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Abstract

I present an attempt to integrate artificial intelligence learning systems into video game procedural

content generation to adapt to a player’s interests dynamically. Artificial intelligence has developed

rapidly over the past few years, and the possibility of applying it in entertainment environments is yet

to be explored in an engaging yet ethical manner. Procedural Content Generation (PCG) is already

used to help create unique levels or change the difficulty without needing explicit information.

By integrating support vector machines (SVM) into a procedural content generator, player-centric

procedural content generation (PCPCG) can create unique and personalized experiences for the

players. Based on on-the-fly, sparse data collection, PCPCG learns from players themselves as

they play through different levels to generate future content, allowing for following playthroughs

to match player preferences. This research attempts to analyze the effectiveness of PCPCG in a

Pac-Man game environment when humans play through.

Previous work on PCPCG in video games has used computer-generated players with different pref-

erences for what would most engage them in their environment. As a part of this new research,

an experiment was conducted involving two groups playing a recreation of Pac-Man and recording

their preferences. One group played through 30 minutes of levels that would randomly generate.

Another group would play through 30 minutes of levels, but would have the environments gener-

ated using PCPCG with multiple SVMs recording. It was observed that between the control and

test groups, the difference in terms of enjoyment was positive but statistically insignificant. Many

players saw potential in the system if further refined and implemented into other genres.
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ABSTRACT 

I present an attempt to integrate artificial intelligence learning systems into video 

game procedural content generation to adapt to a player’s interests dynamically. Artificial 

intelligence has developed rapidly over the past few years, and the possibility of applying 

it in entertainment environments is yet to be explored in an engaging yet ethical manner. 

Procedural Content Generation (PCG) is already used to help create unique levels or 

change the difficulty without needing explicit information. By integrating support vector 

machines (SVM) into a procedural content generator, player-centric procedural content 

generation (PCPCG) can create unique and personalized experiences for the players. 

Based on on-the-fly, sparse data collection, PCPCG learns from players themselves as 

they play through different levels to generate future content, allowing for following 

playthroughs to match player preferences. This research attempts to analyze the 

effectiveness of PCPCG in a Pac-Man game environment when humans play through. 

Previous work on PCPCG in video games has used computer-generated players 

with different preferences for what would most engage them in their environment. As a 

part of this new research, an experiment was conducted involving two groups playing a 

recreation of Pac-Man and recording their preferences. One group played through 30 

minutes of levels that would randomly generate. Another group would play through 30 

minutes of levels, but would have the environments generated using PCPCG with 

multiple SVMs recording. It was observed that between the control and test groups, the 

difference in terms of enjoyment was positive but statistically insignificant. Many players 

saw potential in the system if further refined and implemented into other genres. 
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1  INTRODUCTION 

Video games are known for having many complex decisions presented that must 

be made at a moment's notice. This creates an excellent environment to train artificial 

intelligence in more dynamic ways. One way AI is implemented into games is in the 

development cycle to assist human developers in creation, whether offline or online. 

Procedural content generation (PCG) involves the dynamic creation of content with 

minimal human feedback to bring about longer game experiences than with usual game 

design [7], though it typically uses a different kind of AI than is used in academics. 

Some games also contain dynamic game balancing (DGB), where the game will 

adjust how easy or hard it is based on the player’s experience when playing, helping to 

ensure that the games are challenging but not frustrating [3]. This can be more personal 

and enjoyable than regular difficulty, learning dynamically as the user plays, but the 

content itself stays static [17, 20]. 

PCG and DGB often fall into one of two categories: Offline, where human 

refinement is done before distribution, and Online, where adaptation is done during 

runtime. The latter is most often reserved for DGB. The training of AI in complex 

environments and the dynamic creation of levels form the foundation of player-centric 

procedural content generation (PCPCG). By gathering feedback from the player as the 

game progresses, PCPCG can use that feedback to dynamically generate new content. By 

learning from past level playthroughs and by using small surveys to understand level 

preferences, new levels can be made that fit into the changing interests of the player. 

I present my efforts to test a simple PCPCG model in a human environment. 

