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Abstract

Current state-of-the-art modeling of expressive musical performance (EMP) is
based on hierarchical Recurrent Neural Networks (RNN). The Transformer is a re-
cent Neural Network (NN) sequence modeling architecture that has led to significant
research improvement in Natural Language Processing (NLP) and other related fields.
To date, there has been no application of the Transformer in music performance mod-
eling — we present the first study that attempts to do so. The results indicate that our
encoder-only Transformer model outperforms a similar encoder-only RNN but does
not outperform the existing hierarchical RNN state-of-the-art. However, an analy-
sis of current evaluation methods for EMP generation models reveals that the current
metrics for “objective” quantitative evaluation do not correctly capture the essence of
musical performance and are significant bottlenecks in developing robust EMP mod-
els. Therefore, we cannot draw any meaningful conclusions about our models’ perfor-
mance when evaluating them quantitatively. We present an error analysis of the current
evaluation methods and provide suggestions for future efforts in building better models
and finding better evaluation metrics.
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Modeling Expressive Musical Performance with
Transformers: An Empirical Error Study

ABSTRACT

Current state-of-the-art modeling of expressive musical performance (EMP) is based on hi-
erarchical Recurrent Neural Networks (RNN). The Transformer is a recent Neural Network
(NN) sequence modeling architecture that has led to significant research improvement in
Natural Language Processing (NLP) and other related fields. To date, there has been no
application of the Transformer in music performance modeling — we present the first study
that attempts to do so. The results indicate that our encoder-only Transformer model
outperforms a similar encoder-only RNN but does not outperform the existing hierarchical
RNN state-of-the-art. However, an analysis of current evaluation methods for EMP gen-
eration models reveals that the current metrics for “objective” quantitative evaluation do
not correctly capture the essence of musical performance and are significant bottlenecks in
developing robust EMP models. Therefore, we cannot draw any meaningful conclusions
about our models’ performance when evaluating them quantitatively. We present an error
analysis of the current evaluation methods in EMP and provide suggestions for future efforts

in building better models and finding better evaluation metrics.
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Chapter 1

Introduction

In 1952 L.A. Hiller and L.M Issacson ushered forth a new era in the study of both music and
computer science when they introduced the Illiac Suite — the first musical piece composed
solely by a computer [36]. What we’ll refer to broadly as Music Information Retrieval (MIR)*
research has continued to see impressive advancements since the introduction of the Illiac
Suite in several different domains, including musical composition [3], instrument and sound
synthesis [12], and musical analysis [40]. Musical recommendation systems are the most
commonly known application of MIR. They extract common musical patterns from different
genres and songs to suggest new music to listeners, which they may appreciate in the future
given their past listening habits?. Much of the challenge in MIR research is to close the
gap between music’s phenomenological nature as experienced by human listeners and the

hierarchical and mathematical quantitative musical patterns present in nature.

Widmer [40] suggests that there are a set of deep problems that the MIR community should
focus on, which by their nature, are more fundamental to understanding the nature of music
itself. One such problem is the exploration of what constitutes expression in musical perfor-
mance. Current commercial automatic performance generation systems render deterministic
and uninteresting performances that do not contain the “human” element. These “deadpan”

performances do not use the different musical performance components such as variations in

! Widmer [40] points out that MIR itself does not encompass the entire scope of computer music research
but that it is a good proxy to use when referring to the field as a whole. We will operate under the same
assumption.

2Spotify is the most well-known commercial platform that implements musical recommendation systems.
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timing, dynamics, and articulation to “express” creative musical ideas or emotions®. Every
musical performance results from an interpretation of a composition, and this interpreta-
tion is communicated through expressive performance. Our work is a further continuation
of the computational modeling of expressive musical performance (EMP) in the context of

automatic performance generation.

Typical EMP generation systems use Machine Learning (ML) to build computational models
trained on existing data sets comprised of actual human performance. Recent ML models
are either probabilistic (usually using Hidden Markov Models) in nature or based on artifi-
cial neural networks (ANN). Deep Learning (a common term used to describe ML involving
ANNs)? has led to the widespread success of Artificial Intelligence (Al) systems in a vari-
ety of applications, including computer vision, natural language processing (NLP), speech
processing, and audio processing [16]. State-of-the-art EMP models are mostly comprised
of Recurrent Neural Networks (RNN) and their common adaptation as a Long Short Term
Memory Network (LSTM). RNNs are designed to model sequential data (see chapter 2), such
as music. A relatively new model in sequential Deep Learning, the Transformer, has led to
impressive advances over RNN based models in NLP [4, 8] and other sequential data mod-
eling problems [10]. We apply the Transformer to EMP generation, which to our knowledge
is the first such application, using an existing end-to-end state-of-the-art EMP generation

system.

We evaluated our model quantitatively using standard evaluation metrics, and it performed
worse than the existing RNN based state-of-the-art. However, a listening test revealed a

disconnect between quantitative and qualitative evaluation. We ran further experiments

3MuseScore, a popular open-source musical notation software, is one such commercial system. MuseScore,
and other notation software programs like it, generate deadpan performances.

4The use of neural networks in ML is commonly referred to as “Deep Learning” because of the many
connected layers that comprise the networks. The term “deep” describes the long path which information
must follow to propagate through the extensive network. Typical ML models usually do not have that depth.



deviating from standard evaluation methods to identify why this might be the case. This
experimentation led to insights about potential problems with current evaluation metrics
and intuition for creating better evaluation methods. We also identified potential issues
with our model architecture which we use to lay the groundwork for future experimentation

in the area.

We also bring to light some of the philosophical conundrums present when considering EMP
generation from a computational level. Because the “quality” of a musical experience is
highly subjective, creating the right incentives for a computer model to generate novel per-
formances is not trivial. In agreement with other authors [40], we advocate for further
research to draw just as much from music at the human psychological level as the mathe-

matical and statistical.



Chapter 2

Background: Expressive Performance

This project is based upon two major research components. The first is the MIR problem
domain of expressive musical performance, and the second is the ML modeling domain of
Transformers. In this chapter, we will introduce and discuss EMP. In chapter 3 we’ll do the

same for the Transformer.

Expressive musical performance is a small subset of MIR research. We broadly categorize
MIR research into two separate tasks: developing computational methods for musical analysis
and developing computational methods for music generation. We are interested in generative
models, although it is worthwhile to note that there is considerable overlap between the two
areas'. Proper knowledge of the entire musical generation process as a whole is necessary to
understand how EMP generation models work. Ji et al. [26] break the generation process into
three stages with four different roles that interact with that process at each stage. Figure

2.1 shows each step in the process as well as the agents that participate.

An EMP generation model is analogous to the performer shown in 2.1, who takes as input
a composition and produces as output a performance. We define musical expression as the
performers’ interpretation of a composition codified into different performance parameters

intended to contribute to the quality of a musical experience?.

!Creating a performance generation system is useful for performance analysis as long as the generation
system is interpretable. The reverse is also true. Analysis provides insight to generation, and generation
provides insight to analysis.

2As has already been mentioned and as will show in detail later in this work, defining the “quality” of
musical experience is no minor task. Such a definition is necessary to train performers (either computer or

4
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Composition Performance Sound

- J——_

Instrument

Allegro vivace. /= 144,

Listener'

Figure 2.1: The first step of musical generation is composition, shown as a score in the figure.
The second is performance, our area of interest, and is indicated by a MIDI file’s piano roll
representation. The third is the production of sound, shown as a raw audio wave. Each
different agent: composer, performer, instrument, and listener, can be conceptualized as a
separate computational model in the generation process. This figure is our reproduction of
a similar image presented by Ji et al. [26]

Figure 2.1 shows that a performer interacts with a composed score to create a performance.
To more clearly define EMP generation, we start by describing the essential elements of both
scores and performances. This chapter’s descriptions are not intended to be at a detailed
mathematical level but the general musicological level. We provide feature definitions, which
contain the score and performance information embedded at a mathematical level, of the
EMP models upon which our work is based in section 4.1. Due to the constraint of our data,

we focus only on western classical piano music.

2.1 Scores

Scores are symbolic representations of a musical composition. They are comprised of mark-

ings that belong to a grammar of symbolic notation used to express musical ideas and

human) to create desirable performances.
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information. Scores organize this information in a hierarchical structure with different musi-
cal details at each level. Figure 2.2 shows a sample score and the different hierarchical levels

of information that it contains

The lowest level contains information about the pitch and timing of every single note, as
well as optional information about how the note should be played. The low level can in-
clude information specific to instruments such as the bow direction of a violin, but for our
purposes (dealing only with piano), we will consider this to be the articulation of each note.
Note articulation is usually indicated by legato, which suggests the notes should be played
smoothly and connected without breaks between the notes, or staccato, which means that

each note should be played sharply and detached from other notes.

The middle level contains information related to certain substructures of the musical compo-
sition, expressed within a grouping of notes or measures. The most common score annota-
tions at this level are dynamic markings which indicate whether to play a collection of notes
as f (loud), p (soft), or as a crescendo or decrescendo (gradually increase or decrease the
volume). Although dynamic markings are the most common at this level, it is also possible
to see score markings for all other musical features, such as local tempo or articulation of

a particular substructure. Perhaps the most essential score marking at this level is that of

34
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Figure 2.2: A sample hierarchy of a score delineated by different colors. The green shows
the low level, which includes the pitch and timing of every note. The red represents the
mid-level which shows dynamics and tempo information about local musical substructures.
The tan color illustrates the high level and includes the key and time signatures.
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a slur, which implies that a group of notes should be interpreted as belonging to a singular
musical phrase and that each note should fit within the context of the phrase as a whole. A
slur can be expressed through all of the different aforementioned musical features, including

the tempo, timing, dynamics, and articulation of the notes.

The highest level contains meta-information that relates to the entire composition as a whole.
This information typically includes the key signature and time signature, as well as the global

tempo for the entire piece, most commonly represented as BPM.

2.2 Peformance

An expressive musical performance contains most of the same musical information as a score,
including pitch, tempo, timing, and articulation. The critical difference between scores and
performances is that an expressive performance is a unique and measurable instantiation of
a single score — no two performances will ever be the same. Expressive performances will

deviate (or interpret) from the exact information given in the score.

