
GEO-SAT: A Geometric Approach to

Satisfiability

Thomas C. Henderson, David Sacharny, Xiuyi Fan,

Amar Mitiche and Thatcher Geary

University of Utah

UUCS-23-003

Kahlert School of Computing

University of Utah

Salt Lake City, UT 84112 USA

10 October 2023

Abstract

Boolean Satisfiability (SAT) is posed as a geometric problem and geometric solutions are sought.

The approach is based on the fact that Conjunctive Normal Form (CNF) sentences over n logical

variables (a standard representation for SAT) can be converted to a bounded convex feasible region

in n-dimensional space. Linear programming methods (with polynomial time complexity) are ap-

plied in order to find solutions. Methods are given to convert a CNF sentence into both Euclidean

and non-Euclidean geometries, and the advantages and disadvantages of this approach discussed.

1 Introduction

SAT can be defined as follows: Given a logical sentence over n variables, determine if there is

an assignment of truth values to the variables which makes the sentence true. Note that for an

n-variable sentence, there are 2n possible complete truth assignments (also called models). The

complete set of models (or complete conjunction set) can be mapped onto the vertexes of a unit

n-dimensional hypercube, called Hn in a straightforward way: the truth assignment values serve

as the coordinates in n-dimensional space. Assume the logical sentences are represented as CNF

sentences, i.e., a conjunction of disjunctions of literals. Then any assignment of truth values which

makes a disjunction false renders the CNF sentence false. If the disjunction has k literals, then there

is one truth assignment to the atoms of these literals which makes the disjunction false; however,

the variables not in the disjunction can take on either truth value, and so there are 2n−k complete

conjunctions which make the sentence false. This set is in fact a sub-hypercube of Hn.

1

The Euclidean method presented here shows how each disjunction in the CNF sentence gives rise

to a hyperplane which separates the non-solution vertexes (on the negative side of the hyperplane)

of Hn from the solution vertexes (on the non-negative side of the hyperplane); i.e., the intersection

of the non-negative half-spaces of these hyperplanes results in a convex feasible region which must

contain any solution which exists. The non-Euclidean method shows how Hn can be projected onto

the n-dimensional unit hypersphere considered as an n-dimensional Poincaré Disk. The advantage

of this approach is that the vertexes of Hn are mapped onto the surface of the disk and are thus at

infinite distance (in terms of hyperbolic geometry) from the center of the disk. The idea is that this

property makes the solutions more readily identifiable.

2 Background

For a detailed discussion of the SAT problem and its complexity, see [11]. Related work on a

geometric approach started with Gomory [7] who sought integer solutions for linear programs.

Given the semantics of the literals in a disjunction, a linear inequality can be formed summing xi for

atoms in the clause and (1−xi) for negated atoms in the clause and setting this to be greater than or

equal to 1. Next, a {0, 1} solution is sought resulting in an integer linear programming problem. If a

non-{0, 1} solution is found, Gomory proposed a way to separate (via a cutting plane) that solution

from all integer solutions. This method has been used in finding lower complexity ways to provide

theorems for proving the boundedness of polytopes, cutting plane proofs for unsatisfiable sentences,

pseudo-Boolean optimization, etc. (see [2, 3, 4, 5, 6]). The Chop-SAT method has been proposed

as a way to solve SAT and PSAT [8, 9]. The Chop-SAT method was developed independently of

Gomory and Chvatal’s work, and is based on fundamentally different geometric insights.

3 The Euclidean Approach

The CNF SAT problem is cast as a linear programming problem:

Minimize f
Tx

Subject to: Ax ≤ c

where each constraint is given by:

−αi · x ≤ ci

A solution for the SAT sentence exists iff a solution exists for the LP problem such that every

component of x has a value equal to 0 or 1.

2

Given a set of m conjuncts, Ci, i = 1 : m, each conjunct is used to produce a hyperplane of

dimension n − 1 which separates the solutions (i.e., some subset of vertexes of Hn) from non-

solutions. The hyperplane for the ith conjunct is:

α(i) · x+ c = 0

Each of these hyperplanes produces an inequality:

−α(i) · x ≤ ci

for which the signed distance of a point is used to separate solution from non-solution vertexes. A

matrix, A, is produced where each row is the 1 × n-tuple α(i), the unit normal to the hyperplane.

An n× 1 vector, c, is constructed where the ith element of c is ci.

