
Neural Networks as Computationally Exact

Logical Sensor Systems

Thomas C. Henderson and William Raley

UUCS-25-006

Kahlert School of Computing

University of Utah

Salt Lake City, UT 84112 USA

15 May 2025

Abstract

Neural networks can be viewed as a set of computational nodes (neurons) each of which computes

some function over its inputs. This is a restricted form of a Logical Sensor System (LSS) where the

neurons are logical sensors. Taking this viewpoint exposes several structural aspects of neural nets

which can be augmented by the capabilities of LSS modules; this includes: semantic analysis of the

system becomes possible, tests can be added to check for input correctness, alternate subnets can

be specified to accommodate user requirements. Moreover, it becomes possible to replace a given

neuron function with a computationally exact neural subnet.

As an example application of this approach, we demonstrate its effectiveness in dealing with con-

volutional neural networks. Convolutional neural networks trained on some specific image classi-

fication problem learn sets of convolution kernels which are applied to the input images to extract

features relevant to the solution. It is generally believed that these learned kernels are tuned to the

training data, and thus, should outperform standard image processing convolution filters. The study

conducted here indicates that this is not always the case, and that it may be beneficial to either use

standard convolution filters from the start, or to replace the learned kernels with the best matching

computationally exact standard filter (e.g., a Gabor filter).

1



Neural Networks as Computationally Exact Logical Sensor Systems

Thomas C. Henderson∗ and William Raley∗

Abstract— Neural networks can be viewed as a set of compu-
tational nodes (neurons) each of which computes some function
over its inputs. This is a restricted form of a Logical Sensor
System (LSS) where the neurons are logical sensors. Taking
this viewpoint exposes several structural aspects of neural nets
which can be augmented by the capabilities of LSS modules;
this includes: semantic analysis of the system becomes possible,
tests can be added to check for input correctness, alternate
subnets can be specified to accommodate user requirements.
Moreover, it becomes possible to replace a given neuron function
with a computationally exact neural subnet.

As an example application of this approach, we demonstrate
its effectiveness in dealing with convolutional neural networks.
Convolutional neural networks trained on some specific image
classification problem learn sets of convolution kernels which
are applied to the input images to extract features relevant
to the solution. It is generally believed that these learned
kernels are tuned to the training data, and thus, should
outperform standard image processing convolution filters. The
study conducted here indicates that this is not always the case,
and that it may be beneficial to either use standard convolution
filters from the start, or to replace the learned kernels with
the best matching computationally exact standard filter (e.g., a
Gabor filter).

I. INTRODUCTION

Logical sensor systems [1]–[12] provide a clear compu-
tational framework for the specification and implementation
of sensor-actuator systems. Figure 1 shows the organization
of each logical sensor. First notice that a Logical Sensor
(LS) component is a �pull model in that a command arrives
which invokes it to action and it must deliver a response to
the caller whereas neural nets may be considered a push
model in that they are viewed as feedforward functions.
Each component has a unique name and a Command Control
Interpreter which interprets the parameters of the command
and then the Select Function chooses a subnet to produce
the requested result. The Select Function can be viewed as a
local knowledge base that understands the interface between
calling LS components and called components. Monitors
check the validity of the vlaues returned from the component
and taps allow each element of the output to be checked for
correctness. We have shown that an operational semantics of
LSS networks allows an analysis of the network.

The ILLS methodology can be applied at both a macro
scale where a neural net is one of the alternate subnets in
an LS component and at the micro scale where each neuron
of the neural network is an LS component. One possibility
is to augment neural networks so as to incorporate the
various aspects of an LS component; e.g., Command Control

∗T. Henderson and W. Raley are with the Kahlert School of Computing,
University of Utah, Salt Lake City, UT, USA tch@cs.utah.edu

Fig. 1: Layout of Instrumented Logical Sensor.

Interpreter, Select Function, Monitors, Taps, and subnets as
connections to other neurons). This would require a neural
network that allows connections between any neurons in the
network, and thus, would not be feedforward. On the hone
hand this complicate the neural network structure, but on the
other is would also more closely emulate biological neural
systems.