For example, although a score may indicate a tempo of 120 BPM, it is unlikely that a
given performer will perfectly adhere to this tempo throughout the piece’s entirety. Some
performers may choose to play faster than the indicated global tempo, while others will play
slower. It is also likely that there will be natural deviations in the tempo, dependent on
other musical structures, such as dynamics. Certain phrases of a composition may “feel”
slower or faster than the indicated global tempo, and the deviation in tempo is an essential
component of a performer’s interpretation. Deadpan performances, which are hardcoded and
deterministic, will strictly comply with the notated global tempo unless the score explicitly

indicates otherwise®. Each expressive parameter will be measurable and absolute, whereas

3Compare two performances of Bach’s Prelude in C Minor BWYV 847, one by Glenn Gould and the other
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the score markings of these features are more of a suggestion than a rule. Figure 2.3 shows
an example of two performances of the same score and the difference in their measurable

expressive attributes.

Performance has a few additional components that are not necessarily indicated in scores but
are relevant in the context of performance alone. Piano pedaling is one crucial component.
There are several different types of piano pedals. The most common are the sustain pedal,
which prolongs every notes’ duration when activated, and the soft pedal, which softens the
entire piano’s sound. Although these pedals’ effects are directly related to the articulation
and dynamics of the performance, their presence (or lack of) is a crucial component of piano
performance. The sustain pedal is actively used in almost all modern piano performance,

even in the absence of pedal score markings.

2.3 Data

The data required for EMP generation includes a digital representation of a score and a
corresponding performance. MusicXML, a text-based representation of a composition, is
the most common data format for a score. Performances could directly be represented
through raw audio, which is widely available on the internet. Instead of audio, however, an
intermediate data form, MIDI, is commonly used to constitute the performance. MIDI is
an event-based data format and software interface that contains information about different
aspects of a recorded performance. MIDI defines NOTE-ON and NOTE-OFF events, and

each event specifies the pitch and velocity of the note. Velocity represents the ‘speed’ at which

by Vikingur Olafsson. Gould’s interpretation is much slower than Olaffson’s (Gould was known for his unique
musical interpretations, which often went against the grain of the musical establishment of the time). This
significant difference in tempo leads to a drastically different musical experience. We can also compare these
human performances with MuseScore’s deadpan performance (make sure to choose the “MuseScore audio”
audio source, which can be found by selecting the icon of audio switches next to the “Off” text in the top
menu bar), which illustrates the necessity of expression in creating good performance.
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a note was hit and is a good proxy for dynamics. Both pitch and velocity are represented as
discrete numbers that exist in the 0-127 range. MIDI also defines control channels which are
streams of data separate from the NOTE-ON and NOTE-OFF events. The control channels
contain the information for the values of different pedals throughout a performance. Figure

2.3 shows a visualization of a MIDI performance.

Pitch NOTE ON NOTE OFF Velocity

NOTE OFF Pedal

Figure 2.3: A visualization of a MIDI performance taken as a screenshot from Logic Pro X.
Each NOTE-ON and NOTE-OFF event holds the information about the pitch and velocity.
A separate control channel encodes the value of the sustain pedal.
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There are several reasons for the preference of MIDI over raw audio. The first is that audio
data is inherently noisy, sparse, and vast in its dimensionality and size. Using audio to
represent performance requires a significant compression of natural frequencies into more
abstract musical representations such as pitch — MIDI natively contains these abstractions.
MIDI also better aligns with the generation process outlined in 2.1 in which performance is
seen separate from sound synthesis and allows computational models to define such bound-
aries easily. In the full computational generation process, a different model would be used
to take the performance data in MIDI and synthesize it into raw audio presented to the

listener.

Computational models that deal with the relationship between scores and performances often
need additional metadata about the alignment between every note in both the score and
performance. This metadata is generated by running a performance and its corresponding
score through a data alignment process in which every performance note is matched to a
marking in the score. Given the highly dynamic nature of musical performance, it is a non-
trivial task to run this alignment process for a set of scores and performances, especially if
the task is performed by manual human annotation. There exist methods for both manual
and automatic alignment. Due to the time-consuming nature of manual alignment and the
need for large data sets to build higher quality models, automatic alignment algorithms are

an active research area. An example alignment is shown in Figure 2.4.

2.3.1 Existing Data Sets

One of the problems facing EMP and MIR is the lack of high-quality and large-scale datasets [5].
The biggest hindrance in data gathering is that most of the musical data available on the

internet is in the form of raw audio. As we have pointed out, processing audio data for mu-
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Figure 2.4: The top two images are piano roll representations of the first measure of Bach’s
Prelude in C Minor BWYV 847, recorded in MIDI. Also shown is a score of the same composi-
tion. The first performance is aligned to the second performance. The second performance is
aligned to the score. Notice the marked difference in tempo between the two performances.
These example performances illustrate why score to performance alignment is necessary.
Different performances of the same score can significantly vary in their note onset, note
duration, and note velocity values. As such, it is necessary to create an alignment between
every performance and its corresponding score.
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sically plausible purposes is difficult compared to other better-suited formats. While a fair
amount of MusicXML and MIDI does exist, it is relatively small compared to the amount

of audio data.

We draw a comparison to the data used in NLP research, where textual data is analogous to
MusicXML and MIDI, and speech audio is analogous to musical audio. One of the reasons
NLP has been able to advance its progress in the last few decades is the massive amount
of readily available textual data on the internet. If most available text data had to be
extracted from audio, it would be significantly more challenging to develop NLP systems
and applications. Such is the case with MIR research data. Nevertheless, there has been a
recent effort to gather large-scale quality data in MIR. We present some of these datasets as

they are relevant to EMP.

There are normally three required components for a EMP dataset.

1. Scores (usually in the form of MusicXML)
2. Performances (usually in the form of MIDI)

3. Metadata about the matching alignment between the score and performance.

Score data is gathered by finding readily available MusicXML files from open source software
projects which contain music that is in the public domain (which all western classical music

4 or by using Optical Music Recognition (OMR) to automatically scan paper sheet music

is)
into a digital form followed by manual corrections where needed. MIDI performances can
only be recorded when a performer uses an instrument compatible with the MIDI protocol.

Although there are many digital piano keyboards with this combability, semi-professional and

professional pianists primarily play on acoustic pianos. Some computer-controlled acoustic

4MuseScore is the most common. The International Music Score Library Project is also commonly used.
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pianos can record MIDI performance, such as the Yamaha Disklavier and the older Bosendor-
fer CEUS system. Therefore, MIDI data of professional piano performance has historically

been limited to performances on these piano systems.

There is no standardized method for score-to-performance alignment methods and data
representations. Each dataset presents its own alignment method as well as the metadata

that represents the alignment.

To provide context for the progression of data used in EMP generation, we will introduce an
older dataset used in EMP research, the Magaloff Corpus. We then describe a much larger
scale dataset, the Piano-e-competition, which has recently been adapted for EMP generation

use. Cancino-Chacén et al. [5] give a full overview of datasets used in EMP generation.

Magaloff Corpus

Nikita Magaloff was a Russian pianist known for his performance cycles of Chopin’s entire
works for the solo piano. In one of his final cycles of performances recorded in 1989, he
played on a Bosendorfer SE computer-controlled piano. Flossmann et al. [13] obtained special
permission to access the MIDI data from this performance cycle. They gathered score data
using OMR with manual corrections where needed. The alignment method of Grachten [17]
was used to produce the note-matching annotations, along with manual corrections. The
dataset contains over 10 hours of playing, 150 compositions, and over 320,000 performed
notes. The corpus, however, is not publicly available and has only been used in research

by Flossmann et al. [13] and colleagues [11].
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Piano-e-competition

As has been discussed, there is a large push in modern MIR to produce high-quality large
datasets. At the heart of this research in MIR is the Piano-e-competition. Started in 2002,
it is an international piano competition that attracts some of the promising up and coming
musicians at both the senior and junior level [1]. Every performance from the competition
is played on a Yamaha Disklavier and is recorded in both MIDI and audio. Due to the data
set’s size and availability, it is commonly used in MIR research. There exist several different

adaptations of the original data that are specific to particular research purposes.

The first of these is the MAESTRO (Midi and Audio Edited for Synchronous TRacks and
Organization) dataset. ~Hawthorne et al. [20] introduce the MAESTRO dataset, which
presents both MIDI and audio data from the Piano-e-competition in a canonical and eas-
ily accessible form. The dataset was first used to build a complete musical analysis and
generation process framework named wav2midi2wave. This framework includes a musical
transcription process [19] from raw audio to midi (wav2midi), a direct musical composi-
tion and performance generation model (can be seen as the midi or midi2midi part of the
wav2midi2wav framework) [21]°, and a synthesis model that takes MIDI and generates raw
audio [30] (midi2wav). The MAESTRO dataset is the most commonly used form of the

Piano-e-competition data.

The Piano-e-competition also forms the basis for a data collection, which we will refer to
as the KAIST dataset®. The Piano-e-competition dataset itself does not provide any score
data about any of the compositions used in performance. The KAIST dataset was created

specifically for an EMP generation system, and therefore needs score data for every perfor-

5This model directly generates MIDI files without using scores. It simultaneously generates a composition
and performance. This direct generation is a merging of the two separate tasks into one as shown in Figure
2.1.

6We take the name from the KAIST Graduate School of Technology, which the researchers who created
the dataset work for.
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mance recorded in MIDI. This score data was collected by Jeong et al. [23] by downloading
MusicXML files online, mostly from MuseScore. On top of gathering the score data for
all performances in the Piano-e-competition, Jeong et al. [23] run the automatic score-to-
performance alignment algorithm of Nakamura et al. [28] to provide metadata about the
alignment between each score and performance. Automatic score-to-performance alignment
is error-prone, especially in the case of performance mistakes”. As a result, some performance
notes are not aligned to those in a score. Due to the possibility for error in automatic align-
ment, Jeong et al. [23] also add additional manual and heuristic corrections to the alignment

where needed.

