Fomal Verification of Dynamic Web
Pages

Skyler Griffith
University of Utah

UUCS-21-006

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

22 April 2021

Abstract

Web pages are widely used and error prone pieces of software, making them op-
portune for formal verification techniques. However, much of the prior literature, such
as a project called Cassius, focuses on verifying static pages while largely ignoring
dynamic ones. This presents a gap in the research, as the vast majority of the modern
web is made up of dynamic pages. In this project we expand upon Cassius to show that
it can also work on dynamic pages. We take a simple dynamic page with a growing list
and build havoc and induct tactics into Cassius’ proof framework to give it the power
to formally verify facts about the dynamic page. In addition to successfully verifying
a dynamic web page, we also considerably improve Cassius’ performance on large
static pages.

FORMAL VERIFICATION OF DYNAMIC WEB PAGES

by

Skyler Griffith

A Senior Thesis Submitted to the Faculty of
The University of Utah
In Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science

In

Computer Science

Approved:
Pavel Panchekha Mary Hall
Thesis Faculty Supervisor Director, School of Computing

Jim de St. Germain
Director of Undergraduate Studies

April 2021
Copyright © 2021

All Rights Reserved

ABSTRACT

Web pages are widely used and error prone pieces of software, making them opportune
targets for formal verification techniques. However, much of the prior literature, such as
a project called Cassius, focuses on verifying static pages while largely ignoring dynamic
ones. This presents a gap in the research, as the vast majority of the modern web is made
up of dynamic pages. In this project we expand upon Cassius to show that it can also work
on dynamic pages. We take a simple dynamic page with a growing list and build havoc
and induct tactics into Cassius’s proof framework to give it the power to formally verify
facts about the dynamic page. In addition to successfully verifying a dynamic web page,

we also considerably improve Cassius’s performance on large static pages.

CONTENTS

ABSTRACT . .. ii

LISTOFFIGURES i iv

LISTOFTABLES e \4
CHAPTERS

1. INTRODUCTION. e 1

2. BACKGROUND 4

3. RELATEDWORK e 6

4. CASESTUDY 8

41 TheWebPage 8

4.2 Verifying JavaScript 9

43 Proof Theorem i 9

4.4 Components 10

45 Proofwalkthrough....... 10

5. METHODS. ... 14

5.1 Verifying Javascript 14

5.2 Havocing Informationin Cassius 15

53 InductioninCassius.............. i 16

5.3.1 Preconditions of an Inductive Proof 16

5.3.2 Formal Description of Induction. 16

533 BaseCase i 18

534 ThelnductiveCaset 18

535 ProvingtheTheorem 18

6. RESULTS 19

7. CONCLUSION e 21

REFERENCES e e e e e 22

4.1

42

4.3

51

LIST OF FIGURES

The Cassius capture script IR of the JavaScript from our page. This describes
a single addition to the listinourwebpage........................... ...

Above is a tree representation of our web page, where each node represents
a single component of the page. The Cassius tactic language lets us define
facts about specific components and localize our proof to different nodes or
groups of nodes in the page’s elementtree.

Above is the full proof for the T. This proof works by splitting the page into
the list, button, and items that make up the list, and then proving that T is true
about our list using assert to get Z3 to check preconditions,pre to create user
established preconditions that are implied by those asserts, havoc to remove
constraints on the proof, and induct to perform a proof by induction on the
listitself.

Above are the trees that represent what the list in our page looks like for the
base case, inductive step, and theorem case of our inductive proof. In each
case we leverage Cassius’s ability to havoc information about what happens
between two elements of the list. This lets us set up a base case (a.) that is the
first three elements of the list, followed by an unknown number of different
things in the list, followed by the final element. The inductive step (b.) takes
this one step further, where the first three elements and the havoced space in
between let us have a list of N elements, and tacking on the step node lets
us have a list of N+1 elements, where the space after is havoced so that this
works no matter where in the list the N and N+1 case end up being. Finally
the theorem case (c.) defines a list of unknown length that we use to show
that our inductive fact implies that our original theorem is true.

