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Abstract

Convolutional Neural Networks are a common deep learning architecture for im-
age processing reliant on internal convolution operations. To improve overall per-
formance, these convolution operations must be highly performant. GPUs provide a
hardware architecture that accommodates substantial levels of parallelism that can im-
prove operational performance. However, code must be carefully developed to obtain
this potential. This thesis develops high performance GPU kernels for this purpose by
using careful analysis of the convolution problem and its implementation on the GPU.
By parameterizing the execution space, this thesis shows that the kernels can be made
to adapt to specific problems in architectures. Finally, it is shown that the developed
kernels are, in many common cases, more performant than comparable methods while
still having great potential for further refinement.
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CHAPTER 1

CONVOLUTIONAL NEURAL NETWORKS
AND THEIR GPU KERNELS

Image processing is an important area of computational research. One of the leading
algorithms in image processing is the convolutional neural network (CNN). CNNs are an
effective form of image processing and identification built around convolution operations.
Executing this operation as efficiently as possible is of great importance to quickly training
such neural networks and to their subsequent use in image prediction. As such, the goal
of this research was to identify ways to improve convolution performance specifically on
GPU architectures by creating a new set of kernels whose execution could be adjusted by

various predetermined parameters.

1.1 Convolutional Neural Networks

As with most neural network systems, CNNs apply layers of weighted filters to de-
velop data into a state where it is ready for evaluation [13]. In CNNs this is mostly done
through the use of convolution operations. The operation is built around taking a matrix
of some size less than or equal to that of the input image matrix and convolving it over all
possible indices within the input [13]. This smaller matrix is often termed the filter, kernel,
or weights [1]. At each index, the values of the filter are multiplied with the corresponding
values in the input matrix and summed. This final value is then put into a single element
in the output matrix. The filter is then moved to a new location jumping a distance termed
the stride. The convolving process continues until all possible indices where the filter can
be centered in the image have been evaluated. To allow for easier indexing, the input is
often padded with additional zero values along the outer and lower edges to allow for the
filter to easily fit in the rows and columns.

In the case of most images, there are multiple layers in the image often called channels

[1]. These channels are often separated into the various color values for RGB. In the
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convolution process, all of these channels are applied to corresponding filter channels
and placed in the same location in the output. This essentially compresses all of the
channel values into a single result as dictated by the filter. Also, in most instances of CNN
convolution, there are several filters rather than only one applied to the input. This allows
for different attributes of the image to be identified by each filter [1]. Therefore, the whole
operation ends up performing work on tensors of three and four dimensions for a single

image. These tensors can be viewed in figure 1.1.

FILTERS S

H+R-1

W+S-1

INPUT OUTPUT

Figure 1.1. CNN tensors for batch size of one.

This whole convolution process is then repeated through several layers in the neural
network called the pipeline. Successive applications of layers with distinct filters allows for
later filters to evaluate larger regions of the image. Therefore, these later filters are trained
to identify larger features in the image by building off of the smaller features identified by
previous filters [1]. This convolution process is at the heart of CNNs (hence the name) and
is what gives them their effectiveness.

On a more applicable level, this entire convolution process can be coded as a simple

multiplication and addition operation surrounded by successively nested loops. An ex-
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ample of this code can be seen in the figure 1.2. Due to the structure of the operation,
these loops can be permuted into any order and tiled in any way [9]. This means that
although the basic structure is simple, the possible options for increasing performance are

enormous. Due to its central nature and repeated application, performance is an important

consideration.
for(n = 0; n < Nn; n++)
for(k = 0; k < Nk; k++)
for(c = 0; ¢ < Nc; c++)
for(r = 0; r < Nr; r++)

for(s = 0; s < Ns; s++)

for(h = 0

: h < Nh; h++)
for(w = 0; w < Nw; w++)
Out[n][k][h][w] +=
In[n][c][h+r][w+s]«Ker[k][c][r][s]

Figure 1.2. CNN loops including a batch index (n) for multiple images. [9]

1.2 GPU Architecture

GPUs are a form of arithmetic hardware designed for high levels of parallelism and
run functions called kernels [10]. Numerous parallel cores allow for execution of single
instruction multiple thread operations in what is termed a warp [10]. Warps of sepa-
rate threads can, in this way, simultaneously execute operations providing concurrency.
Although these systems are designed with warps of 32 threads in mind, not all threads
must execute the same instruction on modern architectures. However, this loses potential
concurrency.

Each thread itself is assigned numerous registers at launch which are retained by the
thread until completion [10]. This retention of registers allows different warps of threads to
be switch in and out of a running context at zero cycle speeds. Because of this, many warps
can be run together, filling available resources, and switching out with one another during
high latency instructions such as memory fetches. These warps are organized into groups
of threads called thread blocks. Numerous thread blocks can be used in grids to help better

define the operation space. The thread blocks are also assigned to different streaming
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multiprocessors (SMs) that contain the cores, registers, and other memory. These separate
SMs work independently further increasing parallelism.

Further performance enhancing techniques are common in GPUs such as instruction
pipelines to help hide instruction latencies and special memory units called shared mem-
ory which allow for manually controlled cache with high warp sized throughput [10]. All
of these different hardware features make GPUs ideal for executing highly performant
and parallel operations. However, in order to obtain such performance, code must be
carefully designed for the GPU. Also, various architectural differences found in successive

generations of GPUs make some considerations vary on a per architecture basis.



CHAPTER 2

RELATED WORK ON CNNS

Due to the demand for image processing, various attempts to improve the performance
of CNN kernels have been attempted. These approaches vary for different hardware
options. However, many are built on modifying the previously mentioned nested loops

into a new format designed to get the most out of the specified hardware.

2.1 CPU Approaches

On CPU hardware, the hardware resources are organized into simple cache levels with
a relatively small number of CPU cores. With this structure, and almost all others, data
movement is by far the most time expensive operation. As such, the approaches to CNN
kernels generally center around most efficiently moving data through the different levels
of the cache hierarchy.

Many solutions to CNN kernel optimization on CPUs utilize a system called auto-
tuning. In this process, a search space of various combinations for options of tile size and
loop order are created. Then the system proceeds to search this created space by modeling
or actually testing one combination at a time [2]. Through this process, more performant
combinations can be identified and those options can be used in larger data sets or different
input values.

This process can be viewed in a similar way to most standard optimization processes
such as the well known Gradient Descent. By testing various options, performance can
be evaluated in an unfamiliar domain. More “intelligent” choices can be made between
each test to reduce the number of options tested. However, regardless of intelligence, the
generated space must be searched to some extent to find the most optimal choice and any
gaps in that generated search space are ignored.

Therefore, in a large design space, such as provided by the convolution problem, the

full option space can exceed hundreds of trillions of choices [9]. This means that any



6

reasonably timely auto-tuning software will be forced to ignore many of the options. How-
ever, newer techniques can use analytical modeling to search the entire design space to
optimize for data movement.

By using models of the data movement costs for various tile structures and loop orders,
options can be quickly evaluated. Evaluating different levels of tiling and permutations
from the first level up, also allows for early pruning of the design space. Putting this
together for all loop levels allows the entire design space to be evaluated or pruned from
the search space without requiring actual test runs [9]. As such, this technique can quickly

find more optimal code orderings for the CNN problem.

