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Abstract

Emergency Operating Room (EOR) scheduling in hospitals traditionally follows a firstcome, first-

served (FCFS) approach. However, with advancements in artificial intelligence, there is potential to

optimize this process. This study explores a priority-based scheduling method, U-SORT, aimed at

minimizing surgery delays by prioritizing patients based on their predicted urgency. The ultimate

goal is for U-SORT to build upon deep learning techniques used in Emergency Department triage,

such as those proposed by Ivanov, to help predict the most appropriate treatment pathway, surgery

time, and surgery duration time for patients [5]. This thesis evaluates whether U-SORT, a priority-

based triage method, can reduce the number of delayed surgeries compared to the conventional

FCFS method.
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ABSTRACT

Emergency Operating Room (EOR) scheduling in hospitals traditionally follows a first-

come, first-served (FCFS) approach. However, with advancements in artificial intelligence,

there is potential to optimize this process. This study explores a priority-based scheduling

method, U-SORT, aimed at minimizing surgery delays by prioritizing patients based on

their predicted urgency. The ultimate goal is for U-SORT to build upon deep learning tech-

niques used in Emergency Department triage, such as those proposed by Ivanov, to help

predict the most appropriate treatment pathway, surgery time, and surgery duration time

for patients [5]. This thesis evaluates whether U-SORT; a priority-based triage method, can

reduce the number of delayed surgeries compared to the conventional FCFS method.
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CHAPTER 1

INTRODUCTION

Emergency room triage decision support systems have been developed for hospital

emergency departments (ED) and have demonstrated the ability to improve patient out-

comes and hospital resource utilization [2, 3, 5, 7, 8]. This work is part of a preliminary

study to determine the a priori relative value of the current Emergency Operating Room

(EOR) triage method: first-come-first-served (FCFS). Suppose it can be determined that

alternative triage algorithms can outperform FCFS. In that case, that provides a good basis

to do a more in-depth study on the application of deep learning to emergency operation

room (EOR) triage in which a broader range of information can be brought to bear both for

medical outcomes and more optimal resource allocation.

Many healthcare systems operate at full or near-full capacity, requiring triage decisions

for valuable resources such as operating room access. The current system for managing

urgent cases at the University of Utah is largely FCFS, with little attention paid to the

disease process or its impact on healthcare resource utilization. Other centers function

similarly or employ individuals who triage patients into urgency-based slots based on

disease severity.

Figure 1.1 shows how hospitals typically organize EOR usage. As stated above, most

hospitals schedule operations using FCFS, meaning a patient’s scheduled surgery time

will be the first available slot after their arrival. While FCFS makes scheduling patients

in the EOR triage room extremely simple, it is unable to modify the patient triage plan

time based on the patient’s priority. It can result in an urgent patient being booked after

other non-urgent patients. This implies that while non-urgent patients have more time to

wait for their urgent operation to be completed, high-priority patients will resignedly have

their surgery delayed. After patients are examined and data collected, they are assigned an

urgency-based priority for an operation; each priority has an associated allowable delay to
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the start of surgery; e.g., there may be three priorities with scheduling slots S1: 0 to 3 hours,

S2: 3 to 12 hours, and S3: 12 to 24 hours. This makes it possible to schedule less urgent

patients later leaving the EOR available for more urgent cases until that time. Note that it

is also possible that no urgent cases arrive in the meantime and the EOR goes unused.

Figure 1.1. How hospitals schedule operating rooms in general (FCFS).

Figure 1.2 shows the idea behind our proposed U-SORT algorithm, which assigns

patient operation times according to the urgency of the case. The exact time of surgery will

be scheduled based on the patient’s pathology. This allows the surgery time of patients

whose pathological conditions are not critical to be postponed appropriately to free up

time to deal with patients with more urgent conditions.