Since humans have more diverse and unquantifiable interests, my goal was to try to track 
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different variables using multiple support vector machines to account for different 

playstyles. The game receives feedback at run time and applies preference learning to a 

runtime-adaptable PCG. As a part of my research, I compare the results of this with the 

results of testing another group of people playing with purely random generation. While 

predicting that PCPCG would learn from player preferences to create levels they enjoy 

more, whether they play for score or easier levels, the results show minimal improvement 

compared to random generation. 

I present the methodology, results, and findings, and discuss limitations in my 

study, as well as what the future could hold for player-centric procedural content 

generation. Using a Pac-Man clone environment designed for Unity [14], I implemented 

a version of PCPCG that uses multiple SVMs to track different preferences, including the 

pellet arrangement, the density of power pellets, level generation in-game, and the 

frequency at which fruits spawn in the game. I then tested how players engaged with the 

game compared to a purely random version of the game by using 10-point Likert scales at 

the end of each level to ask about their preferences. Additionally, I had all participants fill 

out surveys at different points as they played the game to gather feedback about how it 

could be improved and what they enjoyed about their experience. 

While the results didn’t show with full certainty that PCPCG would work in 

games as it currently is, it does trend towards being something that could be built upon, 

with many of the players opining that PCPCG definitely could be useful if fine-tuned. 

Making the questions more subtle or having the answers be on a wider range than just a 

simple “like and dislike” binary scale are areas to look into improving PCPCG for the 

future, with more playtesting done to help reduce player boredom.  
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2  BACKGROUND AND RELATED WORK 

Procedural content generation is the ability for a game to create content with 

minimal human intervention on the developer’s side. These can include the generation of 

maps based on a numerical seed or new obstacles being generated by the buttons a player 

presses. [7] Because of it having little developer involvement, there are many ways to 

implement it. 

Procedural content generation via machine learning (PCGML) has attempted to 

help tune how PCG already works [6]. It can work well with a human designer who 

provides example data, which the program can then use to make levels that are beatable, 

yet challenging. This helps not only reduce time and costs, but also reduces storage while 

helping raise entertainment value. Experiments have been done with Super Mario 

Bros.-styled environments using Markov chains and a computer player to make sure the 

levels are still beatable. 

These kinds of methods often use patterns of the level layout as factors in a 

weighted matrix. These simpler representations can be used to even generate new 

environments [6]. However, data can end up being very sparse due to the limitations of 

how many different games within the genre are available to experiment with. Online 

corpora have been made to try to resolve these issues, combining different level formats 

to allow for the large data sets typically needed [13]. 

Reinforcement learning has been used not only on-the-fly, with the reward being 

given as the program goes on, but used offline when setting up challenges for the players. 

These have all been used for a variety of implementations such as level recommendation, 

match making, and computer players who play like people [6, 9, 10, 12]. Reinforcement 
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learning, however, requires a lot of data. For something that requires sparse data, it is 

better to use a support vector machine, or an SVM [19, 21]. Similar to reinforcement 

learning, SVMs can be run on the fly. By passing in various “support vectors” labeled 

positively or negatively, the SVM will attempt to divide out the labeled items and 

maximize the margin between them in a given hyperplane, or higher-dimensional space. 

This works well if with human feedback based on a general positive or negative rating 

[18]. 

As experiments with content generation often focus on platformer environments, 

Infinite Mario Bros. is commonly used to test out new methods [22]. In the base 

environment, a player is given a basic level to run through and, based on how they 

interact, a new level is made the next time they play. While not like other procedural 

content generation systems, opting to use button inputs rather than seeds for generation, 

Infinite Mario Bros. continues to act as a major inspiration for similar projects, such as 

using LLMs to input a desired level and having the output be generated by user request 

[4]. 

