stat send ^
(let int msgb == (mach st :msg contents message):body �

i 2 dom int msgb ^
(9 n : ; mach msg type :MACH MSG TYPE ; olsd : OLSD ;
task : TASK ; va : VIRTUAL ADDRESS �

int msgb(i) = Msg region(n;mach msg type; (task ; va; olsd)))) g

The function Element type returns the type of an element in a message body.

Element type : Internal element "MACH MSG TYPE

8 inte : Internal element; n : ; mach msg type :MACH MSG TYPE ;
value seq : seqMSG VALUE ; task : TASK ;
va : VIRTUAL ADDRESS ; olsd : OLSD ;
memory :MEMORY ; o�set : OFFSET j

inte 2
fMsg value(n;mach msg type; (task ; value seq));
Msg region(n;mach msg type; (task ; va; olsd));
Transit memory(n;mach msg type; (task ;memory; o�set)) g �

Element type inte = mach msg type

The set Invalid msg types indicates the set of message elements having invalid data types. An
element (message ; i) belongs to the resulting set exactly when the type specified for the i th
element of message ’s body is invalid. The set Valid data types defines the set of valid data
types.

Valid data types : �MACH MSG TYPE

Invalid msg types :Mach "�(MESSAGE �)

Recognized transfer options � Valid data types

8mach st :Mach �
Invalid msg types mach st = fmessage :MESSAGE ; i : j

message 2 mach st:message exists ^
i 2 dom(mach st:msg contents message):body ^
Element type((mach st:msg contents message):body(i)) =2 Valid data types g

The set Processed messages indicates the set of messages that are not yet enqueued but require
no further processing. In other words, these are messages that have no elements with invalid
data types or unprocessed rights or memories and that are not present in any message queue.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 333

Processed messages :Mach "�MESSAGE

8mach st :Mach �
Processed messages mach st =

mach st :message existsn
(fmessage :MESSAGE ; i ; j : j

(message ; i ; j) 2 Unprocessed rights mach st � messageg[
fmessage :MESSAGE ; i : j

(message ; i) 2 Invalid msg types mach st � messageg[
fmessage :MESSAGE ; i : j

(message ; i) 2 Unprocessed memories mach st � messageg[
fmessage :MESSAGE j (9 port : PORT �

message 2 ran(mach st :message in port rel port)) g[
fmessage :MESSAGE j (mach st :msg contents message):status
6= Msg stat send g)

The function Address to index is used to convert a virtual address into a page index.

Address to index : VIRTUAL ADDRESS " PAGE INDEX

Before describing the processing of message elements, we define the following schema to rep-
resent parts of the processing that are common to the various cases to be considered:

GeneralSendProcessing

� DtosExec

message :MESSAGE

i ; n :
int msg1; int msg2 : InternalMessage

v data l : V DATA LOCATION

task : TASK
value seq1; value seq2 : seqMSG VALUE

mach msg type :MACH MSG TYPE

va : VIRTUAL ADDRESS

olsd : OLSD
memory :MEMORY

o�set : OFFSET
error :MSG ERROR

page index : PAGE INDEX

message 2 message exists

int msg1 = msg contents message

i 2 dom(int msg1:body)
int msg1:body(i) 2
fMsg value(n;mach msg type; (task ; value seq

1
));

Msg region(n;mach msg type; (task ; va; olsd));
Transit memory(n;mach msg type; (task ;memory; o�set)) g

msg contents0 = msg contents � fmessage 7! int msg2 g
int msg2:header = int msg1:header
int msg2:option = int msg1:option
int msg2:time out at = int msg1:time out at

int msg1:error 6= �) int msg2:error = int msg1:error
page index = Address to index va

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

334
CDRL A005

IPC

This schema requires that message is an existing message and i is a valid index for the body
of the message associated with message . The processing of the element is accomplished by
modifying the body of the message. The components int msg

1
and int msg

2
are introduced

to denote the initial and final values for the message. It is required that theheader , option,
and time out at fields of the message are not altered. Furthermore, it is required that the
error field cannot be altered if it is nonempty. The remaining components of the schema are
introduced to define the general form of the i th element of the message body.

The function replace entry replaces a specified entry in a sequence with a specified value.

[X]
replace entry : 1 �X � seqX " seqX

8 i : 1; x : X ; x seq : seqX j i 2 domx seq �
replace entry(i ; x ; x seq) = x seq � f i 7! x g

The function Data to name converts an element of type MSG DATA to an element of type
NAME . It is assumed that this function is an injection.

Data to name :MSG DATA�NAME

From the schema GeneralSendProcessing , we build the following schema for processing port
rights:

GeneralSendProcessing2
GeneralSendProcessing

j :
value seq2 : seqMSG VALUE

port : PORT
msg data :MSG DATA

name : NAME

int msg1:body(i) = Msg value(n;mach msg type; (task ; value seq
1
))

mach msg type 2 Recognized transfer options

Co carries rights 2 int msg1:header :complex
j 2 dom value seq1
value seq1(j) = V data(msg data ; v data l)
name = Data to name msg data

port = if (task ; name) 2 domnamed port ^
(9 k : �
(task ; named port(task ; name); name ;Required right(mach msg type); k) 2

port right rel)
then named port(task ; name)
else Null port

value seq2 = replace entry(j ;V port(port ; v data l); value seq1)
int msg2:body =

replace entry(i ;Msg value(n;mach msg type; (task ; value seq2));
int msg1:body)

This schema requires that the message element being processing is of theMsg value form and
the type of the message element indicates that a port right is being transferred. The compo-
nent j indicates the index into value seq1 denoting the right to be processed. The component

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 335

value seq
2

is introduced to denote the new sequence of values to be stored as the i th element
in the body. The new sequence is obtained by replacing the j th entry of the original sequence
with an entry indicating the port to which the transferred right resolves. The componentport
is introduced to denote this port. The component name is introduced to represent the name of
the transferred right. The name is defined by the data in the j th element of the sequence. If
the name is in the task’s name space and the task has the appropriate rights to transfer the
port, then port is defined to be the port associated with the name in the task’s name space.
Otherwise, port is defined to be the Null port .

If a message contains an element with an invalid data type, then progress can be made in
processing the message by processing that element. The message element is processed by
removing it from the body and recording the error condition if no error condition has previously
been recorded.

The function remove entry removes a specified entry from a sequence.

[X]
remove entry : � seqX " seqX

8 i : ; x seq : seqX �
remove entry(i ; x seq) = ((1 : : i) x seq) � (((i + 1) : :#x seq) x seq)

Using this function, the processing of a data element with an invalid type is as follows:

ProcessInvalidType

GeneralSendProcessing

(message ; i) 2 Invalid msg types(�Mach)
int msg

2
:body = remove entry(i ; int msg

1
:body)

int msg
2
:status = int msg

1
:status

int msg
1
:error = �)

int msg
2
:error = fMsg error invalid type g

If a message contains port rights that have not yet been processed, then progress can be made
in processing the message by processing one of the port rights. The first case to consider is
that in which the name being processed does not denote a right appropriate for the type of
transfer requested. In this case,GeneralSendProcessing2 resolves the name toNull port. Thus,
the processing for this case can be specified as follows:

ProcessRightBad

GeneralSendProcessing2

(message ; i ; j) 2 Unprocessed rights(�Mach)
port = Null port

int msg2:status = int msg1:status
int msg1:error = �)
int msg2:error = fMsg error invalid right g

In other words, the invalid right is replaced by a right forNull port . The conversion from an
entry of type V data to V port makes progress towards completion of the request since there
is one less unprocessed right in the resulting state.

The only differences between this and the processing of a valid port right are:

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

336
CDRL A005

IPC

it is not necessary to record an error for a valid port right

the task’s port name space and port’s make-send count must be updated

ProcessRightGood

GeneralSendProcessing2

(message ; i ; j) 2 Unprocessed rights(�Mach)
port 6= Null port

port right rel 0 = Process right(fmach msg type g; task ; name; port right rel)
make send count

0 = make send count � f port 7!
make send count port +#(fmach msg type g \ fMmt make send g) g

int msg2:status = int msg
1
:status ^

int msg2:error = int msg1:error

The case in which an out-of-line memory region is inaccessible to the sending task is specified
as follows:

ProcessMemoryBad

GeneralSendProcessing

(message ; i) 2 Unprocessed memories(�Mach)
int msg1:body(i) = Msg region(n;mach msg type; (task ; va; olsd))
((task ; page index) =2 allocated _

Read =2 protection(task ; page index))
int msg2:body = remove entry(i ; int msg1:body)
int msg2:status = int msg1:status ^
int msg1:error = �)

int msg2:error = fMsg error invalid memory g

If an out-of-line memory region is accessible and does not carry any port rights, then the
element of form Msg region can be converted into an element of formTransit memory.

ProcessMemoryGood

GeneralSendProcessing

(message ; i) 2 Unprocessed memories(�Mach)
int msg1:body(i) = Msg region(n;mach msg type; (task ; va; olsd))
(task ; page index) 2 allocated
Read =2 protection(task ; page index)
(mach msg type =2 Recognized transfer options _

Co carries rights =2 int msg1:header :complex)
((task ; page index); (memory ; o�set)) 2 map rel

(let inte == Transit memory(n;mach msg type; (task ;memory; o�set)) �
int msg2:body = replace entry(i ; inte; int msg1:body))

map rel
0 = if olsd = Msg deallocate

then f (task ; page index) g�map rel else map rel

int msg2:status = int msg
1
:status ^

int msg1:error = int msg2:error

Note that the transferred memory is deallocated from the address space of the sending task if
olsd indicates that it should be deallocated.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 337

If an out-of-line memory region is accessible, carries port rights, and is currently in memory,
then the element of form Msg region can be converted into an element of formMsg value. The
resulting element will subsequently be processed byProcessRightGood or ProcessRightBad .

The function Va o�set is used to add an integer to a virtual address.

Va o�set : VIRTUAL ADDRESS � � VIRTUAL ADDRESS

The function Index to o�set is used to convert a page index to a page offset.

Index to o�set : PAGE INDEX � PAGE OFFSET

The function Word to data is used to convert a word on a page to a data item.

Word to data :WORD �MSG DATA

ProcessAvailableOutOfLineRights

GeneralSendProcessing

(message ; i) 2 Unprocessed memories(�Mach)
int msg

1
:body(i) = Msg region(n;mach msg type; (task ; va; olsd))

mach msg type 2 Recognized transfer options

Co carries rights 2 int msg
1
:header :complex

9 page reference set : �(�VIRTUAL ADDRESS � PAGE INDEX) �
page reference set = fm : ; va1 : VIRTUAL ADDRESS ;
page index 1 : PAGE INDEX j

m 2 1 : : n ^
va1 = Va o�set (va;m) ^
page index 1 = Address to index va1 g ^

value seq2 = fk : ; va2 : VIRTUAL ADDRESS ;
page : PAGE ; page o�set : PAGE OFFSET ; word :WORD ;
page index 2 : PAGE INDEX ; memory2 :MEMORY ; o�set2 : OFFSET ;
msg data :MSG DATA j

(k ; va2; page index 2) 2 page reference set ^
page index 2 = Address to index va2 ^
(task ; page index2) 2 allocated ^
Read 2 protection(task ; page index 2) ^
((task ; page index2); (memory2; o�set2)) 2 map rel ^
(page ; (memory2; o�set2)) 2 represents rel ^
page o�set = Index to o�set page index 2 ^
((page ; page o�set);word) 2 page word rel ^
msg data =Word to data word �

(k ;V data(msg data;V data out)) g ^
(let inte == Msg value(n;mach msg type; (task ; value seq

2
)) �

int msg2:body = replace entry(i ; inte; int msg1:body)) ^
map rel 0 = if olsd = Msg deallocate

then f r : ; va3 : VIRTUAL ADDRESS ; page index3 : PAGE INDEX j
(r ; va3; page index3) 2 page reference set �

(task ; page index3) g�map rel

elsemap rel

int msg2:status = int msg1:status ^
int msg1:error = int msg2:error

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

338
CDRL A005

IPC

The set page reference set denotes the pages that are referenced by the message element. If
each page is in memory, the necessary data can be read from the pages and stored invalue seq

2
.

