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ABSTRACT 

Medical image segmentation is a critical task in the healthcare domain, aiding in the 

precise delineation of anatomical structures. However, this process is often challenging due to 

the fine-grained yet low-detail nature of medical images, making automated segmentation 

difficult. To improve segmentation accuracy, many models incorporate interactive user input, 

such as points, scribbles, and bounding boxes. While this interaction enhances performance, it 

introduces a significant user burden, sometimes requiring up to 50 clicks per image to achieve 

high accuracy. This demand on annotators, particularly in large-scale medical datasets, presents 

a major barrier to efficient image labeling. To address this challenge, we propose a new 

knowledge distillation mode, with the intention of reducing user interaction while maintaining 

high segmentation accuracy. Unlike existing knowledge distillation methods that primarily 

focus on compressing image encoders or improving model efficiency for resource-constrained 

environments, our approach leverages distillation specifically to minimize the need for 

extensive user input. By reducing annotation burden, our approach can enhance the efficiency of 

medical image labeling software and alleviate the workload of anatomy professionals handling 

large-scale datasets. 
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CHAPTER 1 

INTRODUCTION 

Within the field of modern healthcare and medical imaging, medical image segmentation 

plays a crucial role, enabling automated analysis and decision-making within areas such as 

radiology, pathology, and other fields. Accurate segmentation of medical images, such as the 

ones that are obtained from medical devices such as CT Scans, X-rays, and MRI machines, is 

essential for detecting abnormalities, planning treatments, conducting large scale medical studies, 

and especially for generating large scale annotated datasets for future data analytics and machine 

learning purposes. For example, figure 1 shows an example segmentation of an axial slice of the 

brain segmented into different components.  However, despite many advances in the field of 

medical image segmentation, many methods still require the use of user interaction to refine and 

advance image segmentation results.  

 

Figure 1: Tissue Segmentation of Axial Slice in Brain 

 

Interactive image segmentation involves the use of user-guided annotations, such as 

clicks, scribbles, and bounding boxes to assist segmentation models differentiate between  
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regions of interest and background areas. This process, while very effective at improving 

accuracy, imposes a significant user burden on users that utilize medical image segmentation 

software, who must manually provide precise user inputs for large datasets. Certain medical 

image segmentation models, in order to achieve high accuracy, can require many user-clicked 

points and bounding boxes over the course of multiple iterations of user inputs [3,6] . Other 

methods require the use of live-wire methods, which requires users to manually place points 

along object boundaries to guide segmentation [4,5] . Reducing this input burden without also 

reducing the segmentation accuracy and effectiveness remains a critical challenge in the field of 

medical image segmentation.  

In order to combat this user input burden, and bridge this research gap, we turn to the 

technique of knowledge distillation. This is a technique where smaller, more efficient models 

learn from a larger, pre-trained model. Existing research in knowledge distillation techniques for 

image segmentation has primarily focused on compressing computationally intensive models for 

resource constrained environments [1]. However, research revolving around the application of 

knowledge distillation specifically for reducing user-input burden is limited.  

To bridge this gap, we propose a novel feature-level knowledge distillation model 

designed with the objective of reducing user input in interactive medical image segmentation. 

Unlike most traditional approaches that require extensive user inputs [3,4,5,6], our model enables 

accurate segmentation with fewer user interactions while maintaining performance comparable 

to models with higher input requirements, having potential to improve the efficiency of medical 

annotations and alleviate the burdensome process of labeling large-scale medical datasets. 

The remainder of this thesis is as follows. In Chapter 2, we discuss the background of 

interactive segmentation and knowledge distillation in medical imaging. In Chapter 3, we review 
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existing work such as existing knowledge distillation approaches and interactive segmentation 

models. In Chapter 4, we introduce our model, detailing its architecture and methodology. In 

Chapter 5, we show our experimental results and comparative findings on our model’s 

performance. Finally, in Chapter 6, we conclude the thesis with a discussion of our results and 

findings, limitations, and future implications and research based on our findings.  
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CHAPTER 2 

Background and Motivation 
 

2.1 Challenges of Medical Image Segmentation 

Despite advancements in technology, several challenges persist in this domain, impacting 

the accuracy and efficiency of segmentation methods. One major concern is how to consistently 

acquire high-quality images that can provide reliable and interpretable information for disease 

diagnosis and treatment [13,17]. Medical images are often captured under a variety of conditions, 

such as different lighting levels and capturing distances, which can lead to inconsistencies across 

datasets. In many cases, the resulting images have extremely poor resolution, making it difficult 

to detect and diagnose lesions, especially when they are small or located in complex anatomical 

regions. Additionally, clinical images may include artifacts such as hair, shadows, and 

reflections, which can obscure relevant features and hinder accurate lesion discrimination and 

analysis [13,18]. 

These inconsistencies are further exacerbated by variations in brightness, lighting, and 

the presence of noise, all of which hinder the performance of automated segmentation models.  

For instance, dermoscopic or endoscopic images often suffer from visual obstructions like hair 

and specular highlights, which reduce segmentation accuracy [13,15]. In other cases, such as CT 

imaging, noise, blur, and low contrast are common due to the intrinsic nature of X-ray 

acquisition and the use of lower radiation doses aimed at minimizing patient risk. While lower 

doses help reduce radiation exposure, they also lead to reduced image quality, making it more 

difficult to identify subtle pathological features [13,14]. For example, figure 2 shows an example 

of a brainstem medical image segmentation, demonstrating the graininess and poorly lit nature of 
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medical images in general. These limitations not only compromise the visual clarity of medical 

images but also pose significant challenges for both manual interpretation by clinicians and 

automated segmentation by machine learning models. 

