
Chop-SAT in Non-Euclidean Geometry

Thatcher Geary

University of Utah

UUCS-24-008

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

4 May 2024

Abstract

This study explores methods of applying Non-Euclidean Geometry to the Boolean Satisfiability

Problem (SAT). When presented with a knowledge base in Conjunctive Normal Form (CNF) with

n atoms, it can be represented as an n-dimensional hypercube, where each corner corresponds to a

unique combination of the logical truth assignments to the atoms. A geometric approach to solving

SAT, CHOP-SAT [10] performs cuts on the hypercube’s corners, with each chop arising from a

conjunct in the CNF sentence. This process eliminates non-solution points and preserves only those

corners that satisfy the CNF sentence within the feasible region in Euclidean Geometry. The SAT

problem is solvable if corners within the feasible region of the hypercube are detected following the

cuts. These corners signify the existence of a solution within the given constraints. The PoincarÂ´e

disk is a model within Non-Euclidean Geometry that is represented as a unit disk in Euclidean

geometry, but which has an associated metric which makes the boundary of the disk infinitely distant

from the center. The corners of a hypercube superscribed about the unit disk can be projected

onto the unit disk’s boundary. Since these solution points are the only points at infinite distance

from the center of the unit disk, the hope is that there will be a low-cost computational method to

find them. The specific goal of this study is to investigate whether performing CHOP-SAT in this

Non- Euclidean Geometry representation can yield an efficient algorithm for solving the Boolean

Satisfiability Problem (SAT).

1

CHOP-SAT IN NON-EUCLIDEAN GEOMETRY

by

Thatcher Geary

A Senior Honors Thesis Submitted to the Faculty of
The University of Utah

In Partial Fulfillment of the Requirements for the

Honors Degree in Bachelor of Science

In

Computer Science

Approved:

May 2024

Copyright © Year

All Rights Reserved

Thomas C. Henderson
Thesis Faculty Supervisor

Mary Hall
Director, School of Computing

Thomas C. Henderson
Departmental Honors Liaison

Monisha Pasupathi, PhD
Dean, Honors College

ABSTRACT

This study explores methods of applying Non-Euclidean Geometry to the Boolean

Satisfiability Problem (SAT). When presented with a knowledge base in Conjunctive Nor-

mal Form (CNF) with n atoms, it can be represented as an n-dimensional hypercube,

where each corner corresponds to a unique combination of the logical truth assignments

to the atoms. A geometric approach to solving SAT, CHOP-SAT [10] performs cuts on

the hypercube’s corners, with each chop arising from a conjunct in the CNF sentence.

This process eliminates non-solution points and preserves only those corners that satisfy

the CNF sentence within the feasible region in Euclidean Geometry. The SAT problem

is solvable if corners within the feasible region of the hypercube are detected following

the cuts. These corners signify the existence of a solution within the given constraints. The

Poincaré disk is a model within Non-Euclidean Geometry that is represented as a unit disk

in Euclidean geometry, but which has an associated metric which makes the boundary of

the disk infinitely distant from the center. The corners of a hypercube superscribed about

the unit disk can be projected onto the unit disk’s boundary. Since these solution points

are the only points at infinite distance from the center of the unit disk, the hope is that

there will be a low-cost computational method to find them. The specific goal of this study

is to investigate whether performing CHOP-SAT in this Non- Euclidean Geometry rep-

resentation can yield an efficient algorithm for solving the Boolean Satisfiability Problem

(SAT).

For my parents, who have always supported me.

CONTENTS

ABSTRACT . ii

LIST OF FIGURES . v

LIST OF TABLES . vi

CHAPTERS

1. INTRODUCTION . 1

2. BACKGROUND . 2

2.1 Boolean Satisfiability Problem (SAT) . 2
2.2 CHOP-SAT . 4
2.3 Linear Programming . 5
2.4 Euclidean CHOP-SAT Detecting Satisfiablity . 6
2.5 Non-Euclidean Geometry . 7

3. CHOP-SAT IN NON-EUCLIDEAN GEOMETRY . 12

3.1 Hypersphere Construction . 12
3.2 Poincaré Disk Distance . 13
3.3 Orthogonal Hypersphere . 14
3.4 Representing the Hypersphere . 15
3.5 Clause Chops . 17

4. BARRIER METHOD . 23

4.1 Initial Parameters . 23
4.2 Analysis . 27

5. CONCLUSION AND FUTURE WORK . 30

APPENDICES

A. EUCLIDEAN CHOP-SAT . 32

B. BOYD FORCE FIELD METHOD . 35

REFERENCES . 38

LIST OF FIGURES

2.1 Hyperbolic lines in upper half-plane . 9

2.2 Hyperbolic triangles in upper half-plane . 9

2.3 Hyperbolic lines in the Poincaré disk . 10

2.4 Shapes in Poincaré disk . 11

3.1 Projection of vertices from the hypercube onto the hypersphere in 2D. 12

3.2 Representation of a hyperbolic line using a Euclidean circle. 13

3.3 Bounding faces for n = 2. 17

3.4 Chops for Cl1 = a ∨ b and Cl2 = ¬a . 19

3.5 Impact of ∆ on chops . 21

4.1 Analysis of Barrier Method Convergence: Exploration of the number of steps
and the distance to the closest unchopped corner as influenced by input
parameters t and p for ϵp, for CNF1 . 25

4.2 Analysis of Barrier Method Convergence: Exploration of the number of steps
and the distance to the closest unchopped corner as influenced by input
parameters t and p for ϵp, for CNF2 . 26

4.3 Analysis of Barrier Method Convergence: Exploration of the number of steps
and the distance to the closest unchopped corner as influenced by input
parameters t and p for ϵp, for CNF3 . 26

LIST OF TABLES

4.1 Average convergence value for satisfiable CNF sentences in n dimensions 27

4.2 Average convergence value for unsatisfiable CNF sentences in n dimensions . . 27

4.3 Greatest convergence value for unsatisfiable CNF sentences in n dimensions . . 28

4.4 Average number of iterations for unsatisfiable CNF sentences in n dimensions 28

4.5 Average number of iterations for satisfiable CNF sentences in n dimensions . . 28

CHAPTER 1

INTRODUCTION

The Boolean Satisfiability Problem (SAT) is a fundamental problem within computer

science and mathematical logic. Given a Boolean formula, which is a logical expression

constructed of boolean variables, conjunctions (AND), disjunctions (OR), and negations

(NOT) [14], the goal of SAT is to determine if there exists such a truth assignment to the

logical variables to the make the entire expression true. The SAT problem is classified as

NP-complete. A problem is NP-complete if it is both the class of NP (problems which

have a polynomial run time on a deterministic Turing machine for checking if a proposed

solution is correct) and NP-hard (problems at least as hard in NP, where there are currently

no polynomial time solutions). A problem that has a polynomial time solution on a deter-

ministic Turing machine is classified as P. The P vs NP problem revolves around a question

of whether P, the class of problems that can be solved in polynomial time is equivalent to

NP, the class of problems where a solution can be verified in polynomial time. Since every

NP-complete problem can be reduced to some form of the SAT, solving SAT in polynomial

time would imply that every NP problem can be solved in polynomial time, proving that P

= NP. Proving P = NP would hold significant implications for the field of computer science.

The goal of this research is to investigate the application of Non-Euclidean Geometry to the

SAT problem, particularly to CHOP-SAT, aiming to discover a polynomial time solution.