2.2 GPU Approaches

In the case of the more complicated GPU architectures, the number of options for code
structure increase even further. However, this structure also provides the potential for
further increases in performance due to the GPU’s heavily parallelized nature. Therefore,
developing optimized GPU kernels is a key component of making fast CNN kernels.

Many current solutions to GPU CNN calculations rely on mapping the problem down
to a two-dimensional matrix multiply problem [7]. This process is frequently termed
GEMM. By carefully mapping the input and filter values to two dimensional tensors,
standard matrix multiplication can be performed and still yield the same results as direct
convolution. One example of this method is the open-source CUTLASS CNN solver [5].
However, this approach is also one of the options in the cuDNN package, which is a
leading set of closed source CNN software [7].

The mapping of the input tensors is necessary to allow for efficient evaluation and
data movement on GPUs whose structure is designed to be most efficient in linear access
patterns and in the evaluation of linear operations. Use of tensor cores can allow for
some level of two-dimensional evaluation and, as such, they are frequently utilized for
these problems. However, the 1D and 2D focus of hardware computational components
essentially forces this dimensionality reduction in solutions.

In order to obtain faster access to memory, shared memory is often employed. How-
ever, the structure of shared GPU memory requires careful saving and accessing patterns

to maintain performance by avoiding access conflicts. In the case of CUTLASS, this is
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done by remapping the loaded memory so that any adjacent thread accesses will map to
non-conflicting locations [5]. This is done through the use of careful access patterns and
an XOR operation to remap loaded values.

Even with these and other carefully constructed components, GPU CNN kernels still
suffer from reduced performance when being utilized on arbitrary architectures or if not
carefully tuned to the problem’s needs by the implementer [7]. The enormous design space
and varying hardware constraints mean that options continue to exist to developing more

performant and generalizable kernels.

2.3 Alternate Approaches

Additional approaches to quickly solving the convolution operation also exit. Many
of these make use of a change in problem space to leverage mathematical advantages
found in the frequency domain. In the frequency domain, the convolution operation can
be reduced to simple summed multiplication operations [7] [8]. This vastly reduces the
total number of operations required to complete the convolution operation, but also means
a kernel must perform transformation operations to move into and out of the frequency
domain. These approaches often utilize the fast Fourier transform or the Winograd algo-
rithm.

The downside to this approach is the aforementioned requirement to move in and
out of the frequency domain. This can cause loss of performance due to the additional
operations required, especially for small problem sizes. As such, various options have
been and are being explored to avoid this domain movement. One such approach is to
simply keep resulting values from the frequency domain convolution operation in the
frequency domain [11]. By doing so, later steps in the CNN problem must also take place
in the frequency domain, but operations are saved in the convolution step.

cuDNN provides implementations for both fast Fourier transform based algorithms
and Winograd based algorithms along with their GEMM implementation. However, it
can be seen that by varying problem dimensions, performance resulting from all of these
methods will vary widely [7]. For this reason, this research explored a more model driven

approach.



CHAPTER 3

KERNEL DEVELOPMENT

To find and develop more optimal CNN GPU kernels this research focused on devel-
oping modeling that would reflect the expected execution of the kernel on the given GPU.
Through this modeling, parameters would be chosen that would adjust kernels to obtain
more optimal code behavior. The goal was to make these kernels in such a way that the
modeling of the problem would allow for adaptation of the kernel for different problems

and architectures and thereby produce an increase in performance.

3.1 Assumptions and Design Constraints

Due to the exceedingly large design space, several assumptions were necessary to
simplify kernel development. Care was taken while specifying these assumptions to only
narrow the design space to a limited extent and still allow the developed kernel room to
adapt to the most common use cases in CNN'’s. However, these assumptions did remove
some of the completely arbitrary functionality and adaptability that was desired for the
program. This was deemed acceptable for the initial exploration into this kernel design.

The first assumption made was that the K dimension of any given problem would
always be some multiple of 32. This assumption was true for all but one of the layers of
the CNN pipelines tested and is common in most such pipelines [6], [12]. The benefit of
this assumption was that it provided assurance that a full warp or set of full warps could
always correspond to the K dimension of the design space.

The second assumption was that any given input matrix would be padded to the
correct value for the expected output size given the filter size. For example, if output
W was expected to be 2 with a filter S of 3 for a stride one operation, then the input width
would have to be 4. This assumption removed the need for a given kernel to check for
boundaries during computation or apply padding prior to computation. Along with this

assumption, it was also assumed that image batch size would only be 1. This meant that
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the resulting kernel would be developed considering only the most limited input size and
any need for a batch system could be implemented as part of a wrapper call to the kernel.

The third assumption was that an automated setup time for a given input size could
be any amount of time within a limited number of hours reasonable for the problem size.
Within that time, an appropriately designed kernel should have been selected from the
design space and compiled. It was also assumed that multiple kernel designs could be
used in this selection process as long as the final resulting compiled code would function
for the given input. This assumption freed up time for input evaluation and computation.
It also removed the need for certain kernel implemented checks for parameters like stride
length. The assumption would not prevent the code from being used in the most common
case of CNN convolution which uses predetermined input layer sizes defined prior to
layer training or utilization.

Fourth, was that problems would be orientated in memory according to a specified
parameter order and that results would have to be return in a similar order. In this case,
the input tensor would be required to have an order of: C, H, W. The output tensor would
have an order of: K, H, W. Lastly, the filter set tensor would have a C, R, S, K ordering.
These orderings would of course dictate what dimensions were most closely grouped in
linear memory. This in turn would affect what memory access patterns would be more or
less efficient.

Finally, any kernel would, of course, be constrained by the resources available on the
desired runtime GPU. Since different GPU architectures exist, available resources vary.
However, any given compiled kernel would be expected to function within the available
resources on the specified GPU where the resource specifications were known prior to

kernel selection and compilation.



CHAPTER 4

REGISTER LEVEL MODELING AND
IMPLEMENTATION

Since registers are the fastest and most highly utilized portions of the GPU, kernel
design began at this level. The goal was to develop a register utilization pattern that
would get the most reuse out of any one loaded value while still accounting for hardware
constraints. Register speed makes reuse at this level beneficial for performance since
access is accomplished at nearly instantaneous speeds. Since registers are allocated on
a per thread basis, this meant that any sort of register reuse would require each thread to

compute multiple values also known as a tile.

4.1 Theoretical Modeling for Register Tiles

Since output elements in the convolution operation are created by successive opera-
tions on different input and filter elements, output elements are the only elements that are
consistently reused throughout the computation of any one final value. Thus, keeping a
stationary set of output elements in registers allows for element access to be unconstrained
by higher memory operations. Taking this approach, there are only three dimensions any
thread can be responsible for in output: K, H, and W. Tiling of this nature can be seen in
figure 4.1.