 

 

 

 

 

 

 

 

  

Figure 2: Example Image Segmentation of a Brainstem Medical Image 

 

To address the persistent challenges in medical image segmentation, such as inconsistent 

quality, low contrast, and the presence of visual artifacts, user interaction has become a valuable 

complement to automated methods. Rather than relying solely on fully automated systems, 

which may struggle under these conditions, many approaches incorporate forms of human 

guidance to improve segmentation accuracy [3,5,6,7]. By using inputs such as clicks, bounding 

boxes, or scribbles, users can provide contextual cues that help models better localize and 

delineate structures of interest. This collaborative process leverages both computational 

efficiency and expert knowledge, offering a practical pathway to more reliable segmentation 

outcomes in clinical settings [5,6,7].  
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2.2 User Interaction in Medical Image Segmentation 

 In order to help combat the persistent challenges in medical image segmentation, much 

ongoing research turns to the use of user input, such as point clicks, bounding boxes, and 

scribbles [3, 19] These interactive techniques allow for real-time corrections and guidance, 

addressing the limitations of fully automated systems, particularly when segmenting regions with 

ambiguous boundaries or heterogeneous textures. 

 One particular model, known as ScribblePrompt, demonstrates the effectiveness of these 

results.  ScribblePrompt is an interactive segmentation tool designed to assist in biomedical 

image analysis by allowing users to delineate structures using scribbles, clicks, and bounding 

boxes [20]. During its experimentation and testing, ScribblePrompt reduced annotation time by 

28% and improved segmentation accuracy by 15% compared to the next best method [20]. These 

enhancements are attributed to the tool's design, which incorporates user interactions to refine 

segmentation results, enabling precise adjustments to the identified structures. Figure 3 shows 

how ScribblePrompt’s two different variants compare to other models, demonstrating its 

effectiveness. This approach not only accelerates the annotation process but also enhances the 

accuracy of segmentations, demonstrating the significant impact of user input in improving 

medical image analysis. 
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Figure 3: ScribblePrompt Results from the Paper, Demonstrating the Effectiveness of User Input. See 

Chapter 5 for explanation on the evaluation metrics, such as Dice Score and HD95 

   

 Another model, which is the backbone of our knowledge distillation model (See Section 

2.4), is the PRISM Model.  PRISM (Promptable and Robust Interactive Segmentation Model) is 

another model, similar to ScribblePrompt, designed for precise segmentation of 3D medical 

images, allowing various user inputs such as points, boxes, scribbles, and masks [3]. Its 

architecture is built upon the principle of iterative learning, where the model progressively 

refines segmentations using previous prompts. Validated across four public datasets focusing on 

tumor segmentation in the colon, pancreas, liver, and kidney, PRISM demonstrated significant 

performance improvements over existing methods, achieving results approaching human-level 

accuracy [3]. The incorporation of diverse user interactions enables the model to iteratively 

enhance segmentation precision, underscoring the critical role of user input in refining 

interactive medical image analysis.  Figure 4 shows how effective PRISM’s model is compared to 

other popular models. 
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Figure 4: PRISM Results from the Paper, Demonstrating User Input Effectiveness  

 

However, these two models, despite their accuracy, have significant user input 

requirements. For example, ScribblePrompt requires the user to use scribbles, points, and 

bounding boxes in order to achieve the high accuracy that is shown in the paper [20]. Such types 

of inputs can present a very heavy user burden, and when such large data sets require the use of 

scribbling the desired organ, or putting a bounding box around it, this can increase the amount of 

time that generating large datasets takes [23]. Figure 5 shows an example of the amount of user 

input that ScribblePrompt takes in, requiring scribbles and clicks across the image multi 

 

Figure 5: ScribblePrompt’s User Input Requirements 

 

 Similarly, PRISM has a very significant user-prompt burden. PRISM’s results claim to 

yield dice scores of above 0.9 after 11 iterations of user input [3]. However, in order to achieve 
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its high accuracy, users are required to use its ultra-model [3]. The ultra-model requires the use 

of additional points, bounding boxes, and scribbles, which takes significantly more time due to 

the lengthy user inputs that it requires [23]. If users simply want to utilize one point per image, 

PRISM-plain can be used, where users are only required to enter one point per image [3]. 

However, these results show no improvement through its iterative process compared to the 

ultra-model, as shown in figure 6 [3] .  

 

 

Figure 6: PRISM’s Results Demonstrating Poor Performance with Less Burdensome Input 

 

Our objective in this thesis is to explore the potential of knowledge distillation as a tool to 

reduce user input burden in interactive medical image segmentation. Existing methods often rely 

on extensive user input, such as detailed clicks or scribbles, to achieve high accuracy, which can 

be time-consuming and impractical in clinical settings [3, 19, 20, 23]. By leveraging knowledge 

distillation, we aim to transfer knowledge from models trained with higher levels of user 

interaction to those that require fewer inputs. This approach has the potential to maintain, or even 

improve, segmentation accuracy while significantly lowering the amount of manual effort 

required from users. Ultimately, our goal is to make interactive segmentation more efficient and 

accessible without compromising on performance. 
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2.3 The VIT Architecture 

 The primary architecture of many modern image segmentation models, including the one 

within this thesis, utilizes the Vision Transformer (VIT). The VIT was introduced to address the 

issue of limited input representation in standard transformer architectures, which were originally 

designed for sequential data like text, limiting their applicability to images [8]. Figure 7 shows 

an overview of the VIT pipeline, which will be covered in this section.  