Note that if olsd indicates that the region should be deallocated, then each of the referenced
pages is removed from the address space of the sending task.

If a page referenced by the message element is not accessible, then the processing is analogous
to that described by ProcessMemoryBad .

ProcessRightsMemoryBad

GeneralSendProcessing

(message ; i) 2 Unprocessed memories(�Mach)
int msg1:body(i) = Msg region(n;mach msg type; (task ; va; olsd))
mach msg type 2 Recognized transfer options

Co carries rights 2 int msg1:header :complex
9 page reference set : �(�VIRTUAL ADDRESS � PAGE INDEX) �

page reference set = fm : ; va1 : VIRTUAL ADDRESS ;
page index 1 : PAGE INDEX j

m 2 1 : : n ^
va1 = Va o�set (va;m) ^
page index

1
= Address to index va1 g ^

(9 k : ; va2 : VIRTUAL ADDRESS ;
page index 2 : PAGE INDEX �

(k ; va2; page index 2) 2 page reference set ^
page index 2 = Address to index va2 ^
((task ; page index2) =2 allocated _

Read =2 protection(task ; page index
2
))) ^

map rel 0 = if olsd = Msg deallocate

then f r : ; va3 : VIRTUAL ADDRESS ; page index
3
: PAGE INDEX j

(r ; va3; page index3) 2 page reference set �
(task ; page index3) g�map rel

elsemap rel

int msg2:body = remove entry(i ; int msg1:body)
int msg2:status = int msg1:status
int msg1:error = �)

int msg2:error = fMsg error invalid memory g

If a page referenced by the message element is accessible but is not in memory, then the kernel
must request the page’s data from the page’s memory manager.

The following function is used to build the header for the request sent to the memory manager.

Mach object data request : OPERATION
Build data request header : PORT � PORT "MachInternalHeader

8 port1; port2 : PORT ; int msgh :MachInternalHeader j
Build data request header(port1; port2) = int msgh �

int msgh:local rights = fMmt copy send g ^
int msgh:remote rights = Mmt make send once ^
int msgh:complex = � ^
int msgh:remote port = port

1
^

int msgh:local port = fport2g ^
int msgh:operation = Mach object data request

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 339

The first port parameter is the remote port and the second one is the local port. The operation
is specified as being Mach object data request .

The following functions are used to build the body for the request sent to the memory manager.

Mmt integer :MACH MSG TYPE

Mmt protection :MACH MSG TYPE

Integer to data : "MSG DATA

Protection to data : �PROTECTION "MSG DATA

Build data request body : TASK � � � �PROTECTION " INTERNAL BODY

8 task : TASK ; i ; j : ; prot set : �PROTECTION �
Build data request body(task ; i ; j ; prot set) =

(let value seq
1
==

hV data(Integer to data i ;V data in);V data(Integer to data j ;V data in)i;
value seq

2
== hV data(Protection to data prot set ;V data in)i �

hMsg value(2;Mmt integer ; (task ; value seq
1
));

Msg value(1;Mmt protection; (task ; value seq
2
))i)

The integers indicate, respectively, the desired offset in the memory object and length of the
data. The set of protections specify the access modes desired for the object.

The following function is used to build the request sent to the memory manager.

Build data request : TASK � PORT � PORT � � � �PROTECTION"
InternalMessage

8 task : TASK ; port1; port2 : PORT ; i ; j : ; prot set : �PROTECTION ;
int msg : InternalMessage j

int msg = Build data request(task ; port1; port2; i ; j ; prot set) �
int msg:header = Build data request header(port1; port2) ^
int msg:body = Build data request body(task ; i ; j ; prot set) ^
int msg:option = fMach send msg g ^
int msg:time out at = � ^
int msg:status = Msg stat send ^
int msg:error = �

The function Index to nat is used to convert a page index to an integer.

Index to nat : PAGE INDEX �

The constant Page size denotes the number of words on a page.

Page size :

Using these definitions, the sending of a request to the memory manager can be specified as
follows:

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

340
CDRL A005

IPC

RequestRightsData

GeneralSendProcessing

int msg! : InternalMessage

(message ; i) 2 Unprocessed memories(�Mach)
int msg

1
:body(i) = Msg region(n;mach msg type; (task ; va; olsd))

mach msg type 2 Recognized transfer options

Co carries rights 2 int msg
1
:header :complex

9 page reference set : �(�VIRTUAL ADDRESS � PAGE INDEX) �
page reference set = fm : ; va1 : VIRTUAL ADDRESS ;
page index

1
: PAGE INDEX j

m 2 1 : : n ^
va1 = Va o�set (va;m) ^
page index 1 = Address to index va1 g ^

(9 k : ; page : PAGE ; va2 : VIRTUAL ADDRESS ;
page index 2 : PAGE INDEX ; memory

2
:MEMORY ; o�set

2
: OFFSET �

(k ; va2; page index 2) 2 page reference set ^
page index 2 = Address to index va2 ^
(task ; page index2) 2 allocated ^
Read 2 protection(task ; page index 2) ^
((task ; page index2); (memory2; o�set2)) 2 map rel ^
(page ; (memory

2
; o�set

2
)) =2 represents rel ^

int msg! =
(let port1 == object port memory2;
port2 == control port memory2;
prot set == fRead ;Write;Execute g;
r == Index to nat page index

2
;

s == maxfPage size; n � (k � 1) � Page size g �
Build data request(kernel ; port

1
; port

2
; r ; s; prot set)))

int msg
2
:body = remove entry(i ; int msg

1
:body)

int msg
2
:status = int msg

1
:status

int msg1:error = int msg
2
:error

Note that int msg ! denotes the message that should be sent to the memory manager. The
“sending” of this message would be represented by adding it to the range ofmsg contents . For
simplicity, we do not address that processing here.

If the destination port for a message that has been processed does not exist, then the message
can be discarded.

Editorial Note:
The model of the state component f orcibly queued was previously as a function from a port to a message.
This model was based upon the Kernel Principles document which states “mach msg provides an option
allowing one message to be left waiting to be queued.” However, this is not one message per port, but
one message per port right. The model has now been fixed, but its ramifications on this section have not
been determined. Therefore all mention of f orcibly queued within the Z has been commented out in this
section (though none of the text has been changed).

CAR 4041 has been filed to address this issue.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 341

PortDied

� DtosExec

message :MESSAGE

message 2 Processed messages(�Mach)
(msg contents message):header :remote port =2 port exists

message exists 0 = message exists n fmessage g

A message that has been processed can be queued at its destination port if that port exists and
there is room in the message queue associated with the port or if the message was sent using
a send-once right. The return status is as defined by theerror component of the message if it
is nonempty. Otherwise, the status isMm success .

The function Error to status converts an element of type MSG ERROR to an element of type
MACH MSG RETURN .

Error to status : �MSG ERROR"MACH MSG RETURN

Error to status = f fMsg error invalid memory g 7!Mm send invalid memory;
fMsg error invalid right g 7!Mm send invalid right;
fMsg error invalid type g 7!Mm send invalid type;
fMsg error msg too small g 7!Mm send msg too small g

EnqueueMsg

� DtosExec

message :MESSAGE

msg return! :MACH MSG RETURN

message 2 Processed messages(�Mach)
(let port == (msg contents message):header :remote port �

port 2 port exists ^
(q limit port > port size port _

(msg contents message):header :remote rights 2
fMmt move send once ;Mmt make send once g) ^

message in port rel
0 = message in port rel � f port 7!

message in port rel port � hmessagei g)
msg return! =

(letmsg error == (msg contents message):error �
if msg error 6= � then Error to status msg error

elseMm success)

If the following conditions hold:

The message was sent using a send right rather than a send-once right.

The client specified the Mach send notify option and the message either does not have a
time out specified or the time out period has passed.

The destination port exists and has a full message queue.

No message is currently forcibly enqueued at the port.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

342
CDRL A005

IPC

then the message can be forcibly enqueued at the port.

If there already is a message forcibly queued at the port, then an error message is returned
and a pseudo-receive is initiated. We represent that a pseudo receive has been initiated by
changing the message status fromMsg stat send to Msg stat pseudo.

If a time out was specified and the time out period has passed, then the message can time out
with a pseudo receive operation being generated.

MsgSendTimeOut

� DtosExec

message :MESSAGE

msg return! :MACH MSG RETURN

message 2 Processed messages(�Mach)
9 i : j i 2 (msg contents message):time out at �
i � host time

Mach send notify 2 (msg contents message):option
(msg contents 0message):option = (msg contents message):option
(msg contents 0message):time out at = (msg contents message):time out at

(msg contents 0message):status = Msg stat pseudo

(msg contents 0message):error =
if (msg contents message):error = � then fMsg error timed out g
else (msg contents message):error

C.2.2 Message Receive

The mach msg request can be used to receive a message by includingMach rcv msg in option?
and not including Mach send msg .

MachMsgRcv

MachMsgSignature

Mach rcv msg 2 option?
Mach send msg =2 option?

C.2.2.1 Initial Processing We use the following schema to describe receive operations that
are processed as no-ops due to error conditions that arise during the initial processing of the
request:

MachMsgRcvNoOp

� Dtos

MachMsgRcv

If rcv name? does not denote a receive right or a port set for the client task, then an error
message is returned and no further processing occurs.

MachMsgRcvInvalidName

MachMsgNoOp

(owning task client?; rcv name?) =2 (r right [port set namep)
msg return! = Mm rcv invalid name

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 343

Otherwise, if rcv name? is a member of a port set, then an error message is returned and no
further processing occurs.

MachMsgRcvValidName

Mach

client? : THREAD
rcv name? : NAME

(owning task client?; rcv name?) 2 r right [port set namep

MachMsgRcvInSet

MachMsgRcvValidName

MachMsgRcvNoOp

(owning task client?; rcv name?) 2 port set namep

msg return! = Mm rcv in set

Otherwise, the request is queued at the end of the list of pending receives.