Player-centric Procedural Content Generation (PCPCG) was initially proposed by 

N. Blackburn and M. Gardone under the guidance of D. Brown of the University of Utah 

[1]. The purpose of PCPCG was to allow for online content generation seen in past 

experiments, but to use the player’s preferences as they play the game to make new levels 

based on changing needs. In the original workshop paper, computer-generated players 

were designed with varying “preferences” that detailed what they wished to get out of the 

game. A simple Pac-Man environment was used where, based on the preferences, 

different numbers of pellets in different locations would appear. The model would pin 
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down what the models were interested in and attempt to adjust when there was a 

spontaneous change in player preference. Preferences for each player were determined by 

their “personalities,” influencing what they rated positively and negatively, while the 

support vector machine (SVM) behind the PCPCG adapted in real time. My work builds 

on this by performing human trials, letting humans respond about their enjoyment of the 

game on a 0-to-9 scale, with multiple different SVMs being used to calculate their 

enjoyment.  
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3  DEFINING PCPCG 

For the PCPCG model to work in a human testing environment, the algorithm 

must be able to operate with minimal training, as longer training in terms of both play 

sessions and determining playing interests both run the risk of the player becoming 

disinterested in the game itself. They need to be online learners, gathering information at 

runtime to change based on whoever is playing rather than off of any predetermined 

assumptions. Since data is obtained infrequently, the algorithm must be able to work even 

given sparse feedback. This must apply even given a higher number of features. 

3.1 SVMs and Features 

 Support Vector Machines (SVMs) have the dimensionality of their hyperplane 

determined by the number of features and the dimensionality needed to make them 

linearly separable [21]. Starting empty, the SVM will gather more data points, each 

labeled and placed somewhere on the hyperspace. With this data, the SVM will create an 

equation that separates the points via a hyperplane while maximizing the margin between 

different points [18]. This can be linear, but different kernels can be applied to change the 

shape of the hyperplane [19]. For PCPCG, the point’s label is determined by the player, 

being positive or negative based on their own experience with the given features. 

 By tracking our current preferences and their labelling, the SVM can guess future 

preference labels and select one it believes will be positive. Following Algorithm 1, when 

a new point is added and labeled, the weight matrix defining the SVM is changed to label 

the points correctly while maximizing the margin between the points and the hyperplane. 

Once the player has labeled the newly presented feature, then the given label, together 

with the old labels, can be used to retrain the SVM to generate better levels for the future. 
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Algorithm 1: Support Vector Machine with PCPCG 

 
Data: svmDivide: weights that determine the boundary of an SVM, prevData: Labeled 
data already present in the model, oldPref: the prior preference used, rating: the user’s 
experience on the level, ss: step size for next preference 
Result: newPref 

1. prefs ← (oldPref, rating) 
2. newPref = null 
3. for p 𝜖 oldPref do: 

a. prefVal ← GetNextPreference(p,, ss) 
b. while prefVal * svmDivide < 0 do 

i. prefVal ← GetNextPreference(p,, ss) 
c. end 
d. newPref.append(p.name, prefVal); 

4. prefs.append(newPref) 
5. update(svmDivide, prefs) 
6. end 

 
 

There are different parts of a game that a player may like as a result of their play 

style. A collection of SVMs can be used to define different feature sets based on the roles 

they fill. Each of these will learn the player’s preferences separately and pass the results 

into the main program to generate content. 

3.2 Collecting Feedback 

Feedback requests only happen at natural breaks in the game, primarily at the end 

of the level. A 10-point Likert scale, used to ask for the player’s opinion on a feature on a 

range from 0 to 9, is presented for each set of features that must be ranked. This helps 

quantify player enjoyment for future levels and for recording data to analyze. The process 

is very noisy, so the initial levels generated are done with random values to gauge the 

player’s preferences first. Because the data is very noisy, a static list structure was used to 

gather as much data as possible. 
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Figure 1: Rejection sampling visualized. An illustration of PCPCG learning player 
preferences using rejection sampling and the previous sample to generate the next 
one. The blue region marks the player’s preferences, with every point outside of it 
being rejected and marked in red. Purple circles indicate an accepted sample. 
 

Rejection-based sampling is used to learn player preferences. An 𝜖-ball (epsilon 

ball) centered on the feature vector is created. Upon completion of the level, the player 

determines how much they liked it, either accepting (liking) it or rejecting (disliking). 