The hypothesis is that there are priority-based triage scheduling algorithms that will

produce fewer delays than FCFS; this may depend on parameters of the specific scenario

(e.g., patient arrival rates, mean surgery duration, number of scheduling slots, etc.).
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Figure 1.2. How U-SORT schedules operating room.
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Figure 1.3. Comparison of FCFS and U-SORT in terms of the percentage of delayed
patients. The simulation runs over 24 hours, with the mean surgery time of one hour
and arrivals per hour ranging from 0.1 to 3 in steps of 0.1.
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Figure 1.4. Comparison of FCFS and U-SORT in terms of the percentage of delayed
patients. The simulation runs over 24 hours, with the mean surgery time of two hours
and arrivals per hour ranging from 0.1 to 3 in steps of 0.1.
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Figure 1.5. Comparison of FCFS and U-SORT in terms of the percentage of delayed
patients. The simulation runs over 24 hours, with the mean surgery time of three hours
and arrivals per hour ranging from 0.1 to 3 in steps of 0.1.
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To simulate to test a patient going to a hospital EOR, we will run a method that ran-

domly generates a set of patient arrival forms based on a few variables. There are 5

parameters, T, λ, Plist, dmu, dvar, and dmin. T represents the total duration of running the

simulation. For example, T = 24 means that we will continuously simulate the situation of

patients going to the hospital within 24 hours. λ represents how many patients arrive at

the EOR per hour. If one simulation has parameters T = 24 and λ = 2, the total number of

patients will be around 48. Plist gives the probability of the patient’s urgency priorities. In

this project, we assume that there are 3 priorities in total and the probability that a patient

is in priority 1, 2, and 3 is 0.05, 0.6, and 0.35 respectively. In addition, the on-time surgery

time for the three priorities is 0 - 3 hours, 3 - 12 hours, and 12 - 24 hours after arrival,

respectively. This means a patient is more urgent if he/she has lower priority. Finally,

dmu, dvar, and dmin are variables that control the generation of patients’ surgery duration.

Overall, patients’ surgery time will be generated from the log-normal distribution defined

by the input mean and variance, but the surgery time should not be less than dmin.

Figures 1.3 to 1.5 that fixed T = 24, dvar = 0.1, Plist = [0.05; 0.6; 0.35], dmin = 1 show in 10

randomly generated patient sets what percentage of patients will be operated on delayed

depending on λ in the range 0.1 to 3. Figure 1.3 fixed dmu = 1, Figure 1.4 fixed dmu = 2,

and Figure 1.5 fixed dmu = 3. The solid blue line shows the percentage of patient delays

for U-SORT-min; the dashed orange line and the dot-dash yellow line represent that for

U-SORT-fair and FCFS, respectively.

As is evident, definitely, the U-SORT algorithm performs better than FCFS. For in-

stance, whatever dmu is, during λ increasing, the two lines which represent U-SORT-min

and U-SORT-fair patients percentage delay always lower. Thus, preliminary simulations

show that U-SORT performs better than FCFS in situations where healthcare systems are

operating at full or near-full capacity. This satisfies our hope that the new algorithm can

allocate EOR Triage Room resources more efficiently and economically.



CHAPTER 2

BACKGROUND

Utah’s priority-based triage system under development support for emergency op-

erating room triage, U-SORT, is based on two main ideas, an urgency priority assign-

ment method and job scheduling methods. One of them is how we separate different

patients according to the urgency of their condition, physical condition, drug resistance,

and other external and internal factors that can affect the patients’ surgery. Chen et al.

[2] developed a deep neural network (DNN) to accurately predict emergency department

patients’ treatment and reported better results than the Rapid Emergency Medicine Score.

This is effective in alleviating overcrowding in the Emergency Department. Gebrael [4]

describes a retrospective study that analyzes patient triage in the Emergency Department

and compares the performance of ChatGPT with that of emergency room physicians on

triage decisions, diagnostic accuracy, treatment recommendations, and emergency severity

index score prediction. Ivanov [5] investigated the accuracy and impact of the Emer-

gency Severity Index (ESI) triage system; the study found that approximately one-third

of encounters were misdiagnosed, with 3.3% underdiagnosed and 28.9% overdiagnosed.