 

Figure 7: Diagram of the Vision Transformer Flow 

In the first step, the image is divided into fixed-size patches. These patches are then 

transformed into numeric vectors, or embeddings. Embeddings are useful because they map the 

input data into a vector space where similar data points are placed closer together. This property 

helps the model recognize patterns and relationships more effectively. Specifically, to embed an 

image, the ViT divides it into smaller patches (for example, 16x16 pixel tiles). These patches are 

then flattened and linearly projected into high-dimensional vectors. 

Once the image patches are converted into embeddings, they are passed into the first 

component of the ViT architecture, which is the image encoder. This encoder is typically a 

Multi-Layer Perceptron (MLP) that processes the embeddings to capture spatial relationships 
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between the patches. This is similar to how transformers process tokens in text, where the 

sequential input is crucial to understanding context. 

An important aspect of the ViT is the inclusion of positional embeddings. Just as in the 

standard transformer architecture for natural language, the relative position of each patch within 

the image is important for understanding the spatial layout. These positional encodings are 

concatenated to the image embeddings before being input into the image encoder. This step 

ensures that the model can take into account both the content of the patches and their spatial 

arrangement within the image [24]. 

Once the image patches are embedded and the positional encodings are added, the 

resulting sequence of vectors is passed into the transformer layers. These layers consist of 

multi-head self-attention mechanisms and feed-forward networks, which are responsible for 

learning complex relationships and interactions between the patches. The self-attention 

mechanism allows the ViT to weigh the importance of different patches in relation to each other, 

enabling it to capture long-range dependencies within the image. This is particularly useful for 

tasks like image segmentation, where the context of distant regions of the image can be crucial 

for accurate predictions. 

The transformer layers are stacked, and after several layers of self-attention and 

processing, the output from the final transformer layer is passed through a classifier or 

segmentation head, depending on the task. For image segmentation, the output tokens 

corresponding to each image patch are reshaped and upsampled to match the original image size, 

followed by a pixel-wise classification to generate the segmentation mask. Finally, the output of 

the segmentation head is compared to the ground truth, and the model is trained using 
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backpropagation, typically optimizing a loss function like cross-entropy or dice loss, which is 

designed to minimize the difference between predicted and actual segmentation masks. 

 

2.4 PRISM - The Backbone of Our Knowledge Distillation Model 

 Our implementation of knowledge distillation is built around PRISM. This section 

provides an overview of what it is.  

  PRISM (Promptable and Robust Interactive Segmentation Model) is a framework 

designed to improve the precision of 3D medical image segmentation through interactive 

learning [3]. It accepts a variety of visual prompts, such as points, boxes, and scribbles as sparse 

inputs, as well as masks as dense inputs to help guide the segmentation process. Based on the 

Segment Anything Model (SAM) [26],  PRISM operates on four foundational principles. The 

first principle is iterative learning. By utilizing visual prompts from previous iterations, PRISM 

refines segmentations progressively, improving accuracy with each cycle.  The second principle 

is confidence learning: Employing multiple segmentation heads per input, each generating a 

candidate mask accompanied by a confidence score, PRISM optimizes predictions by focusing 

on the most reliable outputs.  The third principle is corrective learning. After each segmentation 

iteration, a shallow corrective refinement network reassigns mislabeled voxels, enhancing the 

overall segmentation quality. The final principle is hybrid design. Integrating hybrid encoders, 

PRISM effectively captures both local and global image features, addressing the complex 

anatomical variations present in medical images.   

PRISM employs a generic encoder-decoder architecture with human-in-the-loop 

capabilities integrated [3]. The image encoder and visual prompt encoder extract latent features 

from the input image and prompts, respectively. These are fused via self and cross- attention 
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mechanisms to produce rich embeddings, which are then decoded into a preliminary 

segmentation output. This output is refined iteratively based on new prompts derived from 

erroneous regions of previous predictions. The image encoder itself is a hybrid module 

composed of parallel convolutional neural network (CNN) and vision transformer (VIT) 

pathways. This design enables PRISM to effectively learn both local anatomical structures and 

global contextual cues. The decoder output is then used in conjunction with the visual 

embeddings to generate multiple candidate masks, each assigned a confidence score via 

lightweight multi-layer perceptrons (MLPs). A selector module identifies the highest-confidence 

prediction, which is subsequently refined by a corrective refinement network composed of two 

residual blocks. This network takes a four-channel input: the original image, the selected binary 

mask, and the cumulative positive and negative prompt maps, as shown in figure 8. 

 

 

Figure 8: PRISM Architecture Diagram. PRISM will take an image and the visual prompts 

associated with it such as points, bounding boxes, and scribbles. Then, the user will provide 

prompts for the next iteration. In part (b), the model combines features from the image and the 

user’s prompts by letting them interact in a shared space. It uses special attention mechanisms to 

help the model focus on important details from both sources and create meaningful 

representations for the image and prompts. 
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Prompts are automatically sampled from regions of disagreement between the predicted 

and ground truth segmentations, simulating human corrections. Sparse prompts (points and 

scribbles) are derived through structured sampling and deformation strategies, while a fixed 3D 

bounding box is used throughout the iterations. Additionally, the dense prompt for any iteration 

is derived from the logits map of the previous iteration, allowing gradient flow and preserving 

contextual learning.   By integrating these modules, PRISM not only enables flexible prompt 

integration but also facilitates progressive refinement toward expert-level segmentation 

performance.  

However, as mentioned in section 2.2, PRISM’s human in the loop feature imposes a 

significant burden on the user. PRISM’s plain model, which only requires the use of points 

during the iterative process, performs poorly over the course of 11 iterations compared to its ultra 

counterpart, which requires the use of multiple points, bounding boxes, and scribbles. Our 

objective in this thesis is to try and outperform the PRISM plain model, while still using the 

same amount of points as the plain model.  

