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Abstract

Data analysts and researchers in domains ranging from biology to electrical engi-
neering are using multivariate networks (MVNs) to study the relationships and topol-
ogy between individual data points and their associated attributes to develop new in-
sights about the relationships and properties in their network data. To visually repre-
sent MVNSs, two methods are commonly used: 1) Node-Link diagram representation
2) Adjacency Matrix representation. In order to visualize MVN data using these meth-
ods, data analysts and researchers perform a series of network wrangling operations
to reshape their data to visually analyze a particular question of interest. This pro-
cess requires familiarity with data wrangling tools such as Python, R, or Excel which
presents a barrier to those unfamiliar with these tools and the operations needed to
visualize particular features of an MVN dataset. Currently, there are limited available
tools that enable users to perform network wrangling operations concurrently with vi-
sualizations for multivariate network analysis. In this thesis, we explore a proof of
concept technique for the aggregation data wrangling operation on the adjacency ma-
trix representation of an MVN. We develop a new visual aggregation method inspired
by PivotGraph [25], called MultiAggr, for aggregating an adjacency matrix represen-
tation of an MVN using categorical node attributes.
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ABSTRACT

Data analysts and researchers in domains ranging from biology to electrical engineer-
ing are using multivariate networks (MVNs) to study the relationships and topology be-
tween individual data points and their associated attributes to develop new insights about
the relationships and properties in their network data. To visually represent MVNSs, two
methods are commonly used: 1) Node-Link diagram representation 2) Adjacency Matrix
representation. In order to visualize MVN data using these methods, data analysts and
researchers perform a series of network wrangling operations to reshape their data to vi-
sually analyze a particular question of interest. This process requires familiarity with data
wrangling tools such as Python, R, or Excel which presents a barrier to those unfamiliar
with these tools and the operations needed to visualize particular features of an MVN
dataset. Currently, there are limited available tools that enable users to perform network
wrangling operations concurrently with visualizations for multivariate network analysis.
In this thesis, we explore a proof of concept technique for the aggregation data wrangling
operation on the adjacency matrix representation of an MVN. We develop a new visual
aggregation method inspired by PivotGraph [25], called MultiAggr, for aggregating an

adjacency matrix representation of an MVN using categorical node attributes.
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CHAPTER 1

INTRODUCTION

As our world has become more connected and information more accessible, networks
have become an important tool for modeling and representing real-world phenomena.
A network is defined by nodes and links connecting these nodes. Nodes and links are
used to represent connected objects such as people, neurons and airports. Examples of
real-world networks include social networks, the internet, path analysis and evolutionary
species tree networks. Multivariate networks (MVNs) are a special kind of feature-rich
network where nodes and links have their own attributes [19]. Attributes can range from
a single property such as an airport location for a node in a flight path to attribute vectors
containing multiple properties such as total air time, taxi delay time, flight delay time, or
layover time for a flight link between two airport nodes. The goal of multivariate network
analysis is to utilize the topology of the multivariate network in conjunction with attribute
data to derive new insights about a particular question of interest in domains such as
biology, neuroscience and electrical engineering. Using the attribute data from MVN nodes
and links, researchers and data analysts can discover new patterns and properties, leading
to new ways of understanding and analyzing complex feature-rich networks such as social
networks, brain connectivity networks, evolutionary hierarchy, and character relationships
in film and literature.

Given the amount of data being generated every day due to advancements in sensors,
networking, and computing [7], visualizing MVNSs is a challenge because both the topol-
ogy and the attributes of the nodes and links need to be displayed. Work done by Nobre et
al. [19] and Lee et al. [14] have led to novel systems such as Responsive Matrix Cells [8] and
Juniper [20]; however the tools and software available to implement these ideas for domain
agnostic MVN analysis are limited. To address limitations of current MVN visualization

tools and techniques, the Collaborative Research: Framework: Software: HDR: Reproducible
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Visual Analysis of Multivariate Networks, an NSF funded research project led by Drs. Meyer
and Lex is developing a novel system called MultiNet for performing visual analysis of

multivariate networks. The three areas that the MultiNet project is investigating are [16]:

e Interactive, task-driven visualization of both the connectivity and attributes of net-

works;

e Reshaping the underlying network structure to bring the network into a shape that

is well-suited to address analysis questions, and;

e Leveraging provenance data to support reproducibility, communication and integra-

tion in computational workflows.