CHAPTER 2

BACKGROUND

2.1 Boolean Satisfiability Problem (SAT)
The Boolean Satisfiability Problem (SAT) is a task of determining whether a given Well-

Formed Formula(WFF) is satisfiable. A Well Formed Formula is defined as follows:

Given a set of variables, A = {ai|i ∈ N} where ai takes on the value of {1, 0}.

1. ai ∈ A is a WFF.

2. If a WFF follows a negation symbol ¬, such that ¬(WFF), it remains a WFF.

3. Any expression of the form (α ∨ β), where α, β ∈WFF.

4. Any expression of the form (α ∧ β), where α, β ∈WFF.

5. Any finite application of these rules results in a WFF.

Additionally, a literal, L can be defined as either a propositional variable or the negation

of a propositional variable L = ai or L = ¬ai. The objective of SAT is to find an assignment

of truth values (true or false) to the atoms such that the expression, constructed from the

operators {¬,∨,∧}, evaluates to true.

Any WFF can be converted to Conjunctive Normal Form (CNF), a form where the

expression is represented as a conjunction (AND) of clauses, each of which is a disjunction

(OR) of literals. This transformation process was proved by Stephen Cook in his paper

”The Complexity of Theorem-Proving Procedures” published in 1971 [5]. Cook showed

that any propositional logic formula, such as WFF, can be converted to a CNF form in

polynomial time.

Any problem categorized in P is one that can be solved in polynomial time on a de-

terministic Turing machine. In contrast, a problem is categorized in NP if it has a poly-

nomial time verifier [14]. The crucial link between the two classifications of problems

3

lies in NP-complete problems. NP-complete problems comprise a set of problems that

are part of both NP and a special subset within NP, where any other problem can be

reduced to them in polynomial time. Among all NP-complete problems, SAT stands out

as the quintessential example. Due to the simplicity of SAT’s logical variable structure,

it has become the most frequently used problem for reductions from other NP-complete

problems. Discovering a polynomial time solution for SAT would imply the equality of P

and NP. This would have significant implications for the field of computer science, in both

practical and theoretical applications.

Although polynomial time SAT solvers have not been proven to exist, modern SAT

solvers such as Glucose, Lingeling, MapleCOMSPS, CaDiCaL, and MiniSat are highly

practical and widely used in various applications. These SAT solvers are able to solve

SAT’s with KB’s of millions of clauses or more by using a form of Conflict-Driven Clause

Learning (CDCL) algorithm. These algorithms follow a method of incomplete local search,

where the algorithm focuses on local modifications to the total assignments. This approach

is called the Davis-Putnam-Logemann-Loveland (DPLL) algorithm, which underpins the

CDCL model.

The DPLL algorithm employs a backtracking search strategy, systematically selecting

values for variables at each step to explore various scenarios. After branching, if a con-

flict is detected, the algorithm will backtrack, undoing the branching until the conflict is

resolved. The CDCL algorithm will operate in series of phrases: simplification, decision,

and learning [3].

In the simplification phase, the algorithm extends the assignment by inferring new

truth values based on the current state of the formula. Next, in the decision phase, the

algorithm strategically selects an unassigned variable and assigns it a truth value,(true

or false) usually with some sort of heuristic to guide the selection. After repeating these

two phases, the assignment in the branch will either meet the conditions of the formula or

not. If the assignment does not result in any contradictions in the clauses, the algorithm

terminates the search. However, if conflicts arise, meaning a clause was falsified, the

algorithm transitions into the learning phase. The learning phase analyzes the conflict

in a clause and modifies the assignment to resolve it. If the conflict cannot be resolved,

the algorithm backtracks to previous assignments and explores alternative paths by going

4

back to the simplify and decision phase. If no logical assignments can be found to satisfy

the clause, the CNF sentence is deemed unsatisfiable.

Modern CDCL SAT solvers employ additional techniques to accelerate the algorithm.

These procedures include extending additional clauses to the sentence from conflicts en-

countered during the backtrack search, having heuristics for restarting the backtrack search,

exploiting the structure of conflicts during clause learning and more [13].

Unlike these CDCL SAT solvers which employ a more brute force approach, CHOP-

SAT is not intended to compete on efficiency, but rather represents a theoretical attempt to

find a polynomial time solution to the SAT problem.

2.2 CHOP-SAT
One notable observation regarding the SAT problem and logical assignments of n unique

logical variables is the exponential growth in the number of possible assignments. With

n unique logical variables {a1, a2, ..., an}, there are 2n distinct truth assignments that can

be made. This exponential increase can be geometrically visualized by constructing an

n-dimensional hypercube. In an n-dimensional hypercube, each vertex represents a unique

combination of truth values for the logical variables. Thus, the hypercube contains exactly

2n vertices in n-dimensions, corresponding to each possible truth assignment of the atoms.

A geometric approach to solving SAT problems were first explored by Gomory [8],

aiming to discover integer solutions to linear programs by introducing the Cutting-plane

method. In this method, for each disjunction within a knowledge base (KB), a linear

inequality can be formed by summing xi for atoms in the clause and (1− xi) for negated

atoms in the clause and setting the expression to be greater than or equal to one. If a

non-integer solution is found, then the non-integer solution is separated (cut) from the

integer solutions. Chvatal expanded upon the method by proving supporting theorems

for bounded polytopes and applying these results to solve various combinatorial problems

[4]. It is important to note that integer programming is in NP. The CHOP-SAT method was

developed independently from Gomory and Chvatal’s work and fundamentally explores

different geometric insights.

CHOP-SAT is a geometric approach to solving the SAT problem by leveraging the

geometric equivalence described above. The algorithm proceeds as follows : Given a

5

Knowledge Base (KB) with n atoms represented by a CNF sentence with m conjuncts:

S = C1 ∧ C2 ∧ C3 ∧ . . . ∧ Cm

Ci = Li1 ∨ Li2 ∨ Li3 ∨ . . . ∨ Lik

Notice that the negation of Ci describes the assignments that do not satisfy the CNF sen-

tence.

¬Ci = ¬(Li1 ∨ Li2 ∨ Li3 ∨ . . . ∨ Lik)

= ¬Li1 ∧ ¬Li2 ∧ ¬Li3 ∧ . . . ∧ ¬Lik

Each negation of the conjunct serves as a cut, eliminating corners corresponding to variable

assignments that fail to satisfy the sentence. Given n atoms, each conjunct will have a

certain subset of these atoms, ik. For each atom not present in the conjunct, there are 2n−ik

combinations of truth assignments that are possible. All these combinations represents the

truth assignments that do not satisfy the CNF sentence. Thus each conjunct will cut 2n−ik

vertices on the n-dimensional hypercube.

In CHOP-SAT, these cuts are applied iteratively for each conjunct, effectively pruning

corners that do not fulfill the SAT condition. If after the cuts, the hypercube still retains

corners, a satisfying assignment for the CNF sentence exists. Conversely, if no corners

persist, no truth value assignment can satisfy the CNF sentence. Determining the existence

of remaining corners in the feasible region within polynomial time is a pivotal aspect of

the problem.

2.3 Linear Programming
Linear programming is a mathematical optimization technique used to find the best

outcome in a model that is subject to linear constraints. It is defined as follows:

minimize f Tx

subject to


Ax ≤ b,
Aeqx = beq,
lb ≤ x ≤ ub.

where f , x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

By setting up the constraints of the feasible region using linear programming, we can

effectively identify the extremes of the region. This process involves representing the hy-

percube and the cuts as constraints in the linear programming formulation. By seeking the

6

minimum of x in both positive and negative directions for each dimension (2n directions

in total), it may possible to detect the uncut corners.