 

2.5 Knowledge Distillation 

 This section provides an introduction to knowledge distillation, and an overview of how 

it functions.  

 Knowledge distillation is essentially an optimization technique where a larger, high 

intensity model, transfers knowledge to a less accurate model [25]. This method allows these low 

performing models to increase in accuracy due to this new transfer of knowledge while still 
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maintaining the low latency required for this model to perform. This larger, high intensity model, 

is known as the teacher model whereas the weaker model is known as the student student model.  

 To simplify the process of explaining knowledge distillation, we will utilize an example 

of a simple neural network. Generally, the first instinct when it comes to where the knowledge is 

stored is to assume that it is stored within the weights and biases since this is where the results of 

training are. However, since the objective of knowledge distillation is to compress this network, 

compressing the weights and biases matrix would be very difficult to see. Rather, we look at the 

network as a function that transforms an input into an output vector. For an image classification 

task, we have an image that is transformed into a probability distribution, usually with an output 

function such as a softmax operation. The knowledge, in this case, is the probability distribution 

at the output level. Figure 9 shows an example of a neural network output displayed as a 

probability distribution when classifying the MNIST dataset.  

 

 

 

 

  

 

 

Figure 9: An example of the classic MNIST classification task. However, here we have put the 

output in terms of a probability distribution. This essentially shows that even though the answer 

is 9, the distribution shows similarities to 8, or 3, which also shows that knowledge can be 

carried in terms of a probability distribution.  
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The specific variant of knowledge distillation that our thesis uses is called Soft 

Distillation [26]. Soft distillation revolves around the idea of measuring the distance between two  

probability functions. The primary metric that ongoing research utilizes is Kullback-Leibler 

Divergence (KL Divergence), which is defined as follows 

 

 

 

where P and  are two probability functions whose distance is being measured. The KL 

Divergence is then factored into the loss function during the training process based on the 

objective function, or the loss function being utilized (eg. MSE, Cross Entropy). In the case of 

our knowledge distillation problem, the functions P and Q represent the student and teacher 

models’ softmax outputs. The following loss function is an example of KL Divergence factored 

into a standard cross entropy loss function. Though the this loss function is not the one used in 

our model, it provides an overview of how knowledge distillation can be implemented into a 

standard loss function, such as cross entropy.  

 

In the equation, we also have added a new constant, τ. This is the temperature constant 

that is used when determining how sensitive the probability distribution will be when generating 

our softmax outputs. During knowledge distillation, we utilize the softmax with temperature 

activation function written below. 
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The factor, τ, essentially dictates how “sensitive” the probability distribution is. A higher value 

for τ means that larger numbers will output far higher probabilities from the softmax function the 

larger the value for τ is. Naturally, the opposite occurs for numbers that are small. A smaller 

value for τ means that the probabilities will be far less sensitive. A large number inputted into the 

softmax function won’t have as high a probability as a large  τ, and it is vice versa for smaller 

numbers.  Once we have obtained our loss function in terms of the distance between the teacher 

and the student distributions, we can now train our model using this new loss function.  
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CHAPTER 3 

Related Work 

3.1 Summary of Existing and Ongoing Research 

Ongoing research in knowledge distillation primarily revolves around reducing latency, 

and allowing large models to work in resource constrained environments  [1, 28, 29]. Though a 

majority of this research revolves around improving the accuracy of lightweight models, there is 

no existing work regarding the use of knowledge distillation to improve lightweight models, 

where lightweight in this case means models with low user-input burden. In this chapter, we will 

go over three currently existing models that utilize feature distillation as their optimization 

technique to better establish the ongoing research in the field.   

3.2 Classic Knowledge Distillation Techniques 

Traditional knowledge distillation methods [25, 38] involve transferring the output 

probability distribution from a teacher model to a student model using soft targets. These 

methods typically optimize KL Divergence between teacher and student outputs. Extensions of 

this idea have been explored in natural language processing, image classification, and object 

detection, with temperature scaling and soft targets playing a critical role in improving student 

learning. However, these techniques generally operate at the output level, neglecting intermediate 

feature representations that can be especially valuable in dense prediction tasks like 

segmentation. 
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3.3 Feature-Level Knowledge Distillation in Segmentation 
 

Recent research has shifted toward distillation at the feature or embedding level to 

improve fine-grained spatial understanding, particularly in tasks like semantic segmentation and 

medical imaging [22, 29]. These approaches use losses like mean squared error (MSE) or cosine 

similarity to align intermediate representations from the teacher and student. Models such as 

MobileSAM and TransKD [1, 28] have demonstrated that distilling encoder or attention block 

features can improve performance in lightweight networks. Some works also incorporate 

architectural adaptations, such as projection heads or self-attention fusion, to bridge dimensional 

mismatches between teacher and student features [7, 32]. Our proposed model draws inspiration 

from these works but diverges by applying feature-level supervision specifically to interactive 

segmentation with the goal of reducing manual user input, rather than working in computational 

resource starved environments. 

3.4 Interactive Segmentation and User Input Dependency 

In the context of medical imaging, interactive segmentation models like ScribblePrompt 

[20] and PRISM [3] have demonstrated strong performance using user-provided clicks, scribbles, 

or bounding boxes. These models iteratively refine segmentation outputs by incorporating user 

corrections. However, their reliance on dense, repeated user input presents a bottleneck in terms 

of annotator time and scalability. While effective, they do not attempt to alleviate this burden 

using learning-based techniques. Our work fills this gap by proposing a distillation mechanism 

that allows a sparse-input student model to benefit from a richer-input teacher model, thereby 

maintaining performance while reducing interaction overhead.  
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Chapter 4 

Implementation and Methodology 

4.1 Teacher and Student Architecture  

 Our distillation model starts with a teacher and student network, both based on a generic 

encoder and decoder architecture. Borrowing from the PRISM Architecture, our model takes an 

input image x, along with the visual prompt v, the image and prompt encoders generate the 

image and prompt embeddings [3]. These embeddings are then fed into the resulting decoder 

architecture to produce the final image segmentation y’. The image encoder, specifically, is a 

hybrid architecture consisting of a ViT [8] and a Convolutional Neural Network (CNN).  