As part of MultiNet, we propose MultiAggr, a proof of concept visual aggregation
method for aggregating categorical node attributes for an adjacency matrix representa-
tion of an MVN. Our approach takes theoretical ideas from the MVN literature including
supernodes, rollup and hierarchical-class based encodings, and combines these concepts
to produce MultiAggr. Specifically, MultiAggr takes the MultiMatrix, an interactive adja-
cency matrix representation of an MVN, and produces the AggrMatrix, an interactive adja-
cency matrix representation of an MVN that allows users to perform detail-on-demand in-
teractive analysis of the relationships of nodes in the MVN based on categorical attributes
across a single axis. While this affordance is similar to Wattenberg’s rollup technique [25],
it is specifically adapted for the adjacency matrix visualization as part of the MultiMatrix
application. By having the ability to perform visual aggregation, users of the MultiMatrix
will be able to gain a high level overview of their MVN data and the ability to analyze
patterns not visible when the data is not aggregated. In addition, our method allows users
to analyze individual nodes from MultiMatrix and their connections to aggregated nodes
and links in AggrMatrix which was not supported by PivotGraph [25]. Our contributions

are the following:

e MultiAggr, a technique that implements a visual rollup specifically for an adjacency

matrix representation of an MVN.

e AggrMatrix, an interactive adjacency matrix that enables users to visually analyze

node attributes aggregated along a categorical attribute.
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e A dual hierarchical visual encoding that represents the hierarchy between individual

nodes and categorical node attribute groups.
e Superlinks, a single aggregated link between two supernodes.

e A user interface that supports detail-on-demand interaction of an aggregated MVN
adjacency matrix representaton to visually study the relationships between nodes,

links, supernodes and superlinks, and their attributes.

The rest of this thesis has the following structure. Chapter 2 presents the technical
background and related works. Chapter 3 details our method MultiAggr. Chapter 4
presents an example of MultiAggr with the MultiMatrix using the Les Miserables character
relationship dataset. Finally, we conclude in Chapter 5 with closing remarks and future

work.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we describe approaches and techniques in visualization and data wran-

gling that have influenced the development of network visualization and network wran-

gling.

2.1 Network Visualization Layout
Nobre et al. [19] identified three types of visualization layouts for MVN visualization:
Node-Link diagram layouts, tabular layouts, and implicit tree layouts. In this section
we focus on defining terminology for node-link layouts and tabular layouts, specifically,
the adjacency matrix layout. MultiNet visualizes MVNSs using the Node-Link Diagram
layout for the MultiLink application and the adjacency matrix layout for the MultiMatrix
application. We also look at approaches to tabular visualization that can be applied to the

adjacency matrix layout.

211 Node-Link Layout

The Node-link diagram is one of the most common ways of representing a network. In
this layout, nodes are represented as points and links are represented as lines [13] [18] [19]
as shown in Figure 2.1a. This layout is easy to understand, particularly for people with
minimal exposure to visualization and can be used to perform basic tasks such as finding
the most popular person in a class [13] [18]. However, as the number of nodes and links
increases, the Node-Link diagram layout degenerates into a hairball, where it becomes im-
possible to perform tasks such as identifying the topology of the network and connections
between nodes [13] [18]as shown in Figure 2.1b. Recent approaches for scaling Node-Link
layouts include coarsening large networks into smaller networks using wrangling opera-
tions [18], edge bundling techniques for grouping similar links into a single link [17], node

filtering [23], edge lensing [9] and layout algorithms. While these approaches improve
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Node-Link layouts and avoid the visual hairball for certain types of network data, they
have not solved the problem for even larger classes of networks such as world airport
flight connectivity. Nobre et al. [19] suggest a Node-Link layout for MVN visualization
when the visual encodings can be easily understood by most users and when the MVN is
sparse, that is, when there are few links and nodes. An alternative layout approach to this

problem is the adjacency matrix layout discussed in the next section.