MachMsgRcvNotInSet

MachMsgRcvValidName

(owning task client?; rcv name?) =2 port set namep

MachMsgRcvMakePending

MachMsgRcv

MachMsgRcvNotInSet

8 p rcv : PendingReceive j
p rcv :notify = notify? ^
p rcv :option = option? ^
p rcv :rcv size = rcv size? ^
p rcv :time out at = if Mach rcv timeout 2 option?

then � else f time out? + host time g �
pending receives 0 = pending receives�
f (owning task client?; rcv name?) 7!

pending receives(owning task client?; rcv name?) � hp rcvi g

C.2.2.2 Kernel Processing Only the first request in the sequence associated with a port can
be processed when a message is detected at the port. We introduce the following schema to
denote processing of the first request.

GeneralRcvProcessing

� DtosExec

p rcv : PendingReceive
task : TASK
name : NAME

(task ; name) 2 local namep \ dompending receives

#(pending receives (task ; name)) 6= 0
(pending receives (task ; name))(1) = p rcv

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

344
CDRL A005

IPC

The components task and name denote the task that initiated the receive operation and the
name that task specified as rcv name?. We require that task is an existing task, name is a name
that is in use in task ’s name space, there is a sequence of pending receive requests associated
with (task ; name), and the sequence of requests is nonempty. We introduce the componentp rcv

to denote the first request in the sequence.

For a receive operation to be successful, the name specified by the client must either be a receive
right or the name of a port set. The following schema defines the processing for the case in
which the name is neither a receive right nor a port set:

RcvPortDied

GeneralRcvProcessing

msg return! :MACH MSG RETURN

(task ; name) =2 (r right [port set namep)
pending receives

0 = pending receives � f (task ; name) 7!
tail(pending receives(task ; name)) g

msg return! = Mm rcv port died

The request also fails if the specified name is a receive right that belongs to a port set.

RcvPortChanged

GeneralRcvProcessing

msg return! :MACH MSG RETURN

(task ; name) 2 r right

9 name1 : NAME �
(task ; name1) 2 port set namep ^
named port(task ; name) 2 port set(task ; name1)

pending receives
0 = pending receives � f (task ; name) 7!

tail(pending receives(task ; name)) g
msg return! = Mm rcv port changed

The following schemas define the negation of the previous checks.

GeneralRcvProcessing2
GeneralRcvProcessing

name1 : NAME

port : PORT
message :MESSAGE

int msg1 : InternalMessage

(((9 i : �
(task ; port; name;Receive; i) 2 port right rel) ^
name1 = name) _

((task ; name) 2 port set namep ^
port 2 port set(task ; name) ^
named port(task ; name1) = port))

(Mach rcv large =2 p rcv :option _
(msg contents (message in port rel port 1)):header :size � p rcv :rcv size)

#(message in port rel port) 6= 0
(message in port rel port)(1) = message

int msg1 = msg contents message

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 345

If Mach rcv large is specified in option? and the message to be received is larger than rcv size,
then an error message is returned, msgh !.rcv size is set to the size of the message, and no
further processing occurs.

MachMsgRcvTooLarge

GeneralRcvProcessing2
rcv size! :
msg return! :MACH MSG RETURN

Mach rcv large 2 p rcv :option
(msg contents (message in port rel port 1)):header :size > p rcv :rcv size

pending receives
0 = pending receives � f (task ; name) 7!

tail(pending receives(task ; name)) g
rcv size! = (msg contents (message in port rel port 1)):header :size
msg return! = Mm rcv too large

GeneralRcvProcessing3
GeneralRcvProcessing2
int msg2 : InternalMessage

msg contents0 = msg contents � fmessage 7! int msg
2
g

int msg
2
:header = int msg

1
:header

int msg2:time out at = int msg
1
:time out at

Using this schema, we represent the initiation of the processing by setting the status of the
message to Msg stat rcv .

InitiateMsgRcv

GeneralRcvProcessing3

int msg1:body = int msg
2
:body

int msg2:status = Msg stat rcv

int msg2:error = �

Subsequent processing occurs only on messages having a status ofMsg stat rcv . We use the
following schema to represent processing of that form.

GeneralRcvProcessing4
GeneralRcvProcessing2

int msg1:status = Msg stat rcv

GeneralRcvProcessing5
GeneralRcvProcessing3

int msg1:status = Msg stat rcv

If the client did not specifyMach rcv large and the message is larger than the specified receive
size, then the message is dequeued and destroyed.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

346
CDRL A005

IPC

The following schema denotes the dequeueing and destruction of a message:

DestroyMessage

� DtosExec

message :MESSAGE

port : PORT
msg return! :MACH MSG RETURN

port 2 dommessage in port rel

#(message in port rel port) 6= 0
(message in port rel port)(1) = message

message exists 0 = message exists n fmessage g
msg contents 0 = fmessage g�msg contents

message in port rel
0 = message in port rel � f port 7!

tail(message in port rel port) g

Using this schema, the processing of a message that is too large can be specified as follows:

MachMsgRcvTooLarge2
GeneralRcvProcessing4
DestroyMessage

Mach rcv large =2 p rcv :option
int msg1:header :size > p rcv :rcv size

msg return! = Mm rcv too large

If the client specified the Mach rcv notify option and the notify argument does not denote a
valid receive right, then the processing is similar.

MachMsgReceiveInvalidNotify

GeneralRcvProcessing4
DestroyMessage

(Mach rcv large 2 p rcv :option _
int msg1:header :size � p rcv :rcv size)

Mach rcv notify 2 p rcv :option
(task ; p rcv :notify) =2 r right

msg return! = Mm rcv invalid notify

C.2.3 Notes

In this section we describe aspects of the mach msg processing that are not addressed in the
preceding section and issues concerning the correctness of the specification. The main gaps in
the current specification are the kernel processing of receive and pseudo-receive requests.

The majority of this processing is concerned with transforming a message from type
InternalMessage to type Message . To a large extent, this processing is simply the reverse of
the processing described for the send request to transform a message from typeMessage to
type InternalMessage . There do not appear to be any major obstacles to defining this “reverse”
processing.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 347

A more serious problem with completing the specification of receive requests is the concur-
rency present in the system. For example, it is not clear from the available documentation
what happens if a task loses the receive right for a port while the kernel is in the middle of
dequeueing a message from that port. The kernel interface document states that a status of
Mm rcv port died is returned to the client, but is unclear about other aspects of the processing.
In particular, it is not clear from the documentation whether transferred port rights become
visible only after the kernel commits to dequeueing the message.

A related problem is addressing side-effects of send and receive operations. For example, when
a receive operation dequeues and destroys a message, receive rights for ports can be destroyed.
This requires the modeling of the destruction of the ports and the generation of notification
messages that must be sent.

Another problem that is common to all of the specifications in the FTLS is that input and output
parameters are represented by value while they are actually implemented as references. In
reality, the client specifies a virtual address rather than specifying a message header and
body. The kernel assumes that the message header starts at the specified address and that
the message body starts directly after the message header. One example of the ramifications
of this simplification in the specification is that the specification does not address the case in
which the sender of a message does not have access to the memory containing the header or
body. In this case, the implementation treats the request as a no-op and returns a status of
mm send invalid data. A more complicated example is that the specification does not address
the case in which the memory indicated by the virtual address is not resident. In this case, the
kernel must enter a dialogue with a memory manager to determine the message header and
body to use for the request.

Several subtle aspects of Mach are unclear from the available documentation. Examples
include:

It is not clear what the types of the remote rights and local rights fields of the message
header are. The specifications models them both as sets of MACH MSG TYPE . This
means that a send or send-once right must be transferred to the receiving task. Without
examining the Mach source code, it is not possible to tell whether this is really how Mach
works. A related question is whether more than one type of right can be passed at a time.
If not, then the sets of MACH MSG TYPE should be constrained to having at most one
element.

When determining whether an area of out-of-line memory is accessible by a client, it is
not clear whether the client’s access to all of the pages comprising the region must be
checked or whether it suffices to simply check access to the first page. The latter would be
more efficient, but it requires that the kernel ensure that a client have the same access
to all pages comprising a memory object. Although this property is desirable, it is not yet
captured in the FTLS state.

For simplicity, the current specification assumes that all of the pages containing port rights
passed in out-of-line memory must be resident before the kernel can process the rights.
It is possible that the implementation allows the kernel to process the rights contained
on resident pages while waiting for the data containing the other rights. Modeling this
capability would slightly complicate the model since provision would have to be made for
data elements that are partially in-line and partially out-of-line.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

348
CDRL A005

Refinements of the State Model

Appendix D
Refinements of the State Model

In this appendix we refine portions of the state model to a lower level of detail. This models
some of the data types and relationships that are used to implement the high-level abstract
model described in the Basic Kernel State Definition and DTOS State Extensions chapters.

D.1 Additional Z Extensions

We define a function Gen set to model generic queues. This function will be used in refining
many of the components of the state model. A generic queue has a head element that points
to the first element of a linked list of queue elements. HEAD is the generic type of the head
element of the queue, and ELEM is the generic type of the elements of the queue. If head fnc

maps the head of a queue to the first element of the queue andnext fnc maps a queue element
to its successor, then the expression Gen set(head fnc; next fnc) denotes a function mapping
each element of HEAD to the set of elements in its queue. We define a function Gen seq

to model generic sequences. This function will also be used in refining components of the
state model. A generic sequence has a head element that points to the first element of a
sequence of elements. The expression Gen seq(head fnc; next fnc) denotes a function mapping
each element of HEAD to its sequence of elements.18 Note that for certain values of next fnc

Gen seq(head fnc; next fnc) may be infinite and therefore not of the type seqELEM .

[HEAD ;ELEM]
Gen set : (HEAD � ELEM) � (ELEM � ELEM)

" (HEAD "�ELEM)
Gen seq : (HEAD � ELEM) � (ELEM � ELEM)

" (HEAD " (1 � ELEM))

8 head fnc : HEAD � ELEM ;
next fnc : ELEM � ELEM ;
head : HEAD

� Gen seq(head fnc; next fnc)(head)

= f i : 1; e : ELEM j (head ; e) 2 head fnc � (next fnc
i�1) g

^ Gen set(head fnc; next fnc)(head)
= ran(Gen seq(head fnc; next fnc)(head))

D.2 Refinement of IPC Name Spaces

In refining the specification of IPC name spaces we introduce the following additional types:

[IPC SPACE ; IPC ENTRY ; IPC OBJECT ;PORT SET ; IPC SPLAY TREE ;
IPC TREE NODE]

IPC TABLE == 1 � IPC ENTRY

18The Z expression Q �R denotes the composition of two relations withQ applied first followed byR. The expression
Rk denotes the relation resulting from k applications of relationR. If k = 0, Rk denotes the identity relation. Thus,
Q � (Rk) denotes one application ofQ followed by k applications ofR.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 349

IPC SPACE is the representation of a name space. Each name space consists of a set of
elements of type IPC ENTRY . Some of these entries point to an IPC OBJECT which may be
either a port or a port set. Note that we are introducing an explicit given type for port sets rather
than representing them merely as a set of ports. This agrees with the prototype and makes it
easier to model properties of port sets such as the message queue of a port set. The entries in
a space are organized into two data structures, an IPC TABLE and an IPC SPLAY TREE .
An IPC TABLE is simply a sequence of IPC ENTRY that may have gaps in it. A splay tree is
a search tree containing nodes of type IPC TREE NODE . Each IPC TREE NODE points to
an IPC ENTRY .