To achieve this, let x represent a point within the feasible region, and set up the con-

straints Ax ≤ b derived from the cuts. The linear programming problem is then formu-

lated to minimize f Tx subject to these constraints.

The concept can be further elaborated by visualizing the hypercube and the cuts within

it. Each cut delineates a facet of the hypercube, and the feasible region is the intersection

of these facets. The objective is to find a point x that lies within the feasible region,

representing an uncut corner. By adjusting the constraints through linear programming,

the objective is to converge towards an uncut corner efficiently in polynomial time.

The polynomial-time solvability of linear programming, was demonstrated by George

Dantzig in the 1940s, suggesting that there exists an algorithmic approach to find these

uncut corners within the feasible region in polynomial time [6].

2.4 Euclidean CHOP-SAT Detecting Satisfiablity
Appendix A contains the Euclidean CHOP-SAT algorithm, this section specifically fo-

cuses on the detection of corners following the application of CHOP-SAT. The develop-

ment of an efficient polynomial-time method for corner detection holds significant impli-

cations, solving SAT in polynomial time and therefore proving P = NP. Given n unique

atoms in the KB, the hypercube Hn will have 2n corners. Hn has a range within [0, 1]

for each axis. The feasible region represents the solution space of the KB, identified by

the presence of any original hypercube corners within it. An observation can be made

that every corner in Hn is
√

n
2 distant from its center, thus a feasible region produced by

a KB with a satisfiable sentence must have a point that is
√

n
2 away from the center of

Hn. A special convex polytope, denoted In, represents the largest feasible region for any

unsatisfiable sentence, thus any feasible region produced from an unsatisfiable KB, using

CHOP-SAT, is contained within In. The convex polytope is bounded above by a distance

of
√

n−2
2 from the center. Hence, the KB sentence is satisfiable only if any point within the

feasible region exceeds this distance from the center of Hn.

It is possible to determine the existence of a corner in the feasible region that is
√

n
2 away

by using linear programming and projecting onto all hypercube diagonals but there are

7

2(n− 1) of these, thus costing exponential time. It is clear that an alternative, more efficient

algorithm is required. Two main methods have been devised to identify the feasible region

that exceeds this upper bound: the Singleton Detection method through rotation, and the

Maximum Volume Inscribed Ellipsoid method.

2.4.1 The Singleton Detection Method

An unsatisfiable feasible region is bounded above by a distance of
√

n−2
2 from the

origin [10], then every rotation of said region about the center of Hn still has the same

upper bound. The feasible region can be rotated and projected onto an axis using linear

programming to identify any protruding points beyond the upper bound. This approach

yielded promising outcomes for KB instances with n ≤ 10. However, as the dimension-

ality increased, the projections were occluded by the other dimensions and using linear

programming to detect the protruding points became very difficult.

2.4.2 The Maximum Volume Inscribed Ellipsoid Method

The Maximum Volume Inscribed Ellipsoid (MVE) within the convex feasible region

may be used to determine the existence of a solution to CHOP-SAT. An ellipse, represented

by E, is defined as the set of points x ∈ Rn satisfying (x − c)T A(x − c) ≤ 1, where A

is a symmetric positive definite matrix and c ∈ Rn is the center of the ellipsoid. The

MVE within a bounded full-dimensional convex body Ω can be computed efficiently,

providing a tight ellipsoidal approximation of the region with maximum volume. This

ellipsoid can be used to efficiently verify the satisfiability of new constraints, with one of

its major semi-axes aligned with the most extreme length segment of the feasible region.

If the maximum semi-axis of the MVE is less than
√

n− 2, it may indicate unsatisfiability.

While computing the minimum volume circumscribing ellipsoid is NP-hard, determining

the maximum volume inscribed ellipsoid is possible in polynomial time. As dimensions

increased, this method proved ineffective because the maximum volume results from a

more compact ellipsoid rather than the one with the longest convex segment [11].

2.5 Non-Euclidean Geometry
As the dimension of the hypercube increases, the CHOP-SAT algorithm(s) encounters

challenges in identifying corners within the feasible region in Euclidean geometry. A

8

different model of geometry can be used to interpret CHOP-SAT namely, Non-Euclidean

Geometry.

In order to grasp the concept of non-Euclidean geometry, it is useful to establish a

foundation in Euclidean geometry. Euclid in his famous book Elements, published approxi-

mately around 300 BCE, proposed five postulates for geometry [7]. In modern times, these

are called axioms, a statement or proposition that is accepted as true without requiring

proof. These axioms serve as the foundational building blocks upon which the rest of the

mathematical or logical system is constructed. The set of postulates known as Euclid’s

postulates forms the foundation of Euclidean geometry, which has been widely used for

centuries. These postulates are:

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight lines segment, a circle can be drawn having the segment as radius

and one endpoint as center.

4. All Right Angles are congruent.

5. If two lines are drawn which intersect a third in such a way that the sum of the inner

angles on one side is less than two Right Angles, then the two lines inevitably must

intersect each other on that side if extended far enough. This postulate is equivalent

to what is known as the Parallel Postulate.

These postulates have formed the basis for Euclidean geometry. However, in the 19th

century, mathematicians such as Nikolai Lobachevsky, János Bolyai, and Carl Friedrich

Gauss developed geometrical systems without the Parallel Postulate. These systems, known

as non-Euclidean geometries, primarily include two types of models: elliptical geometry,

where lines do not have other lines parallel to them, and hyperbolic geometry, where given

a line and a point not on that line, there are infinitely many lines through the point that do

not intersect the given line.

9

2.5.1 The Upper Half-Plane Model

The upper half-plane model is a geometric model within hyperbolic geometry, where

the upper half-plane H in the complex plane C, is defined to be:

H = {z ∈ C | Im(z) > 0}

The hyperbolic lines in H can be represented using Euclidean geometry in C. One is an

intersection of H with a Euclidean line in C that is perpendicular to the real axis R in C.

The other is the upper half of a Euclidean circle, centered on the real axis R. Examples of

Hyperbolic lines in the upper half-plane are shown in Figure 2.1 below.

Figure 2.1: Hyperbolic lines in upper half-plane

In the upper half-plane model, shapes like triangles can be formed, similar to Euclidean

geometry. Below are two hyperbolic triangles.

Figure 2.2: Hyperbolic triangles in upper half-plane

The upper half-plane can serve as a model for CHOP-SAT by projecting the points

of the hypercube onto the upper half-plane H and applying the CHOP-SAT algorithm.

However, there are certain challenges associated with this approach. Firstly, the corners

that lie on the real line R do not belong to H, which complicates the modeling process.

Secondly, the presence of straight Euclidean lines in the upper half-plane model, similar to

those in Euclidean geometry, may lead to analogous occlusion problems, especially as the

10

number of dimensions increases. To address these challenges, we explore an alternative

model of Hyperbolic geometry known as the Poincaré disk model.

2.5.2 The Poincaré Disk Model

The Poincaré disk D is the open unit disk:

D = {z ∈ C || z |< 1}

Hyperbolic lines within the Poincaré unit disk D can also be interpreted using Euclidean

geometry in the complex plane C. One representation involves a straight Euclidean line

passing through the origin of the unit disk. Another representation entails a segment of a

Euclidean circle in R, intersecting the unit disk at a right angle. This segment corresponds

to the intersection of an orthogonal circle within D. A Few examples of lines in D are

shown in Figure 2.3 below.