2.1.2 Adjacency Matrix Layout

The adjacency matrix is a type of tabular layout, where the nodes and/or links are
represented as columns and/or rows of a table [19] as shown in Figure 2.2.

In this layout, a link between two nodes is encoded where the rows and columns
intersect [18] [19]. The MultiMatrix application, as part of MultiNet, uses an adjacency
matrix layout where the nodes are encoded as rows and columns of the matrix. The
adjacency matrix representation is popular for topological feature analysis and node at-
tribute visualization, but performs poorly for path analysis compared to the node-link
layout [19]. Because it is a tabular layout, the adjacency matrix representation can be
used to represent multiple attributes for nodes and edges concurrently, as well as, utilize
a tabular visualization encoding and data wrangling operations such as filtering, sorting
and aggregation [4] [6] [11] [19] [21]. The adjacency matrix layout requires quadratic screen
space with respect to number of nodes, hence it limits the size of the network that can be
visualized [19]. Despite this limitation, the adjacency matrix representation can visualize
every possible connection for dense networks, which presents another solution to the
visual hairball. Nobre et al. [19] recommend this representation for dense MVN data
with rich nodes and/or edge attributes, and for all tasks except for path analysis. Given
the visualization limitations for the adjacency matrix layout, interactive techniques and
guidelines can be applied such that users can visualize particular groups of interest in their
MVN data. In the next section we discuss principles of interaction useful for exploring

large MVN data with visualization.
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Figure 2.1: Node-Link Layouts. (a) Node-Link Diagram Layout for a small network by
Gehlenborg et al. [5]. (b) The visual hairball, a large cluttered node-link layout for a dense
network [13].
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Figure 2.2: Adjacency Matrix Layout. An adjacency matrix layout for a network where the
blue and bars indicate row and column nodes. The grey cells indicate a link between a row
node and a column node [5].



2.2 Interaction in Visualization

Interaction is important for designing and building visualization tools as the complex-
ity of a dataset increases [18]. Interaction is powerful in that it enables a user to explore
information that is unavailable in a static visualization. However, according to Bostock [3]
and Van Wijk [24], interaction also increases the complexity of a visualization and hides
valuable information behind the endless number of settings a user can tweak to obtain
insight through exploratory analysis. Shneiderman’s [22]Visual Information-Seeking Mantra:
Overview first, zoom, and filter, and then details on demand, provides a starting point for
designing interactions for graph visualization tasks introduced by Lee et al. [14] and Nobre
et al. [19]. For interactive MVN analysis, we focus on the first part of Shneiderman’s Visual
Information-Seeking Mantra.

Overview. The goal of overview is to give users a summary of the information in a
dataset [18] [22]. This is particularly useful for dense networks and MVN data with the
adjacency matrix layout because of the visualization space constraint. When designing
overview interaction, the goal is to enable users to find areas of interest and guide them to
perform further investigation in detail [18] [19]. To display multiple details of information
at once with space constraints for overview, as in the case of visualizing nodes, links and
their attributes for MVNs, Munzner suggests performing some kind of reduction operation
that reshapes the data into a shape that can display all the information at once [18]. These
operations are part of the data science pipeline stage called Data Wrangling [11] and include
filtering, aggregating and sorting [2] [4] [11] [18]. In the next section we discuss data

wrangling operations and how they can be applied to reshaping a MVN for visual analysis.

2.3 Data Wrangling
Data wrangling is the process of transforming raw data into a shape for data analysis.
This process is tedious and usually takes up to 80% of the data science process [10] and
the process usually requires using tools such as Python, R, or Excel [2] [10]. To perform
visual analysis, data analysts use a series of reduction operations including but not limited
to aggregation, sorting and filtering to identify areas for further detailed analysis [18].
Because of its tedious nature and the difficulty of maintaining a mental model of the

data, researchers in the visualization community have been working on tools and systems
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to perform data wrangling operations and visualization concurrently [4] [11] [15] [21].
However, there are limited tools available for performing visual wrangling of networks.
Origraph [2] and PivotGraph [25] are two recent systems that have been developed to ad-
dress this problem and aid users to perform graph visualization tasks [14]. In the following
section we focus on the aggregation network wrangling operation, aggregation tasks and

visualizing an aggregated network.