However, these output elements are also dependent on various elements from input
and the filter set. These elements might also obtain reuse in the computation. Therefore,
allocating some of these to registers is beneficial to performance as well. Since the output
elements determine what elements are required, the necessary input and filter elements
are easily identified. The tile shapes resulting in input and the filter tensors can be seen in

figure 4.2.
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Figure 4.1. Sample tile space for a single thread in the output tensor.
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Figure 4.2. Sample tile space for a single thread in the input and filter tensors.

4.2 Execution Pattern

Although tiling in all tensors can be beneficial, it requires many registers. Furthermore,

in the operations performed in convolution, tiling in both the input and the filter tensors
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can actually result in wasteful use of registers. Since math operations occur on individual
registers, and assuming loads are performed for each register individually, retention of
both sets of input in registers does not provide reuse.

This idea is more clearly viewed in the simplified matrix multiply case. In matrix
multiply, the same multiply-add operation is performed as in convolution. As can be seen
in figure 4.3, the output plane depends on a row and a column from the inputs. However,
since values are computed sequentially, only loading one set of inputs fully will obtain the
same reuse as loading both sets. The same is true in the convolution problem since the core

operation is the same.

=i

Total Elements Loaded: 8
Total Elements in Memory: 8

Total Elements Loaded: 8
Total Elements in Memory: 5

Figure 4.3. Matrix matrix multiply example of tile reuse where a column in A and a row
in B partially contribute to all values in output.

Thus, by loading only either input fully or the filter set fully, register pressure can be
decreased in this tiling scheme. However, not both options are viable. As seen in figure
4.4, the reuse scheme for a single input element is substantially more complex than the
scheme for a single kernel element. Since the goal of the program is to spend as much of
its time as possible on computation rather than indexing, the single kernel load is the best

approach. This simplifies the indexing scheme to the one seen in figure 4.5.
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1 Filters o Filters

Input Input

Single Input Load [Where K=k] Single Filter Load [Where K=k]

Figure 4.4. Sample of the reuse pattern of loaded input elements in the filter set (left) and
a sample of the input reuse of loaded filter elements in input (right).

for ¢ in range(C):
for k in range(K):
for r in range(R):
for s in range(S):
for h in range(r, H+r):
for w in range(s, W+s):
Out[h-r][w-s] += In[h][w] * Filters[c][r][s]

Figure 4.5. Sample of the logical CNN loop structure with single filter element traversing
the input.

4.3 Calculations

With these selections, it is finally possible to begin reasoning about the performance
implications of various parameter selections. The most useful estimation of performance at
this level is the operational intensity achieved by any one thread. The operational intensity
is the ratio of the number of operations that can be executed with respect to the number
of elements loaded from memory and can be calculated based on the parametrized tile
dimensions. The resulting equations can be seen in figure 4.6.

Using operational intensity, various tile sizes used in the division of the overall problem

can be quickly compared to find the most optimal. To simplify the number of possible
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O = ((r*s)*T*Tw*To*Te) / (Ta +r- 1) * (Tw +s- 1) * Te+r* s * Ty * To)
Figure 4.6. Thread level operational intensity equation based on tile size parameters.

dimensions, tile sizes are limited to sizes that perfectly fit the output. This limits the option

space, but also removes the need for partial tile considerations and implementations.

4.4 Register Level Implementation

Implementing the register level tiling structure required only slight modification from
the original set of nested loops. For each ¢ value, an input plane of values is loaded into
a register array. For each k value, the input plane is used with loaded filter values for the
computation of an H and W output plane. One filter value is loaded for each (R, S) before
computing the output plane using the current input plane. This limits the filter set to only
using one register at any given time. Output is computed in planes, but is saved into a
three-dimensional vector of registers with dimensions Ty, Tj,, and T,.

A simplified version of this implementation can be seen in figure 4.7. It can be seen
that each input plane will be used for all output planes in the T; dimension. The kernel
elements will obtain reuse for all elements in a given output plane with dimensions T, and
Tw. Output elements will be reused for all C, R, S, Ty, Tj, and T, operations. All these

behaviors match those desired from the theoretical modeling.

for(c=0;c<C;ctt) {
for(k=0;k<T k; k++) {
for r=0;r<R;r++) {
for (s=0;s<8S;st+t) {
oneKern = Kernel[ (kIndex + k)*C*R*S + (¢)*R*S + (r)*S + (s) |;
for(h=r; h<T_h+r; ht+t) {
for(w=s;w<T w+s; wtt) {
regOut[k][h-r][w-s] += regIn[h][w] * oneKern;
}
}
}

}
\ // End k

}//Endc

Figure 4.7. Loops for thread level tiling with singly loaded kernel elements.
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Although all of these accesses seem to be clear, due to the nature of register allocation
in GPUs, this simple array access structure posed some problems in many tile sizes. If the
compiler was unable or unwilling to fully unroll any of the loops in K or below, then the
compiler could also not resolve the generated arrays to registers. Instead, it was found
that the compiler would move these arrays into local memory, which is essentially another
name for global memory. This caused any performance improvement to be lost due to slow
local memory access times. Resolving this problem required manually adding compiler
directives to these loops specifying the complete unroll factor of each loop. With this

specification in place, performance improvement was achieved over the base kernel.



CHAPTER 5

THREAD BLOCK LEVEL MODELING AND
IMPLEMENTATION

Continuing from the performance gains produced from register tiling, further oppor-
tunities for performance gains remained. Since threads are executed as parts of warps
and warps as parts of thread blocks, levels of the GPU structure were still available to
implement code beneficial for overall performance. The main benefit achieved at these

larger data divisions would be through the use of shared memory.

5.1 Theoretical Modeling

Previously, only the work done by a single thread was considered for reuse and was
firmly limited by the registers available to that thread. At the thread block level, shared
memory can be utilized to further increase reuse of memory loads while not increasing reg-
ister pressure. The various tensors tiled previously can again be tiled using parametrized
values relative to the thread block size.

In figure 5.1 the simple extension from thread tiling to thread block tiling can be seen.
Since it was assumed that the K dimension would always be a multiple of 32, it was safe to
allocate warps in this dimension. Tiles in Hand W can then simply be extended from their
previous version to encompass all the work done by adjacent warps in those directions.

By grouping these threads together in this way, substantially more input reuse can be
obtained. Since shared memory is shared among all threads in a block and since all output
elements are dependent on corresponding input elements from every c value, any input
element loaded to shared memory can be reused by all threads in the k dimension with
corresponding H and W values. This means any input element loaded can obtain reuse for
Ty times By output elements (where By, is a multiple of 32). Thus, reuse in the K dimension
can be improved by By times over simple register tiling.

As with the register level tiling, calculations can be made for performance indicative
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Legend: Thread Block
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Figure 5.1. Sample tile space for the entire thread block in all three tensors where By = 32.

values like operational intensity. As seen in figure 5.2 these equations are very similar to
those found in figure 4.6. However, they incorporate the additional parameters relevant
to a thread block’s behavior. When calculating these values for various configurations,
the resulting numerical values are substantially higher than the values for register level
operational intensity. However, since shared memory has higher latency than registers,
the values of operational intensity for this level cannot be compared with those of the
register level.
oppsSM = B *By* T * Ty * Wi * T *r¥s* W,

sharedVolume In=(B * Ty +s-1)* By * Ty +r-1)* W, * T,
OISharedMemory = oppsSM / sharedVolumeTotal

Figure 5.2. Thread block level operational intensity equations.