Other than the discrepancy in scale, the most significant difference between the KAIST
dataset and the Magaloff corpus is that the KAIST dataset contains multiple performances
for the same score. In contrast, the Magaloff Corpus has a 1-1 mapping between a score
and performance. The KAIST dataset has 226 scores across 16 different composers, roughly
660,000 score notes, and around 3,500,000 performance notes. The number of matched
performance notes is ten times larger than the Magaloff Corpus, and all data is publicly

available®.

The Aligned Scores and Performances (ASAP) dataset [14] is a recent adaptation of both the
KAIST dataset and the MAESTRO dataset. It uses the MusicXML files from the KAIST
dataset, audio from the MAESTRO dataset, and MIDI files from both sources extracted from
the common origin of the Piano-e-competition. It provides additional alignment metadata
for both MIDI and audio and more manual correction in the MusicXML score files. Although
the purpose of the ASAP dataset is for Automatic Music Transcription (AMT)? it is just

as equally beneficial for EMP generation. To our knowledge, it has not seen an application

7A mistake in the performance results in a performance note having no correct match with a score note.

8The dataset is open sourced at https://github.com/mac-marg-pianist/chopin_cleaned.

Y9AMT is the task of transcribing a score from a performance (either in audio or MIDI form). AMT is
the “opposite” of EMP. It maps a performance to a score instead of a score to performance.
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in any EMP generation task. Although it is mainly similar to the KAIST dataset, the

implications of its extensions are undetermined in EMP research.

2.4 Performance Evaluation

Evaluation is an essential component of developing ML models. A model’s evaluation is a
measure of its quality and serves as a benchmark that can be compared to other models in
the same domain. Due to the inherently subjective nature of music and musical performance
discussed in chapter 1, evaluation is notoriously difficult to understand and define correctly

for EMP generation models [5].

The evaluation of computational models, specifically for EMP models, is typically catego-
rized in two ways: quantitative and qualitative evaluation. Quantitative evaluation methods
produce numerical metrics, which are computationally generated and deterministic, to define
and measure a model’s quality. Such evaluations are considered to be an “objective” measure
of quality, given that they do not have any reliance on human judgment. Qualitative evalua-
tion methods involve human feedback and assessment, often presented in some standardized
statistical measures. Qualitative methods are not as consistent and more challenging to re-
produce, given the reliance on human listeners’ subjective feedback. Therefore, quantitative
evaluation methods are traditionally preferred over qualitative because of their consistency
and reliability. However, in music generation models, qualitative evaluation methods may
be more relevant because of music’s highly subjective nature. Finding suitable evaluation
methods is an active area of research in EMP [5], and as we will see in later chapters, needs

significant improvement.
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Quantitative Evaluation

Several different metrics are commonly used in the evaluation process, all of which are specific
to the data type and model problem domain. Our model, which we cover in chapter 5, is
a regression model. We present some standard metrics used to evaluate regressive EMP

models.

The two common metrics used for evaluation and regression are Mean-Squared-Error (MSE)
and the Coefficient of Determination (commonly abbreviated as R?). MSE is used to measure

the difference between a prediction and an actual observed target value and is denoted as

n

1 -
MSE = — Y. —Y))?
n;< )2,

where Y is the observed value at time step 7, and }A/Z is the predicted value. R? is a measure

of the linear correlation between variables X and Y, and is denoted as

cov(X,Y)

p =
XY Ox0y

where cov indicates covariance and o indicates standard deviation.

Qualitative

Qualitative evaluation in EMP is most often conducted by presenting computationally gener-
ated performance to human listeners and gathering feedback and judgment. Although there
have been efforts to standardize this evaluation process, the qualitative evaluation meth-
ods of different EMP models significantly vary. The lack of consistency in the evaluative
methods makes reproducing experiment results difficult in EMP research. However, it is

still commonly used to provide context to a model’s performance that is not present from
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quantitative metrics.

Although the competition no longer runs, the Performance Rendering Contents (Rencon) [27]
has been the most significant research effort in developing EMP generation qualitative eval-
uation. Starting in 2002 and ending sometime around 2013 [5], Rencon was an annually held
competition that provided a way to compare EMP systems using standardized evaluation
methods. Similarly to human performers’ performance competition, it subjected each con-
testant models’ performances to the same listening judges and judgment rubric. Subjecting
all models to the same human judges and rubrics adds a higher level of confidence in the
resulting evaluation by reducing the potential bias present in separate evaluations (often by

the same institution that built the model) conducted during each model’s development.

Although the Rencon evaluation methods changed from year to year, they all followed the
same general structure. To enter the competition, contestants would submit MIDI files of
generated performances by their respective models. The choice for compositions was usually
restricted to a small set of composers, such as Chopin or Mozart. A Yamaha Disklavier was
then used to create an acoustic rendering of the generated MIDI file played in front of a set
of judges. The judges’ makeup usually included musical experts with varying experience.
The judges submitted a feedback survey that would rate aspects of performance such as

2 W«

“rhythmic accuracy,” “musical skill,” and “overall quality,” along some standard statistical

scale. A winner was chosen according to the judge’s survey entries.

Although Rencon does not currently hold competitions, it forms the basis for many of the
methods used in the qualitative evaluation of EMP models. The general method of presenting
generated performances to a set of human judges to assess according to a standard rubric
is the same as that of the Rencon. However, the exact survey methodology and the judges’
makeup varies across each experiment [23, 37|, which introduces problems of reproducibility

and bias.
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There are some methods of qualitative evaluation which do not follow the listening test
method of Rencon. They usually involve a mixture of both computational and human
analysis. Such methods may use computation to generate visualizations or find patterns
in performance data, which a researcher then interprets in a qualitative way [18, 25, 41].
There are also more informal listening-based evaluation methods, in which the feedback
given by the listening judges exists not as a statistical measure but as general feedback and

reaction [31]



Chapter 3

Background: Sequence Modeling

In the following chapter, we provide the background and context behind the choice of our
model. Recurrent Neural Networks currently provide the foundation for state-of-the-art
EMP models. Recent developments in neural sequence modeling move entirely away from
RNNs and toward a new family of ANN architectures, the Transformer. While Transformers

have not seen application in EMP generation models, they are the focus of our work.

3.1 Sequential Data

The modeling of sequence data is a fundamental aspect of modern machine learning. Se-
quence data consists of individual data points with a relationship to each other according to
some specific order and position in time. A simple example of sequential data is the weather,
which follows predictable patterns according to the time of year. Although it is difficult to
predict precise weather patterns using the year alone, we can easily forecast general weather

patterns (temperatures will always be warmer in the summer than in the winter).

Musical data is also fundamentally sequential [40] given that we experience music as events
that happen in time, and the relationship of such events according to their position in time
is paramount to the phenomena of musical experience. Language and speech exhibit this
same property, and the research in natural language processing drives much of the research

advance in neural sequential data modeling.

20
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Sequence data modeling is typically categorized into several different tasks. Perhaps the most
common task is sequence classification, which seeks to assign some sequence of data points
to a particular class of data. When using real-valued features, input data is defined as a
sequence of data points X = {x, x4, x4, ..., z, }, where each data point is an m-dimensional
vector x; € R™. The output data is a single value y € L where L is a set of class labels.
A sequence classification model C' : R™*™ — L will then map from an input sequence X
to a class label y. Email spam detection and genre classification are common use cases of

sequence classification models in NLP and MIR, respectively.

EMP generation is a more complicated process. It involves mapping an input sequence
(score) to another output sequence (performance). We call such a task a sequence-to-
sequence (seg2seq) model. In this case our input data X is the same, but our output data
is also defined as a sequence of vectors Y = {41, ¥s, Vs, .-, Y5}, where y; € R™. We can
then define a seg2seq model as S : R"*™ — R™™ which will produce an output sequence Y
given the input sequence X. In EMP generation, m is the number of score features, n is the
number of input score notes, m is the number of performance features, and n the number of

output performance notes.

3.2 Case Study: Neural Machine Translation

RNNs and their common adaptations as an LSTM have historically been the default modeling
choices for sequential data Deep Learning'. However, in recent years the Transformer [38]
architecture model has outperformed RNNs in many tasks and is becoming the de-facto
standard for sequential data modeling in modern Machine Learning [4, 8]. To provide context

for the Transformer’s origin, we will outline the historical progress of an NLP task known as

'For the sake of brevity, we do not provide the detailed mathematical definition for RNNs here and refer
to the reader to Goodfellow et al. [16].
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neural machine translation (NMT).

Machine translation (MT) is the task of computationally translating one natural language to
another?. Traditional MT systems relied on complicated rule sets and decoding algorithms
stitched together to create a statistical model known as a statistical machine translation
(SMT) system. Rather than an amalgamation of several different systems developed inde-
pendently, NMT systems are trained end-to-end with a single ANN architecture and signifi-
cantly reduce the complexity of building MT models. NMTs are seq2seq models and typically

operate by translating a single sentence at a time.

One of the challenges in building MT systems is that the source and target sentences are
often not the same lengths — n # n in our definition of seq2seq models given in section 3.1.
NMT translation systems use what is known as an encoder-decoder architecture to address
the variable-length input and output sequences. From a probabilistic perspective, the job
of the encoder-decoder architecture is to model the conditional probability distribution of a

variable-length output sentence Y given a variable-length input sequence X, as

P(yy, Yo, - Yp |1y Tay ooy ).

In the encoder-decoder architecture, calculation of the distribution is decomposed into two
separate models. The encoder’s job is to read in the source sequence and find a good
representation, or encoding, of that sequence. In the original formulation of the encoder-
decoder NMT architecture, Cho et al. [7] present this encoding in the form of a fixed size

vector c¢. The decoder is an autoregressive language model®, and uses ¢ as a condition to

2Google Translate is one successful commercial application.

3 Autoregressive models are sequence-based models that take as input the model’s output at previous time
steps. Language models are instances of autoregressive models that are capable of generating novel texts of
varying lengths. Language models can generate novel text from scratch, although they are often prompted
with existing text to write in a particular style or on a certain subject.
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generate the new sentence in the target language. Using this decomposition, we can view
the decoder as calculating the probability of the next word in the sentence given all of the

previous words and the hidden encoding vector [2]. This probability distribution is given as
n
P(Y) = H P(y;|y1: Y2y s Y1, €)
n=1

The RNN-based encoder-decoder model of Cho et al. [7] achieved state-of-the-art in MT, im-
proving upon the results of SMT systems. However, there is an inherent limit imposed on
the system for long sentences. Cho et al. [7] show that the performance of a basic encoder-
decoder model deteriorates rapidly as the length of an input sentence increases. To account for
this, Bahdanau et al. [2] present the foundations for what has become known as the attention
mechanism. Instead of using a fixed-sized vector encoding, attention allows the decoder model
to search for a set of positions in the source sentence where the most relevant information
is concentrated and uses this information as it generates text in the target language. In
simpler terms, the decoder “pays attention” to the source sentence’s most relevant words to

find the right translation of every word at each time step.