Figure 2.3: Hyperbolic lines in the Poincaré disk

One of the unique properties of the Poincaré disk is how distance is calculated. The

hyperbolic length of a piecewise C1 path f : [a, b]→ D is given by the integral

lengthD(f) =
∫

f

2
1− |z|2 |dz|

The distance from the origin to the hyperbolic line segment between 0 and r for 0 < r < 1

can be parameterized by f : [0, r] → D given by f (t) = t. Since the image of f is the

11

hyperbolic line segment in D that joins 0 and r, we get dD(0, r) = lengthD(f). Thus for

the distance, we get [1, pg.122]:

dD(0, r) = lengthD(f)

=
∫

f

2
1− |z|2 |dz|

=
∫ r

0

2
1− t2 dt

=
∫ r

0

(
1

1 + t
+

1
1− t

)
dt

= ln
(

1 + r
1− r

)
Notice that as r approaches 1, the distance, dD(0, r) tends to infinity.

The unit disk seems to be bounded from an external Euclidean perspective, but is

unbounded and limitless from within D. Thus, as points approach the boundary, their

hyperbolic distance grows rapidly towards infinity. Utilizing this property, by projecting

the corners of the hypercube onto the boundary of D (called ideal points, which corre-

sponds to infinity) and subsequently applying CHOP-SAT, it becomes more feasible to

identify the unchopped corners as they reside at infinity.

The Poincaré disk, like the upper half-plane, can also produce unique shapes that are

not possible in Euclidean geometry. Below are examples of a hyperbolic triangle and

hyperbolic square with the sum of their angles being 0.

(a) Hyperbolic Triangle in the Poincaré
disk

(b) Hyperbolic Square in the Poincaré
disk

Figure 2.4: Shapes in Poincaré disk

CHAPTER 3

CHOP-SAT IN NON-EUCLIDEAN GEOMETRY

3.1 Hypersphere Construction
The motivation for using the Poincaré disk is to take advantage of the ideal points

that reside at infinity. The corners of the n-dimensional hypercube are projected onto the

surface of the n-dimensional hypersphere as unique ideal points that are infinite distance

away from the center of the hypersphere (shown below in Figure 3.1).

Figure 3.1: Projection of vertices from the hypercube onto the hypersphere in 2D.

In the Poincaré Disk representation, the feasible region is bounded only when no solu-

tion is present. The aim is to develop a low-complexity algorithm to identify points within

the feasible region whose distance from the origin tends to infinity in Poincaré distance.

Determining whether the feasible region is unbounded could provide valuable insights

into discerning whether SAT has a solution.

13

3.2 Poincaré Disk Distance
Before establishing a representation of CHOP-SAT in the Poincaré Disk, we need to

introduce a few fundamental geometric definitions. As discussed in Chapter 2, the Hyper-

bolic line l can be depicted as a segment of a unique Euclidean circle in R, intersecting the

unit disk at a right angle. Let p and q be two points located on the segment of the Euclidean

circle, and denote the two ideal points a and b as the intersections of the unit disk and the

circle, as illustrated in Figure 3.2 below.

Figure 3.2: Representation of a hyperbolic line using a Euclidean circle.

The distance between the two points, p and q in the Poincaré disk defined in terms of

Eucldiean distance is given by [2]:

d(p, q) = ln
(
|ap| · |qb|
|aq| · |pb|

)
where the vertical bars indicate Euclidean length of the line segment that connects the two

points.

In our pursuit of constructing an n-dimensional hypersphere, we are interested in

deriving an alternative distance formula applicable to Rn. Consider u, v ∈ Rn such that

|u| < 1 and |v| < 1 (both u and v in Dn) Then,

d(u, v) = acosh
(

1 +
2∥uv∥2∥r∥2

(∥r∥2 − ∥u∥2)(∥r∥2 − ∥v∥2)

)
since r = 1 we have,

14

d(u, v) = acosh
(

1 +
2∥uv∥2

(∥1− ∥u∥2∥)(1− ∥v∥2)

)

= 2 asinh

√(
∥uv∥2

(1− ∥u∥2)(1− ∥v∥2)

)

= 2 ln

(
∥u− v∥+

√
∥u∥2∥v∥2 − 2u · v + 1√

(1− ∥u∥2)(1− ∥v∥2)

)

3.3 Orthogonal Hypersphere
To transition from an n-dimensional hypercube to an n-dimensional hypersphere, a

transformation for the cuts is necessary. In Euclidean geometry, CHOP-SAT utilizes hyper-

planes as cuts, each of which is n− 1 dimensional. However, in the Poincaré disk, these

n− 1 dimensional hyperplane cuts would correspond to n− 1 dimensional hyperspheres.

Therefore, a representation for these hyperspheres must be established. One approach is

to represent them using Euclidean hyperspheres that are orthogonal to the Poincaré disk.

Let C1, C2 ∈ R2 be the centers of two Euclidean Circles with radii r1 and r2, respectively.

The angle between the two circles is given by:

cos(θ) =
r2

1 + r2
2 − ∥C1 −C2∥2

2r1r2

Given two points p and q in the Poincaré disk, the segment of a Euclidean circle with center,

C2, that represents the hyperbolic line between p and q, can be found by considering C1 as

the center of the Poincaré disk i.e, with C1 at the origin with the radius r1 = 1. Since two

circles are orthogonal if θ = π
2 , let:

cos(
π

2
) =

r2
1 + r2

2 − ∥C1 −C2∥2

2r1r2

Since cos(π
2) = 0, C1 = (0, 0), and r1 = 1 we get,

0 =
1 + r2

2 − ∥C2∥2

2r2

0 = 1 + r2
2 − ∥C2∥2

r2
2 = C2

x + C2
y − 1

where Cx and Cy represent the x and y coordinates of the center, respectively. Since p and

q are points on the circle centered at C2, we get:

15

r2
2 = (px −Cx)

2 + (py −Cy)
2

r2 = p2
x − 2pxCx + C2

x + p2
y − 2pyCy + C2

y

where px and py are the coordinates that represent x and y for p. Substituting the first

equation into the second yields:

C2
x + C2

y − 1 = C2
x + C2

y − 2pxCx − 2pyCy + p2
x + p2

y

= pxCx + pyCy =
p2

x + p2
y + 1

2

Likewise for q we get:

= qxCx + qyCy =
q2

x + q2
y + 1

2

This linear equation can be solved by:

A =

(
px py
qx qy

)
b =

(p2
x+p2

y+1
2

q2
x+q2

y+1
2

)
AC = b

Finally, the radius of the Euclidean circle, r can be found by:

r = ∥C− p∥

If a Euclidean line can be drawn through p, q, and the origin, then the hyperbolic line

between p and q is equivalent to the Euclidean line connecting them. This equivalence

can also be represented as a Euclidean circle with an infinite radius. However, when

constructing the cuts for CHOP-SAT in Non-Euclidean geometry, this scenario can be

entirely avoided

3.4 Representing the Hypersphere
To represent the n-dimensional hypercube as an n-dimensional hypersphere, there must

be a way to accurately project the vertices of the hypercube to the hypersphere. An n-

dimensional hypercube has 2n faces that are (n − 1) dimensional hyperplanes. These

bounding faces in the Poincaré disk would follow a hyperbolic line, thus is the boundary

of an n-dimensional hypersphere. The vertices of the hypercube will be projected directly

16

from the corners of the hypercube onto the surface of the hypersphere in the direction of

the center of the Poincaré disk. The 2n bounding faces goes as follows.