2.3.1 Visualization and Network Wrangling for Aggregation

Earlier, we explained that the node-link layout and the adjacency matrix layout do not
scale well as a network becomes more dense leading to visual clutter with the hairball and
visualization space constraints. For MVN visualization, we also have to consider how to
visualize attributes with nodes and links. In this work, we focus on visualizing wrangling
categorical node attributes for MVN analysis. Categorical attributes are attributes that
describe some category or property of an object. Examples of categorical attributes for a
person would be hair color, eye color, and hometown. To reshape large MVNs for visual
analysis using categorical node attributes we look at the tasks defined by Lee et al. [14] and
Nobre et al. [19] and two systems Origraph [2] and PivotGraph [25]. These two techniques

present aggregation as a solution for dense networks and MVN.

2.3.2 Visual Aggregation

Lee et al. [14] identified two attribute based tasks for nodes: 1) Find the nodes having a
specific attribute value and, 2) Review the set of nodes. These tasks are motivated by questions
such as "Which people are your close friends in your social group?” and "How many of
your friends attend the University of Utah?” These questions can be answered by creating
a high level overview using aggregation for reduction [18] [19]. Aggregation is an example
of computing a derived value, that is, given a set of data, compute a value representing the
members of a group [1]. PivotGraph [25] focused on transforming node-link layouts of
categorical node attributes using a novel algorithm called rollup for enabling users to gain
a high level overview of their MVN data. The rollup algorithm takes an MVN and reshapes
it to produce a new MVN where each node in the network represents an aggregate of all
the nodes with a particular property. Similarly, rollup transforms the links into aggregated

links between aggregated nodes which represent all the connections between two aggre-
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gated nodes. Bigelow et al. [2] defined these nodes as supernodes - the set of all nodes that
belong to a particular group. A unique feature of PivotGraph [25] was the ability to use
a control panel to choose the categorical attributes being displayed. This is an example of
details-on-demand interaction to produce an overview of a particular group see many details
at once [18] [19] [22]. In Figure 2.3 we show an example of PivotGraph for an aggregated
Node-Link Diagram Layout. The links between two nodes represents aggregated links
and the different colored points of varying radii indicate unique categorical groups with

the size of the circle encoding the count for the aggregated values.

Figure 2.3: PivotGraph visualization of aggregated node-link-diagram layout.

This concludes the related works section and in the next chapter we discuss the Multi-

Aggr Method.



CHAPTER 3

MULTIAGGR METHOD

In this chapter we detail our method MultiAggr, a visual aggregation technique for

aggregating adjacency matrix representations of MVNs using categorical node attributes.

3.1 MultiMatrix

MultiAggr uses the MultiMatrix [16], an adjacency matrix representation of an MVN.
The rows and columns of MultiMatrix represent the nodes in the MVN. To develop the
interaction and visualization features for MultiAggr and AggrMatrix, we focused on refac-
toring MultiMatrix to have non-redundant visual encoding for connections [19] as well
as features that enhance usability including toggling the matrix grid lines and supporting
uniform labeling. The adjacency matrix layout supports both directed networks, where there
is a link between a row node and a column node and vice versa, and undirected networks,
where encodings are redundant above and below the diagonal [19]. MultiMatrix initially
supported only directed networks which affected the count for aggregated nodes, so we
built a toggle feature that enables users to toggle between directed and undirected MVNSs.
When a user toggles to a directed link representation, the matrix legend updates to reflect
the new total number of connections between two nodes. MultiNet aims to support both
directed /undirected MVNSs so this feature enables users to choose the MVN directionality
they need for their analysis.