Rather than use a fixed-length vector at every time step, the decoder is modeled as follows

P(yt‘ylay% '--7yt—17X> = 9(%’—17 Siaci)

where ¢ is some non-linear potentially multi-layered function that outputs the probability
of y, and s; is the hidden state of the RNN at time step ¢. The context vector, c;, uses
information about the relationship between certain words in the source sentence and the
next word y, to be generated. The context vector encodes the attention weights applied at
every time step i (see Bahdanau et al. [2] for the full description behind this context vector).

Using a context vector at every time step, the model is not restricted to a single fix-sized
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vector that encodes the source sentence. This attention-based model achieved state of the

art results in NMT over the purely RRN based encoder-decoder model.

Since the introduction of the attention mechanism, it has been used in tandem with RNNs
and other DL models to push state of the art in various sequence-based tasks, such as
Question Answering, Sentiment Analysis, and Part-of-Speech tagging [6]. There are several
reasons for the increase in performance. One reason is that attention can better model a
sequence’s dependencies without respect to the distance between any two elements (this
is a known limitation of RNNs) [38]. Until the introduction of the Transformer architec-
ture, almost all applications of attention were used in conjunction with RNN-based modeling

architectures.

3.3 Transformers

The Transformer model is an attention-only neural network architecture designed for se-
quence data modeling. The original Transformer by Vaswani et al. [38] was built for NMT
as an encoder-decoder model. This Transformer model significantly advanced the state-of-the-
art in NMT and has since been applied to many other sequence modeling tasks, both inside

and outside NLP.

3.3.1 Attention is All You Need

Both the encoder and decoder of the Transformer architecture consist of a stack of IV layers.
Each layer combines the attention mechanism with a standard pointwise fully connected feed-
forward neural network (FFNN). The encoder layer uses self-attention — attention applied in a

single sequence rather than attention between an input and output sequence. In self-attention,
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each element in the sequence “pays attention” to other elements in the same sequence.
The decoder uses self-attention as the basis for the language model and applies the regular
attention mechanism to the outputs from the encoder layers. The Transformer architecture
is shown in Figure 3.1. This model is conceptually similar to the RNN-based attention model
of Bahdanau et al. [2] which uses the attention mechanism to model the relationship between
the encoder and decoder but uses the self-attention mechanism instead of an RNN hidden

state to form the modeling basis for both the encoder and decoder.
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Figure 3.1: This is a reproduction of the graphic presented by [38]. The encoder uses self-
attention to produce encoding outputs which are fed to the decoder. The decoder uses these
encoding outputs and the outputs from its autoregressive self-attention layer to generate the
final output text. The graphic shows a single Transformer layer. An actual Transformer
model will stack N layers before calculating the output probabilities.
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As discussed, the attention mechanism can better model longer-term memory than an RNN
hidden state. Attention also allows for better parallelization in training than does the RNN
hidden state. Better parallelization implies faster training and more efficient use of compute
resources, which creates the capability for bigger models and larger datasets. Due to these
reasons, among others, the Transformer has achieved impressive state-of-the-art results over

RNN-based models.

3.3.2 Transformer Adaptations: BERT and GPT

The original Transformer was built with machine translation in mind, but several other NLP
tasks could benefit from using an attention-only architecture. Some of these tasks include
standard text classification, textual entailment, sentiment analysis, and question answering.
A recent trend in NLP research is the pre-training of large models on a single task, which
creates generic language data representations fed into models trained for a specific task [34].
BERT is such a model but uses a Transformer architecture for pre-training as opposed to an
RNN. BERT is an encoder-only Transformer that significantly increases the original model’s
parameters and size and is trained on a massive dataset [8]. The pre-trained representations
from BERT are then used with much simpler models trained on specific tasks. This approach
led to a significant improvement in the state-of-the-art for general language understanding

benchmarks.

The Generative Pre-Trained Transformer (GPT) is similar to BERT, utilizing only the de-
coder from the original Transformer instead of the encoder [35]*. Like BERT, it is trained

on massive amounts of data, is significantly large than the original Transformer, and is used

4The model we cite here is the second version of the GPT architecture and is canonically known as GPT-
2. A third iteration of GPT, GPT-3, has since been introduced [4]. All GPT models use the same model
architecture but increase the size of the model and scale of training data at each successive version. We use
GPT to refer to all models which use this architecture.
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to pre-train a generic language representation that is fed into other models trained for spe-
cific tasks. Because GPT is a large Transformer decoder-only language model trained on an

immense data corpus, it is capable of writing novel text of surprising quality®.

The original Transformer, BERT, and GPT have all significantly improved state-of-the-art
for many different tasks NLP. How effective attention-only Transformer models are in other
types of sequence data modeling is still an open research question. As we will see in chapter
4, there are already promising results inside the music domain, and even in other fields such

as image processing [10].

5Samples of text written by GPT can be found online.



Chapter 4

Music Generation Models

State-of-the-art models in music generation are mostly comprised of ANN models. Some
music generation tasks have already seen a Transformer application, while others (such as
expressive performance generation) have not. We will provide an overview of the existing
state-of-the-art in EMP generation and transformer-based music generation models. We also

give some background into the data representation and feature engineering of each model.

4.1 Existing Expressive Musical Performance Genera-

tion Models

EMP generation models fit into one of two categories, rule-based and data-based. Rule-based
systems use hardcoded rules derived using pre-existing musical knowledge and empirical stud-
ies involving human cognition. Data-driven models rely on ML methods and use an existing
dataset of human performances as a guide to learn the mapping between score features and
performance features. Data-based models most commonly use sequential probabilistic or
non-linear ANN methods [5], although there has been previous work with linear and non-
sequential modeling. Cancino-Chacén et al. [5] give a complete overview of all relevant EMP
generation models. We describe a few models, both rule and data-based, which are pertinent

to our work.

28
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4.1.1 Rule-Based EMP Models

The KTH system [15] sits at the center of rule-based EMP models and created the foundation
for all EMP generation models. Development of the KTH system started in the 1980s and
has continued well into the 21st century. The KTH system’s initial methodology defined rules
relating to musical composition structure and how it affects a resulting performance. The
first set of rules applied specifically to singing synthesis and were later adapted to general

musical performance.

Since then, there have been two general methods in the continued development of the
KTH rule system. The first is that of analysis-by-synthesis, which involved using the rules to
synthesize musical performances presented to human listeners (both professional and non-
professional), gathering listening feedback, and then using this feedback to modify the rules
where needed. The second was an analysis-by-measurement method. This method uses direct
computation to evaluate a computational generated performance by comparing it with an
existing real performancel. The analysis-by-synthesis and analysis-by-measurement correspond to
qualitative and quantitative evaluation methods, respectively. Example rules from the KTH

system are found in Figure 4.1.

To our knowledge, the KTH rule-based system is the first sophisticated computational model
for generating expressive performance. The explicitly defined rules in the KTH system
may be those we expect a data-based model to learn. Widmer [39] shows that data-driven
methods learn some rules consistent with the KTH rules and some that are not. Model
evaluation’s problematic nature may describe this phenomenon, as it is not straightforward

how to determine which rules are more “correct” than others. Nevertheless, the KTH rule

IThis evaluation method is consistent with the data-driven approaches but can generally apply to any
model. Data-driven models use the performance data to directly build the model, whereas real performance
data in the KTH system is for evaluation purposes only. Any further updates to the model still rely on a
hardcoded set of rules.
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Phrasing

Phrase Arch Create arch-like tempo and sound level changes over phrases
Final ritardondo Apply a ritardando in the end of the piece

High Loud Increase sound level in proportion to height

Micro-level timing

Duration contrast Shorten relatively short notes and lengthen relatively long notes
Faster uphill Increase tempo in rising pitch sequences

Articulation

Punctuation Find short melodic fragments and mark them with a final micropause

Score legato/staccato | Articulate legato/staccato when marked in the score

Repitition articulation | Add articulation for repeated notes

Overall articulation Add articluation for all notes except very short ones

Table 4.1: Some of the KTH rules given by Friberg et al. [15].

system has been an essential milestone in the evolution of EMP generation.

4.1.2 Data-Based EMP Models: Basis Function Models

The Basis Function Modeling (BM) framework for EMP describes the complete end-to-end
process involving musical performance generation and analysis. This end-to-end process
includes mathematical definitions of score and performance features, computational models
for EMP, and the data processing necessary to convert MusicxML to input score features and
output performance features to MIDI. Eduardo [11] outlines the full mathematical definition
of the BM framework, the evolution of the framework, and its application with specific

feature and model definitions.
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Features

The name “Basis Model” is derived from the BM framework’s definition of “Basis Functions.”
Basis Functions capture different aspects of a score into numerical encodings (i.e., score
features). There are some relatively straightforward Basis Functions, such as the duration of
notes and MIDI pitch (we described these features as the “low level” of the score hierarchy
in section 2.1). However, most of the information in a score cannot be represented so easily.
It becomes a theory-laden activity to use musical background knowledge to find good score

information encodings, especially at the mid and high levels.

The BM framework defines €2 as a space containing aspects of a score. A score basis function
@ :  — R will map elements of a score into some numerical expression based on an aspect
of the score. The value of a score basis function for one element =, € €2 is denoted as ¢(z;).

For example, the score basis function for pitch,

<Ppitch(”i) = MIDIpitch(”i)

will represent the pitch of a given note as the numerical MIDI pitch. The basis function for

dynamic markings, such as forte, would be defined as

@f(”i) = forte(n,;)

where forte(n;) returns 1 if the score element is marked with f, and 0 if it does not.