Adapted on SAM [8, 27, 30] for 3D medical images, as well their visual prompts 

including sparse prompts (such as bounding boxes, scribbles, and point clicks) and dense 

prompts (such as segmentation masks),  the prompt encoder utilizes the SAM framework to 

generate embeddings for the user prompt. The same principle, with a 3D adaptation, applies to 

the mask decoder as well. Figure 10 shows the pipeline of the bothe the teacher and student 

models borrows from PRISM. 

 

 

 

 

 

 

 
         Figure 10: PRISM Architecture used for our Teacher and Student Models 
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4.2 Teacher Model 

The first part of our architecture is the teacher network. The teacher network is built upon 

the PRISM “ultra-plus” model, since it is a strong performing model according to experiments 

done with simulating user interaction [3]. For the purposes of this overview, the “ultra-plus” 

model will be referred to as the “teacher” model, since it is the backbone of the teacher model in 

this knowledge distillation model.  The teacher model is trained on a dynamic number of point 

clicks, ranging from 1 to up to 50 points. The number of points randomized during each 

simulated iteration. Additionally, the teacher model is also trained using bounding boxes, as well 

as scribbles. For the use of our overall architecture, the teacher is a pre-trained network, and is 

frozen during the knowledge distillation training.  

 

4.3 Student Model 

 The next part of our architecture is the student network. The student network is built upon 

the PRISM “plain-b-1” model. For the purposes of this overview, the “plain-b-1” model will be 

referred to as the “student” model, since it is the backbone of the student model in this 

knowledge distillation model.  Normally, the plain-b-1 model uses a bounding box during the 

training process in each iteration. However, in order to reduce user prompt burden as well as 

provide better supervision and give multiple locations of interest, we have modified it to remove 

the need of a bounding box. Additionally, the student model previously used 1 point in the 

PRISM model; we now use five points to provide better supervision as well. 
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 The student model and the teacher model both use the same architecture shown in figure 

10. The only differing factor between both the teacher and the student models lies in the amount 

of  input that is required. 

 

4.4 Distillation Pipeline 

With our teacher and student models’ architecture established, we can now move onto the 

process of how knowledge is “distilled” from the teacher to the student. Specifically, our model 

distills information at the feature level. Though logit-level distillation is more common [25, 29], 

we have opted to use feature-level distillation since KD neglects intermediate-level supervision 

for complete guidance [31]. What this means is that since we have multiple components, such as 

the multiple encoders and decoders, these building blocks constitute an embedding level 

meaning and a distillation at each individual component is coherent. This allows flexibility in 

modifying the student architecture based on specific needs. For example, MobileSAM uses 

feature level decoupled distillation [28], where their research has shown an increase in 

performance in Dice Scores, as well as a reduction in training requirements.  

 Distillation occurs at multiple components of our architecture. Specifically, it occurs at 

the visual prompt embedding, image prompt embedding, and the mask decoder embedding level. 

The first part of our model is the teacher prompt encoder. The visual prompt is first fed into the 

teacher prompt encoder, where prompt embeddings are generated. A subset of visual prompts 

that are low effort, such as a few points clicks,  is also fed into the student encoder as well. We 

now want to distill the rich representation of the teacher model into the student model. However, 

this cannot be trivially done because there is a dimensionally mismatch between the teacher and 

student embeddings. This mismatch occurs due to the teacher model being prompted with a 
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richer set of user-inputs, such as bounding boxes and scribbles, as well as many point clicks. 

Similarly, the student model has lower dimensionality since there are far less points embedded 

into the student prompt embeddings.  

 In order to reduce the teacher embeddings to the same dimensionality as the student 

embeddings, we utilize a linear projection head [7, 32].  The linear projection head helps to 

encode the information to align in dimensionality with respect to the student embeddings. The 

projection simply derives from ZTWP where ZT is the teacher model, and WP  is a learnable matrix 

representing the linear projection. The distillation objective here is now to minimize the 

embedding difference between the projected teacher, and the student embeddings. To do so, we 

utilize the Mean-Square Error (MSE) loss function and minimize it. Because PRISM is an 

iterative framework [3], the segmentation mask from the previous iteration is passed on as a 

dense mask prompt back into prompt encoder, as shown in figure 11. 

 

 

 

 

    

 

 

Figure 11: Visual Prompt Encoder Distillation from Teacher to Student Using Projection 

 

 The next part of our model is the distillation within the image encoder, as shown in figure 

12. The teacher image encoder, which is a frozen pre-trained model, is inferred with an image 
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input and the embeddings that are produced from the image encoder are then distilled to the 

student image encoder to generate student image embeddings. Unlike the prompt encoders, the 

distillation process for the image encoders does not require the use of a projection head since the 

teacher and student image encoders are the same architecture, as well as taking in the same 

image input. This results in the same embedding dimensions for both the teacher and student 

image embeddings.  