This label is then applied to the 𝜖-ball, becoming a dead zone if rejected, preventing 

further feature vectors from being created there (illustrated in Figure 1). If the player 

accepts the feature, future features can be made within the   𝜖-ball region. New feature 

generation follows Algorithm 1, taking a predetermined number of steps to a new feature 

vector.  
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4  IMPLEMENTATION 

This section explains how the player-centric procedural content generation 

(PCPCG) is implemented, the game used for the implementation, and changes made to 

the game to make the experience more dynamic. 

4.1 Implementation of PCPCG 

The game used is a modified version of Zigurous’s open-source Pac-Man clone 

for Unity [14], providing basic art and assets to recreate the Pac-Man game. This was 

modified to allow for unique maps to be created after each iteration of gameplay [15]. 

Additionally, fruit spawning was implemented, with fruits in Pac-Man rewarding a 

different amount of points based on the kind that spawns on the map. Unlike the original 

game, the fruits spawn on the map randomly with a probability-per-pellet eaten as 

determined by the PCPCG. The main generation algorithm was added from here, using 

multiple SVM samples to focus on different features in the feature space. A total of four 

samples were used. The preference learning agent would create dead zones on content 

that was disliked, given a 0 on the Likert scale, adding constraints for future levels. All 

other levels were labeled on a scale from -1 to 1, including decimals, based on the 

ranking given by the player. The recorded features would be used as a reference for 

generating new levels. Within the constraints provided, a new single level is randomly 

generated and presented to the player. 

4.2 Level Generation 

As one feature I wanted to test was how players reacted to different levels, I 

decided to use Shaun LeBron’s Pac-Man maze generation code [15], which uses a 

method of placing Tetris blocks in an invisible environment and changing the width and 
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height of blocks create gaps in between that act as the maze path that Pac-Man and the 

ghosts can move on. The code itself was written for JavaScript, so I had to port it to C# to 

be compatible with the game. 

I added more parameters to the cells that make up the blocks placed down, 

explicitly defined the variables present, and had the output be done as a text file. This file 

would then be mapped to Unity’s tile map editor, with the various turns in the maze using 

invisible node tiles to tell the ghosts the available directions. To work with PCPCG, I 

took the elements of code that determined the probability of blocks of certain sizes being 

placed and the maximum number of long blocks that would be used. These would act be 

changed by features of one of the SVMs to predict more desirable levels.. 

4.3 Information Collection 

The controller for PCPCG has a built-in method that stops gameplay when called 

to pull up a question about the gameplay. While this prompt is up, the player can press a 

number from 0 to 9 to answer. This number is then converted to a different value ranging 

from -1 to 1, which would then be passed into an SVM based on the question asked. This 

sample would tell the SVM the label of the current feature for it to compute a new feature 

for the next level. 

I added a path variable that leads to Unity’s “persistent data path,” a location in 

storage for games to place their save data to allow for saving and loading. I used this and 

C#’s general IO library to create a text document and write the results of the player’s 

responses as they played through. Once the player was done, I would have them press a 

designated button to call Unity’s debug log, which would read and print this data so I 

could record it.  
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5  METHODS 

As these trials are done by humans, I needed a way to quantify their level of 

enjoyment to measure how well the PCPCG was working. To do this, I selected different 

attributes of the game and had them be modified as the game progressed. 

5.1 Possibility Space 

To accommodate different play styles, four general categories were recorded to 

manipulate in future levels. Each of these categories had its own set of features. 

(1) Pellet Layout: Taken from the original experiment [1], the placement of pellets 

and how many exist on the world map is controlled. 

● Total Pellet Count: ( ) Total pellets (tp) on the map. The 𝐶
𝑡𝑝

= 𝑟𝑝 + 𝑝𝑝

value is at least 1, as 0 pellets act as the win condition. Range changes 

depending on map layout. 

● Total Pellet Density: ( , Range: (0:1] ) Ratio of total pellets to 𝐷
𝑡𝑝

= 𝑡𝑝
𝑠  ϵ ℝ

all pellet tiles (s). 