5.2 Thread Block Level Implementation with Shared Memory
Since thread blocks are divided into up to three dimensions (X, Y, and Z), the dimen-

sions of the thread block itself can match the dimensions of the output tensor. However,
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warps in a thread block are allocated from contiguous regions of the linearized block
dimensions. This means that since x is the fastest varying index, sequential threads in
x are grouped into a warp first.

Therefore, to perform coalesced access at any level, access has to be performed with
this linearized format of the thread block in mind. By making the thread block 32 in the x
dimension, the y and z dimensions can be easily used to identify unique coalesced warps
of threads in the thread block. This 32-thread dimension also easily maps to the multiple
of 32 found in the k dimension making a mapping of X to K an obvious choice. Thus, for
the purposes of computing output, X is mapped to K, Y is mapped to W, and Z is mapped

to H. As seen in figure 5.3.
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Figure 5.3. Thread block mappings in linearized and non-linearized formats.

5.3 Input Load Structure
Even with the selected X to K thread block mapping structure, there was no set re-

quirement that the mapping be used in all operations. This freedom was useful when
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working with the input and output tensors. These tensors were assumed to have a the
fastest varying index in the W dimension. Thus, coalesced access would require warps to
work in that dimension rather than in the K dimension.

To implement the shared memory load for the input tensor, coalesced access is impor-
tant in both the load from memory and the save into shared memory. It is also important to
make any indexing in either structure simple so that performance is not bogged down by
computational overhead. Therefore, a simple approach was selected for importing input.

As seen in the register level loop structure (Figure 4.7), with no tiling in the C dimen-
sion, one H-W plane from input can be loaded for each ¢ and used for all subsequent
operations in the nested loops. The process selected for loading a given plane needed
by a thread block is seen in figure 5.4. By orientating the warp in the W dimension for
this operation, coalesced access is assured in global memory, and bank conflicts in shared

memory are prevented.

INPUT PANE for THREAD BLOCK

H=0 Warp = 0
H-1]
H-2 |

H=T,-2 Warp =0

Warp =1
/

(Ty < Bpt+S-1 (T, * By)y+S-1 <32

Figure 5.4. Load pattern for an input plane from global to shared memory.

However, in many cases, the W dimension will not be 32 or one of its multiples. In fact,
it is frequently less than this. In this instance, several threads in the warp will not have
items to load from global memory. This is wasteful from a thread perspective, but the ease

of indexing produced by using this approach makes this cost more than acceptable.
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Conversely, in the cases where the W dimension needed by a thread block is larger than
32, this process begins to experience more substantial inefficiencies. To account for this
larger number (but continue to obtain coalesced access), more complicated indexing must
be implemented, or warps must perform a second load where a majority of the threads are
likely to be inactive. Both of these are degrative to performance, so in this implementation
the maximum block size loaded to memory was limited to 32 in the W dimension. This
reduced the possible tile size space, but allowed for simple, performant indexing to be
used.

The input elements now found in shared memory still needed to be loaded to registers.
Using the selected X to K view of thread blocks for this operation proved very useful. As
can be seen in figure 5.5, all threads in a given warp can load the same input elements from
shared memory since that element is to be reused in the K dimension which also maps to
the warp. Since all threads access the same element, there are no bank conflicts in shared
memory. Reuse is also obtained in the tile overlaps between different threads. The amount

of reuse is less substantial than in the K dimension, but is still non-zero.
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Figure 5.5. Mapping of elements found in shared input memory to affected elements in
output global memory for a warp.

The most important part of this access pattern is the difference between the number
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of global memory loads executed by each thread verses the register only pattern. In the
best case, each warp in this pattern need only perform one load from global memory.
In the register only version, each warp must perform (T, + S-1) * (Tj, + R-1) loads for
a given input plane. This substantial difference is offset by the fact that there are still
(Tw + S-1) * (T}, + R-1) loads per thread from shared memory in the thread block version,

but those loads are much faster than global memory netting an overall performance gain.

5.4 Tile Pattern in K

Actual computation of the problem could be completed without substantial change in
the existing register code. However, the orientation of warps in the K dimension meant
that loads from global memory for the filter sets would also be executed along that di-
mension. Having assumed that this dimension was innermost, there was the potential for
coalesced access during this load.

Unfortunately, as can be seen in figure 5.6, the output execution structure developed
in the theoretical model would not allow for this coalesced access. With each thread in a
warp performing some set of K planes prior to the start of the next thread’s work, access
would always be dispersed by Ty between threads. To solve this problem, the execution
structure was changed from warps performing 32 sets of Tj sized tiles to performing Tj
sets of 32 wide tiles. Figure 5.7 shows how this allows for coalesced access into the filter
memory.

However, this new execution structure did require some changes to the code as seen
in figure 5.8. These changes are very minor but also cause the resulting register values
in a thread to take on a new meaning. Figure 5.9 displays how planes in the register
three-dimensional view now correspond to output planes separated by 31 other planes in
the output. This jumping causes the register logical structure to become uncoalesced, but
since registers in hardware are not accessed by other threads, this uncoalesced nature has

no impact on performance.

5.5 Output Save and Resolving Bank Conflicts
Following computation, saving computed values back to the output tensor in global

memory could also receive benefits from the use of shared memory. By placing all of a
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Figure 5.6. Depiction of thread tiles within the same warp in global output memory with
coalesced tiles.
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Figure 5.7. Depiction of thread tiles within the same warp in global output memory with
uncoalesced tiles.

thread block’s register values into shared memory, values in the K planes could be saved
back to global memory in a nearly identical way to the input load. A diagram of this

process was seen previously in figure 5.4. This approach once again allowed for coalesced
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for (c=0;c<C;ct++) {
kReg = 0;
for (kGlobal = 0; kGlobal < kWarpReach; kGlobal+=32) {
for (r=0;r<R;r++) {
for (s=0;s<S;s++) {
oneKern = Kernel[ (¢)*R*S*K + (r)*S*K + (s)*K + (kIndex + kGlobal) ];
for(h=r; h<T h+r; h++) {
for(w=s;w<T w+s; wt+t) {
regOut[kReg][h-r][w-s] += regIn[h][w] * oneKern;

H
H
}
kReg++;
} // End k
} // End ¢

Figure 5.8. Thread block level code implementation with uncoalesed register tiles.

OUTPUT in THREAD REGISTERS OUTPUT

Figure 5.9. Mapping on thread level output planes to global output.

memory access with easily computed indices and resulted in shared work among the
threads.

However, this save back operation differs from the load operation is several important
ways. Most obviously, while the input load was done as individual planes nested inside
of the C loop, this save must be conducted on a three-dimensional tensor of planes in the

K dimension. The total data volume for all of the threads in a thread block is Tj * Tj, * Ty, *
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32 * By, * By, which is too large to efficiently hold in shared memory. Loading the entire
block would also require each thread block to make extensive use of the shared memory
pipe making concurrent use with other blocks difficult.