 

 

Figure 12, Image Prompt Encoder Distillation from Teacher to Student 

 

 The next part of our model is the distillation process between teacher and student image 

and prompt interaction. The image and prompt embeddings from the respective teacher and 

student model are fed into a two way transformer [27] interaction module where a cross attention 

mechanism from prompt to image, and image to prompt interactions are carried out and 

generates contextualized image and prompt embeddings. We then perform distillation between 

these contextualized embeddings. This process is diagrammed in figure 13.  
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Figure 13: Two Way Transformer Distillation Process for Prompt and Image Interaction 

 

 Finally, our model ends at the mask decoders for both the teacher and the student, where 

both models take in the contextualized image and prompt embeddings from the two way 

transformer and generate segmentation masks for both the teacher and student. We then perform 

distillation at the output logit level for these segmentation masks. We now have a student mask 

that has been generated as the final output segmentation, as shown in figure 14.  

 

Figure 14: Mask Decoder Distillation Process for Segmentation Masks 
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The entirety of the distillation process is diagrammed in figure 15. This is simply the distillation 

pipeline which classified the various pixels using our methodology. The training is a different 

process, and is discussed in section 4.5. 

 

 

          Figure 15: Overall KD Network Diagram With All Components 
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4.5 Distillation Training Process 

In order to train our model, we utilize a combination of relative MSE loss as well as KL 

Divergence. Relative MSE is calculated at the prompt encoder and image encoder embeddings to 

determine the deviation between student and teacher probability distributions. KL Divergence is 

calculated at the output logit level distillation to determine the ditfference between teacher and 

student level segmentation masks. The probability of this distribution is calculated using 

Softmax with Temperature. The overall objective of our model is to collectively minimize the 

prompt encoder-image encoder MSE loss, as well as the KL Divergence between the teacher and 

student output segmentation mask distribution 

First, we need to construct the distillation loss function for the distillation that occurs 

between the teacher image embedding and the student image embedding. For this, we can simply 

utilize the Mean Squared Error between the teacher and student image embedding 

 

Then, we need to construct the distillation loss function for the distillation that occurs 

between the teacher prompt embedding, as well as the teacher student embedding. Similarly to 

the distillation between the image embeddings, we can utilize the Mean Squared Error between 

the teacher and student prompt embeddings 

 

 Now, we need to establish the distillation loss between the teacher and student mask 

decoders’ output logits. Unlike the image and prompt embeddings, which were vectors, the  
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output logits can be fed into a softmax function with temperature constant. This results in a 

probability distribution for all of the outputs. Therefore, we can utilize the KL Divergence 

between the probability distributions  

 

 Now, in order to calculate the total distillation loss, we simply add up all of the 

distillation losses of the prompt and image encoders, as well as the logit distillation loss.  

 

 The segmentation loss is based on the backbone PRISM model, and does not change for 

this loss function, adopting the confidence learning framework for the loss function [3]. 

 

 We have now established all of the building blocks for our final training loss function. We 

add up the total loss over all the iterations during the iterative learning process. We can now 

construct our final loss function below as follows 

 

This loss function is essentially the segmentation loss plus the distillation loss added together. 

This sum is then summed over the course of the interactions done in PRISM. However, it is 

important to note a new hyperparameter that has been added, α; this is referred to as the alpha 

constant. The alpha constant here is a parameter that is multiplied by the distillation loss to 

determine how much “importance” the distillation loss is to provide to the overall loss [33]. A 
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large value for alpha means that the distillation losses contribute more to the training loss, 

whereas a low value for alpha means that distillation plays a lower importance in determining the 

overall training loss. In chapter 5, we explore different values for alpha to determine how it 

impacts the performance on our knowledge distillation.  

 In addition to the alpha hyperparameter, we modify the loss functions through a series of 

experiments by implementing log scaling, as well as using the relative MSE loss function. The 

details of these modifications are discussed in Chapter 5.  
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CHAPTER 5 

Experimentation - Performance and Results 

 In this chapter, we discuss the experiments we conducted in order to evaluate the 

performance of our knowledge distillation model, as well as an overview of the results of these 

experiments. The main objective of our experiments is to test our results with different 

parameters, such as the alpha value discussed in chapter 4.  

 

5.1 Dataset  

 The dataset that we have chosen to use for our series of experiments is the Medical 

Segmentation Decathlon (MDS) dataset [34]. Specifically, we have opted to use the Task 10 - 

Colon part of the dataset.  Figure 16 shows an example segmentation from another model which 

utilizes the MDS Task 10 - Colon dataset.  

 

 

 Figure 16: Example Segmentation from the Task 10 - Colon Dataset 
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In addition to this dataset, the research team of PRISM has also created a pre-processed 

dataset of the colon CT scan images [3].  The dataset, having been pre-processed, has 

automatically been split into their respective training sets. As part of our experimentation, we 

will use this pre-processed dataset.  

 

5.2 Evaluation Metrics 

As part of our experimentation, we utilize the Dice-Sørensen Score, or the Dice Score  

metric in order to determine how our model performs. The Dice Score is calculated as follows   

  

where ∣X∣ and ∣Y∣ are the sizes of the predicted and ground truth segmentation masks (i.e 

correct segmentation masks), respectively. In the context of image segmentation, this 

corresponds to the number of pixels in the predicted region (X) and the ground truth region (Y). 

The intersection ∣X∩Y∣ represents the number of pixels correctly identified by the model.  

The Dice Score ranges from 0 to 1, with 1 indicating perfect overlap between the 

predicted segmentation and the ground truth, and 0 indicating no overlap at all. This metric is 

especially useful in evaluating segmentation performance when dealing with imbalanced data or 

small structures, as it emphasizes the overlap between the predicted and actual regions.  