11

17

6.1

LIST OF TABLES

In addition to allowing us to prove facts about dynamic web pages, the in-
ductive proof scheme also lead to sizeable increases to performance on static
pages. Above are the effects of havoc and induct on a static version of our
pagewithalistof 50elements..........., 20

CHAPTER 1

INTRODUCTION

Millions of people use the web for a variety of reasons, from visiting the personal page
of a university professor to securing health insurance on healthcare.gov. In addition,
web pages are used in many different settings: on a computer, a smart phone, or even a
television. Each of these different use cases introduces a host of challenges and opportuni-
ties for bugs.

A single web page on a single device can also be loaded in a near countless number of
configurations, as nearly every modern browser includes the ability to resize the window
or zoom in and out. It is possible, and even fairly common, for a new configuration of the
browser, an unexpected platform, or a combination of the two to introduce bugs that break
the functionality of a web page [3].

To add to all of this, web pages are complex. They are generally programmed in 3
different languages: HTML, CSS, and JavaScript. The code in these languages must be
well formed and interact with the rest of the page’s code correctly. Given all the ways that
web pages are used, and all the ways they can break, there is an obvious utility to having
a tool that could be used to prove that a page is bug free.

There are two parts to this task. First, you need a way to specify the expected behavior
of the page, in terms of its appearance and functionality. Second, you need a tool that takes
the HTML, CSS, and JavaScript of the page and checks that it always meets that expected
behavior for all possible configurations.

A system called Cassius already accomplishes this for static web pages. Its tactic lan-
guage makes it possible to both specify the expected appearance of a web page and to
prove theorems about that appearance for a specific page. Cassius works by constructing
a set of queries that are fed into the SMT solver Z3 [2]. Specifically, these queries are the

negation of the specified appearance. In other words the query states that “for our web

2

page, this specification is violated by some configuration”. If Z3 finds a configuration of
the web page that satisfies that query, then the user is given an example of how to trigger
a bug, which they can use to improve the page. If it cannot then the web page satisfies the
specification.

The problem with this system is that it only works on static web pages, which make
up a small subset of the modern internet, because it views web pages as a snapshot of
the page’s current state. This means that to verify something with multiple states, such
as a dynamic page, Cassius has to go through each state and verify them one by one. A
dynamic web page is capable of having an infinite number of states, making this process
potentially interminable on dynamic web pages. This is not an unsolvable problem how-
ever, and we can expand this system to show that it is possible to verify something about
dynamic pages.

To verify a given dynamic page we will need to use the Cassius tactic language to create
a proof that can be true for all possible states of the page. This will involve determining
how the JavaScript changes the pages state, and then using techniques like havoc and
induction to prove that a theorem is true no matter how many times a given part of the
state is changed.

To accomplish all of this we must first catalog all the changes the page’s JavaScript can
cause. To do this we treat JavaScript as a list of changes that happen to the web page. We
use a JavaScript parser called Esprima [1] to help us convert JavaScript code into a list of
changes made to the page.

Once we have the ability to analyze what changes a page’s JavaScript is capable of
making to the page’s state we need to be able to show that those changes happening won't
change the outcome of the proof. This requires that we add new tactics to the pre-existing
proof framework in Cassius. To better explore this method we use an example page’s as a
proof of concept that the ideas discussed so far are feasible. We create a simple web page
with a list that gets a new element every time the user presses a button. The JavaScript is
analyzed and we get the set of changes that can happen to the state of the page using the
process described above.We can then start focusing on what changes need to be made to
the proof such that it will be able to take the changes to the page into account.

There are two things that change across states for the page: the text in each element

3

of the list, and the length of the list. Our proof will need to be capable of taking both
these changes into account. To accomplish this we add a havoc and induct tactic to the
pre-existing proof structure that Cassius has.

First, we need to take changes to the text value of the elements of the list into account.
To do this we leverage the way in which Cassius sees values in a page’s elements as
proof constraints. By removing a specific value we remove a constraint on the Z3 query
associated with that element. This means we have made the result of the proof the same
no matter what that value might be, and to support all of this we have added the ability to
havoc values in the Tactic Language.

Next is the problem of proving the theorem true no matter the length of the list, which
lends itself to a proof by induction. The only problem is that Z3 can’t handle inductive
logic, so we have to create a system that does a lot of that leg work. What Z3 can do is
verify all the different cases of an inductive proof, so we make Cassius change the list into
several different states that can be used as base case and inductive step of an inductive
proof. We then use this technique to prove theorems about the list by induction, and by
extension prove theorems about the page no matter the length of the list.