Therefore, like in the input load, a better approach was to break the output save into
separate stages that were nested inside of a loop. In this case, though, the loop would be
traversing the K dimension instead of C. Rather than performing this operation in steps
of size one, grouping this operation into steps of size 32 would make total shared memory
volume smaller by a factor of Ty but also allow for better warp wide operations. Figure
5.10 shows how the total thread block output space is subdivided by the corresponding

loop structure into these smaller groups.

T x

w

W W

T, x 32

Ty x By

OouTPUT

Figure 5.10. Thread block subdivisions for save back operation in global output where
Ty = 4.

Initially, the loop pattern for the save had the same order and shared memory structure
as the load. Unfortunately, this caused bank conflicts on the save operation from registers
to shared memory. Since W is the innermost shared memory dimension it will be divided
into the shared memory banks first. When T, * By, is not one, then some or all banks will
be used for values in the next Tj, * Bj, row. This will cause bank conflicts as is clearly seen

in figure 5.11.
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Figure 5.11. Save back operation where bank conflicts are caused by the W innermost
shared memory structure.

To avoid these conflicts, the shared memory logical structure and access pattern must
be changed to allow for a save pattern that will produce non-conflicting bank access pat-
terns and ideally still be 32 threads wide for optimal throughput. Thus, it was decided to
change the K dimension of the shared memory tensor to innermost since it was determined
that full warps would always be used in the K dimension of the computation. Doing so
allows every thread in a warp to save to one unique bank in shared memory as seen in
figure 5.12.

Unfortunately, this change to K innermost causes later access in the save from shared
memory to global memory to produce a substantially larger numbers of bank conflicts.
In fact, there will be (T, * By,) + S — 1 conflicts as each w value corresponds to the same
bank in shared memory. This would substantially degrade the performance of the save
operation since only one thread at a time would be able to perform a save of one single
value.

Fortunately, a simple fix can be found by padding the shared memory allocation. The
initial shared memory tensor used an exactly 32 wide K innermost dimension. However,

by adding one to this dimension at allocation time, the logical bank mapping is changed
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Figure 5.12. Save back operation where bank conflicts are caused by the K innermost
shared memory structure.

subtly as seen in figure 5.13. Saves to the shared memory tensor still occur in the exact same
manner as previously, but now the adjacent w values will be in separate but adjacent banks.
The padding indices of the tensor will take space and be unused, but the slight increase
in overall shared memory size is far less important, in most cases, than the concurrency

gained by allowing entire warps to participate in single shared memory operations.
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Figure 5.13. Save back operation where bank conflicts are avoided by the K innermost

shared memory structure with added padding.



CHAPTER 6

C DIMENSION REDUCTION PATTERNS

Having implemented thread and thread block level reuse patterns, overall performance
had improved substantially. However, it was observed during testing that the operational
intensity of the kernel would improve as the input problem size became larger. The overall
times for larger problems were, of course, slower due to the larger problem size, but the
operational intensity showed that the instructions were executed more effectively in that
time.

By examining the changes between the execution of these differing problem sizes, it
was determined that the larger problem sizes provide more thread blocks for execution
than the smaller problems which in turn provide greater opportunities for concurrency.
Some of the smaller problem sizes were, in fact, found to not even be using all available
SMs for the computation of the problem. Having multiple thread blocks per SM allows
the SM to switch out warps from different blocks in execution pipelines when stalls occur.
Not having enough thread blocks to even fit all SMs means that not only can the SMs not
perform these switches, but some SMs are entirely unused wasting potential concurrency.
Therefore, it was decided that additional steps would need to be taken to ensure sufficient
blocks were present in each execution to provide multiple thread blocks to each SM.

With tiling already present in the K, H, and W dimensions, and since R and S are quite
small in most pipelines, the only remaining dimension to adjust was the C dimension.
The C dimension is a reduction dimension. Like R and S, the C dimension is used in the
creation of the output tensor, but is not present as a dimension in that output. The values
in the C dimension are applied to all values in the output. Since all values of C must be
used for each element of the output, the C dimension cannot be split into discrete sets and
still result in the complete output values. Thus, complete tiling cannot be performed in this

dimension. However, the dimension can still be divided into subsets to better distribute
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work to more threads; provided there is some eventual reduction on the resulting values

to reach the final output values.

6.1 Theoretical C Dimension Division

Dividing the C dimension was considered at any of three levels: within a warp, within
a thread block, and within the thread block grid. All these options are viable for creating
this divided C dimension, but the specific requirements of each vary slightly. In every
case, creating this divided C would increase the total number of thread blocks present in
the computation of a given problem size as desired.

The first approach is to divide the C dimension between different threads in a warp.
In this case, each thread is still responsible for a Ty in the K dimension, however, a set of
adjacent threads only computes Tj output values for a range of selected C values. The
number of such groups can be defined as W, and the number of threads in that group can
be defined as Wj. Since a warp is still 32 threads, W, * Wy must equal 32. This new division

of work from input to output can be seen in figure 6.1 and similarly divides the filter set.

Tyx By A
(Ty X By)*S-1 (Tyx By)+S-1
T x Wy
1
/
H
] T, x By,
WAS-1 H+R-1 <
L= C
INPUT - OUTPUT
Wi x W =32 K
] R
[ | |
WARP

Figure 6.1. C division within a warp and its mapping in input and output tensors.
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The second approach is to divide the C dimension across different warps in a thread
block. In this case, computation from a warp level is almost entirely unchanged, still
performing output computations for Tj * 32 output planes. The difference is that a warp
is responsible for some subset of C values that make up those planes. Other warps in the
thread are responsible for computing the output values produced by the other subsets of C.
This problem division scheme can be seen for input and output in figure 6.2 and similarly

divides the filter set.

(T, X By)+S-1 (Tyx By)+S-1

INPUT OouUTPUT
64
B, |—|
B, THREAD BLOCK

Figure 6.2. C division within a thread block and its mapping in input and output tensors.

The third approach is to instead divide the C dimension across different thread blocks
in the thread block grid. In this approach, a normal grid spanning the problem space is
created, then some multiplier is used to duplicate this grid. Each new copy of the grid is
responsible for computing its own output values as normal from some subset of the input
values. This final problem layout can be seen in figure 6.3 for input and output.

In each of these cases, the values computed and stored in registers by each thread
are only a partial computation of the complete resulting value. As such, some reduction

operation needs to be performed between these partial output values to determine each
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Figure 6.3. C division within a the thread block grid and its mapping in input and output
tensors.

final output value. The implementation of this reduction varies between the different

division levels.

6.2 Warp, Shared Memory, and Global Division
Implementations

Implementing the division and computation portion of the warp level division was
done simply by determining a thread’s group by its index within the warp one time at
the start of the computation cycle. From there, the thread would operate over values
between the indexes specified by the thread’s group. This would be done by simply
precomputing the thread’s offset in C and then jumping by the W, through the outer for
loop seen previously in figure 5.8. The calculations for this can be seen in figure 6.4.