The way these hyperplanes are constructed, it is now possible to run the interior-point method for

linear programming to find feasible points which minimize fTx for x ∈ F , where F is the feasible

region and f is a unit vector in the desired projection direction. Note that if neither of the projection

onto the positive and negative directions of some basis vector results in a 0 or 1 value, respectively,

then the CNF has no solution. However, there are feasible regions for unsatisfiable sentences which

do have such 0,1 projections, so this is a sufficient but not necessary condition.

4 Chop-SAT

Given m conjuncts, Ci, i = 1 . . .m, then let:

Ci = L1 ∨ L2 ∨ . . . ∨ Lk

Note that any complete truth assignment with ¬L1 ∧ ¬L2 ∧ . . . ∧ ¬Lk makes Ci false.

Observe that:

• If k = n, then this eliminates 1 solution (H0 ≡ 0-D vertex).

• If k = n− 1, then this eliminates 2 solutions (H1 ≡ 1-D segment).

• If k = n− 2, then this eliminates 4 solutions (H2 ≡ 2-D square).

• . . .

• If k = 1, then this eliminates half the solutions in the hypercube (Hn−1).

The individual hyperplane is determined as follows. Let A = {1, 2, . . . , n} indicate the atoms, and

I ⊆ A. Given Ci = L1 ∨ L2 ∨ . . . ∨ Lk, then define αi, the hyperplane normal vector, as follows.

∀ij ∈ I, αi(ij) = 1 if Lj is an atom aij , else − 1

3

∀m /∈ I, αi(m) = 0

αi =
αi

‖ αi ‖

In order to get the constant for the hyperplane equation, a point must be found on the hyperplane.

This is selected so that the hyperplane cuts the edges of the hypercube at a distance ξ from the

non-solution vertex. This distance depends on the number k of literals:

d =‖ ξ
bk

k
‖

where bk is a k-tuple of 1’s. Next:

∀ij ∈ I, p(ij) = 0 if Li is an atom, else 1

∀m /∈ I, p(m) = 0

Then p is a non-solution vertex. To find a point, q, on the hyperplane:

q = p+ dαi

This allows a solution for the constant, c, in the hyperplane:

ci = −(αi · q)

This yields the hyperplane equation:

αi · x+ c = 0

and the resulting inequality:

−αi · x ≤ c

4.1 The Chop SAT Algorithm

Thus, to solve a CNF instance:

1. Find the linear inequality for each conjunct.

2. Set up an m× n matrix, A, with row i set to −αi (the negative of the hyperplane normal).

3. Set up an n× 1 vector b with row i set to ci (the constant from hyperplane i).

4. Apply the interior-point method for linear programming with A and b specifying the inequal-

ities, and with 0 ≤ x ≤ 1. Minimize fTx with x ∈ F , where F is the feasible region, using

f = ek, i.e., the unit vector in the kth dimension. Call the resulting n-dimensional solution

xk,1.

4

5. Apply the interior-point method for linear programming with A and b specifying the inequal-

ities, no equality constraints, and with 0 ≤ x ≤ 1. Minimize fTx with x ∈ F , where F is the

feasible region, using f = −ek, i.e., the unit vector in the kth dimension. Call the resulting

n-dimensional solution xk,0.

6. If xk,0(1) = 0 or xk,1(1) = 0,then it is possible there is a solution for the CNF sentence, S.

If xk,1(1) > 0 and xk,0(1) < 1, then there is no satisfying solution.

Steps 4 and 5 are guaranteed to find a solution with xk,1(1) = 0 or xk,0(1) = 1, if there is such

a point in the feasible region; however, this point may be on a face of the hypercube, and not at a

corner.

Algorithm Chop SAT

On input:

S: CNF sentence

On output:

res: for each dimension, the min and max values found

sol: 1 if complete SAT solution found, else 0 begin

A = matrix of negated hyperplane normals (1 per row)

b = vector of hyperplane constants for each atom a ∈ S

d is dimension associated with a

ed is unit vector in dimension d

x10 = linear programming solution projected on -ed
x11 = linear programming solution projected on ed
res(d,1) = x10(d)
res(d,2) = x11(d)
if x10 or x11 is complete 0/1 solution

sol = 1;

end

end

Now consider the time complexity of the approach. Converting the conjuncts to hyperplanes is

clearly polynomial given that there are m conjuncts, and each has at most n literals. Given the sizes

of A and b, the interior-point method for linear programming requires only polynomial time (see

Potra[10]).