Similarly to basis functions, the BM framework defines expressive parameters which are mathe-
matical encodings of information taken from a performance matched to a score. An expressive
encoding function y : B — R will encode an event in a matched performance into an ezpressive

parameter, or performance feature. The value of each parameter corresponding to a score
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element z; € Q given a matched performance g, is denoted as y(z,|8q) = t; where ¢, € R.

Example encoding functions are

ydyn (nz|ﬂﬂ) = MIDIvd(ni) and ytempo (nz|ﬂﬂ) = bpm(nz)

which represent expressive dynamics as MIDI velocity and expressive tempo as a local mea-

sure of bpm, respectively.

There are many possible definitions for both basis and expressive encoding functions. Here
we give some example expressive encoding functions which are defined in the first iteration
of the BM framework and provide the foundation for feature set we use. Refer to Eduardo

[11] for a full list of both basis functions and expressive encoding functions

Expressive Encoding Functions

o MIDI Velocity: This encoding function uses the recorded hammer-velocities of the
performed notes as a proxy for expressive dynamics. The loudness of a note is estimated
as a normalized MIDI velocity value.

vel(n;)

» log BPR: The Beat Period Ratio (BPR) is a way to define the local tempo calculated

for every note. It uses the Beat Period (BP), defined as

per
IOIO(ni)

P on

where 101” (egf) and I0T;(7"} are the TOI for the performance and score onsets at note
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n;. The final log BPR is defined as

BP(”i)
BPGU@ ’

ylog bpr(ni) - lOgQ

where BP . is the average BP over the entire piece. This normalizes the local BPR

e

definition according the global tempo of the piece.

« Timing (deviation): Whereas the log BPR defined above encodes the tempo of a
performance (how “fast” it is being played), the function for timing encodes expressive

timing deviations from the indicated timing of a score. It is defined as
Ytim = 6perf(ni) - Onsetperf(ni)

where 6P¢"/(n,) is an estimation of the “correct” onset time, and onset_,..(n;) is the

perf
actual observed onset of a note (see section 3.3.1 of Eduardo [11] for a full working

example).

o log Articulation: Articulation is a measure of the lengthening or shortening of a
performed note duration relative to a noted duration and the current local tempo.
The articulation is computed by dividing the measured note duration by the duration

given by the score. It is defined as

log duration,,,. ¢(n;)
2 duration(n;)BP(n;)

ylog art (nz) =

Models

BM framework computational models first started as simple linear non-sequential models

that learned the relationship between a set of defined basis functions and a single expressive
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parameter, such as MIDI velocity. This version of the BM models each expressive parameter
independently from all others and implies that one expressive parameter’s interpretation will
not affect the other. Although this is not necessarily the case in actual performance?, it is a
simplifying mathematical assumption that makes the models’ development and interpreta-
tion simpler. Both standard least squares regression and a probabilistic Bayesian approach

are used to model the linear relationship.

The BM framework later introduced non-linear and sequential models, both as ANNs. A
standard Feed-Forward Neural Network (FFNN) added the capability for non-linear mod-
eling. This model showed an increase in both the goodness-of-fit and predictive accuracy
over the linear model. A standard RNN was used to implement the sequential model with
features where the time-dependent and sequential nature of music was relevant. Used in

conjunction with a FFNN, this model performed the best relative to all other models.

4.1.3 Data-Based EMP Models: VirtuosoNet

VirtuosoNet, similarly to the BM framework, is a complete end-to-end system for training
EMP models and generating novel performance. Although VirtuosoNet does not explicitly
define a clear mathematical framework and abstract representations of EMP, as does the
BM framework, it contains all of the moving parts necessary to train an EMP model from
scratch. We make a distinction between VirtuosoNet as a set of NN-based EMP models
and the VirtuosoNet framework, which comes with all of the necessary data processing and

featuring engineering as well as model training.

2For example, the effect of a crescendo marking may affect both the dynamics and the tempo at the
same time.
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Features

The VirtuosoNet framework defines both input and output features. Input features contain
standard score data such as pitch, timing, key, and metric information. The VirtuosoNet
framework uses these features as well as more detailed note level information such as the
duration of rests, articulation markings, and others. The framework’s output features are
similar to those of the BM defined above and include tempo, note onset deviation, MIDI
velocity, and articulation. Additionally, the VirtuosoNet framework, unlike any other EMP
generation model, uses features to model the pedal directly. They include the pedal value
at note onset, pedal value at note offset, minimum pedal value between note onset and note
offset, and minimum pedal value between note offset and the next note’s onset. A full list

of data features is given by Jeong et al. [25].

Models

The development of VirtuosoNet models is gradual, although the general model architecture
is the same. The model comprises three parts; a score encoder, a performance encoder, and a
performance decoder. The score encoder learns a score representation C, which is a sequence
with the same length as the input notes. The performance encoder’s job is to learn the style
of a particular performance, and it encodes this into a style vector z. This style vector guides
performance generation so that the model can render different performances given the same
input, depending on the learned style. The performance decoder is a generative model which

uses the score encoding C' and the style vector z to generate the resulting performance.

The first version of the VirtuosoNet model presented by Jeong et al. [22] is a primitive
model and forms the basis for later versions. It introduces a recurrent hierarchical attention

network (HAN) made up of hierarchical LSTM layers used in conjunction with the atten-
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tion mechanism. The HAN forms the building block for all of the different components of
VirtuosoNet. This model’s dataset is an early version of the KAIST dataset and consists
of Chopin performances taken from the Piano-e-competition, with 25 compositions and 217
full performances. No quantitative or qualitative experiment results are given in the first

formulation.

The next iteration of VirtuosoNet builds from the initial HAN layers but also uses a novel
graph-based data representation and model. This model is defined as an iterative sequential
graph-based neural network (ISGN). The score is represented as a graph where the nodes are
the individual notes. The graph’s edges define relationships between the notes; one example
is an edge indicating two notes with the same onset (which implies they belong to the same
chord), another indicating notes belonging to a slur. A gated graph neural network (GGNN)
is used to model the note-level graph representation and is combined iteratively with a HAN

to model measure-level features.

The latest and best-performing version of VirtuosoNet [23] returns to the HAN only architec-
ture. It uses an LSTM based HAN network for every different component of the architecture,
explicitly defining the hierarchical models according to various musical boundaries, includ-
ing note, beat, and measure levels. This model adds additional more abstract hierarchical
models that exist to create better structure at the metrical level and preserve patterns across

the composition’s mid-level structures.

Both the ISGN [24] and HAN [23] version of VirtuosoNet are trained using the full KAIST
dataset and use the same evaluation methods; MSE for the quantitative evaluation and
listening tests for the qualitative. The final version of HAN reports better MSE metrics
than the ISGN. The qualitative evaluation shows that both the ISGN and HAN perform
better than baseline models and better than a “deadpan” performance. The HAN version’s

qualitative evaluation also includes a comparison between the HAN and the publicly available
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version of the BM framework model?.

The results of Jeong et al. [23] show that the HAN performs better than the BM model. Many
plausible reasons may explain the difference in results other than the HAN being a superior
model to the BM. These include differences in the training data for both models, a bias of the
qualitative method towards the HAN, and the fact that the listening test members’ opinion
does not necessarily imply one model being “superior” to another. However, given the results
presented by Jeong et al. [23], we will assume that this version of the HAN represents the

current “state-of-the-art” in the field.

4.2 Music Generation with Transformers

The Transformer has seen some application in music generation. Such models use a discrete
representation of music as a sequence of events with highly sparse encoding vectors. This
representation is consistent with the word embeddings used to train most NLP models and

so has a natural extension in Transformers, designed with language data in mind.

The first model to use the Transformer for music generation is known as the “Music Trans-
former” [21]. It directly builds from the PerformanceRNN of Oore et al. [31]. Perfor-
manceRNN uses the Piano-e-competition data to generate MIDI directly. This model si-
multaenously generates a composition and a performance, combining the role of the composer and
performer as presented in Figure 2.1. PerformanceRNN uses an event-based representation of
MIDI, and all input tokens are a one-hot encoding over the different possible MIDI events.
There are 128 possible NOTE-ON events, 128 possible NOTE-OFF events, 125 possible
TIME-SHIFT events, and 32 possible VELOCITY events, which leads to a 413-dimensional

3The website for the BM model can be found https://basismixer.cp.jku.at/static/app.html. At the time
of this writing, the website is currently unavailable.
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one-hot encoded vector. PerformanceRNN is an autoregressive LSTM model that models
the probability of generating the next note given all previous notes, similar to a language

model.

Music Transformer uses the original Transformer architecture and implementation of Vaswani
et al. [38] with some adaptation and applies it to the same data set and representation of the
PerformanceRNN. One crucial component of the original Transformer architecture we have
not mentioned is its positional embedding. This embedding encodes the sequential nature
of the data into the model, which is otherwise not accounted for using only the attention

Y

mechanism. The original positional embedding is “absolute,” meaning that the embedding
only encodes information about each element’s position in relation to the beginning of the
sequence. Music Transformer uses a “relative” position, which instead adds information
about how far apart two positions in the sequence are. The relative positional embedding
accounts for every possible pairwise distance of each element. The attention mechanism
processes this information throughout the rest of the model. It allows attention to account

for the distance of any two notes to each other, rather than the global position of a single

note in the sequence.

The Transformer architecture with the relative positional embedding outperforms other base-
line models, including the LSTM based PerformanceRNN. Qualitative evaluation shows that
the Music Transformer generates performance with much better long term structure and
overall musical cohesiveness than the performances from the PerformanceRNN*. This result
is consistent with the observation that attention has a better memory than the hidden state

of an RNN cell.

Building from the Music Transformer, OpenAl introduced MuseNet [33]. MuseNet is both

4Sample performances for both the PerformanceRNN and Music Transformer are available online from
the Magenta Research group of Google Al.
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philosophically and architecturally similar to GPT. It uses an enormous decoder-only Trans-
former model and trains it on a massive amount of data to build a model capable of gen-
erating novel music across many different domains. MuseNet is trained using only MIDI
data gathered from various internet sources (including the MAESTRO dataset) and uses an
event-based token representation similar to the Music Transformer. In contrast to the Mu-
sic Transformer, which only operates with western classical solo piano music, MuseNet can
generate music across a variety of genres in multiple instruments. OpenAl has not directly
released any research results comparing the benchmark results of MuseNet to other models.