Given a KB with n unique atoms, we seek to construct an n-dimensional hypersphere

that bounds the feasible region. The center of these hypersphere faces will lie along the

positive and negative side of each coordinate axis. Thus, let v1 ∈ Rn be a unit vector

from the center of the disk to one of the vertices of the bounding faces, and v2 ∈ Rn be a

unit vector in the direction of the coordinate axis of the desired bounding face. The angle

between two vectors in Rn is given by:

cos(θ) =
v1 · v2

∥v1∥∥v2∥

since v1 and v2 are both unit vectors we have:

cos(θ) = v1 · v2

The solution for v1 · v2 can be found by observing that the entries of v1 will be ±
√

n
n

since ∥v1∥ = 1, and v1 is a vector pointing at the vertex. Since v2 is a vector with 1 for one

entry and rest is 0, we have that

|v1 · v2| =
√

n
n

The distance from the origin to the center of the bounding hypersphere can be obtained

by:

d =
1

cos(θ)
=

1
|v1 · v2|

=
n√
n
=
√

n

The radius, r is the distance between v1 and
√

nv2 which is given by:

∥v1 −
√

nv2∥ =
∥∥∥∥(±√n

n
,±
√

n
n

, . . . ,±
√

n
n

)
−
(
0, . . . , 0,

√
n, 0, . . . , 0

)∥∥∥∥
= ∥(±

√
n

n
,±
√

n
n

, . . . ,± (n− 1)
√

n
n

,±
√

n
n

, . . . ,±
√

n
n

)∥

=

√(
±
√

n
n

)2

+

(
±
√

n
n

)2

+ · · ·+
(
± (n− 1)

√
n

n

)2

+

(
±
√

n
n

)2

+ · · ·+
(
±
√

n
n

)2

=

√(
± (n− 1)

√
n

n

)2

+ (n− 1)
(
±
√

n
n

)2

17

=

√
(n− 1)2

(
±
√

n
n

)2

+ (n− 1)
(
±
√

n
n

)2

=

√
(n− 1)

(
±
√

n
n

)2

(n− 1 + 1) =

√
(n) (n− 1)

(
±
√

n
n

)2

=

√
(n) (n− 1)

(n
n2

)

=

√
(n− 1)

(
n2

n2

)
=
√
(n− 1)

The centers of the hyperspheres for the bounding faces are (0, 0, . . . ,±
√

ni, 0, . . .) along

the ith coordinate axis, with a radius of
√

n− 1. This process is repeated for 2n bounding

faces. The vertices are located at all combinations of ± for (±
√

n
n ,±

√
n

n , . . . ,±
√

n
n) ∈ Rn

(notice that this is 2n combinations). The example for this in n = 2 dimensions is depicted

in Figure 3.3 below.

Figure 3.3: Bounding faces for n = 2.

3.5 Clause Chops
CHOP-SAT uses each clause to construct a cut in the feasible region by cutting the

non-solution vertices by a hyperplane that separates them from the feasible region. In the

Poincare disk, these would be parts of hyperspheres. Given a CNF each clause would

represent each cut or hypersphere that separates the feasible region from the non-solution

vertices. The algorithm for getting all the Non-Euclidean chops is given below.

18

CHOP-SAT leverages each clause to create a partition in the feasible region by placing a

hyperplane between the non-solution vertices and the feasible region. In the Poincaré disk,

these partitions would manifest as segments of hyperspheres. For a given CNF, each clause

corresponds to a separate partition or hypersphere that delineates the feasible region from

the non-solution vertices.

The corners that are within the radius of the hypersphere cuts are considered to be part

of the non-solution vertices, while the feasible region comprises the points outside these

hyperspheres. Thus, the hyperspheres effectively serve as boundaries between the feasible

region and the non-solution vertices. The algorithm for generating all the Non-Euclidean

partitions is outlined below. Given a KB with clause:

Cl = L1 ∨ L2 ∨ L3 ∨ . . . ∨ Lk

let V = [v1, v2, . . . , vn] where n is the number of unique atoms, and ai is the ith atom:

vi =


−1, if ∃j s.t. ¬ai = Lj

0, if ai /∈ Cl and ¬ai /∈ Cl
1, if ∃j s.t. ai = Lj

Let α = −V and uα = α
||α|| . This is a unit vector pointing towards the center of the

hypersphere that chops off the desired vertex or vertices. To find the distance d, start

by selecting a vertex to be chopped. Set α−1←0 to α but, replacing any 0’s with −1 and

chop pt = α−1←0
||α−1←0|| , where chop pt represents a vertex to be chopped. To find the center a

similar process to the bounding faces could be done. Let:

cos(θ) = uα · chop pt

d =
1

cos(θ)

Since the angle between the Euclidean line from the origin of the Poincaré disk to chop pt

must be orthogonal to the Euclidean line with length r from the center of the hypersphere

to the surface, by the Pythagorean theorem we have:

r =
√

d2 − 1

Finally the center of the hypersphere chop, C is given by:

C = duα

19

Let Cl1 = a ∨ b. Then V 1 = [1, 1], α1 = [−1,−1], uα,1 = [−0.7071,−0.7071], chop pt1 =

[−1,−1] We have that d1 = 1
0.7071 = 1.414 and r1 =

√
1.41412 − 1 = 1. Thus, we get:

C1 = d1uα,1 = 1.414[−0.7071,−0.7071] = [−1,−1], r1 = 1

Equation for circle 1 is :(x− (−1))2 + (y− (−1))2 = 1

Let Cl2 = ¬a. Then V 2 = [−1, 0], α2 = [1, 0], uα,2 = [1, 0], chop pt2 = [0.7071,−0.7071] We

have that d2 = 1
0.7071 = 1.414 and r2 =

√
1.41412 − 1 = 1. Thus, we get:

C2 = d2uα,2 = 1.414[1, 0] = [1.414, 0], r2 = 1

Equation for circle 2 is :(x− 1.414)2 + (y)2 = 1

Since the points (0.7071, 0.7071) and (0.7071,−0.7071) are included in circle 1 and the point

(−0.7071,−0.7071) is included in circle 2, these points are all non-solution vertices. The

example of the bounding faces is depicted in black, and the chops are highlighted in red,

as shown in Figure 3.4.

Figure 3.4: Chops for Cl1 = a ∨ b and Cl2 = ¬a

The clause chops serve two purposes: one is to eliminate the non-solution vertices

from the feasible region, and the other is to facilitate the detection of the solution vertices.

Therefore, our goal is to remove as much of the feasible region as possible to simplify the

identification of the solution vertices. Two methods have been devised to accomplish this

task: the Directional Center Push method and the Non-Chopped Neighbor method.

20

3.5.1 Directional Center Push Method

Finding the center and radius of the hypersphere is possible as long as we have the

direction vector. We aim to establish a parameter 0 ≤ ∆ < 1, where as ∆ approaches 1 the

chops gradually remove more of the feasible region. The Directional Center Push method

will derive the same parameters as the regular clause chops, with one modification in the

method where the distance d is determined by:

cos(θ) = uα · chop pt

d =
1

cos(θ)(1− ∆)

The equation to obtain the radius and center still follows:

r =
√

d2 − 1

C = duα

While this method does produce legal chops that effectively separate the feasible region

from the non-solution vertices, as ∆ approaches 1, the distance value escalates signifi-

cantly. This could make it more challenging to manage these hyperspheres due to the

large numerical values involved. Therefore, it would be preferable to find another method

for adjusting the chops.