The Instrumented Logical Sensor Systems framework is
shown in Figure 2. The left of the figure indicates the mod-

Fig. 2: The Instrumented Logical Sensor System Methodol-
ogy.



eling, simulation and real system design and specification
part of the framework. Not only is the ILSS system (i.e.,
the LS components and their connections) specified, but a
set of functions (called F in the figure) are given which
are intended to measure system properties of interest. Next,
the center of the figure indicates an implementation that is
created either by hand or automatically. Finally, the right
hand figure indicates the validation process by which the
monitored and tapped values are compared with valid ranges
which allows the determination of the robustness of and
uncertainty in the system.

Given a set of such LS components, the ILLS approach
will greatly enhance the computational capability and robust-
ness of the network, but also allows each component to be
analyzed as to its purpose (i.e., determine what a particular
neuron function computes). Any neuron which is determined
to compute (or approximate) a known analytic function could
then be replaced with a computationally exact LS component.
For example, if a neuron is determined to be approximating
the atan2 function, then that neuron’s input connections can
be deleted and a new set of inputs from the actual arguments
of the analytic function provided to the neuron. It may be
necessary to create subnets that compute these inputs in a
computationally exact way.

A. Computationally Exact Convolutional Neural Networks

Here, we explore a more restricted application of the ILLS
methodology by analyzing individual neuron convolution
functions and replacing them with computationally exact
networks. That is, we propose to determine what function
is being computed and replace the learned neural net com-
putation with an exact computation. This problem is selected
because the networks already have a reduced input structure
to convolution neurons linking just the required sub-window
of an image to produce pixel values in the output of the
neuron. This corresponds to the notion described above of
tailoring the inputs to a neuron to be just those required in an
exact computation. The only thing up in the air is the values
of the convolution kernel which are learned by the CNN.

The thesis is that that standard image processing convolu-
tion filters, e.g., Gaussian blur, anisotropic edge detectors
like Sobel, isotropic edge detectors like the Laplacian of
Gaussian, or various basis functions like Fourier or Gabor,
result in higher accuracy for convolutional neural network
image classifiers than the filters produced by the CNN
learning phase.

This topic has been studied previously; [13] examined the
relationship between learned kernels and level set computa-
tion and show that “neural networks that use strictly mean
zero finite difference stencils as convolutional kernels can be
treated as upwind discretizations of differential equations.”
Their work touches on an issue of interest to us -– the
mathematical basis for these learned kernels. If there is a
strong relation, then the goal is to replace the learned kernel
with the exact computation it is trying to discover.

The goal of our work, however, is to determine which,
if any, standard filter a learned filter is approximating, and

then to replace it with that filter and see if the network
classification performance improves.

II. METHOD

The method is as follows:
1) select for analysis a neuron in a trained neural net
2) determine, if possible, what function the neuron ap-

proximates
3) replace, if necessary, the current predecessor neurons

with appropriate neurons that provide the computation-
ally exact arguments to the neuron under analysis

4) provide a sub-network that provides a computationally
exact function to replace the neuron under analysis

5) re-train the network while holding fixed the newly
spliced in neurons and the weights across their con-
nections.

The study of convolution neurons in a CNN neural reduces
the method to (1) selecting a convolution neuron (and we
restrict this to the first convolutional layer), (2) determining
which standard kernel the neuron is trying to approximate,
(3) replacing the convolution kernel values with the best
matching computationally exact standard kernel, (4) leaving
the network structure intact, and (5) re-training the network
(with the newly splice convolution kernels not learned). In
the domain studied here, step one will select only neurons
in the first convolution layer.

In order to examine this hypothesis, two CNNs are studied:
(1) a simple digit classifier called DigitNet, and (2) AlexNet,
an image classifier trained on over 1 million images. DigitNet
allows detailed analysis of the learned convolution kernels
since the inputs are one-channel gray level images, and
there are only four learned kernels in the first covolution
layer. Moreover, the problem is small enough to allow direct
re-training of the network on the original training dataset.
AlexNet offers a more complex example with three-channel
input and 96 convolution kernels in layer 1. To study the
impact of replacing the kernels, a transfer learning problem
is studied involving Coke bottle inspection.

1) A Standard Image Processing Filter Dataset: A set
of 106 MxM filters is created with seven basic types (see
Appendix A for Matlab code):

1) average
2) Sobel edge detector (4 orientations)
3) disk (average of circular area)
4) Gaussian (a range of variances are used)
5) Laplacian of Gaussian (a variety of variances are used)
6) Fourier basis functions
7) Gabor basis functions.