Finally, and perhaps most importantly, Ivanov proposed an attention-based convolutional

neural network to assess medical urgency based on the patient’s condition and to recom-

mend the most appropriate point of care and treatment time. These studies support the

idea that a deep-learning network model may be suitable for inferring patient pathology

and scheduling in the EOR.

When the priority of jobs cannot be determined, First-Come, First-Served (FCFS) is the

most straightforward scheduling method, prioritizing jobs based on their arrival order,

serving earlier jobs before later ones. Another widely used method is Shortest Job First

(SJF), which sorts processes by their arrival time and selects the one with the shortest burst

time for execution. A more complex approach is the Highest Response Ratio Next (HRRN),
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where each job’s priority is dynamically calculated using its response ratio, improving

fairness by balancing waiting time and burst time. The response ratio is computed as:

response ratio = 1 +
waiting time of a process so far

estimated run time
. (2.1)

According to research by Wong and Kim [6, 11], most institutions adopt a First-Come,

First-Served (FCFS) protocol for patient management. However, with advances in deep

learning that enable the classification of patient urgency, scheduling methods in the EOR

can shift towards Priority Scheduling, as exemplified by the U-SORT model. U-SORT aims

to reduce the number of delayed patients by adjusting FCFS to prioritize urgent cases. In

the following chapter, we will define U-SORT and compare its performance with FCFS,

focusing on patient delay metrics.

Finally, one of the most important things is the background of how we run our sim-

ulation. We use DES (Discrete Event Simulation) as described in [1]. DES can simulate

events that occur in the system, and the system state changes when the event occurs.

The simulation process usually relies on time advancement, updating the system state

when the event occurs, which indicates it is good for simulating situations that depend on

time. In order to run our simulation, there are some non-deterministic aspects and other

parameters. The following table lists the variables used in the simulation in detail.

Variable Description
λ Arrival rate (Average number of patient arrivals per hour)

Plist Discrete probability set for patients’ priority
dmu Mean value for patients’ surgery duration distribution
dvar Variance for patients’ surgery duration distribution
dmin Minimum for patients’ surgery duration
slot The optimal surgery start interval corresponds to each patient’s priority level
T Total simulation time

Table 2.1. Description of simulation variables to be assigned.

When simulating the patient arrival process in an emergency medical setting, a com-

mon way is using the Poisson Process:

ai(The ith patient arrival time) ∼ PD(λ, T) (2.2)
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described by Ross [9]. This is because the Poisson process can well describe the occurrence

of random events, where the time intervals between events are independent. First of all,

we initially set parameters λ, T. Then we can generate the ith patient’s arrival time ai,

sampling a random number U from a uniform distribution, restricting it to the interval

(0, 1), and then applying

a0 = 0; (2.3)

ai = ai−1 −
log(U)

λ
. (2.4)

When output value ai ≥ T, the simulation will stop generating the next patient’s arrival

time, otherwise, the simulation will continue. After all patients’ arrival times are gener-

ated, the simulation will input the arrival list to generate every patient’s priority by using

a discrete probability set Plist, where Pi represents the probability of each patient being

assigned this priority.

Plist = {P1, P2, ..., Pn} (2.5)

After assigning all patients a priority, the last thing is to generate every patient’s surgery

duration time from a log-normal distribution. Log-normal distribution is a continuous

probability distribution that applies to situations where the logarithm of a random variable

follows a normal distribution. A log-normally distributed random variable can only take

positive values and right-skewed. That is, in most cases, the left side of the distribution

is steeper and the right side is flatter, with a long tail effect. In research posted by Strum

[10], they have proven that log-normal distribution is better than normal distribution when

simulating surgery duration time. We will use given dmu, dvar to calculate µlog, and σlog for

log-normal distribution as follows:

µlog = log(
d2

mu√
dvar + d2

mu
) (2.6)

σlog =

√
log(1 +

dvar

d2
mu

). (2.7)
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With µlog, and σlog we calculate, we can generate patients’ duration time from the log-

normal distribution with µ = µlog and σ2 = σ2
log. Finally, check and replace every patient’s

duration time di to dmin when di < dmin.