Still, it is evident from listening to MuseNet samples® that it generates high-quality music.

OpenAl also released another music generation model which uses Transformers, JukeBox [9],
that deals directly in the audio domain. The choice to directly model audio is motivated
by the fact that symbolic data forms do not contain enough information to capture musical
performance’s subtleties across a variety of different instruments®. JukeBox is comprised of
a Vector Quantized Variational AutoEncoder (VQ-VAE), which learns to encode the audio
data into a low-dimensional representation, and a Transformer model similar to MuseNet,
which uses the encoding to generate new music. Although the samples generated by JukeBox
are impressive in their sound quality and overall musical cohesiveness, much work is still
needed in the direct audio generation domain to produce audio of high enough quality that

it competes with human productions.

Shttps://openai.com/blog/musenet/.
61t is also motivated by the abundance of audio data compared to symbolic, which we discussed in chapter
2.



Chapter 5

Experiments and Results

Given the powerful advances in NLP and music generation tasks, our general goal was to
investigate the Transformer model in application to EMP generation. Both language and
music are by nature sequential and hierarchical. As such, one would expect the strengths of
a Transformer model, created specifically for an NLP task, to have natural extensions into
musical tasks (as was shown by the “Music Transformer” and OpenAl’s generative models).
This project’s initial purpose was to determine if a Transformer-based model improves upon
VirtuosoNet, given the same data, features, and evaluation metrics. However, as discussed in
chapter 6, answering that question proved to be more complicated than initially anticipated
and led our research in a different direction. We present our initial method and experiment

results in this chapter.

We use the complete end-to-end generation system of the VirtuosoNet framework. There

are three major reasons for adopting the VirtuosoNet system.

1. The KAIST dataset is the largest publicly available dataset used in EMP generation.
2. VirtuosoNet models are the “best performing” in EMP.

3. The data processing and model architecture code of the VirtuosoNet framework are

open-sourced’ .

https://github.com/jdasam/virtuosoNet.

40
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If we consider VirtuosoNet to be state-of-the-art in EMP generation, it provides a natural

starting place to compare against any further model development.

5.1 Data and Features

The VirtuosoNet system uses handcrafted features for both scores and performances, which

are outlined in chapter 4. We use the same feature set.

5.2 Our Model

In the VirtuosoNet system, there is a 1:1 mapping between notes in scores and performances.
As mentioned in chapter 3, encoder-decoder seg2seq models with variable-length input/output
sequences account for the difference in length by using a generative decoder model which
relies on the input encoding. Because our input and output sequences are the same lengths,
we saw no need to include a generative decoder. Our model is an encoder-only Transformer
model. Sitting on top of the Transformer encoder is a simple FFNN that takes as input the
learned representation from the Transformer and maps it to the final output feature set. We
use the original absolute positional embedding of Vaswani et al. [38]. The model architecture

is shown in Figure 5.1.

5.3 Experiment Methods

Our initial experiments were designed to answer two questions:

1. Does a Transformer based EMP generation model outperform a similar LSTM based
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Figure 5.1: Our model uses the same encoder Transformer architecture as shown by Vaswani
et al. [38]. There are N Transformer layers which are composed of multi-head attention and
feed-forward mechanisms. There is a simple linear layer at the top of the architecture which
creates the final mapping to the output features.

EMP generation model?

2. Does a Transformer based EMP generation model outperform existing state-of-the-art

(VirtuosoNet) models?

To answer both of these questions, we ran all of our experiments using the existing Vir-
tuosoNet framework. The VirtuosoNet framework defines real-valued features, and the re-
sulting models are regression models. All VirtuosoNet models use MSE as both the loss
function for training and reconstruction error for quantitative evaluation. VirtuosoNet mod-
els are trained using an 8-1-1 train/valid/test data split, and Jeong et al. [23] present MSE

results for several different models. These MSE results are given for each different expressive
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parameter, including tempo, velocity, deviation (timing), articulation, and pedal. We follow
the same method for our quantitative evaluation, using the same data split, loss function,

and evaluation metrics.

Our models were trained for 50 epochs, and the best model parameters were selected ac-
cording to the lowest validation evaluation score. Our models were implemented in PyTorch
using their native Transformer library. We used Neptune AI [29] to manage our experi-
ments and report the metric feedback. Data for all of our experiments, including the model

hyperparameters and metrics, can be found online?.

Our main experimental goal was to find the best model configuration for a Transformer based
model. To do so, we ran a reasonably exhaustive hyperparameter search for our Transformer
model. To guide our search, we trained our baseline LSTM model and a few VirtuosoNet
models in tandem with our Transformer model. We used the evaluation results from the
validation set to gain an intuition about which family of models performed the best. The

final test set evaluation happened after all model development was finished.

5.4 Model Evaluation: Quantitative

We use several different model configurations for the Transformer. Our Transformer baseline
has six layers, six attention heads, and a hidden size of 256. We chose this as a base
configuration because it closely matches the size of the original Transformer [38], except for
the hidden size of the feed-forward layer. We use a smaller hidden size of 256 for our base

layer hidden size due to the relatively small dimensionality, 78, of the model’s input data?.

Zhttp://ui.neptune.ai/richt3211/thesis.

3The original Transformer uses a baseline input dimensionality of 528. In this case, the model inputs
are word vectors whose size can be configured dynamically to find the best word representation for a given
model. In our case, our input size dimensionality is fixed according to the input features of the VirtuosoNet
framework.
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Model Configuration Results in MSE

N4 M L d,, D LR C H| Tot t v d a P
123 LSTM | 3 256 0.1 0.1 0.5 1.08 0.84 135 1.02 1.11 1.08
147 T-BL 6 256 0.1 3e5 05 6] 086 054 0.80 0.88 0.80 0.92
169 128 0.87 0.55 079 096 0.88 0.92
128 528 0.86 0.50 0.76 0.88 0.82 0.93
133 T-Best 1024 0.83 047 0.76 088 0.82 0.88
118 12 0.89 0.65 0.82 0.88 0.82 0.95
181 24 093 0.62 097 089 1.09 0.95
132 13| 0.84 051 0.77 095 0.81 0.88
171 0.2 091 074 082 095 086 0.94
173 0.01 1.01 086 1.05 090 1.18 1.01
188 26| 084 0.62 0.78 0.89 0.79 0.87
134 12 528 0.85 054 075 090 0.86 0.89
190 12 13| 0.87 049 0.78 0.89 0.87 0.94
135 12 528 13] 084 047 081 0.89 0.86 0.89
125 T-Worst | 24 528 093 0.69 099 091 1.12 0.94
HAN-BL | - - - - - - | 077 040 0.67 0.77 0.72 0.84
HAN-S | - - - - - - 073 027 061 0.75 0.69 0.82
HAN-M | - - - - - - 10572 022 053 0.7 0.75 0.81

Table 5.1: A comparison of 3 different families of EMP generation models: VirtuosoNet
models, Transformer models, and our LSTM baseline models. N, is the ID of the Neptune
experiment, L is the number of layers, d,,;, is the dimension of the hidden layers, D is the
dropout, LR is the learning rate, C' is the gradient clip, and H is the number of attention
heads. Empty spaces for the Transformer configuration values imply the baseline value (for
example, the number of layers for model 169 is 6). The right side of the table presents
the MSE results for all models along the five different expressive parameters used in the
VirtuosoNet framework, as well as the total MSE which is an aggregation of all the individual
expressive features. The entries for the HAN models come from VirtuosoNet and are given
by Jeong et al. [23].
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Table 5.1 contains the full results of the final evaluation and includes MSE results for all
of the different Transformer models, our baseline LSTM model, and the best performing

VirtuosoNet.

As shown in Figure 5.2, the first major implication of the results is that the Transformer
model easily outperforms the baseline LSTM but does not outperform the VirtuosoNet
models. The best performing Transformer model uses all of the same baseline Transformer
parameters, except for a major increase in the hidden layer’s dimensionality (this is found
in model Ty ., we use the notation T to refer to the Neptune ID of a Transformer
model.). Other models that perform well include those which only increase the number
of attention heads (TN132 and TN%) and those with an increase across several different
parameters (7' Nlas)' It appears that increasing the number of layers degrades performance

(Tw,,o» Ty, Ty, ), and so does increasing the dropout and learning rates (Ty, , Ty, .)-

Experiment Results in MSE
125

1.00

0.75

MSE

0.50

025

0.00

LSTM-BL T-Worst T-BL T-Best HAN-M

Model

Figure 5.2: Results for the three different model families, LSTM baseline, Transformer, and
VirtuosoNet, are shown in different colors. There is a substantial difference in results for
each model family, with the LSTM baseline performing the worst, VirtuosoNet performing
the best, and the Transformers sitting in between.
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Although we see improvements by increasing the hidden dimension and number of attention
heads, the performance improvements are not notable. There is only a difference of 0.03
in MSE between the best performing Transformer model and the Transformer baseline. In
contrast, there is a difference of 0.11 between the best Transformer model and the best HAN
model. An initial interpretation of these results would indicate that a Transformer model
can not even match the existing state of the art in EMP generation (let alone beat it). As

we discuss in the following section, this interpretation of results is not necessarily valid.



Chapter 6

Analysis

Our initial experiments using a quantitative evaluation indicated that our Transformer model
does not improve the state-of-the-art in EMP generation. As a method of “debugging” our
Transformer model to look for potential errors and improvements, we wanted to listen to the

performances generated by our models to identify any problems, if they existed at all.

These listening tests acted both as an error analysis as well as our qualitative evaluation
of the models. It became apparent to us right away that there was a disconnect between
the quality of the model according to the quantitative metric and our evaluation. In this
chapter, we present this analysis. The analysis includes our qualitative evaluation method,
new experimental methods to improve our models, and conclusions about each model’s

quality according to our listening tests.