3.5.2 Non-Chopped Neighbor Method

Consider the Euclidean n-dimensional hypercube, denoted as Hn. To identify the neigh-

boring vertex to a given chop point chop pt, we invert a non-zero element of the vec-

tor α and replace any 0’s with −1’s. Let α−1←0 represent this operation, and define

nei pt = α−1←0. Determine a projection point, proj pt, by moving along the edge of Hn

that connects chop pt and nei pt by a percentage 0 < ∆ < 1. This yields:

proj pt = (1− ∆)chop pt + ∆nei pt

The point, proj pt can be projected onto the surface of the Poincaré disk by normalizing it.

proj pt PD =
proj pt
||proj pt||

the hypersphere can be obtained similarly by:

21

cos(θ) = uα · proj pt PD

d =
1

cos(θ)

r =
√

d2 − 1

C = duα

This method allows a more precise method for accurately picking what percent of the

feasible region would we want to chop off for each cut without big numerical problem

present in the Directional Center Push method. The impact of ∆ on the chops is shown in

Figure 3.5 below.

(a) Impact of ∆ on single chop
(b) Chops for Cl1 = a ∨ b and

Cl2 = ¬a with ∆ = .9

Figure 3.5: Impact of ∆ on chops

3.5.3 Method

In Euclidean Geometry, the detection of projected corners could be accomplished using

linear programming. However, in the Poincaré disk model, where lines are curved, linear

programming is not applicable because it deals with optimizing linear objective functions

and representing our chops using hyperspheres introduces non-linearity. Therefore, an

alternative approach is needed to find the corners. We employ the Boyd Force Field

method to address this challenge, as detailed in Appendix B. The implementation of the

method is done using Matlab.

22

Given a CNF sentence, the problem solution could be found as follows:

1. The set of 2n bounding faces and the hypersphere chops produced by the CNF

clauses are constructed.

2. A Barrier Method type algorithm is devised to navigate through the constraint set,

aiming to maximize projection in the selected direction while utilizing the hyper-

sphere surfaces as barrier constraints. Implemented as a force field method, it is

elaborated upon in the Appendix B and the subsequent section. Additional forces,

such as those directing away from the origin, may also be incorporated to enhance

convergence.

3. A solution is considered to exist if the convergence point is sufficiently close enough

to a solution vertex.

CHAPTER 4

BARRIER METHOD

4.1 Initial Parameters
The Barrier Method requires initial values of starting point x, forcing vector f , magni-

tude of forcing vector t, the rate of increase for forcing vector µ, and the stopping criterion

ϵ. This section delves into the methodology employed to derive these values for the Barrier

Method.

4.1.1 Starting Point

The hyperbolic lines in the Poincaré disk, as discussed in section 2.5.2 have two types of

lines based on Euclidean geometry, a straight Euclidean line that goes through the origin,

or a segment of a Euclidean circle that intersects the Poincaré unit disk at a right angle.

It is arguable that the origin can serve as an initial starting point x. All the chops and 2n

bounding faces are represented using hyperspheres, thus there are no straight Euclidean

hyperplanes that pass through the origin. The hypersphere chops, derived using the Non-

Chopped Neighbor method, can never include a chop that affects the origin. The projected

point is determined by moving along the edge of Hn connecting the chopped point with

the neighboring point that remains unchanged. Since ∆ < 1, the projected point can never

coincide with a point on a straight Euclidean line. By observing Figure 3.5(a), it’s clear

that as ∆ approaches 1, the cuts converge toward an infinitely large radius hypersphere

(straight Euclidean line), but they never actually reach that point, as ∆ can never equal

1. Thus, the origin remains unaffected and is neither intersected nor contained within the

hypersphere chops and x can be set to the origin.

24

4.1.2 Forcing Vector

The Barrier Method involves iterating 2n times, alternating the forcing vector to point

in both positive and negative directions along each dimension. However, directing the

forcing vector along the dimensional axis may not be optimal, as projected corners are

not there; instead, it would directly target the bounding faces. A more effective approach

would be to rotate the vectors by 45◦ degrees, aligning them relatively towards the corners.

The forcing vectors can be derived by rotating the basis vector into another dimension.

Let v ∈ Rn being the basis vector for some dimension i, then:

vi =


0
...

1i
...

0n


To rotate the basis vector vi into the j dimension, let Ai,j ∈ Rn×n, the rotation matrix is

given by [9]:

Ai,j =



1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · cos(ϕ)i,i 0 · · · 0 − sin(ϕ)i,j · · · 0
0 · · · 0 1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 1 0 · · · 0
0 · · · sin(ϕ)j,i 0 · · · 0 cos(ϕ)j,j · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 1


then we get:

fi,j = Ai,jvi =



0
...

cos(ϕ)i
...

sin(ϕ)j
...

0n


The 2n forcing vectors can be obtained by rotating each basis vector for dimension i to the

next dimension i + 1 (for i = n rotate back to j = 1). To obtain the opposite direction

forcing vector, we plug in −ϕ for the fi,j.

25

4.1.3 Convergence Constraints

For parameters µ, t, and ϵ, we observed higher variability. We set µ to a fixed value of

1.5, considering it a reasonable scaling factor for t across iterations. However, for t and ϵ,

we conducted a test to determine the combination of parameters yielding the best results.

In this test, we varied t from 10 to 100 with increments of 10, and ϵ from 10−8 to 10−3

with a tenfold increase. We collected the distance from the closest corner and the number

of steps of the final convergence for all parameter combinations and plotted the results in

a 3D graph. This analysis was carried out using several symmetrically unique chops for

n = 3.

(a) Number of steps for Barrier Method to
converge for input t and p for ϵp for CNF1

(b) Distance of closest unchopped corner to
convergence point of Barrier Method for input t

and p for ϵp for CNF1

Figure 4.1: Analysis of Barrier Method Convergence: Exploration of the number of steps
and the distance to the closest unchopped corner as influenced by input parameters t and

p for ϵp, for CNF1

The experiments indicate that as t increases, the number of steps decreases. Regarding

the parameter p for ϵp, changes do not notably affect the number of steps, except for when

p is very large, where a significant decrease in steps is observed. In terms of distance, a

noticeable trend is observed: as p decreases, the minimal distance from the corner also

decreases, with a notable spike observed at −3. However, the distance does not seem as

affected by the t value, and the number of steps does not seem to be significantly influenced

by p, except for extreme values. It is notable that there is a small dip in distance for when

t = 60. From the experiment it seems like a to maximize efficiency and precision for the

Barrier Method picking ϵ = 10−8 and µ = 60.