CHAPTER 3

METHOD

3.1 Algorithm
This section defines three EOR scheduling methods: FCFS, U-SORT-min, and U-SORT-

fair.

3.1.1 FCFS

We used two methods to implement the FCFS method as the baseline method, direct

implementation and linear programming method. As a direct implementation of FCFS,

when the ith patient arrives (i ≥ 1), FCFS will schedule the patient’s surgery time based on

the following conditions:

1. Perform surgery on this patient immediately (no patient is currently undergoing

surgery);

2. Schedule the patient’s surgery after the i − 1th patient’s surgery is completed (other-

wise);

Variable description
A Coefficient matrix for linear programming
n Patients number in giving patient list
a Vector of arrival times for all patients in the list.
d Vector of surgery duration time for all patients in the list except the last

patient
b Result matrix for linear programming
X Vector of patient surgery start times scheduled by FCFS
ai The arrival time of the ith patient
xi The surgery start time of the ith patient
di The surgery duration time of the ith patient

Table 3.1. Variables used in linear programming and their descriptions.
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In the implementation of linear programming, giving a random patient list, we assume as

Table 3.1. Set the objective function as

min
n

∑
i=1

xi (3.1)

To ensure the FCFS scheduling requirement, add the following constraints: For each pa-

tient i, the start time xi of the operation must be greater than or equal to the arrival time ai,

that is,

xi ≥ ai, ∀i. (3.2)

In addition, for adjacent patients i and i + 1, the operation start time xi+1 of i + 1 must not

be earlier than the operation end time xi + di of i, that is,

xi+1 ≥ xi + di. (3.3)

Then, combine Equations 3.2 and 3.3

−xi ≤ −ai (3.4)

xi − xi+1 ≤ −di (3.5)

That is −1, 0
0,−1
1,−1

 ·
[

xi
xi+1

]
≤

 −ai
−ai+1
−di

 (3.6)

We apply Equation 3.6 to all xi ∈ X we get

A · X ≤ b (3.7)

Where

A1 is an (n − 1)× n matrix, (3.8)

the kth element of the kth row is 1, and the k + 1th element is -1. (3.9)

A =

[
−I
A1

]
, (3.10)

b =

[
−a
−d

]
. (3.11)

Finally, we use the linprog function in MATLAB to solve the problem and obtain an opti-

mal patient surgery start time vector X that satisfies FCFS scheduling.
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3.1.2 U-SORT-fair

When the first patient arrives, U-SORT-fair, like the FCFS method, will place him in the

first vacant slot that can be operated on, that is, the surgery will be performed immediately

when the patient arrives. However, when the ith patient arrives (i ≥ 2), the U-SORT-fair

method provides a method to compare it with the i − 1th patient undergoing surgery to

determine whether the surgery sequence needs to be adjusted. The adjustment method of

U-SORT-fair is based on the following conditions:

1. The emergency priority of the ith patient is higher than that of the i − 1th patient

undergoing surgery;

2. The surgery start time of the i − 1th patient undergoing surgery is later than the

arrival time of the ith patient;

3. Scheduling the surgery of the ith patient before the i− 1th patient undergoing surgery

will not cause the surgery of the i − 1th patient to be delayed outside of its priority

slot.

If and only if all of the above conditions are met, the U-SORT-fair method will schedule

the surgery of the ith patient before the i − 1th patient undergoing surgery, and continue to

compare the ith patient with the i − 2th patient undergoing surgery. This process continues

until at least one of the above conditions is not met, or the surgery of the ith patient is

scheduled before the 1st patient waiting to undergo surgery. After determining the surgical

insertion position of the ith arriving patient, U-SORT-fair will run a judgment method

to detect whether the surgery of the ith patient is delayed based on the patient’s urgent

priority pi of the ith patient and the optimal surgery start interval of that urgent priority.