The expression task space(tk) denotes the IPC SPACE associated with task tk . No two tasks
have the same value for this expression. The set spacep denotes the existing IPC name
spaces. The expression space table(sp) denotes the IPC TABLE associated with space sp,
and space table size(sp) denotes the current maximum size of this table. Note that this value
may change dynamically to improve performance and memory utilization. The expression
space tree(sp) denotes the IPC SPLAY TREE associated with space sp. Every space has both
a table and a splay tree although one or both of these could be empty.

IpcSpace

TaskExist

task space : TASK � IPC SPACE

spacep : � IPC SPACE

space table : IPC SPACE � IPC TABLE

space table size : IPC SPACE �
space tree : IPC SPACE � IPC SPLAY TREE

dom task space = task exists

ran task space = spacep

domspace table = dom space table size = domspace tree = spacep

8 sp : spacep � max (dom(space tablesp)) < space table size(sp)

We augment the set of rights to containPort set right and Dead name right. The former is the
right associated with an entry for a port set, and the latter is a right that may be associated
with a dead name. Because the marking of dead rights in Mach is performed lazily, a dead right
need not be marked Dead name right . It is also recognized as dead if it points to an inactive
IPC OBJECT .

ALL RIGHTS ::= Right for port�RIGHT� j Port set right j Dead name right

Receive right; Send right; Send once right : ALL RIGHTS

Receive right = Right for port(Receive)
Send right = Right for port(Send)
Send once right = Right for port(Send once)

The set entryp denotes the existing IPC ENTRY elements. An entry is marked with a gener-
ation that is used in determining whether it is out of date. The expression entry gen(entry)
denotes the generation of entry. The expression entry object(entry) denotes the IPC OBJECT

associated with entry. The expression entry rights(entry) denotes the set ofALL RIGHTS asso-
ciated with entry. Finally, the expression entry count(entry) denotes the number of send rights
denoted by entry when a name denotes multiple send rights for a task. Ifentry count (entry) is
positive, then entry must denote a Send right, Send once right or Dead name right .

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

350
CDRL A005

Refinements of the State Model

Editorial Note:
Should probably add dead name notification requests to this.

IpcEntry

entryp : � IPC ENTRY

entry gen : IPC ENTRY �
entry object : IPC ENTRY � IPC OBJECT

entry rights : IPC ENTRY ��ALL RIGHTS

entry count : IPC ENTRY �

domentry gen = domentry object = domentry rights = domentry count

= entryp

8 entry : IPC ENTRY

j entry count (entry) > 0
� entry rights(entry) \ fSend right; Send once right ;Dead name rightg 6= �

Every entry in the table associated with a space must denote some right.

IpcTableEntry

IpcSpace

IpcEntry

8 entry : IPC ENTRY ; table : IPC TABLE

j table 2 ran space table ^ entry 2 ran table
� entry rights(entry) 6= �

The set objectp denotes the existing IPC OBJECT elements. An existing object may be inactive.
The active objects are denoted by active objects . An IPC OBJECT may be either a port or a
port set. The expressions object as port(obj) and object as port set(obj) denote the associated
port or port set. The domains of these two functions partition the set of existing objects.

IpcObject

objectp : � IPC OBJECT

active objects : � IPC OBJECT

object as port : IPC OBJECT � PORT

object as port set : IPC OBJECT � PORT SET

active objects � objectp

hdomobject as port ; domobject as port seti
partition objectp

A port port is in a port set P if and only if (port;P) 2 port in set .

PortInSet

PortExist

port setp : �PORT SET

port in set : PORT � PORT SET

domport in set � port exists

ran port in set � port setp

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 351

EachNAME n encodes an index denotedname index (n) and a generation denotedname gen(n).
If names n1 and n2 have the same index and generation, then they are the same name.

Name

name index : NAME "
name gen : NAME "

8 n1; n2 : NAME

j name index (n1) = name index (n2)
^ name gen(n1) = name gen(n2)

� n1 = n2

The set splay treep denotes the existing splay trees. For efficiency of lookup, a splay tree is
represented internally by three (possibly empty) tree structures, a left, a right and a middle
tree. The root IPC TREE NODE of each of these trees (when the tree is nonempty) is denoted,
respectively, by tree left(splay), tree right(splay) and tree middle(splay). A pair (splay ; node) is
in tree trees if and only if node is the root of one of the three trees associated with splay.

IpcSplayTree

splay treep : � IPC SPLAY TREE

tree middle : IPC SPLAY TREE � IPC TREE NODE

tree left : IPC SPLAY TREE � IPC TREE NODE

tree right : IPC SPLAY TREE � IPC TREE NODE

tree trees : IPC SPLAY TREE # IPC TREE NODE

dom tree trees � splay treep

tree trees = tree middle [tree left [tree right

The set tree nodep denotes the set of existing IPC TREE NODE elements. Each tree node
node points to an IPC ENTRY which is denoted tree node entry(node). The expression
tree node name(node) denotes a NAME associated with node . Each tree node may have a
left and a right child tree node. These are denoted by the expressions tree node lchild(node)
and tree node rchild(node). A pair (node1; node2) is in tree node children if and only if node2 is
either the left of right child of node1.

IpcTreeNode

tree nodep : � IPC TREE NODE

tree node entry : IPC TREE NODE � IPC ENTRY

tree node name : IPC TREE NODE � NAME

tree node lchild : IPC TREE NODE � IPC TREE NODE

tree node rchild : IPC TREE NODE � IPC TREE NODE

tree node children : IPC TREE NODE # IPC TREE NODE

dom tree node entry = dom tree node name = tree nodep

dom tree node lchild � tree nodep

dom tree node rchild � tree nodep

tree node children = tree node lchild [tree node rchild

We are now ready to define the relations port right rel, port set rel , and dead right rel. All
three share the requirement that the space of the task must contain an entry with the appro-
priate name. If the entry is in the table, then the index of the name must match the position

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

352
CDRL A005

Refinements of the State Model

of the name in the table, and the generations of the name and entry must be identical. If the
entry is in the splay tree, then the name in the tree node must equal the given name. This
requirement is abstracted by the relation entry in space . A triple (task ; name; entry) is in this
relation if an only if it satisfies the above requirement.

EntryInSpace

TaskExist

IpcTableEntry

Name

IpcSplayTree

IpcTreeNode

entry in space : �(TASK �NAME � IPC ENTRY)

8 tk : TASK ; n : NAME ; entry : IPC ENTRY

� (tk ; n; entry) 2 entry in space

, (tk 2 task exists

^ entry 2 entryp
^ (((name index (n); entry) 2 space table(task space(tk))

^ name gen(n) = entry gen(entry))
_ (9 splay : IPC SPLAY TREE ;

tree nodes : seq1 IPC TREE NODE

� (task space(tk); splay) 2 space tree

^ (splay ; tree nodes(1)) 2 tree trees

^ (last tree nodes ; entry) 2 tree node entry

^ (last tree nodes ; n) 2 tree node name

^ (8 i : 2 : :#tree nodes

� (tree nodes(i � 1); tree nodes(i)) 2 tree node children))))

A 5-tuple (tk ; p; n; r ; count) is in port right rel if and only if there exists an IPC ENTRY , entry
such that

(tk ; n; entry) is in entry in space ,

r is one of the rights associated with the entry all of which are rights to use a port (i.e.,
not port set rights nor dead rights),

an active object is associated with the entry,

the object is a port, and

either

– r is a receive right and count is 1, or

– r is not a receive right and count is the right count of the entry.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 353

PortRightRe�nement

TasksAndPorts

EntryInSpace

IpcObject

8 tk : TASK ; p : PORT ; n : NAME ; r : RIGHT ; count : 1
� (tk ; p; n; r ; count) 2 port right rel

, (9 entry : IPC ENTRY

� (tk ; n; entry) 2 entry in space

^ Right for port(r) 2 entry rights(entry) � ranRight for port

^ entry object(entry) 2 active objects

^ (entry object(entry); p) 2 object as port

^ ((r = Receive ^ count = 1)
_ (r 6= Receive ^ count = entry count(entry))))

Editorial Note:
This is to cover up the name vs. port discrepancy in version 1.13 of the FTLS. When we incorporate this
refinement is a new version of the FTLS in which this discrepancy is fixed, we must remove this schema
and replace new port set below with port set .

NewPortSets

TasksAndRights

new port set : (TASK � NAME)��PORT

We define port set rel indirectly by defining new port set . A port port is in new port set(tk ; n)
if and only if there exists an IPC ENTRY , entry and a port set PS such that

(tk ; n; entry) is in entry in space ,

the right associated with the entry isPort set right,

an active object is associated with the entry,

the object is PS and

port is an element of PS .

PortSetRe�nement

NewPortSets

EntryInSpace

IpcObject

PortInSet

8 tk : TASK ; port : PORT ; n : NAME

� port 2 new port set(tk ; n)
, (9 entry : IPC ENTRY ; PS : PORT SET

� (tk ; n; entry) 2 entry in space

^ entry rights(entry) = fPort set rightg
^ entry object(entry) 2 active objects

^ (entry object(entry);PS) 2 object as port set

^ (port ;PS) 2 port in set)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

354
CDRL A005

Refinements of the State Model

A triple (tk ; n; count) is in dead right rel if and only if there exists an IPC ENTRY , entry such
that

(tk ; n; entry) is in entry in space ,

either the rights associated with the entry includeDead name right , or the entry points
to an inactive object,

count is the right count of the entry,

DeadRightRe�nement

DeadRights

EntryInSpace

IpcObject

8 tk : TASK ; n : NAME ; count : 1
� (tk ; n; count) 2 dead right rel

, (9 entry : IPC ENTRY

� (tk ; n; entry) 2 entry in space

^ (Dead name right 2 entry rights(entry)
_ entry object(entry) =2 active objects)

^ count = entry count (entry))

The schema IpcRe�nement defines the refinements for IPC name spaces.

IpcRe�nement

PortRightRe�nement

PortSetRe�nement

DeadRightRe�nement

D.3 Refinement of Pending Receives

The expression port waiting threads head (port) denotes the first THREAD , if one exists,
in the sequence of threads waiting to receive a message from port . The expression
port set waiting threads head (pset) denotes the firstTHREAD , if one exists, in the sequence of
threads waiting to receive a message from port setpset . The expression next waiting thread (th)
denotes the successorTHREAD of th, if one exists, in the sequence of threads waiting to receive
a message from the port or port set from which th is waiting to receive a message.

WaitingThreads

ThreadExist

PortExist

PortInSet

port waiting threads head : PORT �THREAD

port set waiting threads head : PORT SET �THREAD

next waiting thread : THREAD � THREAD

domport waiting threads head � port exists

domport set waiting threads head � port setp

domnext waiting thread � thread exists

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 355

The expression thread pending receive(th) denotes the PendingReceive data stored in a thread
th that is waiting to receive a message.

StoredReceiveState

ThreadExist

thread pending receive : THREAD � PendingReceive

dom thread pending receive � thread exists

The expression named port set(tk ; nm) denotes the port set named by nm in the IPC name
space of task tk .

Editorial Note:
It might make more sense to have this in the regular state, not the refinements. Since it is here, we will
refine it right away.