26

(a) Number of steps for Barrier Method to
converge for input t and p for ϵp for CNF2

(b) Distance of closest unchopped corner to
convergence point of Barrier Method for input t

and p for ϵp for CNF2

Figure 4.2: Analysis of Barrier Method Convergence: Exploration of the number of steps
and the distance to the closest unchopped corner as influenced by input parameters t and

p for ϵp, for CNF2

(a) Number of steps for Barrier Method to
converge for input t and p for ϵp for CNF3

(b) Distance of closest unchopped corner to
convergence point of Barrier Method for input t

and p for ϵp for CNF3

Figure 4.3: Analysis of Barrier Method Convergence: Exploration of the number of steps
and the distance to the closest unchopped corner as influenced by input parameters t and

p for ϵp, for CNF3

27

4.2 Analysis
Given a CNF sentence, to determine a solution’s existence relies on the convergence

point, particularly whether it is sufficiently close to the corners while remaining within the

satisfiable region. To investigate this, a test was conducted to evaluate the average conver-

gence of the Barrier Method for both unsatisfiable and satisfiable CNF sentences. The test

comprised 100 data points of final convergence for each dimension ranging from n = 3 to

n = 10, to determine if the convergence value varies with the number of dimensions. The

convergence value is determined by computing the norm of all final convergence points

for the 2n directions and selecting the maximum value among them. A random set of

satisfiable and unsatisfiable CNF sentences was constructed, and the average convergence

value is summarized in Table 4.1 and 4.2 below.

Table 4.1: Average convergence value for satisfiable CNF sentences in n dimensions

n 3 4 5 6 7 8 9 10
Average Convergence 0.985 0.984 0.983 0.981 0.975 0.971 0.972 0.974

Table 4.2: Average convergence value for unsatisfiable CNF sentences in n dimensions

n 3 4 5 6 7 8 9 10
Average Convergence 0.149 0.195 0.311 0.394 0.368 0.443 0.381 0.320

The tables above demonstrate that satisfiable CNF sentences consistently achieve a

maximum norm of 0.97 using the Barrier Method. Consequently, the Barrier Method

attains approximately a 97% convergence rate for them. It’s noteworthy that, except for

a few CNF sentences with very few clauses, the convergence value for satisfiable ones

never dropped below 0.97 across the 100 samples for each n = 3 to n = 10.

For unsatisfiable CNFs sentences the average maximum convergence ranged from 0.14

to 0.45. While this outcome was somewhat expected, the more crucial statistics would be

the greatest maximum convergence value for an unsatisfiable CNF sentence. If an upper

bound can be established for the greatest maximum convergence value, it would facilitate

the detection of CNF sentence satisfiability. In the 100 samples, the greatest maximum

convergence value was recorded for each n, as shown in Table 4.3 below.

28

Table 4.3: Greatest convergence value for unsatisfiable CNF sentences in n dimensions

n 3 4 5 6 7 8 9 10
Greatest Convergence 0.282 0.425 0.482 0.523 0.552 0.445 0.603 0.581

The table above reveals that the maximum norm never exceeded 0.603 for an unsat-

isfiable CNF sentence. With these samples in hand, we can now infer the satisfiability

of a given CNF sentence based on whether the maximum convergence value surpasses a

certain threshold. A threshold range of 0.9 ≤ S ≤ 0.95 appears to be reasonable and safe

value for detecting satisfiablity.

4.2.1 Performance

The performance of the Barrier method can be assessed by examining how it scales with

increasing n. This can be done by counting the total number of iterations of the Barrier

method, which is equivalent to summing the total path lengths for all 2n directions. In the

same experiment mentioned earlier, the average number of total iterations was calculated

for 100 samples across dimensions ranging from n = 3 to n = 10 and subsequently the

results were divided by n for time complexity analysis. The results are summarized in

Table 4.4 and 4.5 below.

Table 4.4: Average number of iterations for unsatisfiable CNF sentences in n dimensions

n 3 4 5 6 7 8 9 10
Average iterations 6327 7618 8744 9754 11497 12875 14529 16446

Average iterations / n 2109 1905 1749 1626 1642 1609 1614 1645

Table 4.5: Average number of iterations for satisfiable CNF sentences in n dimensions

n 3 4 5 6 7 8 9 10
Average iterations 4508 5901 7398 8776 10337 11858 13489 15176

Average iterations / n 1503 1475 1479 1463 1477 1482 1499 1518

The data indicates that the average number of iterations for both satisfiable and unsat-

isfiable CNF sentences were similar, with slightly more iterations required for the unsatisfi-

able ones. Interestingly, the average number of iterations exhibits a linear time complexity,

as evidenced by the fact that the average iterations divided by n remains roughly constant.

29

This observation is not entirely surprising, as the addition of each dimension necessitates

the exploration of two additional directions by the Barrier Method, leading to a linear

increase in iterations.

It’s worth emphasizing that the Barrier Method itself does not exhibit linear time com-

plexity. Each iteration of the method involves computation on all the clauses, resulting in

a time complexity of T(n) = n× length(Cl), where length(Cl) represents the length of the

clauses. Assuming the clauses are some polynomial function of n, we could expect that

for n ≤ 10 the Barrier Method exhibits a reliable polynomial time complexity for detecting

satisfiablity for a CNF sentence.

CHAPTER 5

CONCLUSION AND FUTURE WORK

Achieving a polynomial-time solution to the Boolean satisfiability problem (SAT) would

be a groundbreaking advancement with profound implications for computer science, po-

tentially resolving the longstanding question of whether P equals NP in complexity theory.

In this thesis, we explored new approaches to SAT solving by leveraging Non-Euclidean

geometry as a model for CHOP-SAT. Specifically, we developed a Barrier Method to effec-

tively detect non-chopped corners and navigate the feasible region.

In Chapter 3, we explored the use of the Poincaré disk model to represent CHOP-SAT

chops. By leveraging Non-Euclidean geometry, we developed methods for accurately

projecting vertices onto hyperspheres and defining feasible regions. Through the Clause

Chops methodology, each CNF clause was translated into a hypersphere cut, aiding in

vertex elimination and solution identification. We also introduced approaches like the

Directional Center Push Method and the Non-Chopped Neighbor Method to refine the

chopping process.

Testing and analysis of the Barrier Method was done in Chapter 4, focusing on the

determination of initial parameters and evaluating its performance. Convergence con-

straints, including parameters like µ, t, and ϵ, are discussed, with experimental findings

revealing the optimal combination of parameters for maximizing efficiency and precision.

Moving on to analysis, the chapter explores the method’s performance in converging

satisfiable and unsatisfiable CNF sentences, providing insights into its efficacy based on

convergence thresholds. The method showed great results for n ≤ 10, demonstrating an

average convergence rate of approximately 97% for satisfiable CNF sentences.

Future work may include further assessing the convergence rate of the Barrier Method.

Expanding testing to substantially higher dimensions could provide deeper insights into

the validity of the algorithm. Alternatively, refining upper bound estimates for the con-

31

vergence rate of unsatisfiable CNF sentences could help identifying corners still within the

feasible region. Another avenue to explore is leveraging hyperbolic distance within the

model to take advantage of the projection of corners onto ideal points. While this study

primarily relied on Euclidean geometry for describing chops and values, incorporating

hyperbolic distance as a metric, rather than just a model, could exploit the advantages

offered by corners projected onto ideal points.

APPENDIX A

EUCLIDEAN CHOP-SAT

Given m conjuncts, Ci, i = 1, . . . , m, then let:

Ci = L1 ∨ L2 ∨ . . . ∨ Lk

Note that any complete truth assignment with ¬L1 ∧ ¬L2 ∧ . . . ∧ ¬Lk makes Ci false. Ob-

serve that:

• If k = n, then this eliminates 1 solution (H0 ≡ 0-D vertex).

• If k = n− 1, then this eliminates 2 solutions (H1 ≡ 1-D segment).