6.1 Evaluation Error Analysis

Listening tests require generated performances, which we produced by using the VirtuosoNet
framework to create MIDI files given our models’ feature output. We generated performances
for several of our trained models using six compositions from three different composers,
listed in Table 6.1. For easy comparison of each model’s performance, we loaded their
relevant MIDI files into the Digital Audio Workstation (DAW) Logic Pro X. We used the

“Steinway Grand” instrument synthesizer to create the audio. Logic Pro X also provides

47
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Composer | Composition

Bach Prelude in E Minor, BWV 855

Bach Prelude in F-sharp Major, BWV 858
Chopin Etude Op. 10, No. 12

Chopin Fantaisie-Imropmptu

Beethoven | Piano Sonata No. 17 First Movement

Mozart Piano Sonata No. 11 First Movement

Table 6.1: The compositions used for the qualitative evaluation of our models. All scores
come in the form of MusicXML from MuseScore. None of the scores were present in the
training data.

visualizations of different performance aspects, including the MIDI velocity of each note and
the sustain and soft pedals’ value throughout the performance (see Figure 2.3 for example

pedal visualizations)?.

As already mentioned, it was apparent that there was a mismatch between a model’s perfor-
mance quality according to the MSE value and our evaluation. For example, the Transformer
model Ty, had much worse validation MSE metrics than almost every other Transformer
model. However, our listening test revealed that the absolute tempo for smaller models,
such as the Transformer baseline Ty, was much faster and sounded worse (to the point
where the performances are almost “unlistenable”) than Ty,,.- The potential disconnect
between the model’s quality as determined by quantitative and qualitative evaluation led us

to investigate possible problems with the training methods used by Jeong et al. [23].

One of the first potential problems we identified was the MSE loss and evaluation function.

The output features of VirtuosoNet are a sequence of vectors with a length of 11. The first

! Performances generated by models are available through our Neptune Project. Each experiment has an
ID, and we’ve run performance generation code for many of the models. To listen to performances, visit an
experiments’ artifacts tab and download available performance MIDI files. These MIDI files can be played
in any DAW software, such as Logic Pro X. If performances do not exist for an experiment, please contact
the author.
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four features correspond to a single component of expression. They are tempo, velocity,
deviation, and articulation, respectively. The last seven features are all different values that
correspond to information about the sustain pedal [25]. In Table 5.1 we show MSE metrics
for five different expressive parameters, including all the four features previously mentioned
and the pedal. Our reference to pedal MSE is an aggregation of the seven different features
that contain pedal information. In contrast, the other 4 MSE metrics only apply to a single

feature.

The original MSE used to train VirtuosoNet (which we call VirtuosoNet MSE) assumes that
every individual feature of the output vector contributes equally to the final output and
corresponding loss optimization. The pedal parameter has seven times as much information
as every other parameter, and so the VirtuosoNet framework MSE places more importance
on pedal quality over every other feature. Given that the VirtuosoNet framework MSE loss
is used both for model training and evaluation, this means that it inherently rewards those
models which express pedal better than all other performance features. If the VirtuosoNet
models outperformed our Transformer models according to this metric, does that mean that
they are better at modeling EMP generation as a whole, or that they are simply more fit to
model the pedal? In an attempt to answer this question, we came up with a new weighted

MSE loss function that allows for a more fair representation of the evaluation method.

We define the output vector as an 11 dimensional vector

VvV = {taUad?a7p07p17p27p3ap4ap57p6}

where t, v, d, and a represent tempo, velocity, deviation, and articulation respectively, and

p; represents a single component of the pedal. For a predicted output vector v and the target
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output vector v, VirtuosoNet framework MSE loss is

MSE(v,9) =~ 3 (v~ 9,

-
[
—_

This can also be re-written as

N 1 N N - N N
MSE(V7 V) = ﬁ[(vt - Vt)2 + (VU - V’U)Q + (Vd - Vd>2 + (Va - Va>2 + Z(Vpi - Vp )2]

We introduce 5 different weight values: oy, a,,, a4, a, and «a,,. Our weighted MSE loss is

defined as

1

— _ 5 \2 5 2 S 2
at+av+ad+aa+ap[at(vt Vi)®+a, (v, —¥,)" +ay(vy — V)" +

WMSE(V7 ‘7)

A Ly )
aa(va _ Va)2 + ap? Z(Vpi - Vpi)Q]
=1

VirtuosoNet framework MSE can be seen as the weighted MSE with o, o, a4, o, = 1, and

ap:7.

This loss formulation shows the heavy bias towards the pedal feature. Is this is the right
way to conceptualize what a ‘good’ performance is? Would a different configuration of
the expressive feature weights lead to a better outcome? Answering such questions in a
straightforward and ‘objective’ manner according to a quantitative metric is not plausible
with our weighted MSE. Every different configuration of weights changes the evaluation
metric itself, and therefore any direct metric comparison across experiments is meaningless.
Knowing this, we continued to experiment with different weight configurations relying on
our qualitative evaluation to determine performance quality. We present our observations

from listening to model performances, with and without the change in MSE.
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6.2 Qualitative Evaluation

Our first general observation given our new loss evaluation is that the two most important
factors for overall performance are tempo and pedal. Performances with either of these two
features outside of certain bounds make performances unlistenable. Suppose a performance’s
global tempo is too fast, and every other expressive parameter renders correctly. In that case,
the resulting performance will still sound bad enough that it is not worth listening to at all?.
We noticed a similar phenomenon with the pedal. Some models generated performances
with the sustain pedal applied at all times with very few breaks, and resulting performances
are “muddied” and unrefined. Although these performances are more bearable than those

with extreme tempo, they are still hard to listen to in any meaningful way?>.

We also notice that the tempo and timing of the Transformer models are more dynamic
than the LSTM models, both for our LSTM baseline and the VirtuosoNet models. For some
models, the variability in timing seemed to be a good thing, while for others, it was bad
enough that it almost sounded like the model was still “learning” how to play. The tempo for
all LSTM based models (except for some slight variations in the performances from HAN-
M%) was consistent and non-changing to the point of sounding robotic, almost like a deadpan
performance. On one extreme with Transformer models, the highly dynamic tempo at times
sounds like a real performer making mistakes®. The other extreme is performances of some

LSTM models that are so mundane they do not sound “human” at all®.

The pedaling in general of all models was mediocre at best. This observation is consistent

with those of Jeong et al. [23]. There are models with decent performance pedaling quality

*See T, Fantaisie Impromptu and T = Etude Op. 10 No. 12.
3See T, Piano Sonata 11.

4Performances for the HAN-M are available at N 5.

°See Ty, Piano Sonata 11.

See LST My, Piano Sonata 11.
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Model Configuration Expressive Weights
Nig | L dpq H| oy Ay Qg g @
150 | 256 6 6 1 1 1 1 7
154 0.2 0.2 0.2 02 0.2
156 0.33 0.11  0.11 0.11 0.33
157 0.4 0.067 0.067 0.067 04
159 | 528 12 13| 0.4 0.067 0.067 0.067 0.4

Table 6.2: The model configurations of additional experiments we ran after our initial quan-
titative evaluation effort. We show similar hyperparemters as in Table 5.1. There are
additional paramter values that are not present but are used in Table 5.1: LR is 0.0003, C'
is 0.5, and D is 0.1

that somewhat follows the composition’s natural cadence but does not match pedal in actual

human performance.

Our first experiments with the weighted MSE used an even weight distribution. We ran
a few additional experiments with the tempo and pedal weights higher than others, along
with some model size changes. Table 6.2 shows a full description of the models and their

parameters.

T Nysyo which weights all expressive parameters evenly, generates performances with the global
tempo slightly too fast and an extremely muddy pedal. Ty _, which uses the VirtuosoNet
MSE, produces better performances with reasonable pedaling. However, the tempo is in-
consistent enough that the performance loses its cohesiveness as a whole. To further test
our hypothesis that the tempo and pedal are the most important expressive parameters, we
increase the weights for both tempo and pedaling higher than all other parameters in model
Ty, - We found that the tempo and pedal weights Ty _ - were a bit too low - specifically,
the pedal is almost just as muddy as it is in Ty _ and the tempo is still a bit too fast, albeit

more consistent and cohesive than Ty . We further increased the tempo and pedal weights
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in Ty, and Ty, and found that Ty _ is the best sounding Transformer model”. Tt is
likely that were we to continue to experiment with a different configuration of the weights

that we could come up with increasingly better-sounding models.

Our last general observation is that the VirtuosoNet model HAN-M produces the best overall
performances. In general, we feel that the tempo for HAN-M is a little too slow, but it still
creates the most natural expression. This expression is most apparent in its performance of
Beethoven’s Piano Sonata 178, whose introduction leaves a large space for interpretation to
achieve the desired listening result. We found that the only model that made this perfor-
mance “interesting” was the HAN-M. Although we have previously emphasized the problem
using the existing quantitative metric to evaluate our models, our quantitative and qualita-
tive evaluation of the HAN-M model indicates that it is the “best” model. The proposed
Transformer architecture does not improve upon existing models. We will provide some

intuition about why this is and possible model improvements for future work in chapter 7.

TPerformances of Fantaisie Impromptu best demonstrate these differences. Compare TNy TNy TNy



Chapter 7

Discussion

The main research question we set out to answer was whether or not a Transformer model
could outperform the existing state-of-the-art in EMP generation — our experiment results
do not indicate that is the case. We provide some hypotheses that explain the difference in
model quality, which are centered around problems with the experiment method (evaluation)
and our model architecture. The plausible explanations for a poorer performing model also

form the foundation for future experiments in the area.

7.1 Better Evaluation

The most interesting observation from our experimental results is the mismatch between
quantitative and qualitative evaluation. Although both evaluation methods identified the
same model as the best performing, several mismatches were found in other experiments
relating to our Transformer models. These mismatches may be explained by the particular
VirtuosoNet framework feature definitions which, as we showed in chapter 6, directly affect
the output of the MSE metric. Because the VirtuosoNet framework MSE weighs pedal as
more important than all other expressive parameters, a model which completely fails to
output a decent tempo but excels at pedaling may be evaluated as a “high-quality” model.
Such an evaluation is not desirable, as tempo is an essential component of the overall listening

experience. Any attempt to modify the metric calculation (as we did) or change the feature

o4
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definitions makes the comparison interpretability of different models impossible.