These filters are all created as NxN arrays and bicubic
interpolation is used to generate them. Note that DigitNet
uses 5x5 kernels while AlexNet uses 11x11 kernels.

A. DigitNet

A CNN digit classifier is created which results in a set
of four learned convolution kernels in the first convolution
layer. This net sets the baseline accuracy.



Filters are compared to the learned kernels in four ways:

1) The exact values of the matched kernel substituted into
the baseline DigitNet with no retraining.

2) The exact matched kernels are substituted and held
fixed while the net is re-trained.

3) Each standard kernel is scaled to the same range as the
learned kernel and used without retraining.

4) Each standard kernel is scaled to the same range as
the learned kernel and held fixed while the net is re-
trained.

When re-training is performed, 10 trials are run and the mean
statistics are used for comparison to the baseline accuracy.

B. AlexNet

A different approach is used with AlexNet. A transfer
learning task is performed. A set of faults are defined for
a Coke bottle, and bottles are to be categorized according
to these faults (see Figure 3 for a set of example inspection
images). These images are from a project from the text by
Solomon and Breckon [14].

Fig. 3: A set of inspection images demonstrating the types
of faults.

AlexNet is loaded into Matlab and is trained on the
bottle fault classification problem. This serves as the baseline
accuracy. The faults include:

• row 1, col 1: crooked label, overfilled, no cap
• row 1, col 2: deformed, overfilled
• row 2, col 1: no label
• row 2, col 2: missing bottle
• row 3, col 1: no cap, overfilled
• row 3, col 2: overfilled
• row 4, col 1: no cap, underfilled
• row 4, col 2: white lablel

If no fault is found, the bottle is OK and passes inspection.
Next, the 288 (i.e., 96*3) kernels are matched and re-

placed, and the resulting accuracies are compared to the
baseline just as described for DigitNet.

III. EXPERIMENTS

A. DigitNet

DigitNet is a twelve-layer CNN (see Matlab help for exact
code):

Layer Name Type Size
1 imageinput Image Input 28x28x1
2 conv 1 2D Conv 4 5x5x1
3 batchnorm 1 Batch Norm Batch Norm
4 relu 1 Relu Relu
5 maxpool 1 2D Max Pool 2x2 Pooling
6 conv 2 2D Conv 16 5x5x1
7 batchnorm 2 Batch Norm Batch Norm
8 relu 2 Relu Relu
9 maxpool 2 2D Max Pool 2x2 Pooling

10 fx fully connected 10 fully connected
11 softmax Soft Max soft max
12 classouptput Class Output cross entropy

Here we focus on the first convolution layer (Layer 2) which
has four 5x5 convolution kernels.

The base DigitNet is created using stochastic gradient
descent with a learning rate of 0.01 and 8 epochs. The
number of training samples ranges from 750 down to 150
in decrements of 100. Table 1 gives the accuracy results for
these for the baseline and four substitution methods.

TABLE I: Accuracy Improvement of Kernel Matching Meth-
ods

Num Samps Baseline Exact Exact/Learn Scale Scale/Learn
750 91.6 89.4 93.3 84.1 95.0
650 90.0 88.3 92.9 88.0 93.1
550 88.2 84.9 89.5 85.4 89.3
450 83.0 81.7 87.1 82.4 87.4
350 80.3 76.9 85.2 81.5 85.2
250 72.1 70.9 77.1 69.5 75.8
150 59.8 63.3 67.0 62.0 64.9

B. AlexNet

AlexNet [15] is an eight-layer convolutional neural net-
work with five convolutional layers and three fully con-
nected. Here we simply find the best match for each convo-
lutional kernel in the first layer, and then retrain on the Coke
bottle inspection problem with the standard filters replacing
the learned AlexNet filters.

Figure 4 shows the training data for AlexNet learning the
Coke Bottle Inspection data. Figure 5 shows the training
data for the best matching standard filters which replaced
the AlexNet filters.



Fig. 4: The Matlab Training Session for AlexNet learning on
the Coke Bottle inspection problem.

Fig. 5: The Matlab Training Session for the modified
AlexNet learning on the Coke Bottle inspection problem.

The accuracy of both networks was 72.55%.