TasksAndPortSets

EntryInSpace

IpcObject

named port set : (TASK � NAME)� PORT SET

8 tk : TASK ; n : NAME ; ps : PORT SET

� ps = named port set(tk ; n)
, (9 entry : IPC ENTRY

� (tk ; n; entry) 2 entry in space

^ entry rights(entry) = fPort set rightg
^ entry object(entry) 2 active objects

^ (entry object(entry); ps) 2 object as port set)

The expression waiting for port(tk ; nm) denotes the sequence of threads that are wait-
ing for a message on the port named by nm in the IPC name space of tk . Note that
Gen seq(port waiting threads head ; next waiting thread) denotes a function of type PORT �
seqTHREAD where a thread th is in the sequence associated with a port p if and only if th is
waiting to receive a message fromp.19 The expression waiting for port set(tk ; nm) denotes the
sequence of threads that are waiting for a message on the port set named bynm in the IPC
name space of tk . A name may not name both a port and a port set for the same task. Thus, the
domains of waiting for port and waiting for port set are disjoint. For convenience, we define
waiting for message to be the union of the functionswaiting for port and waiting for port set.
Because the two domains are disjoint, waiting for message is necessarily a function. Every
thread that is waiting for a message holdsPendingReceive information.

19The Z expression Q � R denotes the composition of two relations with Q applied first followed byR.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

356
CDRL A005

Refinements of the State Model

TasksAndWaiting

WaitingThreads

TasksAndPorts

TasksAndPortSets

StoredReceiveState

waiting for port : TASK � NAME � seqTHREAD
waiting for port set : TASK �NAME � seqTHREAD
waiting for message : TASK �NAME � seqTHREAD

waiting for port = named port

�Gen seq(port waiting threads head ; next waiting thread)
waiting for port set = named port set

�Gen seq(port set waiting threads head ; next waiting thread)
waiting for message = waiting for port [waiting for port set

8 tk : TASK ; n : NAME

� ran(waiting for message(tk ; n)) � dom thread pending receive

We now refine the definition of pending receives. For any (tk ; n) pair the sequence
of PendingReceive values associated with name n for task tk is found by extracting
(via thread pending receive) the PendingReceive data from each thread in the sequence
waiting for message(tk ; n).

PendingReceiveRe�nement

TasksAndWaiting

Messages

8 tk : TASK ; n : NAME

� pending receives(tk ; n)
= waiting for message(tk ; n) � thread pending receive

D.4 Refinement of Virtual Memory

In refining the specification of virtual memory we introduce the following additional types:

[VM MAP ;VM ENTRY ;VM MAP OBJECT]

VM MAP is the representation of a virtual address space. Each map consists of a sequence of
elements of type VM ENTRY . A VM ENTRY denotes a contiguous range of virtual addresses
that share the same properties (e.g., protections and inheritance options). Some of these entries
point to a VM MAP OBJECT which may be either a memory object or a another memory map
called a submap.

The expression task map(tk) denotes the VM MAP associated with task tk . Tasks running in
kernel space may have the same map (the kernel map). No two kernel-external tasks have the
same value for task map. The set map exists denotes the existing VM maps. The expression
vm entries head (map) denotes the first VM ENTRY , if one exists, in the sequence of entries
associated with map.

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 357

VmMapStructure

TaskExist

task map : TASK �VM MAP

map exists : �VM MAP

vm entries head : VM MAP � VM ENTRY

dom task map = task exists

domvm entries head � map exists

The set vm entry exists denotes the existing VM ENTRY elements, and the set
vm entry submap p denotes the entries that are submaps.20 The following functions are de-
fined on VM ENTRY :

next vm entry(e) — denotes the next entry after e, if there is one, in the sequence of VM
entries associated with some VM map,

vm entry start(e) — denotes the starting address of e,

vm entry end(e) — denotes the first address after the end of e,

vm entry map object(e) — denotes the VM MAP OBJECT associated with e,

vm entry o�set(e) — denotes the offset at which e is mapped into a memory object,

vm entry prot(e) — denotes the current protections associated with e,

vm entry max prot(e) — denotes the maximum protections that e may take,

vm entry inh(e) — denotes the inheritance option in effect for e,

vm entry wire count (e) — denotes the number of times that e has been wired, and

vm entry sid(e) — denotes the OSI associated with e.

Every existing entry has a start and an end address, an offset, a protection, a maximum
protection, an inheritance option and a wire count. Every entry that is a submap has
an associated map object while an entry that is not a submap might not have any associ-
ated VM MAP OBJECT . For convenience we define map entries(map) to denote the set of
VM ENTRY contained in map.

20The only map known to have submaps iskernel map. It has the following submaps:

device io map,

ipc kernel map,

kalloc map,

zone map, and

the map of any task running in kernel space that does not use the entire kernel map.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

358
CDRL A005

Refinements of the State Model

VmEntry

VmMapStructure

vm entry exists : �VM ENTRY

vm entry submap p : �VM ENTRY

next vm entry : VM ENTRY � VM ENTRY

vm entry start : VM ENTRY � PAGE INDEX

vm entry end : VM ENTRY � PAGE INDEX

vm entry map object : VM ENTRY � VM MAP OBJECT

vm entry o�set : VM ENTRY � OFFSET

vm entry prot : VM ENTRY ��PROTECTION
vm entry max prot : VM ENTRY ��PROTECTION
vm entry inh : VM ENTRY � INHERITANCE OPTION

vm entry wire count : VM ENTRY �
vm entry sid : VM ENTRY � OSI

map entries : VM MAP "�VM ENTRY

domvm entry start = domvm entry end = domvm entry o�set

= domvm entry prot = domvm entry max prot = domvm entry inh

= domvm entry wire count = dom vm entry sid = vm entry exists

domnext vm entry � vm entry exists

vm entry submap p � domvm entry map object � vm entry exists

map entries = Gen set(vm entries head ; next vm entry)

The set vm map object exists denotes the existing VM MAP OBJECT elements. A
VM MAP OBJECT may be either a memory object or another VM map. The expres-
sions map object as memory(obj) and map object as submap(obj) denote the associated mem-
ory object or VM map. The domains of these two functions partition the set of existing
map objects. The function vm entry map object maps a submap entry to an element of
the domain of map object as submap , and it maps other entries to elements of the domain
of map object as memory . For convenience, we define the functions vm entry memory and
vm entry submap as the compositions of vm entry map object withmap object as memory and
map object as submap, respectively.

VmMapObject

VmEntry

vm map object exists : �VM MAP OBJECT

map object as memory : VM MAP OBJECT �MEMORY

map object as submap : VM MAP OBJECT �VM MAP

vm entry memory : VM ENTRY �MEMORY

vm entry submap : VM ENTRY �VM MAP

hdommap object as memory ; dommap object as submapi
partition vm map object exists

dommap object as memory = ran(vm entry submap p � vm entry map object)
dommap object as submap = ran(vm entry submap p � vm entry map object)
vm entry memory = vm entry map object �map object as memory

vm entry submap = vm entry map object �map object as submap

We define a global functionPage index int that maps aPAGE INDEX to a non-negative integer.
This allows the numeric comparison of page addresses.

Page index int : PAGE INDEX �

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 359

For use in refining the model of the VM system, we define the functions vm map lookup and
vm map lookup entry which each map a (tk ; pindex) pair to aVM ENTRY . For vm map lookup,
the pair is mapped to entry if and only if entry is not a submap, and there is a non-empty
sequence lookup seq of VM MAP �VM ENTRY pairs such that

task map(tk) is the first component of the first element of lookup seq ,

entry is the second component of the last element of lookup seq,

for each element (m; e) of lookup seq :

– e is in the set of entries form,

– pindex is in the address range defined by the start and end addresses ofe,

– if (m; e) is not the last element of lookup seq , then e is a submap entry with the first
component of the next pair in the sequence as its submap.

For vm map lookup entry , a (tk ; pindex) pair is mapped to entry if and only if entry is in the
set of entries for task map(tk), and pindex is in the address range defined by the start and end
addresses of entry ,

VmLookup

VmMapStructure

VmEntry

VmMapObject

vm map lookup entry : TASK � PAGE INDEX �VM ENTRY

vm map lookup : TASK � PAGE INDEX �VM ENTRY

8 entry : VM ENTRY ; tk : TASK ; pindex : PAGE INDEX

� entry = vm map lookup entry(tk ; pindex)
, (9map : VM MAP

� task map(tk) = map

^ entry 2 map entries(map)
^ Page index int(vm entry start(entry)) � Page index int(pindex)

< Page index int(vm entry end (entry)))
8 entry : VM ENTRY ; tk : TASK ; pindex : PAGE INDEX

� entry = vm map lookup(tk ; pindex)
, (entry =2 vm entry submap p

^ (9 lookup seq : seq1(VM MAP � VM ENTRY)
� task map(tk) = �rst(head lookup seq)
^ entry = second(last lookup seq)
^ (8 i : 1 : :#lookup seq; e : VM ENTRY

j e = second(lookup seq(i))
� e 2 map entries(�rst(lookup seq(i)))
^ Page index int(vm entry start(e)) � Page index int(pindex)

< Page index int(vm entry end (e))
^ (i < #lookup seq

) (e; �rst(lookup seq(i + 1))) 2 vm entry submap))))

Now, we define mapped memory and mapped o�set by composing vm map lookup with
vm entry memory and vm entry o�set , respectively. We define mapped o�set , protection,
max protection, inheritance and wire count by composing vm map lookup entry with the ap-
propriate VM entry functions.

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

360
CDRL A005

Refinements of the State Model

Editorial Note:
It is unclear whether mapped memory and mapped o�set are best defined as below or whether it would
be better to use vm map lookup entry for them as well. The question is whether, whenpindex denotes a
submap for task tk , the pair (tk ;pindex) should be in the domains ofmapped memory andmapped o�set .
The prototype appears to follow the submap link when dealing with page faults. However, when accessing
and returning state information associated with a region, it does not look at the submap. Furthermore,
vm region returns a null name for the memory object when the address leads to a submap.

VmRe�nement

VmLookup

AddressSpace

Protection

Inheritance

Wired

PageSid

mapped memory = vm map lookup � vm entry memory

mapped o�set = vm map lookup � vm entry o�set

protection = vm map lookup entry � vm entry prot

max protection = vm map lookup entry � vm entry max prot

inheritance = vm map lookup entry � vm entry inh

wire count = vm map lookup entry � vm entry wire count

page sid = vm map lookup entry � vm entry sid

D.5 Miscellaneous Refinements

The expression threads head (tk) denotes the first THREAD , if one exists, in the sequence of
threads belonging to task tk . The expression next thread(th) denotes the successor THREAD
of th, if one exists, in the sequence of threads belonging to the owning task of threadth.

ThreadList

TasksAndThreads

threads head : TASK � THREAD

next thread : THREAD � THREAD

threads = Gen set(threads head ; next thread)

The expression processors head (pset) denotes the first PROCESSOR, if one exists, in the se-
quence of processors belonging to processor set pset . The expression next processor(proc) de-
notes the successor PROCESSOR of proc, if one exists, in the sequence of processors belonging
to the processor set of which proc is a member.