Given Shneiderman’s interaction principles [22] and Munzner’s principles about inter-
active visualization design [18] we refactored the labels for nodes and built in support for
toggling the gridlines of MultiMatrix. MultiNet does not specify the length or type of node
names. For example, node names can range from numerical such as ”1” to categorical node
names of varying length of one more characters. MultiMatrix renders renders the node
labels for rows and columns using SVG text, so to provide a consistent design for different

labels we introduce a label cutoff width. MultiMatrix renders these labels up to the width
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and then adds ellipsis to indicate that the label is longer than the specified length. Using
tooltips, a user can hover over a particular row or column node of interest to see the full
length name. Usability is another important concern when designing visual interfaces and
tools. We found that having the ability to toggle viewing the gridlines of the MultiMatrix
enabled users to clearly see the links between row nodes and column nodes.

Given that the adjacency matrix is a type of tabular layout, we added in visual en-
codings to show different categorical node attributes using different colored rectangles
inspired by Gratzl et al. [6], Furmanova et al. [4] and Rao et al’s. [21] research for tabular

multivariate visualization.

3.2 MultiAggr
MultiAggr can be described using Munzner’s What-Why-How framework for designing
a visualization method [18]. In the following sections we describe MultiAggr in terms of

this framework.

3.21 Why

To support the first two capability goals of MultiNet, MultiAggr focuses on the issue of
limited screen space for visualizing dense networks using the adjacency matrix layout. As
discussed earlier, Nobre et. al [19] recommend using the adjacency matrix representation
for most MVN tasks except for path analysis. At the time of this writing, MultiMatrix
has limited the number of nodes that can be displayed to 1000 which limits the ability to
visualize all the data information for greater than 1000 nodes. As described by Munzer,
Shneiderman, Bigelow et. al and Wattenberg, we can use a reduction operation such as
aggregation to display a high level overview of the data and collapse the matrix to a lower
dimension to view all the MVN nodes, links and attributes [2] [18] [19] [22] [25]. Using
the aggregated overview representation of an MVN, a user can perform detail-on-demand
interaction to investigate the connections between aggregated nodes aggregated links and
non-aggregated nodes and links. The ability to perform aggregation and visualization
concurrently to produce an overview of important properties of an MVN is a powerful

technique that allows users to visualize the aggregation pre-processing steps they are
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performing. For MultiAggr we focus on developing aggregation for categorical node

attributes.

3.2.2 How

MultiAggr performs aggregation using categorical node attributes. Users of MultiMa-
trix select a categorical node attribute from the MultiMatrix Control Panel for how they
would like to aggregate their MVN data using the adjacency matrix layout. Upon clicking
the node attribute and enabling the aggregation functionality, the attribute table to the
right of MultiMatrix updates to display the unique categories that belong to the attribute
selected by the user using the colored rectangle visual encoding from LineUp [6]. When
the user clicks the selected categorical node attribute in the attribute panel, a modified
version of Wattenberg’s Rollup Algorithm [25] designed specifically for the adjacency
matrix layout is invoked, transforming MultiMatrix into the AggrMatrix. AggrMatrix
is an aggregated representation of a MVN using the adjacency matrix layout encoding
aggregated nodes on the rows and columns of the matrix using the supernode represen-
tation [2] and aggregated links for the intersection of row and column supernodes as a
filled cell with a new color encoding. Next to the AggrMatrix buttons for controlling
interactive data analysis of supernodes are generated. The AggrMatrix produces a new
aggregated legend that visually indicates the reshaping of the MVN into a supernetwork
and the number of connections between supernodes. The modified version of the Rollup
Algorithm [25] collapses MVN nodes into a single supernode for a unique category and
collapses links into superlinks an aggregated link between supernodes that we developed
as part of MultiAggr inspired by supernodes [2]. To the right of AggrMatrix, the attribute
table has been collapsed into a set of unique categories that belong to the selected cate-
gorical node attribute. One of the issues of PivotGraph was that it did not enable users to
perform interactive data analysis using details-on-demand interactin [22] so we developed
an algorithm for expanding and retracting AggrMatrix to view the connections between
supernodes, superlinks, nodes and links. Upon expanding the AggrMatrix to visualize
a group of interest, a hierarchical color encoding inspired by Kerzner et al.’s Graffinity

system [12] is invoked to distinguish the difference between supernodes and their associated



14

paths and child nodes and their associated path with dual color encoding legends in the

MultiMatrix Control Panel.