5

4.2 Some Examples

4.2.1 2D One Solution

Consider the two clauses in modus ponens:

1.a1

2.¬a1 ∨ a2

Then the feasible region is shown in Figure 1. The hyperplane found for conjunct 1 (with ξ = 0.9)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

a1 Axis

0

0.2

0.4

0.6

0.8

1

a
2

 A
x
is

Figure 1: The Feasible Region for Modus Ponens.

is:

1.0a1 + 0a2 − 0.9 = 0

while the hyperplane for conjunct 2 is:

−0.7071a1 + 0.7071a2 + 0.7071 = 0

The solutions are:

x10(1) = 0.9

and

x11(1) = 1

6

4.2.2 2D No Solution

For a second example, consider a CNF sentence with no satisfying solution:

1.¬a1 ∨ ¬a2

2.¬a1 ∨ a2

3.a1 ∨ ¬a2

4.a1 ∨ a2

Then the feasible region is shown in Figure 2. The hyperplane found for conjunct 1 is:

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

a1 Axis

0

0.2

0.4

0.6

0.8

1

a
2

 A
x
is

Figure 2: The Feasible Region for an Unsatisfiable CNF Sentence.

−0.7071a1 − 0.7071a2 + 0.7778 = 0

The hyperplane found for conjunct 2 is:

−0.7071a1 + 0.7071a2 + 0.0707 = 0

The hyperplane found for conjunct 3 is:

0.7071a1 − 0.7071a2 + 0.0707 = 0

The hyperplane found for conjunct 4 is:

0.7071a1 + 0.7071a2 − 0.6364 = 0

The linear programming solutions are:

x20(1) = 0.4999

and

x21(1) = 0.5001

indicating there is no satisfying solution for S.

7

4.2.3 3D Two Solutions

As a final example, consider the case with 3 variables, and such that (¬a1∧a2∧a3)∨(a1∧¬a2∧¬a3)
is true. Re-writing this in CNF yields:

1. : a1 ∨ a2

2. : a1 ∨ a3

3. : ¬a1 ∨ ¬a2

4. : ¬a2 ∨ a3

5. : ¬a1 ∨ ¬a3

6. : a2 ∨ ¬a3

Then the hyperplane equations are:

C1 : 0.7071a1 + 0.7071a2 − 0.7071 = 0

C2 : 0.7071a1 + 0.7071a3 − 0.7071 = 0

C3 : −0.7071a1 − 0.7071a2 + 0.7071 = 0

C4 : −0.7071a2 + 0.7071a3 + 0 = 0

C5 : −0.7071a1 − 0.7071a3 + 0.7071 = 0

C6 : 0.7071a2 − 0.7071a3 + 0 = 0

The linear programming solutions are:

x1 = [0; 1; 1]

and

x2 = [1; 0; 0]

This approach has been tested on thousands of randomly generated CNF sentences (both consistent

and inconsistent) and always returned a solution where there was one, and gave the empty set

where there was none. In addition, a test was made on a consistent 1000-atom, 30,000-conjunct

CNF in which the solution was found in about five minutes (this was in Matlab with no special

optimizations). On the other hand, for a CNF from satcompetition.org/2002 with 450 variables and

2025 clauses (each with 3 literals), Chop SAT produced a 0/1 in each dimension, but no complete

SAT solution.

Several ways to guarantee finding a solution have been considered, but found lacking:

8

• Find vertexes of the feasible region and test them as solutions. → usually m enough greater

than n so this is NP .

• Find projection axis so that projected value indicates a solution. → too many directions, so

this is NP

• Find minimal volume circumscribing ellipsoid for feasible region. → this problem is NP

• Find maximal length stick (line segment) in feasible region. → this problem is NP

• Find maximal volume inscribed ellipsoid in feasible region. → although this problem is

polynomial time, the maximal volume requires maximizing the minimal semi-axis length, and

not maximizing the maximal semi-axis length, so the ellipsoid does not point to a solution

vertex. This method maximizes the determinant of an appropriate matrix; if the trace could

be maximized, then perhaps this would lead to the desired result.

Thus, to this point, no algorithm guaranteeing a solution in polynomial time has been found using

the Euclidean approach.