After making these changes we ran the system with our proof on the web page and it
fully verified, providing a proof of concept for verifying dynamic pages. It also had the
side benefit of improving Cassius’ performance on static pages. Induction allows the user
to verify a fact about a long list of items with a much shorter Z3 query, making the entire

system better at handling static pages.

CHAPTER 2

BACKGROUND

Before we explore the details of how we expand upon Cassius, let us establish how
Cassius verifies static pages. From the user’s perspective there are two major pieces to
Cassius: the capture script and the tactic language.

The capture script exists to take a snapshot of the web page the user wants to prove
something about. It takes a single web page and converts it into an intermediate rep-
resentation (IR) that is a series of s-expressions describing things about the page’s fonts,
stylesheet, browser, HTML, and layout. This information is later used to formulate a Z3
query that establishes many of the preconditions to a user’s proof.

Next, the tactic language allows the user to prove things about the captured page. This
language is designed to allow a user to write proofs of theorems about specific web pages
that Cassius can then take and formally verify. To support this the tactic language supports
the creation of 3 objects: pages, theorems, and proofs.

A page is an object that is used to define the web page that is being verified. To create
it one must first take a snapshot of the web page and save it using the capture script. This
info can then be loaded into the proof with the load tactic, which will create a page object
that Cassius can perform a proof on.

A theorem is an object that is used to define some fact the user wants to prove about
a web page. Cassius ships with a set of common theorems that the user can bring into
their proof, or they can write their own. Generally these facts will be something along the
lines “this bug does not exist on this page,” for example, the theorem that we later explain
further in Chapter 4 is that the top of a list will always be above the bottom of that list.

Finally, the proof object behaves like a function that takes in one theorem and one or
more pages and contains the steps that will be taken to prove that the theorem is always

true for all of the provided pages. The user can state what these steps are using tactics

5

established in the language. A clear example of how that works in detail can be found in

Chapter 4.

CHAPTER 3

RELATED WORK

This project relies heavily on work previously done on the Cassius project. In addition
to Cassius it also builds upon ideas explored in a project called Cornipickle. Here a
summary of both projects is provided.

Cassius is a web browser developed specifically to assist with formal verification on
web pages. It allows the user to capture the HTML and CSS of their web page with a script
that converts that information into something that Cassius can use. It then allows the user
to write a specification in a Lisp-like proof language, in which the user points to captured
versions of the web page, writes theorems that define what they wish to prove, and creates
proofs that verify those theorems on the page.

Cassius [6,7] then takes the captured page and specification and turns it into a query
it can feed into Z3. It leaves certain facts about the configuration of the page unspecified,
which allows it to create a much more general proof of the web page. Before verification
some pre-processing on the query is required. The query produced by combining the spec
and the captured page forms something like YW, P(W) where W describes the possible
configurations of the web page and P is the property that spec describes. Unfortunately
Z3 cannot understand V-quantified statements, so the statement is negated to become
dW, ~P(W). If Z3 returns UNSAT for this query then the web page meets the spec for
all configurations. If it returns SAT it will provide a configuration that satisfies the query,
and by extension breaks the provided specification.

The size of the Z3 queries produced by a simple web page are large, however, and does
require that this system be better optimized. To handle this Cassius takes advantage of
the tree-like structure of a web page to modularize the proof [5]. Instead of proving every
property of the page across all possible pages, it proves some intermediate property for

each component of the web page. Since components are smaller, those queries are easier.

7

Cassius then proves the theorem provided in the spec based on the intermediate properties
previously proven for each of the components. This leads to several small queries instead
of one very large one, which proves to verify much faster.

One other weakness Cassius has is that, because it is proving facts on a captured
snapshot of the web page, it is incapable of verifying dynamic pages. This proves to be a
rather major problem, since modern websites almost always use JavaScript. This is where
one alternative tool, Cornipickle [3], proves useful. Cornipickle provides a specification
language you can use to define how the HTML, CSS, and JavaScript should behave on a
page. It defines the JavaScript aspec by allowing the proof language to state what changes
the JavaScript code will cause on the page and ensure that if those changes happen then
the page still meets the specification. There is one weakness to Cornipickle, however, and
that is that its specifications only verify a specific, given configuration of a web page. This
contrasts with Cassius’s ability to verify all possible configurations, and leaves us with a

proof that is weaker.