● Symmetry/Asymmetry (S, Range: [0, 1] ℤ): If true, would draw pellets  ϵ 

symmetrically along the vertical axis, using the same symmetry as the map 

generation. This stayed random. 

(2) Power Pellet Density: ( , Range: [0, 1] ): Ratio of power pellets 𝐷
𝑝𝑝

= 𝑝𝑝
𝑡𝑝  ϵ ℝ

(pp) to total pellets. 

(3) Map Layout: Using LeBron’s maze generation code [15], different parameters 

involved in the probability of the maze layout generating in different patterns were 

manipulated. This includes the probability to stop pieces from growing at smaller cell 
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sizes of 2, 3, or 4; the probability of top and bottom cells joining; the probability of cells 

extending at sizes 2 or 4; and the number of long piece cells allowed in the map for 

longer hallways in the maze. Each of these parameters had a range of [0.01, 0.75]. The 

long piece cell count has a range of [0,4]. 

(4) Fruit Spawn Rate: (F, Range: [0, 0.075] ℝ). The likelihood of a fruit  ϵ 

spawning at a random place on the map after eating a pellet. 

 
Figure 2: The original Pac-Man maps and a Generation. Shown without (left) and 
with (center) pellets vs. a PCPCG-generated map (right). (Pac-Man art assets are 

provided by Zigurous.) 
 

 
Figure 3: PCPCG-generated layouts. Show difference in power pellet density, pellet 

count, and map layout. (Pac-Man art assets are provided by Zigurous.) 
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5.2 Testing PCPCG 

 To test the effectiveness of PCPCG on human players, trials were conducted in 

which people were split into two groups, with both of them playing a single level of 

standard Pac-Man to familiarize themselves with the game [16]. Doing this helped to 

ensure every participant was familiar with the basics of how Pac-Man plays. 

The control group played a version of Pac-Man where all of the possible 

parameters were picked by random number generators throughout, no matter what rating 

they gave on the 10-point Likert scale. The main testing group played the version of 

Pac-Man with PCPCG implemented. After each level, the parameters used would 

generate a new map, Figure 2 showing a basic example. This could result in several 

different outputs, all seen in Figure 3. Both groups would play their game for 30 minutes 

in total, answering the Likert questions on a scale from 0-to-9 and playing through the 

levels at their own pace. In addition, a survey was conducted every 15 minutes to 

evaluate each player’s opinions on the game as they played, as well as their thoughts on 

PCPCG as a concept. Data from playtesting was saved in a text file as they answered 

questions at the end of each level. 

 Once the playtesting was done, the data was extracted and split between the 

control group and the test group. The data was averaged out between 6 bins for each 

player, a bin representing 5 minutes of gameplay. This data was then averaged out to 

generate a score graph for each sample between the two groups. The score graphs could 

then be compared, using standard deviation to determine the error range and t-testing to 

determine the likelihood of these results happening by chance. 
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Figure 4: Tracking the average preferences of players per group. Each player’s 
gameplay was split into 6 different bins, representing 5 minutes of gameplay. The 
approval was determined by averaging each player’s score for pellet layout, power 
pellet density, map layout, and fruit frequency. 
 

 
Figure 5: Average enjoyment per category for each group. Shown in the graphs are 
pellet arrangement (top-left), power density (top-right), map layout (bottom-left), 
and fruit frequency (bottom-right). The control group played Pac-Man with pure 
random generation, while the Test group played with PCPCG implementation. 
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Figure 6: Average enjoyment as a whole for each group. The control group played 
Pac-Man with pure random generation, while the Test group played with PCPCG 
implementation. 
 
 
Table 1: T-Distribution and P-Value of the data taken as a whole. Underlined is data 
with a P-value ≤ 0.05. 
 

Feature Pellet Layout Power Density Map Layout Fruit Average 

T-Distribution -0.6133 1.4363 -2.0749 0.9548 0.3415 

P-Value 0.5407 0.1534 0.0399 0.3415 0.6197 
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Table 2: P-value of the data per bin. Underlined is data with a P-value ≤ 0.1. 