4.3 Probabilistic SAT

Points in Hn provide more than just solutions at the vertexes. Every point in the hypercube corre-

sponds to a probability assignment to the atoms. The feasible region defines the set of such assign-

ments that are consistent with the logical sentence. More formally, the Probabilistic SAT (PSAT)

problem is defined as follows. Assume that each CNF clause, Ci has a probability, pi, assigned to

it. Then we seek a probability function, π, that maps the complete conjunctions, Ω, to [0, 1]n such

that:

1. 0 ≤ π(ωj) ≤ 1

2.
∑2n−1

j=0 π(ωj) = 1

3. pi =
∑

ωj⊢Ci
p(ωj)

where ωj ∈ Ω.

For example, if S = A∨B, then since the models {(0, 1), (1, 0), (1, 1)} satisfy S, and if the models

are equally likely, then the probability of A is 2/3, as is the probability of B. It turns out that the

mean of the points found by linear programming projection in the positive and negative directions

of all the basis axes directions provides a useful estimate of the actual atom probabilities; in this

case, the mean of the unique extreme points is in fact the actual probabilities [2/3,2/3]. For a set of

independent variables, this can be used to produce a PSAT solution since every model probability

is the product of n literal probabilities. This method has been exploited with knowledge-based

decision making agents [9].

9

5 The Non-Euclidean Approach

The motivation for using non-Euclidean geometry is that it allows us to put the solutions at a unique

location: at infinite distance from the origin in terms of non-Euclidean distance). That is, SAT

is mapped onto the Poincare Disk as follows (see Figure 3). The corners of the n-dimensional

Figure 3: The Vertexes of the Hypercube are Projected onto the Hypersphere.

hypercube are projected onto the n-dimensional hypersphere, Dn, as ideal points (i.e., points on the

surface of the hypersphere - note that these are not points in the Poincaré Disk). These ideal points

are an infinite distance from the center of the unit hypersphere. Unlike in Euclidean geometry where

the hyperplane chops usually produce a bounded convex polytope for the feasible region whether

or not a solution exists, in the case of the Poincaré Disk representation, the feasible region is only

bounded when no solution is in the feasible region. Given this fact, the goal is to find low-complexity

algorithms to determine whether or not there exists a sequence of points in the feasible region such

that in the limit their distance from the origin is infinite (in hyperbolic geometry).

The goal is to provide a representation in terms of the Poincaré Disk which allows the solution

vertexes to be found through efficient geometric algorithms. To set up this representation, a few

basic facts concerning the Poincaré Disk geometry must be defined.

5.1 Poincaré Disk Distance

Consider the 2-dimensional Poincaré Disk (Figure 4, upper left circle). The distance between two

points, p and q, in the Poincaré Disk is defined in terms of Euclidean distance on points given as

complex numbers:

d(p, q) = ln(
|ap||qb|

|aq||pb|
)

where a and b are the intersection points with the unit circle of the unique circle (Figure 4, lower

right circle) through p and q which is orthogonal to the unit circle. Moreover, the points are arranged

in the order a, p, q and b along the circle. An alternative formulation which does not require the

10

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

L
1

L
1

L
1

p

q

Figure 4: The 2D Poincaré Disk; L1 is a line through the center, O = (0, 0), i.e., a diameter; L2 is

a circular arc which is orthogonal to the unit circle.

orthogonal circle is given by:

d(p, q) = acosh(1 +
2|pq|2|r|2

(|r|2 − |op|2)(|r|2 − |oq|2)
)

where r = 1 for the unit disk, and |op| and |oq| are the Euclidean distances of p and q from the

origin, respectively.

5.2 The Orthogonal Circle through Two Points

The angle between two circles (defined in Euclidean coordinates) is given by:

cos(θ) =
r21 + r22 − ‖C1 − C2‖

2

2r1r2

where r1 is the radius of the first circle, r2 the radius of the second circle, and C1 and C2 are the

centers of the two circles. Two circles are said to be orthogonal if θ = π
2 .