3.2.3 What
The graph visualization tasks addressed by MultiAggr are providing a high level overview
of dense MVN data and computing derived values for categorical node groups to show
nodes with specific attributes [14] [18] [19] [22]. The goal of overview for the MVN adja-
cency matrix layout is to enable users to visualize as many details as possible about their
MVN data [18] [19] [22]. By collapsing MultiMatrix to AggrMatrix for a single categorical
node attribute, a user can display all the nodes in a dense MVN which provides a solution
to the limited visualization space constraint described by Nobre et al. for the adjacency
matrix layout [19]. In addition, aggregating by a single categorical node attribute versus
multiple categorical node attributes takes advantage of pixel based displays by encoding
a single value for a node attribute, thus making it easier to analyze a particular area of
interest [5] Overview visualization by itself is not always effective because sometimes the
insight it shares is difficult to interpret. The design choice to allow for details-on-demand
interaction with expanding row supernodes using expanding/retraction controls for ex-
ploratory analysis was developed to allow exploration of all the nodes in a dense MVN.
This allows for identifying particular patterns in a categorical node attribute group that

were difficult to discover with only overview.



CHAPTER 4

EXAMPLE OF MULTIAGGR

In this chapter we demonstrate the different features of MultiAggr using the Les Mis-
erables character relationship dataset. MultiAggr is a domain agnostic method and can be
applied to any MVN whose nodes have categorical group attributes.

The Les Miserables character relationship dataset details the relationships between char-

acters in the novel and the different scenes they interact in.
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Figure 4.1: MultiMatrix: Non-aggregated adjacency matrix layout of Les Miserables charac-
ter dataset.

We discovered based on expansion of the AggrMatrix that chapter 8 contains the most

interactions between characters and is the climax of the novel. In chapter 8, Victor Hugo
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ties together all the previous threads about a robbery and how the characters from Les

Miserables are connected to this event.
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Figure 4.3: Selecting group categorical node attribute for Les Miserables data. On the right
hand side of the matrix the different groups are now shown as different colored rectangles
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Figure 4.4: AggrMatrix: The aggregated adjacency matrix representation of a multivariate
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controls for expanding a supernode row to perform details-on-demand analysis to explore
the child nodes that belong to a supernode group.
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Figure 4.5: Expanding AggrMatrix to display the children nodes for chapter 8 supernode.
This visualization features directed connections for nodes and supernodes and features
the dual hierarchical color encoding as shown in the legend in the matrix control panel.
In the attribute table, the attribute rectangle for chapter 8 has expanded to show that all
the children nodes belong to chapter 8 with the green color encoding. Lastly the grid lines
have been turned off to focus on where the row supernodes and children nodes intersect
with the column supernodes and children nodes.
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Figure 4.7: Tooltip highlight to show child node name for an expanded AggrMatrix. The
tooltip contains information about the parent supernode and the type of the node, in this
case a child node.



CHAPTER 5

CONCLUSION AND FUTURE WORK

By implementing visual aggregation for the adjacency matrix layout of an MVN using
categorical node attributes, MultiAggr demonstrates a proof of concept technique for adja-
cency matrix MVN aggregation. In this project, we were able to address of the issues of the
limitations of PivotGraph [25] and implement the tasks described by Nobre et al. [19] ans
Lee et al. [14] for MVN visualization and aggregation using the adjacency matrix layout.
MultiAggr is designed for aggregating domain agnostic MVN data using categorical node
attributes across a single axis. As part of MultiMatrix, the MultiNet project hopes to build
off of this work by supporting edge attribute visualization and aggregation, multiple node
attribute aggregation and scaling for dense MVN data. Scalability is an ongoing area of
research in MultiNet and we hope that MultiAggr will be able to perform on very large
MVN datasets such as a global flight path MVN.
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