If the surgery is judged to be delayed, the surgery of the ith patient will be scheduled at

the end of the current surgery queue to ensure that the surgeries of other patients are not

affected. In order to minimize delayed patient numbers, the impact of patients whose

surgery has been inevitably delayed on patients who have not yet been scheduled for

surgery must be reduced.

3.1.3 U-SORT-min

U-SORT-min is similar to U-SORT-fair but has added a new constraint.
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1. If i − 1th patient has been inevitably delayed, set ith patient’s surgery before i − 1th

patient

3.2 Simulation Framework
We use FCFS and U-SORT methods to simulate the EOR surgery schedule when the

surgery is performed 24 hours a day. Assume di,USORT−min ∈ DUSORT−min, di,USORT− f air ∈

DUSORT− f air represents the average number of patients delayed caused by U-SORT-min

and U-SORT-fair under the ith set of variables. di,FCFS represents the average number of

patients delayed caused by FCFS under the ith set of variables.

di,USORT−min =
number of patients delayed by U-SORT-min under the ith variable set

Ntrials
(3.12)

di,USORT− f air =
number of patients delayed by U-SORT-fair under the ith variable set

Ntrials
(3.13)

di,FCFS =
number of patients delayed by FCFS under the ith variable set

Ntrials
(3.14)

Finally, U-SORT and the baseline method FCFS were compared by using the mean number

of patient delays for U-SORT and FCFS under specific group variables, the Mann–Whitney

U test, and the calculation of improvement rates.

For Nset variable sets, U-SORT-min, U-SORT-fair, and FCFS will generate a set of data

sets DUSORT−min, DUSORT− f air and DFCFS, which represent the average number of delayed

patients simulated NT times. For any two result sets, we use a paired sample t-test to help

test the significance. For example, we choose DUSORT−min and DFCFS, the Mann–Whitney

U test is:

• n1 and n2 are the sizes of two samples respectively.

• R1 is the rank sum of the first sample.

calculate

U = n1 × n2 +
n1 × (n1 + 1)

2
− R1 (3.15)

After calculating the U value, we can find the p-value through statistical software. If

the p-value is less than the significance level such as 0.05, the null hypothesis can be

rejected and the distribution of the two samples is considered to be significantly different.
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We also calculate the average improvement rate of DUSORT−min to DFCFS to quantify the

improvement of U-SORT-min compared to FCFS.

improvement rate =
DFCFS − DUSORT−min

DFCFS
× 100% (3.16)

Variable description
A Coefficient matrix for linear programming
XFCFS Vector of patient surgery start times scheduled by FCFS for one patient

list
i 1 ≤ i ≤ Nset

ai The arrival time of the ith patient scheduled by FCFS for one patient list
xi The surgery start time of the ith patient scheduled by FCFS for one

patient list
di The surgery duration time of the ith patient scheduled by FCFS for one

patient list
Ntrials For a set of variables, the number of trials to run the experiment with

different seeds
Nλ The number of different λ values that can be chosen in the experiment
Nmu The number of different dmu values that can be chosen in the experi-

ment
Nvar The number of different dvar values that can be chosen in the experi-

ment
NT The number of different T values that can be chosen in the experiment
Nset Number of variable sets
DUSORT−min Vector of Average number of patients delayed caused by U-SORT un-

der Nset sets of variables based on minimizing the number of delayed
patients

DUSORT− f air Vector of Average number of patients delayed caused by U-SORT under
Nset sets of variables based on fairness

DFCFS Vector of Average number of patients delayed caused by FCFS under
Nset sets of variables

Table 3.2. Variables used in the method and their descriptions.
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EXPERIMENTS