Given two points, p and q, in the Poincaré Disk, the straight line (in hyperbolic terms) through them

can be found as follows. If p and q lie on a diameter of the Poincaré Disk, then the line is just

the straight Euclidean line through the two points. This can be viewed as a circle of infinite radius

through the two points. If p and q do not lie on a diameter line, then there are two circles to consider:

the unit disk with r1 = 1 and C1 = (0, 0), and the circle through p and q with radius r2 and center

C2 = (Cx, Cy). Since the circles are orthogonal:

cos(θ) = cos(
π

2
) = 0

11

⇒ 0 = 1 + r22 − ‖C2‖
2

⇒ r22 = C2
x + C2

y − 1

Each point, p and q, gives rise to another equation; e.g., for p:

r22 = (px − Cx)
2 + (py − Cy)

2

⇒ r22 = p2x − 2pxCx + C2
x + p2y − 2pyCy + C2

y

and substituting the first into the second:

C2
x + C2

y − 1 = C2
x + C2

y − 2pxCx − 2PyCy + p2x + p2y

⇒ pxCx + pyCy =
p2x + p2y + 1

2

Likewise:

⇒ qxCx + qyCy =
q2x + q2y + 1

2

This can be solved as a linear system:

A =

[

px py
qx qy

]

b =

[

p2x+p2y+1

2
q2x+q2y+1

2

]

and solving for the center, C:

AC = b

Finally, the radius is found as follows:

r = ‖C − p‖

5.3 Representation of Bounding Faces in the Poincaré Disk

In Euclidean geometry, the SAT problem is posed in terms of removing vertexes from the hypercube.

Each conjunct in the CNF sentence provides a hyperplane which divides the feasible region from

the non-satisfying solutions for that conjunct. However, in the Poincaré Disk, a way must be found

to represent the original complete set of vertexes, and then some way to chop non-solutions from

the feasible region. One way to go at this is to use a square like the one shown in Figure 5. The

problem arises that this is likely to suffer from the same problem as the Euclidean representation,

namely that a projection does not readily reveal solution corners.

Another representation that may allow lower complexity discovery of whether a solution exists

or not is given by the feasible region shown in Figure 6. The 2n (n − 1)-dimensional bounding

faces of the hypercube are represented in the Poincaré Disk in terms of hyperspheres through the

12

Figure 5: Representing the Complete Feasible Region as a Square in the Poincaré Disk. The left

side is the complete feasible region, while the right side shows the feasible region when (0, 1) is not

a truth assignment that satisfies the CLF sentence.

corresponding face vertexes. The centers of these hyperspheres will lie along the coordinate axes

(one each in the positive and negative directions). Let v1 be the unit vector from the center of Dn

to a vertex of the face, and v2 be the unit vector in the desired axis direction. We seek the center,

C and radius r of the hypersphere through the face vertexes. Given that the desired hypersphere is

orthogonal to the unit disk, then the angle, θ, between v1 and v2 is given by:

θ = acos(v1 · v2)

which means that the distance, xd, along the axis from the origin to C is:

xd =
1

cos(θ)

which gives C. This process is done for the 2n bounding face constraints on the feasible region.

5.3.1 Clause Chops

As has been described, lines in the Poincaré Disk are circular arcs when viewed in Euclidean geom-

etry, and this allows non-solution vertexes to be separated from the feasible region by choosing the

appropriate side of the circle which defines the chop. What is required is an algorithm to convert

from a CNF conjunct to the equation of a circle which has the non-solutions on one side and the

remaining possible solutions on the other. This algorithm is provided below.

Given clause:

C = L1 ∨ L2 ∨ . . . ∨ Lk

13

Figure 6: Representing the Complete Feasible Region as a Square with corners at infinity in the

Poincaré Disk.

convert to V = [v1, v2, . . . , vn] where n is the number of atoms, and ai is the ith atom:

vi = −1 if ∃j ∋ ¬ai = Lj

vi = 0 if no literal of ai ∈ C

vi = 1 if ∃j ∋ ai = Lj

Let α = −V and uα = a
‖α‖ . Obtain an Hn vertex to be chopped by substituting -1 for 0’s, if any, in

α: chop pt = α−1←0.

Obtain a non-chopped neighbor, nei pt, by inverting a non-zero element of chop pt.