 Pellet Layout Power Density Map Layout Fruit Average 

Bin 1 0.7005 0.8107 0.6931 0.7173 0.9470 

Bin 2 0.7534 0.7803 0.9189 0.2712 0.4827 

Bin 3 0.7131 0.2417 0.4856 0.2985 0.3440 

Bin 4 0.4357 0.7020 0.2269 0.7553 0.8898 

Bin 5 0.7127 0.0881 0.0883 0.7207 0.9588 

Bin 6 0.1060 0.8853 0.3991 0.9671 0.8205 

 

Results of p-value evaluation are shown in Tables 1 and 2, showing how likely 

these could have happened by chance. Graphs shown in Figure 5 show the results of the 

average enjoyment of features per group, with standard deviation to show possible error. 

Figure 6 shows the average enjoyment per level after averaging the features together. 

PCPCG with more accuracy on Map Layout and Power Density, especially later in the 

game. Both tables give different results, suggesting PCPCG is good at map layout but not 

good at finding the density of power pellets needed.  
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6  PARTICIPANT RESPONSE 

The participants involved were random volunteers told that they’d be playing 

Pac-Man with procedural content generation. They would answer survey questions in 

addition to what was presented at the end of each level every 15 minutes of playing. The 

surveys asked about initial expectations, experience both early on and later, anything they 

found particularly interesting, and what their thoughts were on PCPCG as a concept. This 

helps gauge how effective the algorithm is and what changes could be made for it in 

future experiments. While most of the players were familiar with Pac-Man, some hadn’t 

played it in a long time or had played it for their first time through the experiment. Some 

were unfamiliar with game design, while others were studying it. This helped provide a 

wide range of personalities for the feedback. 

6.1 Early Experience 

 Many players were generally surprised by the game early on, seeing the different 

maps. For some players, they felt it was a nice change of pace from the Pac-Man they 

were used to, finding the map layouts to be difficult to adjust to. The initial points were 

described as challenging by players more inexperienced with Pac-Man, with participant 9 

noticing that while he found the game easier, he could tell the ghosts were faster and 

more aggressive. Some of the players remarked that it “was interesting to see the different 

combinations of level layouts, particularly regarding power pellets, as these kinds of 

games tend to have few pellets.” Participants generally had high expectations, knowing 

that they would be playing Pac-Man with some degree of generation in-game. 
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6.2 Late Experience 

 Players were generally accustomed to the game after the first half of the 

experiment. At this point, most players found the game easy, mostly because of the power 

pellet density. As pellets tended to be placed close together, it made it easy to stay 

powered-up when eating the ghosts. Many players took issue with this, saying they would 

like it changed since having too many pellets “neuters the potency of the Ghosts.” This 

was the point where preferences in gameplay style were made clear. For two players in 

the control group, they “had objectives change as they played to maximize their score.” 

This is contrasted with one player who said the abundance of pellets made him feel that 

score wasn’t worth going for. Most of the players who felt the levels were similar were 

those in the control group, such as participants 16 and 20. Participant 20 was mainly 

encourage to go for score as a result. Participant 16 was similar, saying that level 

generation “seemed to be less accurate” later on. 

 Map layout was a more divisive system. Several players early on expressed shock 

at seeing how different the levels were. As they played, they would split in terms of 

opinion. Participant 14 believed that the map layouts were more challenging, with the 

frequency of more engaging levels growing over time. Participant 23 shared this opinion, 

saying that “the levels were consistently high quality throughout.” In contrast, participant 

9 believed the levels didn’t matter if he could keep collecting pellets. 