 Ongoing research uses other metrics, along with Dice Scores. For example, as shown in 

figure 3, ScribblePrompt uses the Hausdorff distance, or HD95 Distance. The HD95 distance 

measures how far two shapes are from each other; in this case, it measures how far the 

boundaries of the segmentation are from each other. Formally, this is defined as  
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For two sets X and Y in the image space. However, we did not use the HD95 distance in our 

experiments because our focus was on overall region overlap rather than boundary outliers, 

which the Dice Score captures more directly and consistently. 

 Image segmentation evaluation can also involve the use of normalized surface distance, 

or NSD. For example, as shown in figure 4, PRISM utilizes NSD as one of their evaluation 

metrics. In the context of image segmentation, NSD measures how well the boundaries of the 

predicted segmentation match the ground truth, within a certain tolerance. Formally, this is 

defined as 

 

where SP  is the set of surface points of the predicted segmentation, SG  is the set of surface points 

of the ground truth segmentation, d(x, SG)  the shortest distance from point x to the surface SG , τ 

is the distance tolerance (e.g., 1–2 pixels or mm, depending on context). We did not use NSD in 

our experiments because it focuses on boundary accuracy within a set tolerance, whereas our 

primary goal, as mentioned before, was to assess overall region overlap, which the Dice Score 

captures more directly and is simpler to interpret and compute. 
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5.3 Experimentation Overview 

 For our experiments, our student model utilizes only 5 points for the user input. The 

teacher model, which distills information to the student, uses an arbitrary number of points, as 

well as bounding boxes, and scribbles.  

 As part of our experiments, we have set up a few hyperparameters. The first one is the 

alpha constant, as discussed in chapter 4 to determine the “importance” of the distillation loss on 

the overall loss. The second one is the option to use relative MSE, instead of MSE in the loss 

functions for the distillation of the prompt. Relative MSE is simply the MSE loss, divided by the 

L2  norm of the teacher embedding vectors. The third one is the option to include a log scaling 

factor, which essentially scales down all the values of the distillation loss by feeding it into a 

logarithm. This would allow very large values that may occur in the distillation process to be 

scaled back in order to better match the segmentation loss, within the overall loss function. 

Overall, we conduct a series of 6 experiments.  

 In the graphs that follow, the validation scores are shown in a line graph, whereas the test 

scores are shown in a box plot. Below are the experiments that we conducted.  

 

Experiment Alpha  MSE Loss  Log Scaling 

1 2.0 Standard None 

2 50.0 Standard None 

3 100.0 Standard None 

4 500.0 Standard  None 

5 2.0 Relative None 

6 5.0 Relative Enabled 
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5.4 Experimentation Results 

Baseline Teacher Model: Points, Bounding Boxes, and Scribbles (Upper Bound)  

 

Figure 17: Baseline Teacher Model with Input Heavy Dice Scores 

 

Baseline PRISM Model: Only 5 Points, No Distillation:  

Figure 18: Baseline PRISM Model with Reduced User Input and No Distillation 

 

With our lower bound baseline model established, as well as the upper bound teacher model as 

well, we can now test our student model versus the baseline lower bound. Our objective here is 

to outperform the lower bound despite the lack of user input. 
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Experiment 1: Alpha 2.0, Standard MSE 

Figure 19: Experiment 1 Results with Standard MSE, Alpha 2.0 

 

Experiment 2: Alpha 50.0, Standard MSE 

Figure 20: Experiment 2 Results with Standard MSE, Alpha 50.0 
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Experiment 3: Alpha 100.0, Standard MSE 

Figure 21: Experiment 3 Results with Standard MSE, Alpha 100.0 

 

Experiment 4: Alpha 500.0, Standard MSE 

 

Figure 22: Experiment 4 Results with Standard MSE, Alpha 500.0 
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Experiment 5: Alpha 2.0, Relative MSE  

 

 

Figure 23: Experiment 5 Results with Relative MSE, Alpha 2.0 

 

Experiment 6: Alpha 5.0, Relative MSE, Log Scaling Enabled 

 

 

 

 

  Figure 24: Experiment 6 Results with Relative MSE, Log Scaling Enabled, and Alpha 5.0 

 

The results of these experiments show promising results in some experiments. In other 

experiments, however, the results are not conclusive. We discuss the results of these experiments 

in the next chapter.  
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CHAPTER 6 

Discussion  

6.1 Results 

The results of our experiments demonstrate that feature-level knowledge distillation can 

meaningfully reduce user input burden in interactive medical image segmentation without 

significantly compromising performance. Compared to the PRISM “plain” baseline model, our 

student model, with only five point-based inputs and no bounding boxes or scribbles, was able to 

match or outperform the baseline in certain configurations, suggesting that distillation from a 

high-performing teacher model can potentially compensate for reduced user prompts.  

 Among all experiments, the models that incorporated relative MSE loss (Experiments 1 

and 5) showed the most promising performance. This aligns with prior findings in distillation 

literature , where normalizing the loss with respect to the teacher’s embedding magnitudes helps 

stabilize training and reduce the impact of dimensionality disparities between teacher and student 

[35]. Experiment 5, which combined relative MSE with log scaling and a modest alpha value 

(alpha = 5.0), yielded the most balanced outcome in terms of training stability and final Dice 

scores. This suggests that controlling the scale of the distillation loss is essential when 

integrating it with standard segmentation losses. 

 Interestingly, experiments with higher alpha values (Experiments 2-4), which increased 

the weight of the distillation loss in training, did not perform as well. In fact, extremely high 

alpha values (e.g., alpha = 500 in Experiment 4) resulted in diminished test performance, 

implying that overly emphasizing distillation can distract the student from learning from the 

direct segmentation loss. These results highlight the importance of balancing the importance of 
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distilled knowledge with the loss function, especially in iterative frameworks like PRISM where 

segmentation precision improves through interactions 

Our findings also validate the hypothesis that feature-level distillation is especially 

advantageous for architectures involving multi-stage encoders and prompt-based interactions. 