Obtain the projection point by sliding along an Hn edge connecting the chop pt to the nei pt by

the desired percentage amount ∆ ∈ (0, 1]; that is:

proj pt = (1−∆)chop pt+∆nei pt

To get the projection point on the Poincaré Disk boundary:

proj pt PD =
proj pt

‖proj pt‖

Then:

θ = acos(ua · proj pt PD)

d =
1

cos(θ)
14

r2 =
√

d2 − 1

C = dua

Consider the following example. Let C = ¬A ∨ ¬B. Then V = [−1,−1], α = [1, 1], and

µα = [0.7071, 0.7071]. Then chop pt = [1, 1] and nei pt = [−1, 1]. Let ∆ = 0.9, then proj pt =
[−0.8, 1] and proj pt PD = [−0.6247, 0.7809] resulting in θ = 1.4601 radians (83.66 degrees),

and d = 9.0554.

Notice that if single-literal clauses are allowed, then the center of the chop hypersphere may flip

sides to satisfy circle orthogonality. If so, the feasible side of the hypersphere is the interior. Such

clauses can be avoided by deleting the atom of the literal and substituting its truth value into the

other clause where it appears and then reducing these clauses accordingly. Figure 7 shows example

2D and 3D chops. Note that this formulation works in any dimension.

Figure 7: Examples of Chops in 2D and 3D.

The ∆ parameter determines how far the chop occurs from the non-solution vertexes which are

being cut. Figure 8 shows some example positions for chops. Figure 9 shows the chops for Modus

Ponens, Figure 10 shows three edges chopped, and Figure 11 shows a 3D face chop.

5.4 Method

Given a CNF sentence, the problem solution is found as follows:

• A set of chops are produced for the CNF clauses; these chops are hyperplanes just like those

used in Euclidean geometry. Note that they can also be viewed as infinite radius hyperspheres

through those neighbor vertexes, however, these hyperspheres are not orthogonal to the unit

disk.

• In addition to the constraint surfaces arising from the chopped vertexes, it is also necessary to

bound the feasible region to be interior to the transformed unit cube. To this end, a set of face

constraint hyperspheres are added; these hyperspheres are orthogonal to the unit disk.

15

Figure 8: The Impact of Delta on Chop Distance from Non-Solution Vertexes.

• A Barrier Method type algorithm is developed for this constraint set which moves in the

selected projection direction (i.e., maximizes the projection) using the hypersphere surfaces

as barrier constraints. This is implemented as a force field method and is described in detail

below. Other forces may also be introduced to ameliorate the convergence; e.g., a force away

from the origin.

• A solution is considered to exist if the convergence point is close enough to a solution vertex;

i.e., in the limit, the distance from the origin of the points in the sequence grows without limit.

In Euclidean geometry, existing software tools exist to solve linear programming problems (e.g., the

Matlab function linprog). However, a variant was implemented here to handle the mix of hyperplane

and hypersphere surfaces.

5.4.1 Barrier Method

The Barrier Method is formulated as a force field problem as described by Boyd and Vandenberg

[1]. For each point x ∈ F , a barrier force is defined for each constraint surface:

Fi(x) = ∇(−log(−fi(x))) =
∇fi(x)

fi(x)

where Fi(x) is the force vector at point x from the ith constraint, and fi(x) is the (minimal) distance

function from x to the ith constraint surface. The projection constraint force (called the forcing

direction force) is:

F0(x) = −t∇f0(x)

16

Figure 9: Chops for Modus Ponens.

where F0(x) is the forcing direction force at x and f0(x) is fTx where f is the direction of the

forcing vector.

These forces are based on the logarithmic (barrier) function:

Φ(x) = −
m
∑

i=1

log(−fi(x))

and the distance function for hyperplanes is:

fi(x) = aTi x+ ci

and for hyperspheres:

fi(x) = ‖Ci − x‖ − |ri|

where Ci and ri are the center and radius, respectively, of the hypersphere. Then the force field

model is defined in terms of forces generated by the minimization impulse function (to move in

a certain direction) and the repulsive force of the constraint surfaces. Boyd gives the hyperplane

forces which in our representation are:

Fi(x) =
−ai

bi − aTi x

F0(x) = tf

The hypersphere forces are derived as follows:

f0(x) = fTx =
n
∑

i=1

f(i)x(i)

17

Figure 10: Three Edges Chop.

Therefore:

∇f0(x) =











∂f0
∂x1

∂f0
∂x2

· · ·
∂f0
∂xn











=









f(1)
f(2)
· · ·
f(n)









= f

which implies that:

F0(x) = tf

In addition:

fi(x) = ((C(1)− x(1))2 + · · ·+ (C(n)− x(n))2)1/2 − ri

which means that:

∂fi(x)

∂xj
=

1

2
((Ci(j)− x(j))2)−1/2(2(Ci(j)− x(j)))(−1) =

x(j)− Ci(j)

‖Ci − x‖

and finally:

∇fi(x) =
x− Ci

‖Ci − x‖

and

Fi(x) =
x− Ci

‖Ci − x‖(‖Ci − x‖ − ri)
18

Figure 11: 3D Face Chop.