 Players all reported on their “attention grabbers,” something that caught their eye 

as they played. The answers to this varied, with some players praising the ability for the 

maps to change and be something the game learns from. Participant 5 was one such 

player, finding enjoyment in making a plan given a map layout before starting. Some 
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were more negative, doubling down on the issue of power pellets sometimes being placed 

in a row and making the difficulty of the game too easy. Despite this, when asked about 

what they thought of PCPCG as content, they continued to believe that it had a lot of 

potential. Participant 11 did feel that a Likert scale wasn’t the best way to gather 

information on players unless they could somehow be very specific about questions, and 

Participant 13 felt the data needed to be collected more subtly, but they both felt 

nonetheless that games that are simpler in design could use PCPCG to personalize player 

experience. 
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7  RESULTS 

The results in Table 1 suggest that a lot of the data could have happened by pure 

chance, meaning the results are generally irrelevant. However, the p-value for power 

density shows that there’s an 85% chance of repeating these result, and the p-value for the 

map layout shows that there is a 95% chance. Looking closely at the p-values per time 

frame, they suggest that as the gameplay continues for longer, the repeatability for pellet 

layout, power density, and map layout generally goes up, meaning that more play time 

yields more measurable results. 

Looking at the results with the lowest p-value in each column, they tend to be at 

around the second half of the experiment, when the difference between intentional 

generation versus random is at its greatest. Comparing the graphs together in Figure 5, 

the tests generally show greater results in pellet layout and especially in map layout. 

Power density seems to be seen as worse generally, suggesting PCPCG did not improve 

people’s experience here and may have hindered it. This goes along with the most 

common criticism of both groups, that being that the power pellets bunched up too often. 

Additionally, looking at the error bars in Figure 5, they suggest that it’s possible that 

random results and PCPCG could have overlap, meaning that more testing needs to be 

done. In general, the improvement in player experience provided by PCPCG was on 

average minimal, as Figure 6 shows that while PCPCG did better than random generation 

during the second half of the experiment, randomness did better early on. This is further 

exemplified by the error bars for the PCPCG group being almost fully enveloped by the 

ones in the control group.  
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8  FUTURE WORK 

The current implementation of PCPCG is limited in what it can do. One limitation 

it currently has is with receiving feedback from humans. When accepting a broader range 

of feedback, the algorithm fails to properly label a result as positive or negative unless it 

is exactly +1 or -1. Since it’s possible for rankings to be in between these two, it means 

that unless the answer is always positive or always negative, the results of running 

PCPCG will be very close to random, just in a narrower range than pure randomness. 

Implementing a continuous value SVM into PCPCG could be helpful for future 

experiments. 

Real-time player feedback is another issue PCPCG runs into. Constantly needing 

to provide feedback, especially as a survey, can be annoying and hinder player 

engagement, something I observed with some players repeatedly asking if they were done 

after answering some in-game questions. Being able to implement feedback more subtly 

with everyday interactions, such as a “retry” button for an enjoyable level, could help 

mitigate frustration caused by end-of-level questionnaires. 

Having samples built on specific play styles as a form of pre-training could help 

players early on. Rather than having to fully train the algorithm on their data, they could 

choose a starting sample that suits specific play styles and proceed from there, helping 

give a head start in determining what the player finds active engagement in. Feature sets 

could explore previously disliked areas, using the probability of liking a level or having 

high enjoyment for specific gameplay parameters. Experiments done with these 

alterations could yield more promising results.  
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9  CONCLUSION 

Player-Centric Procedural Content Generation is a way to implement player 

feedback to generate content, such as levels in games, to accommodate different play 

styles. Players who have played games with it do see potential in it and think it could help 

personalize gameplay experience, showing both the worth in further development and the 

importance of playtesting and human fine-tuning in making it functional. However, based 

on statistical analysis, PCPCG in its current state provides minimal improvements in 

gameplay experience over random results. PCPCG still needs more development before it 

can be fully implemented into game environments. Further work in regards to scalability 

and passive implementation is necessary to allow it to help improve player experience. 

Work using continuous SVMs or changing the method of confirming preferences using 

the sign of the numerical response is needed to see the full promise of PCPCG. Hiding 

the data collection to prevent interfering with gameplay and adding pre-training could 

help with future trials to make PCPCG more effective in the game world. By making 

these changes and running playtests, PCPCG offers personalized experiences that can 

greatly engage many differnet types of players.  
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