The reduction operation for the intra-warp division had several options. Since the
reduction would be across registers in a warp, warp shuffling operations could be used
to implement the reduction. Using warp shuffles (which are warp level reductions only

involving registers), the values could be reduced to a single warp group’s registers without
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int cGroupWarp = threadIndexWarp / W_k;
for(cJumping = 0; cJumping < C; cJumping+=W _c) {
oneKern = Kernel[ (cJTumping + cGroupWarp)*R*S*K + (r)*S*K + (s)*K + (kIndex + kGlobal) J;

Figure 6.4. C warp division implementation.

passing the values to shared or global memory. From there, the now complete values
found in the first warp group’s registers could be saved back to global memory in the
usual manner.

Unfortunately, since the result values would only be found in some subset of the warp,
the previously discussed changes to the save operation to avoid bank conflicts would not
be possible without adding substantial amounts of padding. However, with the shorter
depth spanned by each warp in the K dimension, additional blocks would be required
in the computation of a given problem. This in turn allowed for better parallelization on
hardware.

In the case of the intra-thread block division, the principle for execution was similar
to that of the warp level division. Different warps were identified as being a part of
separate groups based on their linear thread index and then set to work on portions of
the C dimension accordingly. Again, the actual computation limits were facilitated by
simply adjusting the bounds on the outer C loop, keeping indexing simple and fast. The

grouping calculations can be seen in figure 6.5.

int cChunk = threadIdx.y / B_w;

int cStart = cChunk * CDivisionSize;
int cBound = cStart + CDivisionSize;
for (¢ = cStart; ¢ < cBound; ¢c++) {

Figure 6.5. C intra-thread block division implementation.

However, in this case, the partial values in registers were separated across different
warps so warp shuffling would not be possible. Nevertheless, since all of the warps
were part of the same thread block, shared memory level atomics could be used to collect

the partial values into shared memory prior to their movement back to global memory.
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Since these shared memory level operations would again use a full warp, the normal save
structure could be used.

Finally, in the case of inter-thread block division of C, indexing would be determined
and executed in a similar way to the previous versions. It would differ only in that instead
of being divided by thread index it would instead be divided by linear block index. This
computation is seen in figure 6.6. The major differences in this version appear in the
save back operation. Upon a thread block’s completion, registers in that thread block
only contain a partial solution. Since shared memory is only shared within thread blocks,
shared memory atomics cannot be used. Instead, global memory atomics were used for

the reduction of the output values.

int blockIdxXAdjusted = blockIdx.x % BlockXCoverageNumber;

int kIndex = blockIdxXAdjusted * blockDim.x * T k + threadIdx.x;
int cStart = (blockIdx.x / BlockXCoverageNumber) * CDivisionSize;
int cBound = cStart + CDivisionSize;

for (¢ = cStart; ¢ < cBound; ¢++) {

Figure 6.6. C inter-threadblock division implementation.

By reducing in global memory, the previously discussed save operation could be used.
However, the atomic save to global memory means that warps can collide while saving
and in turn cause stalls. Due to the memory structure of the GPU, this was essentially the

only option for the reduction of the partial result values.

6.3 Warp Division Complications and Resulting Optimal

After implementing each of the three discussed versions, it was discovered in testing
that the optimal design was the inter-thread block division. This was surprising behavior
considering the global reduction operation found in this implementation. However, upon
careful examination, the reasons for this performance difference became clearer.

In the case of the division within warps, the performance was generally much worse
than the performance of the thread block division, even when both implemented with the
same save structure. The performance discrepancy was found to be largely due to the

change in the output reach obtained by a given warp. Since the warp division worked by
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separating different portions of the warp to different C chunks, the number of output K
planes generated by the warp in its execution was reduced.

The reduction in K reach of each warp is the intended behavior and allows for addi-
tional thread blocks to be created to cover the problem space. However, the unfortunate
side-effect of this change is that now the reuse of a given input plane is decreased. The
reuse of a loaded input plane in the case of a full warp without division across C is 32 * Tj
output planes. Every thread in the warp can use the information loaded for each of its
planes contained in registers. In the case of the warp division though, the amount of reuse
for a plane becomes Wy * Ty, where Wy * W, = 32. Thus, the reuse of the input is reduced
by W, times.

Overall, this means that for a given problem size, the same input elements will have
to be loaded from global memory more times in separate thread blocks. A graphical
version of this behavior can be seen in figure 6.7. This increase in the number of loads
from input makes this approach perform worse relative to the global method and thus hid

the performance gains from the increased concurrency.
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Figure 6.7. Input plane reuse over a given output distance in K for the warp-divided C
and the non-divided C versions of the kernel.

In the case of the division across warps inside a thread block, the performance relative
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to the global reduction pattern is also lower. This method does not suffer from the same
loss of K dimension reuse. Instead, the duplicate warps in a block that are allocated to the
same planes in output mean that less warps can be allocated to other portions of output
in H and W. As seen in figure 6.8, for the same thread block size (same number of total
threads), the thread block reaches less elements in both H and W relative to the standard
version. As discussed, there is reuse present in the H and W dimensions and so losing this
reuse is degradative for performance. Also, thread blocks are only added from a reduction
in these dimensions. Therefore, large thread blocks that can still reach the same space in H

and W as in the original do not produce the desired concurrency gains.
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Figure 6.8. Thread blocks with two warps without C division (left) and with C division
(right) and their mappings to global output.

Essentially, the separation of C across different thread blocks allows for each block to
behave as it had been designed previously but still adds to the total number of thread
blocks. The only difference is that a thread block will work on a reduced version of the
problem where the C dimension is some fraction of the true dimension. The cost of this

approach is that any saves to the same locations in global memory will have to be serialized
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and execute the division amount of times. However, in comparison to the amount of
work done in computation, the number of total saves is still sufficiently small to gain
an overall performance increase thanks to the increase in concurrency between separate
thread blocks. One other small change to the program assumptions is required due to this
atomic reduction into global memory. It is now required for output global memory to be

zeroed prior to execution so that results will correctly accumulate there.



CHAPTER 7

FILTER LOAD

After the numerous other modifications, the only remaining unmodified access to any
structure was the load of filter elements necessary for computation. This load had contin-
ued to remain unchanged from its single element direct global memory load format found
in the initial register only version. The reason this load remained unchanged was due to
its location in the code’s loop structure and the limited reuse possible for each element in
the filter set.

Each item in the filter set can only be reused in the H and W dimensions of a single
output plane. This is due to the filter set being indexed by K, C, R and S. Therefore,
a single filter element will be used only within one input plane C value to produce one
output plane K value for all H and W elements where the filter would fit in accordance
with the dimension of the filter plane. This can be viewed more clearly in figure 7.1. Since
the H and W dimensions of both input and output were subdivided into tiles and in turn
split between thread blocks, the potential for reuse in a thread block was even further

limited.

W+S-1

H+R-1

Filter

Input

Figure 7.1. Maximum filter element reuse in the input plane where K = kand C = c.
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From an implementation perspective, changes to this load would be difficult as well.
Since the load was found inside several loops, any load to shared memory would require
barriers inside the loops to make sure any shared loads were completed before moving
on to computation. In experimentation, this increase in the number of thread barriers was
found to be very degradative to performance. Tests were also made to use a technique
called double buffering to avoid these barrier delays, but this did not succeed in resolving
the issue.