ProcessorList

ProcessorAndProcessorSet

processors head : PROCESSOR SET � PROCESSOR

next processor : PROCESSOR� PROCESSOR

processors = Gen set(processors head ; next processor)

The expression assigned tasks head (pset) denotes the first TASK , if one exists, in the sequence
of tasks belonging to processor set pset . The expression next assigned task(tk) denotes the

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 361

successor TASK of tk , if one exists, in the sequence of tasks belonging to the processor set to
which tk is assigned.

AssignedTaskList

TaskAndProcessorSet

assigned tasks head : PROCESSOR SET �TASK

next assigned task : TASK �TASK

have assigned tasks = Gen set(assigned tasks head ; next assigned task)

The expression assigned threads head (pset) denotes the first THREAD , if one exists, in the
sequence of threads belonging to processor set pset . The expression next assigned thread (th)
denotes the successor THREAD of th, if one exists, in the sequence of threads belonging to the
processor set to which th is assigned.

AssignedThreadList

ThreadAndProcessorSet

assigned threads head : PROCESSOR SET � THREAD

next assigned thread : THREAD �THREAD

have assigned threads = Gen set(assigned threads head ; next assigned thread)

The expressionmessages head (port) denotes the firstMESSAGE , if one exists, in the sequence of
messages waiting in port . The expression next message(msg) denotes the successor MESSAGE

of msg , if one exists, in the sequence of messages waiting in the port in whichmsg is waiting.

Editorial Note:
This says nothing about the messages in a queue of a port set. This queue is not currently modeled,
so there is nothing to refine. If we add port set message queues, the refinement would appear nearly
identical to the following refinement.

MessageInPortList

MessageQueues

messages head : PORT �MESSAGE

next message :MESSAGE �MESSAGE

message in port rel = Gen seq(messages head ; next message)

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

362
CDRL A005

Index

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
Abort thread . 67
Abort thread depress 67
Access machine attribute 66
active thread . 55
Add name . 65
AddressSpace . 39
Add thread . 68
Add thread secure . 68
Add value . 318
AID . 59
Allocate vm region . 66
allocated . 38
Alter pns info . 65
Anti symmetric . 317
Assign processor . 70
Assign processor to set 69
Assign task . 70
Assign task to pset . 68
Assign thread . 70
Assign thread to pset 67
Audit ids . 46
audit server port . 76
authentication server port 76
backing chain . 40
backing memory . 40
backing o�set . 40
backing rel . 40
BASE MSG ELEMENT 48
Base user priority . 13
cache allows . 73
Cached ruling allows 73
Cached ruling allows 73
cached ruling avail . 73
Can receive . 65
Can send . 65
Can swtch . 67
Can swtch pri . 67
Capability . 20
Change page locks . 66
Chg pset max pri . 70
Chg vm region prot 66
Change sid . 68
Chg task priority . 68
Close device . 71
Co carries memory . 43

Co carries rights . 43
COMPLEX OPTION BOOLEAN 45
COMPLEX OPTION 43
containing port . 25
containing set . 22
control memory . 29
Control pager . 71
controlled proc set . 31
copy strategy . 35
Copy vm . 66
cpu time . 18
Create pset . 68
Create task . 68
Create task secure . 68
Cross context create 68
Cross context inherit 68
crypto server port . 76
dead namep . 23
dead right ref count 23
dead right rel . 23
DeadRights . 24
Deallocate vm region 66
default mem manager 36
Default port sid . 61
Default vm port sid 61
De�ne new scheduling policy 70
depressed threads . 13
Depress pri . 67
priority before depression 13
Derive kernel as . 62
Destroy object . 66
Destroy pset . 70
DeviceData . 57
DeviceExist . 9
device exists . 9
device �lter info . 57
DeviceFilterInfo . 57
DEVICE FILTER INFO 57
DEVICE FILTER . 57
device in . 56
device open count . 55
DeviceOpenCount . 55
device out . 56
Device permissions . 71
device port . 31
device port rel . 31

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 363

DEVICE RECORD . 57
DEVICE . 9
Devices . 57
DevicesAndPorts . 32
device status . 57
DeviceStatus . 57
DEVICE STATUS . 57
dirty rel . 37
Dtos . 77
DtosAdditions . 77
DtosMessages . 74
emulation vector . 15
EmulationVector . 15
enabled sp . 54
Environment slot . 34
event count . 56
EVENT COUNTER 56
Events . 56
Exception ids . 46
Exist . 10
Extract right . 65
FILTER PRIORITY 57
Fixedpri . 14
Flush permission . 68
f orcibly queued . 21
Get attributes . 66
Get audit port . 68
Get authentication port 68
Get boot info . 69
Get crypto port . 68
Get default pset name 68
Get device status . 71
Get emulation . 68
Get host control port 68
Get host info . 68
Get host name . 68
Get host processors . 69
Get host version . 68
Get negotiation port 68
Get network ss port 68
Get processor assignment 69
Get processor info . 69
Get pset info . 70
Get security master port 68
Get security client port 68
Get special port . 68
Get task assignment 68
Get task boot port . 68
Get task exception port 68
Get task info . 68
Get task kernel port 68
Get task threads . 68
Get thread assignment 67
Get thread exception port 67
Get thread info . 67

Get thread kernel port 67
Get thread state . 67
Get time . 68
Get vm region info . 66
Get vm statistics . 66
Halted . 11
have assigned tasks . 54
have assigned threads 54
Have execute . 66
Have read . 66
Have write . 66
Higher priority . 12
Highest possible priority 12
Hold receive . 65
Hold send . 65
Hold send once . 65
host control port . 30
host name port . 30
Host control port permissions 69
HOST . 9
HostsAndPorts . 30
HostsAndProcessors . 53
host time . 55
HostTime . 55
Host name port permissions 68
idle threads . 12
inheritance . 40
Inheritance . 40
Inheritance option copy 40
Inheritance option none 40
INHERITANCE OPTION 40
Inheritance option share 40
initialized . 35
Initiate secure . 67
In line . 47
instruction pointer . 15
INTERNAL BODY . 49
Internal element . 49
InternalMessage . 51
Interpose . 65
Invalidate scheduling policy 70
Invoke lock request . 66
Ipc permissions . 65
Ip dead . 9
Ip null . 9
kernel . 10
Kernel . 10
kernel as . 62
KernelAs . 63
KernelCache . 73
Kernel permission . 64
KernelPortSid . 61
Kernel reply permissions 71
kernel reply ports . 76
KernelReplyPorts . 76

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

364
CDRL A005

Index

Kernel service reply ids 46
local namep . 24
Lock . 38
Lookup ports . 65
Lower priority . 12
Lowest possible priority 12
Mach . 58
Mach exception id . 46
MachInternalHeader . 45
MachMsgHeader . 45
MACH MSG OPTION 42
MACH MSG TYPE 43
Mach notify ids . 46
Mach port dead . 19
Mach port null . 19
Mach port q limit default 25
Mach port q limit max 25
mach protection . 39
MachProtection . 39
Mach rcv large . 42
Mach rcv msg . 42
Mach rcv notify . 42
Mach rcv timeout . 42
Mach send cancel . 42
Mach send msg . 42
Mach send notify . 42
Mach send timeout . 42
Make page precious . 66
make send count . 24
Make sid . 68
managed . 35
manager . 35
Manipulate port set . 65
map rel . 38
Map device . 71
mapped . 39
mapped devices . 56
MappedDevices . 56
mapped memory . 39
mapped o�set . 39
Map vm region . 65
master device port . 32
MasterDevicePort . 32
master proc . 53
Highest priority . 13
max protection . 39
Max right refs . 20
Max samples . 16
may cache . 35
May control processor 69
member rel . 53
control port . 29
control port rel . 29
Memory copy call . 35
Memory copy delay . 35

Memory copy none . 35
MEMORY COPY STRATEGY 35
Memory copy temporary 35
name port . 29
name port rel . 29
MEMORY . 9
MemoriesAndPorts . 30
Memory . 36
MemoryExist . 9
memory exists . 9
Mem obj con�rmation ids 46
Memory object permissions 66
MemorySystem . 42
Message . 50
Msg element . 48
MessageExist . 9
message exists . 9
message in port rel 25
MessageQueues . 26
MESSAGE . 9
Messages . 53
MID . 59
Lowest priority . 13
Mmt copy send . 43
Mmt make send . 43
Mmt make send once 43
Mmt move receive . 43
Mmt move send . 43
Mmt move send once 43
Mach msg type port receive 44
Mach msg type port rights 44
Mach msg type port send 44
Mach msg type port send once 44
MESSAGE BODY . 48
msg contents . 52
MSG DATA . 48
Msg deallocate . 47
Msg dont deallocate . 47
Msg error invalid memory 50
Msg error invalid right 50
Msg error invalid type 50
Msg error msg too small 50
Msg error notify in progress 50
MSG ERROR . 50
Msg error timed out 50
msg operation . 52
Operations . 52
msg receiving sid . 74
Msg region . 49
msg ruling . 74
msg sending sid . 73
msg speci�ed sid . 74
msg speci�ed vector 74
Msg stat pseudo . 50
Msg stat rcv . 50

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 365

Msg stat send . 50
MSG STATUS . 50
Msg value . 48
MSG VALUE . 49
named port . 20
named proc set . 31
NAME . 19
Name server slot . 34
negotiation server port 76
Network packet ids . 46
network ss port . 76
Noti�cations . 27
number of rights . 24
object memory . 29
object port . 29
object port rel . 29
ObjectSid . 62
Observe pns info . 65
Observe pset processes 70
OFFSET . 35
OLSD . 48
Open device . 71
OPERATION . 45
OSI . 60
Osi to aid . 60
Osi to mid . 60
Out of line . 47
WORD . 35
threads . 10
owning task . 10
PageAndMemory . 38
page aid . 61
PageExist . 9
page exists . 9
memory fault . 36
PAGE INDEX . 39
page lock rel . 38
page locks . 38
page mid . 61
PAGE OFFSET . 37
Pager permissions . 66
Pager request ids . 46
PAGE . 9
page sid . 61
PageSid . 62
Page vm region . 66
page word rel . 36
page word fun . 37
SCHED POLICY DATA 14
parent task . 75
ParentTask . 75
Pc device . 33
Pc host control . 33
Pc host name . 33
Pc memory . 33

Pc processor . 33
Pc ps control . 33
Pc ps name . 33
Pc task . 33
Pc thread . 33
PendingReceive . 51
pending receives . 52
PERMISSION . 64
port aid . 60
port class . 33
PORT CLASS . 33
PortClasses . 33
port device . 31
PortExist . 10
port exists . 9
port mid . 60
PortNameSpace . 24
port notify dead . 27
port notify dead rel 26
port notify destroyed 26
port notify destroyed rel 26
port notify no more senders 26
port notify no more senders rel 26
Port permissions . 65
port pointer . 9
Port rename . 65
port right rel . 19
port right namep . 21
port right seq . 33
PORT . 9
port set . 22
port set namep . 22
port set rel . 22
PortSets . 23
port sid . 60
PortSid . 61
port size . 25
PortSummary . 26
Poset . 317
Pp to page sid . 61
precious . 37
Priority levels . 12
proc assigned procset 53
Process . 58
ProcessorExist . 9
proc exists . 9
Processor permissions 69
processor port rel . 30
PROCESSOR . 9
Pset ctrl port . 69
Pset names . 68
processors . 53
ProcessorsAndPorts . 31
ProcessorAndProcessorSet 54