CHAPTER 4

CASE STUDY

As mentioned in Chapter 1 in this project we create a specific page as a proof of concept
for verifying dynamic pages. Before we talk about what we need to change about Cassius
to make it capable of verifying that dynamic page, let us establish the details of our proof

of concept.

4.1 The Web Page

First, let’s focus on the web page, which consists of a list and a button. The list starts
empty when the page is initially loaded, and gets one element longer when the button is
pressed. The HTML that describes the list and button in the initial state of the page are as

follows.

<!doctype html>
<html>
<body>
<ul id="list">
<button type="button" id="click" onclick="add_element()">
Click Me!
</button>
</body>
</html>

When combined with this script:

function add_element(e) {
var list = document.querySelector("#list");
var elt = document.createElement(’1i’);
var id = (list.children.length + 1)+’/’+window.iteration;
elt.id = ’element-’ + id;
elt.innerText = ’value-’ + id;
list.appendChild(elt);

and Firefox’s default stylesheet [4] we have a simple web page that has an unbounded
number of states, those being the different possible lengths of the list. We will use this

page as the basis of our proof going forward.

4.2 Verifying JavaScript

Now that we have built the page, we need start verifying it. Before we can actually
prove anything about the page we need to take into account what the JavaScript does to
the page. Creating a tool that verifies arbitrary JavaScript code is well outside the scope of
this thesis, so instead we think about JavaScript as a list of potential changes that happen
to the page’s state each time the JavaScript runs.

To support this the capture script is expanded to contain a JavaScript parser called
Esprima [1]. It takes the script embedded in the web page and uses the parser to convert
the script into a list of changes like the one seen in Figure 4.1. This IR describes what the
script does in a way that Cassius can actually understand and work with.

Next, Cassius takes the IR of the script and the page, applies the changes described in
the IR, and updates the page to bring it to the state it would be at after the script ran once.
In this instance a single child is appended to the end of the list. We assume that these can
be repeated any number number of times, so we now know that the list has an unknown
number of children. Now we need to decide on a theorem to prove, and find a way to

prove it no matter how many times the change we just performed happens.

4.3 Proof Theorem
After the page is built and the JavaScript taken into account we begin our proof. To
start, we need to decide on a theorem T about the dynamic section of the page, in this case
the list, that we want to prove. For this example we will prove that the top element of the

list is above the bottom element of the list, like so.

(theorem (top-above-bottom b)
(>= (bottom b) (top b)))

Here, (top b) refers to the y-coordinate of the top edge of the box b, and (bottom b)

refers to the y-coordinate of the bottom edge of the box b. Since in a web page the Y-axis

10

points down and the X-axis to the right, to be above something means to have a smaller Y
coordinate. Therefore saying the top of b is less than the bottom of b, as the theorem above
does, means that the top is above the bottom. While this may seem trivially true, there are
certain behaviors, such as negative margins, that make it possible for this theorem to be

false on a given web page.

4.4 Components

Now that we have a page and a theorem we wish to prove, we need to figure out how
to go about proving the theorem T. In Cassius, proving a theorem means that the theorem
is true for all possible configurations of the given web page, where configuration could
mean different size of the browser, different zoom level, or in this example a different state
for the dynamic portion. In order to avoid an extremely large and slow Z3 query, Cassius
breaks down the web page into base parts, and checks that the theorem is true no matter
how those parts are put together.

Web page design simplifies breaking down a page into pieces through the box and
element trees. The central data structure behind every web page is a tree, where the root
is the browser that the page is being drawn on, and each element on the page, such as the
list, is a child of either the root or a different element. For an example see Figure 4.2. We
will from here on out refer to the nodes of this tree as components, and will formulate our

proof around them.

4.5 Proof walk through

The full proof can be seen in Figure 4.3, but let us walk through it here. First we use the
component tactic to define the components that we will be focusing our efforts on: the list,
the button, and the elements inside of the list that are called todos. These are the things
that can move around so they’re what our proof is going to focus on.

Next, the havoc tactic is used on the text and width values in the different todos. The
purpose of the havoc tactic is to cause Cassius to “forget” that the individual todo items
have different text inside of them. That makes all the todo items identical, which helps us
meet the preconditions for an inductive proof later, which is described in Section 5.3. The

technical details of how this works are further explored in Section 5.2, but the short version

11

(script add_element
(let list (select (id 1list)))
(let elt (create [1il))
(set elt ’:id ?7)
(set elt ’:text 7)
(append-child list elt))

Figure 4.1. The Cassius capture script IR of the JavaScript from our page. This describes a
single addition to the list in our web page.