4.1 Experimental Setup
We fix the range and step size of the required variables as shown in Table 4.1. That

is, we will have 15,840 sets of variables. For every set of parameters, we use it and set

a different random seed to generate a total of 10 patient lists. After we get all 158,400

patient lists, we run the U-SORT-min, U-SORT-fiar, and FCFS methods to schedule EOR

with it and calculate overall delay patients. Finally, after all three methods are completed,

the output will be a matrix with a shape of 15,840 × 4. In this matrix, the first column

represents the total number of delayed patients using U-SORT-min in Ntrials = 10 tri-

als, while the second and third columns represent the numbers using U-SORT-fair and

FCFS, respectively. The fourth column represents the total arrival of patients through 10

trials. We apply the Mann–Whitney U test to the pairwise result sets and calculate the

improvement rate. The results are shown in Table 4.2, where p represents the p-value of

Variable Interval Step
λ [0.1, 3] 0.1

Plist [0.05; 0.6; 0.35] 0.05 priority 1; 0.6 priority 2; 0.35 priority 3
dmu [0.5, 3] 0.5 hour
dvar [0, 1] 0.1
dmin 0.5 - hour
slot [0, 3; 3, 12; 12, 24] 0-3 priority 1; 3-12 priority 2; 12-24 priority 3
T [24, 192] 24 hours

Ntrials 10 -
Nλ 30 -

Nmu 6 -
Nvar 11 -
NT 8 -
Nset 30 × 6 × 11 × 8 = 15840 -

Table 4.1. Variables’ value interval and step.
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the Mann–Whitney U test between the pairwise sets, and I represents the improvement

rate of the first set to the second set between the pairwise sets.

4.2 Experimental Results
To simplify the statement, we use DUSORT−min, DUSORT− f air, and DFCFS instead of the

first, second, and third columns of the output matrix. First, while we get the output, we

test whether U-SORT-fair and U-SORT-min have significant differences with FCFS. We run

three Mann-Whitney U Tests and then calculate the improved rate. First, we will test three

result set populations; results are shown in Table 4.3.

After that, we fixed the value of T to 24 and dvar to 0 to simulate the working of the

three scheduling methods when λ increases from 0.1 to 3 and dmu increases from 0.5

to 3. We stress-test the three methods by increasing the values of λ and dmu and test

the improvement of the two U-SORT methods compared with FCFS under overloaded

hospital operation. Then, as shown in Figure 4.1, the red plane represents the average

number of delayed patients generated by the U-SORT-min scheduling method, the green

plane represents the average number of delayed patients generated by the U-SORT-fair

scheduling method, and the blue plane represents the average number of delayed patients

generated by the FCFS scheduling method. As can be seen from Figure 4.1, under high

Variable descripting
pclass, f irstSet,secondSet P-value of the Mann–Whitney U test between the first result set and the

second result set.
Iclass, f irstSet,secondSet Improvement rate between the first result set and the second result set.

Table 4.2. Description of variables for the result of Mann–Whitney U test and Improve-
ment rate calculation.

Variable Value
poverall,U−SORT−min,U−SORT− f air 0.0000
Ioverall,U−SORT−min,U−SORT− f air 32.1207

poverall,U−SORT−min,FCFS 0.0000
Ioverall,U−SORT−min,FCFS 34.0932
poverall,U−SORT− f air,FCFS 0.6811
Ioverall,U−SORT− f air,FCFS 2.9060

Table 4.3. P-value and improvement rate for three methods run in 15,840 variable sets.
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load operation, the performance of the three methods all dropped rapidly, but the per-

formance of U-SORT-fair dropped more than that of U-SORT-min so that when λ = 3,

dmu = 3, the number of delayed patients caused by it was close to the FCFS scheduling

method.

Figure 4.1. The percentage of patients delayed in total arrival patients produced by the
three scheduling methods when dmu increases from 0.5 to 3 and λ increase from 0.1 to 3
but T = 24, dvar = 0.