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

366
CDRL A005

Index

proc self . 30
ProcessorSetExist . 9
procset exists . 9
procset name port . 31
Procset control port permissions 70
PROCESSOR SET . 9
procset self . 31
Procset name port permissions 70
Protection . 76
Execute . 38
Read . 38
PROTECTION . 38
Write . 38
Provide data . 66
Provide permission . 71
ps control port rel . 31
ps max priority . 54
ps name port rel . 31
q limit . 25
Raise exception . 67
Read device . 71
Read vm region . 66
Reboot host . 69
Receive . 19
receiver . 20
receiver name . 20
Recognized sample types 16
Recognized transfer options 43
Reexive . 317
registered rights . 34
RegisteredRights . 35
Register noti�cation . 65
Register ports . 65
Remove name . 65
Remove page . 66
reply port . 52
reply port rel . 52
reply port right . 52
ReplyPorts . 52
represented . 37
represented memory . 37
represented o�set . 37
representing page . 37
represents rel . 37
represents memory . 37
Required permission . 87
Resume task . 68
Resume thread . 67
Revoke ibac . 66
RIGHT . 19
r right . 21
Ruling . 72
Ruling allows . 72
Ruling allows . 72
Running . 11

run state . 11
RUN STATES . 11
sampled tasks . 17
sampled threads . 16
Sample periodic . 16
SAMPLE . 16
Sample task . 68
Sample thread . 67
SAMPLE TYPES . 16
Sample vm cow faults 16
SAMPLE VM FAULTS 16
Sample vm faults any 16
Sample vm pagein faults 16
Sample vm reactivation faults 16
Sample vm z�ll faults 16
Save page . 66
SCHED POLICY . 14
security server client port 76
Security server ids . 46
security server master port 76
self task . 28
self thread . 28
Send . 19
sender . 20
Send once . 19
SendRightsCount . 25
sequence no . 25
Seq plus . 318
ServerPorts . 76
Service check deferred 87
Service slot . 34
Set attributes . 66
Set audit port . 68
Set authentication port 68
Set crypto port . 68
Set ibac port . 66
Set default memory mgr 69
Set device �lter . 71
Set device status . 71
Set emulation . 68
Set vm region inherit 66
Set max thread priority 67
Set negotiation port 68
Set network ss port 68
Set ras . 68
Set reply . 65
Set security master port 68
Set security client port 68
Set special port . 68
Set task boot port . 68
Set task exception port 68
Set task kernel port 68
Set thread exception port 67
Set thread kernel port 67
Set thread policy . 67

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 367

Set thread priority . 67
Set thread state . 67
Set time . 69
shadow memories . 40
ShadowMemories . 41
sleep time . 18
so right . 21
SpecialPurposePorts . 32
SpecialTaskPorts . 28
SpecialThreadPorts . 29
Specify . 65
s right . 21
s right ref count . 20
s r right . 21
SSI . 59
Ssi to aid . 59
Ssi to mid . 59
State info avail . 18
Stopped . 11
SubjectSid . 60
Supply ibac . 66
supplying device . 56
SUPP MACHINE ARCH 18
supported sp . 14
Suspend task . 68
Suspend thread . 67
swapped threads . 11
Switch thread . 67
system time . 17
TargetSids . 63
task aid . 60
TaskAndProcessorSet 54
task assigned to . 54
task assignment rel . 54
task bport . 28
task bport rel . 28
task creation state . 75
TaskCreationState . 75
TASK CREATION STATE 74
task eport . 28
task eport rel . 28
TaskExist . 9
task exists . 9
task mid . 60
Task port register max 34
Task port sid . 61
task priority . 14
TaskPriority . 14
task received msgs . 52
TASK . 9
task samples . 17
task sample sequence number 17
task sample types . 17
TaskSampling . 17
TasksAndPorts . 20

TasksAndRights . 22
TasksAndThreads . 11
task self . 28
task self rel . 27
Task self sid . 63
task sid . 60
task sself . 28
task sself rel . 27
task suspend count . 12
TaskSuspendCount . 12
task target . 63
Task task permissions 68
task thread rel . 10
Tcs task empty . 74
Tcs task ready . 75
Tcs thread created . 74
Tcs thread state set 75
temporary rel . 35
Terminate task . 68
Terminate thread . 67
the processor . 30
ThreadAndProcessorSet 55
thread assigned to . 54
thread assignment rel 54
thread eport . 28
thread eport rel . 28
ThreadExecStatus . 12
ThreadExist . 9
thread exists . 9
ThreadInstruction . 15
ThreadMachineState . 18
thread max priority 13
Thread permissions . 67
Thread port sid . 61
ThreadPri . 14
thread priority . 13
THREAD . 9
Threads . 19
thread samples . 17
thread sample sequence number 16
thread sample types . 16
ThreadSampling . 17
ThreadsAndProcessors 55
thread sched policy . 14
ThreadSchedPolicy . 15
thread sched policy data 14
thread sched priority 13
thread self . 28
thread self rel . 28
Thread self sid . 63
thread sid . 60
thread sself . 28
thread sself rel . 28
thread state . 18
THREAD STATE INFO 18

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

368
CDRL A005

Index

THREAD STATE INFO TYPES 18
ThreadStatistics . 18
thread suspend count 11
threads wired . 12
thread target . 63
thread waiting . 56
Timeshare . 14
total naked srights . 33
total name space srights 33
total srights . 33
TotalSendRights . 34
Transfer ool . 65
Transfer receive . 65
Transfer rights . 65
Transfer send . 65
Transfer send once . 65
Transition sid . 68
Transitive . 317
Transit memory . 49
Transit right . 49
Uninterruptible . 11
Usable cached ruling 72
Usable ruling . 72
UserReferenceCount . 21
user time . 17
Values disjoint . 316
Values partition . 316
V data . 48
V data in . 49
V DATA LOCATION 49
V data out . 49
VIRTUAL ADDRESS 15
Vm end . 15
Vm permissions . 66
Vm start . 15
V port . 49
Wait evc . 67
Waiting . 11
wire count . 41
wired . 41
Wired . 41
Wire thread . 69
Wire thread into memory 67
Wire vm . 69
Wire vm for task . 66
Wrap value . 318
Write device . 71
Write vm region . 66
default . 53
protection . 76

D
DTOS Structures:

audit server port 76
authentication server port 76
cache allows . 73

Cached ruling allows 73
cached ruling avail 73
crypto server port 76
Default port sid . 61
Default vm port sid 61
kernel as . 62
kernel reply ports 76
msg receiving sid 74
msg ruling . 74
msg sending sid 73
msg speci�ed sid 74
msg speci�ed vector 74
negotiation server port 76
network ss port . 76
Osi to aid . 60
Osi to mid . 60
page aid . 61
page mid . 61
page sid . 61
parent task . 75
port aid . 60
port mid . 60
port sid . 60
Pp to page sid . 61
Ruling allows . 72
security server client port 76
security server master port 76
Ssi to aid . 59
Ssi to mid . 59
task aid . 60
task creation state 75
task mid . 60
Task port sid . 61
Task self sid . 63
task sid . 60
task target . 63
Thread port sid . 61
Thread self sid . 63
thread sid . 60
thread target . 63
Usable cached ruling 72
Usable ruling . 72

DTOS Types:
AID . 59
MID . 59
OSI . 60
PERMISSION . 64
SSI . 59
TASK CREATION STATE 74

G
Global Identifiers:

Abort thread . 67
Abort thread depress 67
Access machine attribute 66

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 369

Add name . 65
Add thread . 68
Add thread secure 68
Add value . 318
Allocate vm region 66
Alter pns info . 65
Anti symmetric 317
Assign processor 70
Assign processor to set 69
Assign task . 70
Assign task to pset 68
Assign thread . 70
Assign thread to pset 67
Audit ids . 46
Base user priority 13
Cached ruling allows 73
Can receive . 65
Can send . 65
Can swtch . 67
Can swtch pri . 67
Change page locks 66
Chg pset max pri 70
Chg vm region prot 66
Change sid . 68
Chg task priority 68
Close device . 71
Co carries memory 43
Co carries rights 43
Control pager . 71
Copy vm . 66
Create pset . 68
Create task . 68
Create task secure 68
Cross context create 68
Cross context inherit 68
Deallocate vm region 66
De�ne new scheduling policy 70
Depress pri . 67
Derive kernel as 62
Destroy object . 66
Destroy pset . 70
Device permissions 71
Environment slot 34
Exception ids . 46
Extract right . 65
Fixedpri . 14
Flush permission 68
Get attributes . 66
Get audit port . 68
Get authentication port 68
Get boot info . 69
Get crypto port . 68
Get default pset name 68
Get device status 71
Get emulation . 68

Get host control port 68
Get host info . 68
Get host name . 68
Get host processors 69
Get host version 68
Get negotiation port 68
Get network ss port 68
Get processor assignment 69
Get processor info 69
Get pset info . 70
Get security master port 68
Get security client port 68
Get special port . 68
Get task assignment 68
Get task boot port 68
Get task exception port 68
Get task info . 68
Get task kernel port 68
Get task threads 68
Get thread assignment 67
Get thread exception port 67
Get thread info . 67
Get thread kernel port 67
Get thread state 67
Get time . 68
Get vm region info 66
Get vm statistics 66
Halted . 11
Have execute . 66
Have read . 66
Have write . 66
Higher priority . 12
Highest possible priority 12
Hold receive . 65
Hold send . 65
Hold send once . 65
Host control port permissions 69
Host name port permissions 68
Inheritance option copy 40
Inheritance option none 40
Inheritance option share 40
Initiate secure . 67
In line . 47
Interpose . 65
Invalidate scheduling policy 70
Invoke lock request 66
Ipc permissions . 65
Ip dead . 9
Ip null . 9
Kernel permission 64
Kernel reply permissions 71
Kernel service reply ids 46
Lookup ports . 65
Lower priority . 12
Lowest possible priority 12

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

370
CDRL A005

Index

Mach exception id 46
Mach notify ids . 46
Mach port dead . 19
Mach port null . 19
Mach port q limit default 25
Mach port q limit max 25
Mach rcv large . 42
Mach rcv msg . 42
Mach rcv notify . 42
Mach rcv timeout 42
Mach send cancel 42
Mach send msg . 42
Mach send notify 42
Mach send timeout 42
Make page precious 66
Make sid . 68
Manipulate port set 65
Map device . 71
Map vm region . 65
Highest priority . 13
Max right refs . 20
Max samples . 16
May control processor 69
Memory copy call 35
Memory copy delay 35
Memory copy none 35
Memory copy temporary 35
Mem obj con�rmation ids 46
Memory object permissions 66
Msg element . 48
Lowest priority . 13
Mmt copy send . 43
Mmt make send 43
Mmt make send once 43
Mmt move receive 43
Mmt move send 43
Mmt move send once 43
Mach msg type port receive 44
Mach msg type port rights 44
Mach msg type port send 44
Mach msg type port send once 44
Msg deallocate . 47
Msg dont deallocate 47
Msg error invalid memory 50
Msg error invalid right 50
Msg error invalid type 50
Msg error msg too small 50
Msg error notify in progress 50
Msg error timed out 50
Msg region . 49
Msg stat pseudo 50
Msg stat rcv . 50
Msg stat send . 50
Msg value . 48
Name server slot 34