Unlike logit-level distillation, which only affects the final output, feature-level distillation 

enriches the intermediate representations that guide segmentation decisions throughout the 

network [22]. This is particularly critical in interactive frameworks like PRISM, where prompt 

and image embeddings are fused iteratively across multiple transformer blocks. 

Some inconsistencies in performance across experiments point to areas for further 

refinement (See chapter 7). While knowledge distillation successfully reduced the user input 

burden, the performance was sensitive to hyperparameters such as alpha, projection head design, 

and temperature scaling. This indicates that a one-size-fits-all distillation setup may not be 

optimal; future work could benefit from strategies that tune distillation importance dynamically 

based on feedback from segmentation accuracy during training. 

These experiments show the potential of knowledge distillation not only as a tool for 

model compression as ongoing research shows [1,7,11,22,26,29]  but also as a mechanism for 

reducing annotation effort in clinical workflows. By enabling accurate segmentations with 

limited input, such frameworks can streamline dataset generation and improve the accessibility 

of AI-assisted medical imaging tools in resource-constrained settings. With further 

experimentation and fine tuning, validation across diverse medical imaging datasets, this 

approach could be a step toward more user-efficient, high-performance interactive segmentation 

systems. 
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CHAPTER 7 

Conclusion 

7.1 Conclusion 

In this thesis, we presented a framework leveraging feature-level knowledge distillation 

to reduce user input burden in interactive medical image segmentation. By transferring rich 

intermediate representations from a high-performing teacher model (trained with dense user 

inputs such as points, bounding boxes, and scribbles) to a student model (trained on only five 

sparse point inputs), we demonstrated the viability of maintaining segmentation performance 

while dramatically reducing the manual effort required during annotation. 

Our methodology introduced a distillation pipeline that performed embedding-level 

supervision at multiple stages: visual prompt encoders, image encoders, and mask decoders. We 

experimented with a variety of hyperparameters, including standard and relative MSE, KL 

divergence on soft logits, and log scaling mechanisms. These experiments provided meaningful 

insights into the optimal balance between segmentation loss and distillation loss, revealing that 

moderate distillation weights combined with normalized embedding loss yield the most stable 

and effective results. 

The results of our experiments, particularly in Experiments 1 and 5, indicate that our 

distilled student model outperforms the baseline PRISM plain model, which uses the same 

number of inputs but lacks teacher supervision. This suggests that our approach has the potential 

to meaningfully reduce the user interaction overhead without compromising performance, 

offering a promising step forward in the development of more efficient medical annotation tools. 
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This work bridges the gap between high-performance segmentation and practical 

usability by incorporating interactive learning and representation distillation. As the field of 

medical imaging continues to grow in complexity and scale, approaches like ours, focused on 

reducing user workload without sacrificing quality, will become increasingly critical in 

supporting both clinicians and machine learning practitioners. 

7.2 Future Work and Implications 

 While this work presents encouraging results in reducing user input for interactive 

segmentation through feature-level knowledge distillation, there remain several places 

researchers can explore for further improvement. One way is the expansion of this framework to 

multiple medical dataset types and diverse imaging modalities beyond the colon CT scans used 

in this study. Applying the same distillation strategy to datasets involving MRI, ultrasound, or 

multi-modal scans would help evaluate the model’s robustness and generalizability across 

clinical use cases.  

 Additionally, our current experiments used a fixed number of point prompts (5) for the 

student model. Future work could explore flexible input schemes, where the model randomly 

determines the minimal number of prompts required per image based on requirements. This 

would push the boundaries of input efficiency even further by minimizing interaction without 

hardcoding limits. Further research could hopefully even bring the number of points required 

down to merely one point.  

 There is also potential in enhancing the distillation architecture itself. While our model 

used linear projection heads to align the feature dimensions between teacher and student, more 

advanced techniques like attention-guided distillation [36], multi-scale feature fusion [37], or 

teacher projection reuse [7] could offer richer supervision and more meaningful feature transfer. 
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 With further improvements, the proposed knowledge distillation strategy could serve as a 

foundation for next-generation segmentation systems, capable of learning from rich supervision 

while operating efficiently in real-world, user-driven environments. 

 

7.3 Limitations 

 As mentioned in the future work section, a key limitation lies in the scope and scale of 

evaluation. All experiments were conducted using only the Task 10 (Colon) dataset from the 

Medical Segmentation Decathlon [34]. While this dataset provides a controlled testbed for 

evaluating segmentation performance, it does not reflect the full spectrum of complexity seen 

across different organs, pathologies, or imaging modalities.  

Moreover, user interaction was simulated rather than sourced from real human 

annotators, meaning that factors like annotation inconsistency, fatigue, or spatial bias were not 

accounted for. Future work will need to validate the effectiveness of the proposed approach in 

real-world annotation pipelines, with clinical experts providing input in-the-loop. This will be 

essential to truly assess the framework’s impact on user burden and its practicality in medical 

environments. 

Additionally, the model’s performance and stability are highly sensitive to several 

hyperparameters, such as the alpha weight for distillation loss, the choice between standard 

versus relative MSE, and the inclusion of log scaling. As demonstrated in the experimental 

results, improper tuning of these factors can lead to unstable convergence or diminished 

segmentation accuracy. This dependence introduces a level of fragility and necessitates extensive 

empirical experimentation to find an optimal configuration, which may not be feasible in 

real-world deployment scenarios 
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