Root

List Button

element-1 element-2 element-3 element-4

Figure 4.2. Above is a tree representation of our web page, where each node represents
a single component of the page. The Cassius tactic language lets us define facts about
specific components and localize our proof to different nodes or groups of nodes in the
page’s element tree.

12

is this: the text in each of the todos is a constraint on the proof, and by removing the text
we remove that constraint, allowing the proof to reach the same result no matter what the
text is.

Next, we use the assert tactic to verify the following CSS details: that the elements
of the list always have a positive height, that they don’t have any floats tracked, and
that they don’t have any negative margins. After these are verified we can establish the
precondition that the list also doesn’t have any floats tracked using the pre tactic. When
these are all verified, the final preconditions for an inductive proof are set up, and we can
move forward with the proof.

We then need to prove the theorem T for all possible lengths of the list using induction.
To accomplish this we call the induct tactic, which takes in the list and a inductive fact I. I
must be a fact whose truth implies that T is true, and which can be proven inductively. The
tactic comes with a baked in concept of an inductive header and inductive footer, which
are equivalent to the top and bottom of our list. By letting I be that the bottom of the footer
is below the top of the header we have an inductive fact that fits our conditions.

Cassius uses this list of tactics to build a group of Z3 queries about our page and then
passes them through its internal Z3 engine. If all of those queries verify, then we can say

that T is true for all possible configurations of the page and lengths of the list.

13

(component list (id 1list))
(component button (tag button))
(components todos (child (id list) *))

(havoc todos :text)
(havoc todos :w)
(assert todos (float-flow-skip 7))
(assert todos (and (> (height ?) 0) (non-negative-margins 7)))
(pre list (= (floats-tracked 7) 0))
(induct list ; the inductive fact
(and (>= (bottom inductive-footer) (top inductive-header))
(= (floats-tracked inductive-footer)
(floats-tracked inductive-header))))

Figure 4.3. Above is the full proof for the T. This proof works by splitting the page into the
list, button, and items that make up the list, and then proving that T is true about our list
using assert to get Z3 to check preconditions,pre to create user established preconditions
that are implied by those asserts, havoc to remove constraints on the proof, and induct to
perform a proof by induction on the list itself.

CHAPTER 5

METHODS

5.1 Verifying Javascript

We cannot verify a dynamic web page without taking the page’s JavaScript into ac-
count. JavaScript is infamous for its edge cases. Therefore creating a tool that can verify ar-
bitrary JavaScript code is outside the scope of this project. Instead, we redefine JavaScript
as a list of changes that can change a page’s state, and then prove our fact is true for all
possible states.

To start this process, we convert the page’s JavaScript into a list of changes. We expand
the capture script’s IR to be able to represent a very small subset of JavaScript, which
can be explained through the following Esprima AST nodes. First, there are two types of
VariableDeclaration nodes the capture script recognizes: a querySelector node and a
createElement node, each of which correlates with the JavaScript command of the same
name. The capture script responds to these by adding the variable being declared to a local
environment. Next, the capture script is able to understand the AssignmentExpression
AST node, which happens any time the JavaScript sets a value to some element associated
with a previously declared variable. The capture script IR havocs the value, which evalu-
ates the proof regardless of the value, as will be further explained in Section 5.2. Finally,
the capture script can understand the appendChild expression, and responds by adding
the given child to the correct parent. All other lines of the JavaScript are havoced.

The above JavaScript AST nodes give us a way of understanding two different changes
to the page that are necessary to verify our case study. First, when an element’s attribute
changes, that attribute is havoced. Second, an element on the page can gain new children.

After the capture script generates a list of possible changes to the page, these changes

must be used to generate a new DOM tree. Luckily the capture script provides output that

15

simplifies this task. We iterate through the list and either add a variable to the environment
tied to some element, havoc a value in a given element, or add an element as a child to a
different element. Once we have performed all the changes in the list, we replace the old

DOM tree of the page with the new tree that has been generated by applying these changes.

5.2 Havocing Information in Cassius
As briefly mentioned in Chapter 4, values in Cassius can be thought of less as actual
values on a web page and more as constraints for a proof. To help explore this, let us look

at the following example component.