Network packet ids 46
Observe pns info 65
Observe pset processes 70
Open device . 71
Out of line . 47
Pager permissions 66
Pager request ids 46
Page vm region . 66
Pc device . 33
Pc host control . 33
Pc host name . 33
Pc memory . 33
Pc processor . 33
Pc ps control . 33
Pc ps name . 33
Pc task . 33
Pc thread . 33
Port permissions 65
Port rename . 65
Poset . 317
Priority levels . 12
Processor permissions 69
Pset ctrl port . 69
Pset names . 68
Procset control port permissions 70
Procset name port permissions 70
Execute . 38
Read . 38
Write . 38
Provide data . 66
Provide permission 71
Raise exception . 67
Read device . 71
Read vm region . 66
Reboot host . 69
Receive . 19
Recognized sample types 16
Recognized transfer options 43
Reexive . 317
Register noti�cation 65
Register ports . 65
Remove name . 65
Remove page . 66
Required permission 87
Resume task . 68
Resume thread . 67
Revoke ibac . 66
Ruling allows . 72
Running . 11
Sample periodic . 16
Sample task . 68
Sample thread . 67
Sample vm cow faults 16
SAMPLE VM FAULTS 16
Sample vm faults any 16

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 371

Sample vm pagein faults 16
Sample vm reactivation faults 16
Sample vm z�ll faults 16
Save page . 66
Security server ids 46
Send . 19
Send once . 19
Seq plus . 318
Service check deferred 87
Service slot . 34
Set attributes . 66
Set audit port . 68
Set authentication port 68
Set crypto port . 68
Set ibac port . 66
Set default memory mgr 69
Set device �lter . 71
Set device status 71
Set emulation . 68
Set vm region inherit 66
Set max thread priority 67
Set negotiation port 68
Set network ss port 68
Set ras . 68
Set reply . 65
Set security master port 68
Set security client port 68
Set special port . 68
Set task boot port 68
Set task exception port 68
Set task kernel port 68
Set thread exception port 67
Set thread kernel port 67
Set thread policy 67
Set thread priority 67
Set thread state . 67
Set time . 69
Specify . 65
State info avail . 18
Stopped . 11
Supply ibac . 66
Suspend task . 68
Suspend thread . 67
Switch thread . 67
Task port register max 34
Task task permissions 68
Tcs task empty . 74
Tcs task ready . 75
Tcs thread created 74
Tcs thread state set 75
Terminate task . 68
Terminate thread 67
Thread permissions 67
Timeshare . 14
Transfer ool . 65

Transfer receive . 65
Transfer rights . 65
Transfer send . 65
Transfer send once 65
Transition sid . 68
Transitive . 317
Transit memory . 49
Transit right . 49
Uninterruptible . 11
Values disjoint . 316
Values partition 316
V data . 48
V data in . 49
V data out . 49
Vm end . 15
Vm permissions . 66
Vm start . 15
V port . 49
Wait evc . 67
Waiting . 11
Wire thread . 69
Wire thread into memory 67
Wire vm . 69
Wire vm for task 66
Wrap value . 318
Write device . 71
Write vm region 66

M
Mach Structures:

active thread . 55
allocated . 38
backing chain . 40
backing memory . 40
backing o�set . 40
backing rel . 40
containing port . 25
containing set . 22
control memory . 29
controlled proc set 31
copy strategy . 35
cpu time . 18
dead namep . 23
dead right ref count 23
dead right rel . 23
default mem manager 36
depressed threads 13
priority before depression 13
device exists . 9
device �lter info 57
device in . 56
device open count 55
device out . 56
device port . 31
device port rel . 31
device status . 57

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

372
CDRL A005

Index

dirty rel . 37
emulation vector 15
enabled sp . 54
event count . 56
f orcibly queued . 21
have assigned tasks 54
have assigned threads 54
host control port 30
host name port . 30
host time . 55
idle threads . 12
inheritance . 40
initialized . 35
instruction pointer 15
kernel . 10
local namep . 24
mach protection . 39
make send count 24
managed . 35
manager . 35
map rel . 38
mapped . 39
mapped devices . 56
mapped memory . 39
mapped o�set . 39
master device port 32
master proc . 53
max protection . 39
may cache . 35
member rel . 53
control port . 29
control port rel . 29
name port . 29
name port rel . 29
memory exists . 9
message exists . 9
message in port rel 25
msg contents . 52
msg operation . 52
named port . 20
named proc set . 31
number of rights 24
object memory . 29
object port . 29
object port rel . 29
threads . 10
owning task . 10
page exists . 9
memory fault . 36
page lock rel . 38
page locks . 38
page word rel . 36
page word fun . 37
pending receives . 52
port class . 33

port device . 31
port exists . 9
port notify dead . 27
port notify dead rel 26
port notify destroyed 26
port notify destroyed rel 26
port notify no more senders 26
port notify no more senders rel 26
port pointer . 9
port right rel . 19
port right namep 21
port right seq . 33
port set . 22
port set namep . 22
port set rel . 22
port size . 25
precious . 37
proc assigned procset 53
proc exists . 9
processor port rel 30
processors . 53
proc self . 30
procset exists . 9
procset name port 31
procset self . 31
ps control port rel 31
ps max priority . 54
ps name port rel 31
q limit . 25
receiver . 20
receiver name . 20
registered rights . 34
reply port . 52
reply port rel . 52
reply port right . 52
represented . 37
represented memory 37
represented o�set 37
representing page 37
represents rel . 37
represents memory 37
r right . 21
run state . 11
sampled tasks . 17
sampled threads . 16
self task . 28
self thread . 28
sender . 20
sequence no . 25
shadow memories 40
sleep time . 18
so right . 21
s right . 21
s right ref count 20

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

CDRL A005
DTOS FTLS 373

s r right . 21
supplying device . 56
supported sp . 14
swapped threads . 11
system time . 17
task assigned to . 54
task assignment rel 54
task bport . 28
task bport rel . 28
task eport . 28
task eport rel . 28
task exists . 9
task priority . 14
task received msgs 52
task samples . 17
task sample sequence number 17
task sample types 17
task self . 28
task self rel . 27
task sself . 28
task sself rel . 27
task suspend count 12
task thread rel . 10
temporary rel . 35
the processor . 30
thread assigned to 54
thread assignment rel 54
thread eport . 28
thread eport rel . 28
thread exists . 9
thread max priority 13
thread priority . 13
thread samples . 17
thread sample sequence number 16
thread sample types 16
thread sched policy 14
thread sched policy data 14
thread sched priority 13
thread self . 28
thread self rel . 28
thread sself . 28
thread sself rel . 28
thread state . 18
thread suspend count 11
threads wired . 12
thread waiting . 56
total naked srights 33
total name space srights 33
total srights . 33
user time . 17
wire count . 41
wired . 41
default . 53
protection . 76

Mach Types:
BASE MSG ELEMENT 48
COMPLEX OPTION BOOLEAN 45
COMPLEX OPTION 43
DEVICE FILTER INFO 57
DEVICE FILTER 57
DEVICE RECORD 57
DEVICE . 9
DEVICE STATUS 57
EVENT COUNTER 56
FILTER PRIORITY 57
HOST . 9
INHERITANCE OPTION 40
INTERNAL BODY 49
Internal element 49
MACH MSG OPTION 42
MACH MSG TYPE 43
MEMORY COPY STRATEGY 35
MEMORY . 9
MESSAGE . 9
MESSAGE BODY 48
MSG DATA . 48
MSG ERROR . 50
MSG STATUS . 50
MSG VALUE . 49
NAME . 19
OFFSET . 35
OLSD . 48
OPERATION . 45
WORD . 35
PAGE INDEX . 39
PAGE OFFSET 37
PAGE . 9
SCHED POLICY DATA 14
PORT CLASS . 33
PORT . 9
PROCESSOR . 9
PROCESSOR SET 9
PROTECTION . 38
RIGHT . 19
RUN STATES . 11
SAMPLE . 16
SAMPLE TYPES 16
SCHED POLICY 14
SUPP MACHINE ARCH 18
TASK . 9
THREAD . 9
THREAD STATE INFO 18
THREAD STATE INFO TYPES 18
V DATA LOCATION 49
VIRTUAL ADDRESS 15

S
Schemas:

AddressSpace . 39
Capability . 20

Secure Computing Corporation
CAGE Code 0HDC7

83-0902024A001 Rev A
1.21, 4 December 1996

374
CDRL A005

Index

DeadRights . 24
DeviceData . 57
DeviceExist . 9
DeviceFilterInfo . 57
DeviceOpenCount 55
Devices . 57
DevicesAndPorts 32
DeviceStatus . 57
Dtos . 77
DtosAdditions . 77
DtosMessages . 74
EmulationVector . 15
Events . 56
Exist . 10
HostsAndPorts . 30
HostsAndProcessors 53
HostTime . 55
Inheritance . 40
InternalMessage . 51
Kernel . 10
KernelAs . 63
KernelCache . 73
KernelPortSid . 61
KernelReplyPorts 76
Lock . 38
Mach . 58
MachInternalHeader 45
MachMsgHeader . 45
MachProtection . 39
MappedDevices . 56
MasterDevicePort 32
MemoriesAndPorts 30
Memory . 36
MemoryExist . 9
MemorySystem . 42
Message . 50
MessageExist . 9
MessageQueues . 26
Messages . 53
Operations . 52
Noti�cations . 27
ObjectSid . 62
PageAndMemory 38
PageExist . 9
PageSid . 62
ParentTask . 75
PendingReceive . 51

PortClasses . 33
PortExist . 10
PortNameSpace . 24
PortSets . 23
PortSid . 61
PortSummary . 26
Process . 58
ProcessorExist . 9
ProcessorsAndPorts 31
ProcessorAndProcessorSet 54
ProcessorSetExist . 9
Protection . 76
RegisteredRights . 35
ReplyPorts . 52
Ruling . 72
SendRightsCount 25
ServerPorts . 76
ShadowMemories 41
SpecialPurposePorts 32
SpecialTaskPorts . 28
SpecialThreadPorts 29
SubjectSid . 60
TargetSids . 63
TaskAndProcessorSet 54
TaskCreationState 75
TaskExist . 9
TaskPriority . 14
TaskSampling . 17
TasksAndPorts . 20
TasksAndRights . 22
TasksAndThreads 11
TaskSuspendCount 12
ThreadAndProcessorSet 55
ThreadExecStatus 12
ThreadExist . 9
ThreadInstruction 15
ThreadMachineState 18
ThreadPri . 14
Threads . 19
ThreadSampling . 17
ThreadsAndProcessors 55
ThreadSchedPolicy 15
ThreadStatistics . 18
TotalSendRights . 34
UserReferenceCount 21
Wired . 41

83-0902024A001 Rev A
1.21, 4 December 1996

Secure Computing Corporation
CAGE Code 0HDC7