IV. CONCLUSIONS

The general methodology proposed here is to change the
viewpoint of a neural net from that of a simple feedforward
function to a more general paradigm by viewing each neuron
as a computational component (function) interacting with
other computational components (functions). If it is possible
to determine what these learned functions are attempting to
approximate, then they can be spliced out of the network
and replaced by computationally exact sub-networks. This
provides several advantages:

• the functions become explainable and their role in the
overall neural net process can be considered.

• the functions can be replaced with computationally
exact functions which allow for possible improvement
in performance of the network.

• if each neuron has the features of a Logical Sensor
component, then even more power is in the hands of
the designer to include monitoring of e.g., the input and
output data of the component as well as tap lines to
allow insight into the operation of the component.

The experiments show several percentage points in ac-
curacy improvement in the DigitNet case, and no loss of
accuracy in the AlexNet example. Moreover, the DigitNet
results indicate that it is possible to train on less data and
still get accurate results, making it possible to lower the costs
of training.

Future work includes:
• deeper set of experiments on large CNNs
• development of a neural network architecture that in-

corporates the Logical Sensor structure at the neuron
level.

• study of more abstract functions in a neural network;
that is, convolutional layers further downstream in the
network, as well as neurons in the full connected layers
of the network.

ACKNOWLEDGMENT

This work was supported in part by the Utah State Higher
Education award for the Deep Learning in AI and Robotics
prorgram.

REFERENCES

[1] M. Dekhil and T. C. Henderson, “Instrumented Sensor System Archi-
tecture,” Journal of Robotics Research, vol. 17, no. 4, pp. 402–417,
1998.

[2] T. C. Henderson, C. Hansen, E. Shilcrat, and W. S. Fai, “Logical
Sensor Specification,” in Proc of the SPIE Conference on Intelligent
Robots, Cambridge, MA, 1983, pp. 578–583.

[3] T. C. Henderson, E. Shilcrat, and C. Hansen, “A Fault Tolerant
Sensor Scheme,” in International Conference on Pattern Recognition,
Montreal, CA, 1984, pp. 663–665.

[4] T. C. Henderson and E. Shilcrat, “Logical Sensor Systems,” Journal
of Robotic Systems, vol. 1, no. 2, pp. 169–193, 1984.

[5] T. C. Henderson, W. S. Fai, and C. Hansen, “MKS: A Multi-sensor
Kernel System,” IEEE-T Systems, Man and Cybernetics, vol. 14, no. 5,
pp. 784–791, 1984.

[6] T. C. Henderson, C. Hansen, and B. Bhanu, “A Framework for
Distributed Sensing and Control,” in International Joint Conference
on Artificial Intelligence, Los Angeles, CA, 1985, pp. 110–1109.

[7] ——, “The Synthesis of Logical Sensor Specifications,” in SPIE
Conference on Intelligent Robots, Cambridge, MA, 1985.

[8] ——, “The Specification of Distributed Sensing and COntrol,” Journal
of Robotic Systems, vol. 2, no. 14, pp. 387–396, 1985.

[9] T. C. Henderson and E. Weitz, “Multisensor Integration in a Mul-
tiprocessor Environment,” in ACME Conference on Concurrent and
Supercomputing, New York, NY, 1987.

[10] T. C. Henderson, A. Mitiche, E. Weitz, and C. Hansen, “Multisensor
Knowledge Systems: Interpreting 3-D Structure,” Journal of Robotics
Research, vol. 7, no. 6, pp. 114–137, 1988.

[11] T. C. Henderson and R. Grupen, “Logical Behaviors,” Journal of
Robotics Systems, vol. 7, no. 3, pp. 309–336, 1990.

[12] T. C. Henderson and M. Dekhil, “Instrumented Logical Sensor Sys-
tems – Practice,” in IEEE Conference on Robotics and Automation,
Leuven, Belgium, May 1998.

[13] J. Actor, D. Fuentes, and B. Riviere, “Identification of Kernels in
a Convolutional Neural Network: Connections between Leve l Set
Equaton and Deep learning for Image Segmentation,” in SPIE Int.
Soc. Opt. Eng., February 2020.

[14] C. Solomon and T. Breckon, Fundamentals of Digital Image Process-
ing. Oxford, UK: John Wiley and Sons, 2011.

[15] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing 2012, 2012.