([TEXT :x 48 :y 187 :w 83 :h 19 :text "value-10/3"1))))

This describes one of the lines of text in our list. The :x and :y define the position of
the text, the :w and :h define the height and width of the text, and the :text defines what
the actual letters of the text are. Cassius translates this to a series of Z3 queries, which can

be seen below.

(assert (! (= (box-x box2037) 48) :named box-x/2037))

(assert (! (= (box-y box2037) 187) :named box-y/2037))

(assert (! (= (box-width box2037) 83) :named box-width/2037))
(assert (! (= (box-height box2037) 19) :named box-height/2037))

In our case study we havoc the width of the text. To do this we use the havoc tactic to
specify in the proof that the width should be removed, and then instead of the above set

of Z3 queries, Cassius produces the following:

(assert (! (= (box-x box2037) 48) :named box-x/2037))
(assert (! (= (box-y box2037) 187) :named box-y/2037))
(assert (! (= (box-height box2037) 19) :named box-height/2037))

This means that the proof becomes true for all possible widths of the text, allowing
our proof framework to correctly respond to the first change that can be caused by the
JavaScript, where information changed by the script is havoced..The second, appending a

child to the list, is handled by the inductive proof described in the next section

16

5.3 Induction in Cassius
Much of the actual work in this project revolves around proving a theorem T on a list
by induction, which is difficult because inductive proofs introduce a high level of technical
complexity into the system. This is because Cassius is built on top of Z3, an SMT solver
which, due to the nature of SMT, is not capable of inductive logic. This means that we will
only be able to use Cassius to prove the different cases of an inductive proof, and will have

to do the actual logical leaps between those cases ourselves.

5.3.1 Preconditions of an Inductive Proof

Before we can perform a proof by induction we must check that the list we want to
induct over meets the preconditions for induction. Specifically, we need to check that the
elements of the list are similar enough to one another for the logic behind induction to be
true.

There are two ways that boxes in our list can be meaningfully dissimilar. The first is
whether a box has next and previous pointers to other boxes. While most of the children
of the list do, the first child lacks a previous pointer and the last child lacks a next pointer.
This means we exclude those boxes from our inductive proof. To still have a valid proof
we prove that T applies to these boxes by making Cassius directly prove T on versions of
the list that are 1, 2, and 3 elements long.

The second way this precondition can fail is if the attributes of different boxes are
different. To check this we iterate through the list and check that all boxes contain the
same attributes. We can also use the havoc tactic mentioned above to erase that some
difference between elements has no real effect on the proof and remove it from the check.

If the list passes this test we can safely perform a proof by induction on it.

5.3.2 Formal Description of Induction
Before going any further let us formally define what an inductive proof actually is,
specifically in the context of our use case. For the theorem T, described in Chapter 4,
to be proven inductively we must have an inductive fact I(A, B) where I is a property
of the list from an arbitrary box in the list A to a later arbitrary box B. To prove this

implication we must first prove I(A, B), and to start that we must prove P on a base case

List

17

v ' v
> > 7 —>
First Child Header Footer Last Child
?]
b.
List
v 1 1 v v
- ?— > 7
First Child Header Footer Step Last Child
? - < 7
c.
List
v v 1 v
First Child Footer

?—
Header
? -

Last Child]

Figure 5.1. Above are the trees that represent what the list in our page looks like for
the base case, inductive step, and theorem case of our inductive proof. In each case we
leverage Cassius’s ability to havoc information about what happens between two elements
of the list. This lets us set up a base case (a.) that is the first three elements of the list,
followed by an unknown number of different things in the list, followed by the final
element. The inductive step (b.) takes this one step further, where the first three elements
and the havoced space in between let us have a list of N elements, and tacking on the step
node lets us have a list of N+1 elements, where the space after is havoced so that this works
no matter where in the list the N and N+1 case end up being. Finally the theorem case (c.)
defines a list of unknown length that we use to show that our inductive fact implies that
our original theorem is true.

18

BC = P(Bg, B3). As mentioned above we avoid the first and last boxes in our proof, so our
base case involves the second box B, and the third box Bs. If the base case is true then we
next must prove the inductive step, IC = I(By, By) — I(By, By41). If Pre, BC, and I are
all true then P(A, B) is true, and from here TC = I(A, B) — T can be used to inductively

prove T.