In order to encourage moving toward the disk boundary, another forcing function may be defined

as:

Fb(x) =
tbx

‖x‖

where tb is a magnitude value.

Given x ∈ F , t(0) > 0, µ > 1, ǫ > 0, then the Barrier Method is:

repeat

1. Centering step: find force equilibrium point x∗(t) of tf0 +Φ

2. Update: Set x to x∗(t)

3. Stopping Criterion: quit if µ/t < ǫ

4. Increase t: Set t to µt

Figure 12 shows the forces resulting from only constraint surfaces repulsion forces (left), an upward

external force (middle), and a downward external force (right). The basic approach is to use the

origin as an initial starting point since the origin is guaranteed to be in the feasible region, and

find the equilibrium point when no force is applied (this corresponds to the analytic center). Next,

starting from the analytic center and using a forcing direction, follow the resultant forces and move

to the equilibrium point for this set of forces. Choosing different forcing directions results in an

exploration of the feasible region. The problem is to determine an effective and efficient search

strategy.

19

Figure 12: Example Force Fields: Only constraint surface repulsion forces are present (left); An

added upward force (middle); A downward external force (right).

Figure 13 shows the Barrier Method applied to finding solutions for a 2D problem with three solu-

tions. A 3-D example path is shown in Figure 14.

6 Conclusions and Future Work

The Geo-SAT approach has been extended to non-Euclidean geometry, and first results indicate that

solutions can be found. However, a number of things remain to be done:

1. Determine the convergence properties of the Barrier method in non-Euclidean space.

2. Perform a systematic study of solutions finding behavior in dimensions higher than 3.

3. Explore methods to speed up the discovery of a solution; e.g., as a force path is followed,

project the path points onto the appropriate constraint surfaces and determine whether the

direction of motion of the projected points can be used to move to a solution vertex more

rapidly.

20

Figure 13: The Paths for the Barrier Method finding Solutions in a 2D Problem.

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge,

UK, 2021.

[2] S.R. Buss and P. Clote. Cutting Planes, Connectivity, and Threshold Logic. Archive for

Mathematic Logic, 35:33–62, 1996.

[3] V. Chvatal. Edmonds Polytopes and a Hierarchy of Combinatorial Problems. Discrete Math-

ematics, 4:305–337, 1973.

[4] V. Chvatal. Cutting Planes in Combinatorics. European Journal of Combinatorics, 6:217–226,

1985.

[5] W. Cook, C.R. Coullard, and G. Turan. On the Complexity of Cutting-Plane Proofs. Discrete

Applied Mathematics, 18:25–38, 1987.

[6] J. Devriendt, S. Gocht, E. Demirovic, J. Nordstrom, and P.J. Stuckey. Cutting to the Core of

Psuedo-Boolean Optimization: Combining Core-Guided Search with Cutting Planes Reason-

ing. In Thirty-Fift AAAI Conference on Artificial Intelligence. Elsevier, 2021.

[7] R.E. Gomory. Outline of an Algorithm for Integer Solution to Linear Programs. Bulletin of

the Americal Mathematical Society, 64(5):275–278, 1958.

[8] Thomas C. Henderson, Amar Mitiche, Xiuyi Fan, and David Sacharny. Some Explorations in

SAT. Technical Report UUCS-21-016, University of Utah, July 2021.

21

Figure 14: The Paths for the Barrier Method finding a Solution in a 3D Problem.

[9] Thomas C. Henderson, David Sacharny, Amar Mitiche, Xiuyi Fan, Amelia Lessen, Ishaan

Rajan, and Tessa Nishida. Chop-SAT: A New Approach to Solving SAT and Probabilistic SAT

for Agent Knowledge Bases. In International Conference on Agents and Artificial Intelligence,

Lisbon, Spain, February 2023.

[10] F.A. Potra and S.J. Wright. Interior Point Methods. Journal of Computational and Applied

Mathematics, 124, 2004.

[11] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, Independence, KY,

2012.

22