• If k = n− 2, then this eliminates 4 solutions (H2 ≡ 2-D square).

• . . .

• If k = 1, then this eliminates half the solutions in the hypercube (Hn−1).

The individual hyperplane is determined as follows. Let A = {1, 2, . . . , n} indicate the

atoms, and I ⊆ A. Given Ci = L1 ∨ L2 ∨ . . . ∨ Lk, then define αi, the hyperplane normal

vector, as follows:

∀ij ∈ I, αi(ij) = 1 if Lj is an atom aij , else − 1

∀m /∈ I, αi(m) = 0

αi =
αi

|αi|k

In order to get the constant for the hyperplane equation, a point must be found on the

hyperplane. This is selected so that the hyperplane cuts the edges of the hypercube at a

distance ξ from the non-solution vertex. This distance depends on the number k of literals:

d = ||ξ b̄k

k
||

where bk is a k-tuple of 1’s. Next:

33

∀ij ∈ I, p(ij) = 0 if Li is an atom, else 1

∀m /∈ I, p(m) = 0

Then p is a non-solution vertex. To find a point, q, on the hyperplane:

q = p + dαi

This allows a solution for the constant, c, in the hyperplane:

ci = −(αi · q)

This yields the hyperplane equation:

αi · x + c = 0

and the resulting inequality:

− αi · x ≤ c

Thus, to solve a CNF instance:

1. Find the linear inequality for each conjunct.

2. Set up an m × n matrix, A, with row i set to −αi (the negative of the hyperplane

normal).

3. Set up an n× 1 vector b with row i set to ci (the constant from hyperplane i).

4. Apply the interior-point method for linear programming with A and b specifying the

inequalities, and with 0 ≤ x ≤ 1. Minimize f Tx with x ∈ F, where F is the feasible

region, using f = ek, i.e., the unit vector in the kth dimension. Call the resulting

n-dimensional solution xk,1.

5. Apply the interior-point method for linear programming with A and b specifying

the inequalities, no equality constraints, and with 0 ≤ x ≤ 1. Minimize f Tx with

x ∈ F, where F is the feasible region, using f = −ek, i.e., the unit vector in the kth

dimension. Call the resulting n-dimensional solution xk,0.

6. If xk,0(1) = 0 or xk,1(1) = 0, then it is possible there is a solution for the CNF sentence,

S. If xk,1(1) > 0 and xk,0(1) < 1, then there is no satisfying solution.

34

Steps 4 and 5 are guaranteed to find a solution with xk,1(1) = 0 or xk,0(1) = 1, if there is

such a point in the feasible region; however, this point may be on a face of the hypercube,

and not at a corner [12].

APPENDIX B

BOYD FORCE FIELD METHOD

The Barrier Method is formulated as a force field problem as described by Boyd and

Vandenberg [?]. For each point x ∈ F, a barrier force is defined for each constraint surface:

Fi(x) = ∇(− log(− fi(x))) = ∇ fi(x)

where Fi(x) is the force vector at point x from the ith constraint, and fi(x) is the (minimal)

distance function from x to the ith constraint surface. The projection constraint force (called

the forcing direction force) is:

F0(x) = −t∇ f0(x)

where F0(x) is the forcing direction force at x and f0(x) is f Tx where f is the direction of

the forcing vector.

These forces are based on the logarithmic (barrier) function:

Φ(x) = −
m

∑
i=1

log(− fi(x))

and the distance function for hyperplanes is:

fi(x) = aT
i x + ci

and for hyperspheres:

fi(x) = ∥Ci − x∥ − ri

where Ci and ri are the center and radius, respectively, of the hypersphere. Then the force

field model is defined in terms of forces generated by the minimization impulse function

(to move in a certain direction) and the repulsive force of the constraint surfaces. Boyd

gives the hyperplane forces which in our representation are:

36

Fi(x) =
−ai

bi − aT
i x

F0(x) = t f

The hypersphere forces are derived as follows:

f0(x) = f Tx =
n

∑
i=1

f (i)x(i)

Therefore:

∇ f0(x) =


∂ f0
∂x1
∂ f0
∂x2
...

∂ f0
∂xn

 =


f (1)
f (2)

...
f (n)

 = f

which implies that:

F0(x) = t f

In addition:

fi(x) =

(
n

∑
j=1

(Ci(j)− x(j))2

)1/2

− ri

which means that:

∂ fi(x)
∂xj

=
1
2
(
(Ci(j)− x(j))2)−1/2

(2(Ci(j)− x(j)))(−1) =
x(j)− Ci(j)
∥Ci − x∥

and finally:

∇ fi(x) =
x− Ci

∥Ci − x∥

and

Fi(x) =
x− Ci

∥Ci − x∥(∥Ci − x∥ − ri)

In order to encourage moving toward the disk boundary, another forcing function may be

defined as:

Fb(x) =
tbx
∥x∥

where tb is a magnitude value.

37

Given x ∈ F, t(0) > 0, µ > 1, ϵ > 0, then the Barrier Method is [12]:

repeat

1. Centering step: find force equilibrium point x∗(t) of t f0 + Φ

2. Update: Set x to x∗(t)

3. Stopping Criterion: quit if µ/t < ϵ

4. Increase t: Set t to µt

REFERENCES

[1] James W. Anderson. Hyperbolic Geometry. Springer-Verlag, London, 2nd edition, 2005.

[2] Marcel Berger. Geometry II. Springer, translated edition edition, 1987. Original work
published in 1977.

[3] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsch. Handbook of Satisfia-
bility. IOS Press, 2008.

[4] Václav Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics, 4:305–337, 1973.

[5] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158,
Shaker Heights, Ohio, USA, 1971. Association for Computing Machinery.

[6] G.B. Dantzig. Application of the simplex method to a transportation problem. In T.C.
Koopmans, editor, Activity Analysis of Production and Allocation, pages 359–373. John
Wiley and Sons, New York, 1951.

[7] Euclid. Elements. Green Lion Press; Later Printing edition, January 2002. Translated
by Thomas L. Heath.

[8] R.E. Gomory. Outline of an algorithm for integer solution to linear programs. Bulletin
of the American Mathematical Society, 64(5):275–278, 1958.

[9] Andrew J. Hanson. Rotations for n-dimensional graphics. Computer Science Depart-
ment, Indiana University, 1995.

[10] T. C. Henderson, D. Sacharny, A. Mitiche, X. Fan, A. Lessen, I. Rajan, and T. Nishida.
CHOP-SAT: A new approach to solving SAT and probabilistic SAT for agent knowl-
edge bases. In International Conference on Agents and Artificial Intelligence, Lisbon,
Portugal, Feb. 2023.

[11] Thomas C. Henderson, Amelia Lessen, Ishaan Rajan, Tessa Nishida, and Kutay Eken.
Chop-sat: A new method for knowledge-based decision making. In International
Conference on Intelligent Autonomous Agents, Suwon, South Korea, July 2023.

[12] Thomas C. Henderson, David Sacharny, Xiuyi Fan, Amar Mitiche, and Thatcher
Geary. GEO-SAT: A geometric approach to satisfiability. Technical Report UUCS-
23-003, School of Computing, University of Utah, Salt Lake City, UT, November 2023.

[13] Marijn J.H. Heule and Oliver Kullmann. The science of brute force. Communications
of the ACM, 60(7):70–79, 2017.

[14] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, Indepen-
dence, KY, 2012.