Fortunately, by carefully examining the current load structure as translated to assembly,
it was found that with a sufficiently large thread H and W tile, the load time for a given
filter element could be covered by the computation operations executed on the previously
loaded element. Since these two operations used different hardware pipes, this allowed
for concurrency to cover this global load almost entirely. Unfortunately, this also meant
that if the tile H and W became too small the concurrency would not be sufficient to hide
the loads and would cause warp stalls. This was found not to be a problem in most cases
since this only occurred with very small tile sizes (around 15 total elements) which could

generally be avoided.



CHAPTER 8

FINDING THE OPTIMAL PARAMETER
VALUES

Having structured the code in such a way as to allow for parameters in various tile
and block sizes, the next challenge was finding an optimal set of dimensions for a given
problem size. Due to various constraints placed on the problem by assumption and design
choice, the total number of options for a given problem had been reduce substantially.
However there could still be up to many thousands of possible combinations. Therefore,
considerations would have to be made about the best way to approach finding the best of

these combinations.

8.1 Calculated Values

The first approach considered was to use the models and equations determined during
the creation of various design levels of the code to indicate potential performance. Values
for thread level operational intensity, block level operational intensity, occupancy, blocks
per SM, warps per block, and so on could easily be precomputed using simple scripts.
Traversing the combination space and computing these values was extremely fast and only
required known inputs like the hardware specifications and problem sizes.

The challenge was evaluating the resulting combinations of parameters. Although all
of the previously mentioned calculated values are indicative of performance, they are
not the actual performance. It was also found to be very difficult to model execution
concurrency with greater accuracy than values such as the maximum number of blocks
per SM. Where concurrency is such an important feature of GPU execution and was such
an important consideration in the code design, it was unfortunate that more time was not
available to attempt to more correctly model this aspect of the execution. However, even
without the most optimal modeling equations, determining balance and fairly performant

combinations could be done from the resulting computations by manual inspection.
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8.2 Searching the Problem Space

The second approach tested sought to better automate the selection process and most
accurately predict the performance of a given combination. In this approach different
sizing parameters were simply tried on the actual kernel and the execution time was
measured. This was done for all valid combinations in an automated script and the lowest
time could then be selected. This not only assured the optimal or near optimal combination
for the design on a given piece of hardware with a given problem, but also could be done
in a not unreasonable amount of time.

Since the constrained option space was, for most problems, only in the thousands at
maximum with a very short execution time, evaluating all combinations could be done
relatively quickly. In the case where the number of combinations could be up into the
thousands, total trial time could be around an hour. For more edge case problems with
certain very small dimensions, the total time could be as little as fifteen to twenty minutes.
Considering the level of certainty this approach gave to the performance of a specific
combination, this was a good tradeoft.

Also, as inelegant as trying all combinations was, it was still only a small subset of the
true design space due to the applied constraints. As well, in a use case these evaluations
would be done on the different levels of a given CNN pipe only once prior to training
and or use. After evaluation was complete and optimal tile sizes were selected, the given
kernels could be run any number of times for any amount of time with the best possible
performance offered by this kernel design. Not only that, but this approach would be
possible for any piece of hardware for any given problem, satisfying the adaptability goals

desired for this kernel.



CHAPTER 9

RESULTS RELATIVE TO CUDNN AND TVM

To best evaluate the performance of this kernel, timing tests were performed on prob-
lem sizes for two common CNN pipelines. The ResNet and Yolo pipelines are both com-
mon use cases that feature many of the different problem sizes and execution patterns for
which such a kernel would be employed [6], [12]. As such, they provide a reasonable
testbed for performance evaluation. The convolutional layers of these two networks are
shown in table 9.1.

To better understand the timing results, timing tests were also conducted on the given
pipelines using the cuDNN and TVM kernels. cuDNN is the Nvidia kernel set used for
the evaluation of convolution problems. It makes use of both GEMM and domain space
transformation techniques in the evaluation of problems [4]. However, results for this
comparison would be relative to only the GEMM cuDNN kernels to better compare this
kernel with kernels having the same minimum number of operations. The TVM kernel is
a commonly used GEMM solver for the convolution problem that employs autotuning to
select its kernel configuration [3].

Timing these two kernels would provide a good comparison by which to evaluate the
effectiveness of this newly created kernel. Actual timing was conducted using Cuda’s
build in timing events [10]. These events would be used to indicate the start and end of
kernel run and thus were used to log the individual runtimes. Because of minor fluctu-
ations in the runtimes, kernels were run 24 individual times. Between runs, caches were
cleared, and in the case of the created kernel the output was reset.

These successive tests were conducted on the same GPU for each kernel set, but two
different devices were used to test the mobility of the created kernel between different
hardware architectures. The first used was a Nvidia 2080 Ti GPU paired with an AMD
Ryzen Threadripper 3990X 64-Core CPU running Ubuntu 20.04. This GPU was the type



Layer | K | C | H/W | R/S
Layer | K C H/W | R/S R1* |64 |3 |224 |7
Y0 32 |3 544 |3 R2 64 | 64 |56 3
Y2 64 32 |272 |3 R3 64 | 64 |56 1
Y4 128 | 64 136 |3 R4* 128 | 64 | 56 3
Y5 64 128 | 136 |1 R5* 128 | 64 | 56 1
Y8 256 | 128 | 68 3 R6 128 | 128 | 28 3
Y9 128 | 256 | 68 1 R7* | 256 | 128 | 28 3
Y12 | 512 | 256 |34 3 R8 256 | 128 | 28 1
Y13 | 256 |512 | 34 1 R9 256 | 256 | 14 3
Y18 | 1024 | 512 | 17 3 R10* | 512|512 | 14 3
Y19 | 512 | 1024 | 17 1 R11* | 512 | 256 | 14 1

R12 | 512|512 |7 3
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Table 9.1. Convolution layers for Yolo (left) and ResNet (right) [* indicates stride 2 layers].

of GPU primarily used in the development of the kernel. A Nvidia V100 GPU paired
with an Intel(R) Xeon(R) CPUE5-2680 v4 26 core CPU running CentOS 7.8.2003 was the

other device on which tests were conducted. Evaluating times on both of these hardware

architectures allows for some additional insight into the ability this new kernel has to be

used in the general case. The median of the resulting times for each set of hardware and

for each kernel set can be seen in figures 9.1 - 9.4. The runtime differences between some

of the kernels between architectures can be seen in figures 9.5 and 9.6. In these figures,

the times for the approach discussed in this thesis are labeled CSG standing for “C Split

Globally” indicating the thread grid level C split.
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CHAPTER 10

CONCLUSIONS

Given these timing values, it can be seen that there are several cases where the resulting
times for the newly created kernel are both better than cuDNN and TVM. However, there
are also many cases where the times have not improved. Overall, though, one can observe
that in most cases the created kernel performs better or close to the TVM kernel. On the
other hand, the performance relative to the cuDNN kernels can vary widely depending on
the problem.