Variable Value
pstress,U−SORT−min,U−SORT− f air 0.2079
Istress,U−SORT−min,U−SORT− f air 22.2636

pstress,U−SORT−min,FCFS 0.0575
Istress,U−SORT−min,FCFS 31.8799
pstress,U−SORT− f air,FCFS 0.5924
Istress,U−SORT− f air,FCFS 12.3704

Table 4.4. P-value and improvement rate for three methods when dmu increases from 0.5
to 3 and λ increases from 0.1 to 3 but T = 24, dvar = 0.
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Then, we fix all variables except T, making λ = 1.2, dmu = 1, dvar = 0, and find the

ability of the three scheduling methods to maintain performance in long-term operation

as time increases. Because when T increases, the total number of patients also increases.

It is meaningless to compare only the number of delayed patients. Therefore, we use the

percentage of delayed patients to the total number to evaluate the performance of each

method in the current environment. As shown in Figure 4.2, we will also calculate the

p-value for the Mann-Whitney U Test and relative improvement rate.

Figure 4.2. Long-term performance of the three methods for fixed λ = 1.2, dmu = 1, and
dvar = 0.

In addition, we fixed the parameters λ = 1, T = 24, and dmuto2, and only adjusted

dvar to generate more unstable patient surgery times, so as to test the stability of the three

methods when the surgery time fluctuates greatly. As shown in Figure 4.3, the surgery

duration variance control variable dvar starts from 0 and increases to 1 in steps of 0.1.

Using the patient list generation method introduced in the previous chapter, we generate

10 patient lists for each group of variables. In this test, for each group of variables, the 10
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patient lists are generated, the three scheduling methods are run, the number of delayed

patients for each method is calculated, and then the variance of the number of delayed

patients for 10 simulations under this group of variables is calculated. This means that

when dvar increases, each method will get 11 variance values, so as to compare the stability

of each method.

Figure 4.3. Stability of the three methods when λ = 1, T = 24, and dmu = 2; dvar starts
from 0 and increases to 1 in steps of 0.1.

Finally, we want to find in what situation, U-SORT-min is significantly better than U-

Variable Value
plong,U−SORT−min,U−SORT− f air 0.0289
Ilong,U−SORT−min,U−SORT− f air 73.4974

plong,U−SORT−min,FCFS 0.0047
Ilong,U−SORT−min,FCFS 79.8571
plong,U−SORT− f air,FCFS 0.3823
Ilong,U−SORT− f air,FCFS 23.9966

Table 4.5. P-value and improvement rate for three methods when fixed λ = 1.2, dmu = 1,
and dvar = 0 but T increase from 24 to 192 with step is 24 hours.
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SORT-fair. That is, we screen out under what variable conditions are inclined to increase

the difference of patients delayed between U-SORT-min and U-SORT-fair. To achieve this

goal, we separate the overall result set into two different results, the Non-significant set

and the Significant set, according to the difference in delayed patients number. When the

difference in percentage of delayed patients in total arrival patients is less than 1%, the set

of variables will be added to the Non-significant set, otherwise added to the Significant

set. The final results are shown in Figures 4.4 and 4.5. Subsequently, the Mann-Whitney

U Test is performed on the significant and insignificant cases and the improvement rate is

calculated.

Figure 4.4. The variables’ distribution pattern of variables in the non-significant set.

Combining Figures 4.4, 4.5, and Table 4.6 shows that the distribution of variables T and

dvar values is relatively even in the significant or non-significant set. Moreover, running the

Mann-Whitney U Test on the non-significant sets of U-SORT-min and U-SORT-fair resulted

in pnon−signi f icant,U−SORT−min,U−SORT− f air = 0.1546, indicating that in the non-significant

set, the performance comparison of U-SORT-min and U-SORT-fair is not much different,
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Figure 4.5. The distribution pattern of variables in the significant set.

and U-SORT-min has only a 4% improvement rate. This means these two variables have

little impact on whether U-SORT-min is significantly better than U-SORT-fair. On the

contrary, although there are some exceptions, the amount of occurrences of λ and dmu

in the non-significant set generally decreases as its value increases, while in the significant

set, the number of occurrences gradually increases as its value increases. increase. This

means that λ and dmu are the two main variables that affect the performance difference

between U-SORT-min and U-SORT-fair. When the values of these two variables increase,

U-SORT-min becomes more likely to be significantly better than U-SORT-fair.