5.3.3 Base Case
The first step of the inductive proof described above is BC, so we start our verification
there. The structure of this list can be seen in Figure 5.1a, where the ? signals the next and
previous pointers for those boxes have been havoced. Thus, Cassius allows an unknown
number of nodes between the third and fourth nodes, which allows us to think of this as
looking at the first 3 elements of a list of unknown length. We then have Cassius verify T
about this subsection of the list, thereby generating and proving BC, and allowing us to

move forward with the inductive proof.

5.3.4 The Inductive Case

Next we prove IC. The structure of this list can be seen in Figure 5.1b, where once
again the ? signals which next and last pointers have been havoced. This allows Cassius
to see this as a list of unknown length where we are looking at two consecutive elements
at an unknown point in the list. In other words, we are looking at the Nth and and N+1th
element of the list.

Now that we have something of the correct shape we can verify I. To replicate the
traditional inductive logic where one assumes the inductive fact is true for an N case and
then uses this to prove its true on the N+1 case, we will feed the following implication into

Z3: 1(By, Bn) — I(Ba, By+1). If Z3 verifies this, then we know that the I is true.

5.3.5 Proving the Theorem
Finally, we must prove P(A, B) — T. To do this we will create one last copy of the list
that looks like Figure 5.1c. We take this version of the list, which as with the previous cases
has havoced specific next and previous pointers to create a list of some unknown length
greater than four, and have Cassius apply P(A,B) — T to said list. If this implication

verifies then we can combine that with proofs described above to show that T is true.

CHAPTER 6

RESULTS

We created a page and proof like those described in Chapter 4 and performed the
proof as described throughout the paper. Cassius was able to show that T was true for all
possible configurations of the page and lengths of the list, something we can be confident
is not a false positive given the simplicity of the page and our proof.

There was an additional benefit to the induct and havoc tactics in that it vastly im-
proved Cassius’s performance on lists in static web pages. Previously the system directly
verified a list and every single one of its children, something that took a long time on lists
of substantial length. We took a snapshot of our page from Chapter 4 after pressing the
button 50 times. We than verified T on this static snapshot of a single state of the page,
once using neither the havoc or induct tactics, once using the havoc tactics, and once using
both the induct and the havoc tactics. The timing results can be seen in Table 6.1. Overall,

the new tactics lead to a 5x speed up on the verification of the static page.

20

No Changes 2mb4s
Havok 47s
Havok and Induct 39s

Table 6.1. In addition to allowing us to prove facts about dynamic web pages, the inductive
proof scheme also lead to sizeable increases to performance on static pages. Above are the
effects of havoc and induct on a static version of our page with a list of 50 elements.

CHAPTER 7

CONCLUSION

While previous literature has formally verified static pages, little work has been done
on the topic of formally verifying dynamic pages. We have shown that such verification
is possible by expanding upon static verification systems to effectively verify an example
page. This shows that future work verifying dynamic pages in general is a viable area of

research.

REFERENCES

[1] ARIYA HIDAYAT. ECMAScript parsing infrastructure for multipurpose analysis.
https:/ /esprima.org/, year unknown.

[2] DE MOURA, L., AND BJORNER, N. Z3: An efficient smt solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (Berlin, Heidelberg, 2008), TACAS'08/ETAPS’08,
Springer-Verlag, p. 337-340.

[3] HALLE, S., BERGERON, N., GUERIN, F., AND LE BRETON, G. Testing web applications
through layout constraints. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST) (2015), pp. 1-8.

[4] MANUEL CARRETERO. Mozilla Firefox Default CSS. https://hg.mozilla.org/mozilla-
central/file/tip /layout/style/res/html.css, 4 2021.

[5] PANCHEKHA, P., ERNST, M. D., TATLOCK, Z., AND KAMIL, S. Modular verification
of web page layout. Proc. ACM Program. Lang. 3, OOPSLA (Oct. 2019).

[6] PANCHEKHA, P., GELLER, A. T., ERNST, M. D., TATLOCK, Z., AND KAMIL, S. Veri-
fying that web pages have accessible layout. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (New York, NY, USA,
2018), PLDI 2018, Association for Computing Machinery, p. 1-14.

[7] PANCHEKHA, P., AND TORLAK, E. Automated reasoning for web page layout. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (New York, NY, USA, 2016), OOPSLA
2016, Association for Computing Machinery, p. 181-194.