This kernel’s performance is most apparently worse than the cuDNN and the TVM
approaches on the layers where the filter size is 1x1. Examples of this are seen in layers
3, 5, 8, and 11 in the ResNet pipeline and layers 4, 6, 8, and 10 in the Yolo pipeline.
These problem sizes are unique because of their 1x1 filter size. In this problem size, the
evaluation pattern essentially becomes that of repeated matrix multiply. As such, the
GEMM implementations have a clear advantage where they are already simply a modified
form of matrix multiply.

Alternatively, the performance for the stride two problems seen in layers 1, 4, 7, and 10
in the ResNet kernel are more performant than both the cuDNN and TVM versions. This
could be due to the better reuse found in directly approaching the convolution pattern as
performed in this kernel verses the more indirect GEMM approach. However, even in the
non-stride two cases, performance for the created kernel is better for the mid to smaller
problem sizes where it can make the best use of the more equally sized K, C, and H, W
dimensions.

As a final note, anyone familiar with the Yolo might notice that the presented graphs do
not incorporate its eleventh convolutional layer. The final layer for Yolo is a large operation
on a problem with dimension 28269 in K. Since the K dimension is not divisible by 32, the

kernel created in this research will not correctly function for this problem size. Divisibility
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by 32 was specified as one of the assumptions at the beginning of this kernel’s development
so no account for another size was taken during development. As such, this layer was not

included for testing or comparison.



CHAPTER 11

CONTINUING WORK

To improve the performance of this kernel further, many aspects of this research could
be refined. One goal of such efforts would be to further develop the kernel to solve the
limiting aspects of the current design. The second goal of the continuing work would be to

streamline the preparation that must be done for each specified problem and architecture.

11.1 Kernel Refinement

The kernel contains many areas of further exploration. First among these would be
to handle a problem discovered at the end of this research. As discussed, the current
approach uses a register set to contain the input tiles required for each thread. This was
done to increase the number of operations that could be done for each input element
loaded by retaining those values in the fastest memory type possible. However, upon
examining the assembled code, it was found that the compiler had removed this storage.
Instead, it opts to only move one row of input from shared memory to registers at a time.

Unfortunately, the execution pattern that accompanied this change caused the kernel
to load and reload these values to registers multiple times throughout the complete execu-
tion. This severely reduces the operational intensity from the theoretical values anticipated
for the register level operations. As such, further efforts would need to be taken to develop
the code in such a way as to ensure the compiler will generate code in the desired way, or
to simply change the approach to account for the compiler’s behavior. If a new approach
was to be developed, it would follow similar development paths as the original code, but
with the compiler’s limitations in mind.

Besides this, the filter load directly from global memory was another problem that was
only worked upon for a limited amount of time in this research. Several of the issues
present in changing filter load into a similar pattern as input and output have already

been discussed. Different approaches would need to be explored to find if some alternate
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solution could eliminate this limitation.

Continuing, the current kernel designs all used a specific approach to the tiling struc-
ture in the K dimension. All operations in this dimension would have to be done in some
multiple of 32 since this was the orientation of warps in a given thread block. However,
warps could be spilt into more dimensions like the thread blocks. This would allow for
numerous additional options in both load patterns and tile sizes for the entire problem.
However, it would add additional complexity to the kernel design since threads in a warp
would have more to track than in their simple linear structure found in the current kernel.

Another area worth exploring further would be the use of an additional kernel for the
1x1 filter sizes. As discussed, these filters result in what is essentially a matrix multiply.
As such, a more direct approach to this matrix multiply problem could potentially shore
up these far less performant problem sizes. This could simply be added to the decision
program’s options to select depending on the problem size. This approach is already taken
with the stride 2 operations that use a slightly modified version of the discussed kernel.

Several assumptions were made for this problem from the start. One of these was
that any given problem would only have a batch size of one. This translated to only a
three-dimensional input and output for any given layer. However, during training, it
is common for images to be given to the CNN pipe in batches. This translates into a
four-dimensional input tensor with another four-dimensional output tensor at each layer.
These extra dimensions add numerous other opportunities for a kernel to leverage po-
tential reuse, division of work, and overall utilization of the GPU for small image sizes.
However, such changes might result in a lower performance for the single image case such
as is common when the CNN has completed training and is in use. The original kernel

could still be used for these situations to eliminate this potential problem.

11.2 Parameter Selection and Hardware Variations
Besides changes to the kernel, additional changes might also be made to the param-
eters. It was asserted in the design of the parameter selection scripts that the tiles sizes
selected would always exactly fit the output size. It was also assumed that the input was
padded to exactly match the output size based on the filter size. However, this was an

imposed limitation and could be changed. There is the potential that by adding additional
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padding to the input prior to computation that better tile sizes could be selected for the
problem. This would in turn add more overall operations, but there is the potential that
the better tile structure would have a greater impact on performance.

Along with this, since the tile sizes were always forced to exactly fit, no allowance
was made for any sort of scheme that left partial tiles. Allowing partial tiles would again
provide greater choice when selected tile size for a given problem, but would also require
changes to the kernel. The benefits would be similar to the additional padding option
discussed, but would not require the padding operations. The potential downside to this
approach would be that any sort of scheme allowing partial tiles would require greater
complexity in the kernel, and could have very un-performant partial tiles that could hinder
overall performance.

Continuing with tiles, as discussed, the final approach selected for determining the
best tile size was a simple exhaustive search of the tile option space. Although this was
not terribly time-consuming, it could certainly be improved. One option for this would
be to refine the computational approach that was used previously to better precompute
a given parameter set’s operational behavior, including parallelism. These values could
then be used in the training of a machine learning algorithm or perhaps something as
simple as an approximate Q learning algorithm. With such a trained algorithm, selection of
parameters for a new problem size or architecture could be done quickly by pre-computing
the indicative values and then passing them through the trained algorithm. A mixed
approach could even try several of the results determined to be best by the algorithm
and then pick the best option. This could potentially keep the performance obtained by an
exhaustive search while also greatly reducing the decision time.

Additionally, all of the tests conducted in this research were performed on Nvidia
GPU’s due to their availability. As such, the potential for this kernel was not fully explored.
Its relative performance to the Nvidia cuDNN kernels could change, perhaps substantially,
on GPUs that are not also produced by Nvidia. Since this kernel focuses on adaptability
and basic GPU behaviors, it could potentially maintain its performance between GPUs
produced by different companies. As such, this would be an important area of further
testing to determine the current capabilities of the kernel and better understand its current

limitations.
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Finally, one other remaining area of study would be to apply the systems used to
develop this kernel with frequency domain convolution approaches. Although the mathe-
matical techniques would be different than those found in this kernel, use of parameterized
tiles might still be beneficial to improving performance. The addition of other kernel types
would provide even more options to a selection script and potentially allow for greater

adaptation to a given problem and hardware.

11.3 Concluding Thoughts

Although in its current form, the kernel is not always successful at achieving higher
performance than other approaches to convolution, with further development there is a
great possibility for additional gains to be made. Numerous paths of research are still open
for further exploration. The kernel’s ability to adapt to different problems has already been
demonstrated and this aspect of the kernel still has potential room for improvement. This
approach to the convolution problem has shown that it has the ability to yield higher per-
formance than alternative methods in specific cases. Thus, this research has provided an
initial exploration into the design approach, on which future improvements will hopefully

be founded.
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