For these reasons, we call to question the validity of using MSE or other similar metrics
for quantitatively evaluating EMP models. Although the current evaluation metrics may
facilitate the proper evaluation for some aspects of performance, they are too dependent
on the underlying feature definitions. The definition of features is an ongoing and evolving
process that is an essential component of model development. The lack of consistent and
standard evaluation methods in EMP performance (and musical performance in general)
creates a problematic space for conducting useful experiments. Although this limitation can
be overcome using a sophisticated qualitative evaluation involving listening tests by profes-
sional musicians, such an evaluation method is time-consuming, expensive, and potentially

inaccessible.

We again draw an analogy to current research methods in NLP and machine translation to
provide some concrete suggestions for developing better quantitative evaluation metrics. M'T
used to face a similar set of evaluation problems that currently plague EMP. MT evaluation
was mostly conducted by humans, which (although extensive) was too expensive, took too
long, and was not consistent or reliable. The Bilingual Evaluation Understudy (BLEU)
metric [32] addresses these complications. The BLEU metric’s two fundamental principles are
that a computed translation’s quality is determined by how closely it can match an existing
human translation and that a single output translation should compare against multiple
reference translations at the same time. The BLEU metric is also computed by comparing the
output text from MT models instead of directly using the output features that are often

specific to a model, as does MSE.

It would make sense for an EMP generation evaluation metric to loosely match the principles
of BLEU. The first improvement to be made is to compare the final output representation

(MIDI) rather than directly use the defined feature set. Using MIDI would allow easy
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comparison of models that use different feature representations and significantly improve the
robustness (or lack) of experiment results. The other potential improvement would include
comparing a single generated performance to several reference performances at the same time
and reporting a single metric number that represents the aggregate reference comparison.
Although the underlying mathematics of evaluation widely differs between EMP and MT,

the general principles that guide the evaluation can be the same.

7.2 Possible Model Improvements

With the understanding that our quantitative evaluation metrics may not properly indicate
the quality of our models, we provide some hypotheses about why the Transformer model
was outperformed by VirtuosoNet. They are centered around high-level components of the
model architecture as opposed to the underlying mechanisms (attention in the Transformer

and the hidden state in an RNN) for the different modeling domains.

The first plausible explanation for the difference in performance between VirtuosoNet and
our Transformer model is that VirtuosoNet models explicitly define the hierarchical layers
of music into the model. The Transformer models, which are a straight implementation of
the original architecture, have no such “musical knowledge” baked in. VirtuosoNet models
are primarily composed of hierarchically based attention layers defined at note, beat, and

measure levels!.

Our initial expectation was that we would see similar results because the Transformer out-
performs other comparative models in NLP. We did see a significant improvement over our

baseline LSTM model, which is architecturally similar to our Transformer model. This in-

IThis type of hierarchical structure is something that we would expect the Transformer model to learn
given its composition of stacked attention-based layers. Although we never ran experiments to verify this,
each layer should be learning a more abstract representation of the score.
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dicates that the attention mechanism in a Transformer does improve upon the hidden state
recurrence mechanism of an RNN. However, it appears that the “hardcoded” musical infor-
mation in VirtuosoNet models is more important than merely throwing a different type of

sequential computation at the problem.

One interesting observation from the qualitative evaluation is that the Transformer models
were more dynamic, both good and bad for the resulting performances. A model that is too
dynamic (especially in tempo) lacks the cohesiveness that makes performance identifiable.
Performance that isn’t dynamic enough is musically uninteresting. The desire to create more
interesting computational performances is the driving factor for using ML to build compu-
tational models, given the highly undesirable deadpan performances. Transformer models’
dynamics indicate that they are potentially more expressive and creative, which are desired
traits in generating novel performance. It could be the case that a Transformer architecture
that explicitly defines hierarchical musical layers in the model results in performances that

have both consistency and creativity.

The other primary plausible explanation for the difference in model performance is that we
lost a fundamental component of expressiveness by removing the Transformer decoder. We
chose an encoder-only Transformer model based on the VirtuosoNet framework definition of
EMP as a one-to-one mapping between a note in the score and its corresponding expression
in performance. We also chose this model because of the success of similar Transformer adap-
tations such as BERT [8]. As discussed in chapter 3, the original encoder-decoder Transformer
architecture maps between wvariable length sequences. The decoder uses an internal repre-
sentation of the input from the encoder as well as an autoregressive model to generate from
scratch the target sequence. Although our model learns a one-to-one mapping, we believe
that the full encoder-decoder architecture may better model EMP in general. From a philosoph-

ical perspective, the encoder-decoder assumes that generation by the performer is as fundamental a
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component of the performance process as is understanding a score. An encoder-only model
assumes that performance is encapsulated only by apprehending the score. Removing the

decoder cuts out creative freedom on the part of the performer.

VirtuosoNet is an encoder-decoder architecture and does not lose this fundamental compo-
nent of performance, as does our model. We suspect that a full encoder-decoder Transformer
architecture would have better capability to create both consistent and creative performance.
Although it is possible to develop a model which explicitly defines the hierarchical layers as
does VirtuosoNet, merely adding the decoder may be enough to build a better performing

model?.

2We attempted to implement such a model after our initial experiments but ran into practical problems
with the model dimensionality using PyTorch’s native Transformer implementation.



Chapter 8

Conclusion

As we have outlined, this project underwent an unexpected evolution of purpose. Our initial
goal was to determine if we could outperform the existing state-of-the-art EMP genera-
tion system with the same research methods and only a computational model change. The
initial quantitative experiment results indicated that a Transformer does not outperform
hierarchical-based recurrent models. However, when we ran our subjective evaluation com-
paring performance among the two families of models, we determined that declaring one
model as better than another is not straightforward. This ambiguity led us to question the
validity of the original research method, particularly with the evaluation metric, and shift
our own toward more nuanced and discovery-based experiments. We want to use our experi-
ence in running these experiments to provide some high-level thoughts on some philosophical

related to computational EMP.

8.1 Looking Forward: Finding the FEssence of Perfor-

mamnce

As we discussed and developed this project, one thought that plagued us is that we do not
have a proper understanding of fundamental components that comprise musical performance.

Without a strong background in music, it was hard to understand how to build and analyze

59
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our computational models. Widmer, in his Con Espressione! Manifesto [40], emphasizes the
importance of focusing on discovering the essence of music itself and using a more in-depth
understanding to develop more impactful technology related to MIR. Given the success of
Transformer models in NLP, we thought it would be relatively simple to empirically show
that we can build better EMP models by throwing the powerful attention mechanism at a
fundamentally sequence-based modeling problem, which had never been done. It is only after
running our experiments and taking a step back to look at the results that we understand

what Widmer means when he refers to the essence of music.

Our experience in developing this project convinces us that music’s computational study is
an inherently difficult problem, not because of the limits of computation but because of our
current limited understanding of musical phenomena. It is relatively simple to experience
music personally and share that experience with others. However, our (and Widmer’s)
conjecture is that there is a fundamental disconnect between our understanding of music’s
phenomenological aspect and the actual statistical patterns of nature that make music so
appealing. MIR research attempts to encode these statistical patterns in computation, and as
such, deriving results that are meaningful in practical application with real human interaction
is non-trivial. Widmer suggests that we focus on understanding the relationship between

music in nature and music as it is perceived, and we echo that sentiment here.

A deeper understanding of music may be an essential component needed to derive better
evaluation systems for performance, which is a driving factor in the future development of
performance generation models. To create a proper evaluation system or metric, we first
need to understand what exactly it is that constitutes a “good” or “bad” musical performance to a human

listener?. The answer to this question needs to come from a study in musicology, as well as

LCon Espression is the Italian phrase for “with feeling” and is used as a direction in musical notation.

2This is a separate question from determining the quality of a musical composition, or even of the
synthesis of performance (whether it is the form of an acoustic instrument or a digital synthesizer). It is
not clear where to draw the exact line between composition, performance, and synthesis from the human
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computer science or artificial intelligence.

We want to adopt Widmer’s philosophy to guide our future explorations by drawing from the
fields of musicology, music psychology, music cognition, and further advancement in com-
puter science and mathematics to come closer to discovering this essence. From this work,
we have learned that using the attention mechanism and Transformer models in EMP gen-
eration creates much more dynamic performances, both “good” and “bad,” than recurrence
models. The essence of this finding could be that using the long-term memory that attention
provides allows more creative freedom in the performance process. The shorter-term memory
of an LSTM may constrain the models to rely on global score features such as the overall
tempo. It also may be the case that having too much creative freedom without respect for
global conditioning breaks the inherent musical boundaries defined by cognitive perception.
We found this to be the case with our Transformer models, which were so fast that they

were “unlistenable.”

Further experiments with modeling, data gathering, feature extraction, and evaluation, as
well as an exploration of what determines a quality musical experience from a musicological

and human cognitive perspective, will help answer these questions. We hope that we can

listener’s perspective. Although we conceptualize them as independent from each other (which simplifies
our mathematical assumptions), as shown in Figure 2.1, they may be entirely dependent or even the same
phenomena expressed differently in nature. For example, a musician performing a Jazz improvisation on a
guitar may use the physical process of synthesizing sound, such as how he strikes or bends a guitar string to
reach a particular note, as driving factors in the musical piece. In this case, the guitar instrument’s physical
construction enables him to create musical subtleties in both the spontaneous composition and improvisation
performance. Is there a clear cut line between what constitutes composition, performance, and synthesis in
such a case?

On the other hand, we can analyze over 1000 symbolic musical compositions by Johann Sebastian Bach
and their many musical adaptations over the last several hundred years. One example is the well-known
adaptation of his Prelude No. 1 in C Major (BWV 846) as the accompaniment to a melody composed by
Charles Gounod and set to the famous Latin prayer’s lyrics, Ave Maria. The original arrangement, published
in 1853, was for violin (or cello) with the piano. It has since been arranged and performed countless times for
different instruments, including guitar, string quartet, piano solo, solo vocal, and full choir. We can view the
original piano Prelude as its own composition and separate from the many different adaptations in design,
performance, and synthesis that complete the full musical experience. This ambiguity is one example of the
considerations that need to be taken into account when creating the musical definitions necessary to build
computational models.
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continue to explore these problems using additional views drawing from musical research to

come closer to finding the essence of EMP performance and music as a whole.
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