Variable Value
pnon−signi f icant,U−SORT−min,U−SORT− f air 0.1546
Inon−signi f icant,U−SORT−min,U−SORT− f air 4.4976

psigni f icant,U−SORT−min,U−SORT− f air 0.0000
Isigni f icant,U−SORT−min,U−SORT− f air 32.1601

Table 4.6. P-value and improvement rate for the Non-significant set and the Significant
set.



CHAPTER 5

CONCLUSIONS

This thesis explores the potential of the U-SORT scheduling algorithm to outperform

traditional FCFS in reducing surgical delays. By introducing U-SORT-min and U-SORT-

fair, this study aims to provide a more efficient resource allocation strategy for emergency

operating rooms. In all simulations, U-SORT-min has a 32% improvement rate compared

to U-SORT-fair and has a 34% improvement rate for FCFS. The results clearly show that

U-SORT-min outperforms U-SORT-fair and FCFS in reducing delayed surgery. The stress

test actually simulates the performance comparison of the three scheduling methods U-

SORT-min, U-SORT-fair, and FCFS within 24 hours when the number of patients arriving

per hour, i.e., λ, and the average duration of the patient’s surgery, i.e., dmu, increase to

a given maximum value according to a given step value. Because the variance of the

distribution of the duration of the patient’s surgery is 0, i.e., dvar = 0, the duration of

the surgery for each patient will be equal to dmu. Because λ and dmu increase at the

same time according to a given step size, the stress test simulates the situation of the

hospital EOR operating from low load to overload operation and gives a comparison of

the work efficiency of the three scheduling methods in this case. While in the stress test,

pstress,U−SORT−min,FCFS = 0.0575 and pstress,U−SORT− f air,FCFS = 0.5924. These two numbers

indicate that when running Mann-Whitney U When tested, U-SORT-min and U-SORT-fair

were not significantly different from FCFS. However, by comparing the improvement rate,

U-SORT-min has an improvement rate of 31.8799% compared to FCFS in the stress test,

while U-SORT-fair has an improvement rate of 12.3704% compared to FCFS. Both methods

are better than the FCFS scheduling method and have at least a 10% improvement rate. In

order to understand the long-term performance benefits of implementing U-SORT-min

and U-SORT-fair scheduling methods compared to the FCFS scheduling method. After

setting a series of variables such as the average duration of patient surgery to a reason-



25

able value, the simulation time is only allowed to increase continuously to 192 hours,

or 8 days, with a step size of 24 hours. The results are Ilong,U−SORT−min,FCFS = 79.8571,

Ilong,U−SORT− f air,FCFS = 23.9966, which means that under this variable condition, U-SORT-

min will have a 79% improvement rate compared to the FCFS scheduling algorithm. In

addition, the performance of U-SORT-fair will also be 24% better than the FCFS schedul-

ing method. Thus, through long-term testing, long-term operation of U-SORT-fair and

U-SORT-min scheduling methods will greatly improve the resource allocation of the FCFS

scheduling method and reduce the number of delayed patients. Finally, through the sta-

bility test, both U-SORT-min and U-SORT-fair performed better than the FCFS scheduling

method. These findings highlight the importance of urgency scheduling in optimizing

EOR utilization. U-SORT-min provides a practical solution for hospitals to effectively

manage high-priority cases, especially in resource-constrained settings. Although the re-

sults are encouraging, the study is limited by its reliance on simulated patient data and

predefined variable ranges. Real-world validation is needed to generalize the findings to

different healthcare systems. In addition, because the simulation is limited to a 24-hour

working day, future work can be implemented to adapt the hospital EOR working time

system to be in line with the actual situation by shortening working hours.
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