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Abstract

Motivational Interviewing is a style of psychotherapy which has shown success as

a method for treating addiction and substance abuse problems. In recent years, Natu-

ral Language Processing (NLP) techniques have shown promising results in assisting

Motivational Interviewing (MI) training and advancing its popularity. One of the ways

they are achieving this is by providing therapists feedback on their counseling efficacy

by providing feedback to therapists via automatically tagged Motivational Interview-

ing skill codes (MISC) of utterances in a session.

The recent transformer architecture-based language models offer off-the-shelf, do-

main adaptation capabilities and have achieved state-of-the-art results in many NLP

tasks. However, these models have not been trained on dialogue data, which is struc-

tured much differently than the linear structure of passages. We propose methods

to encode dialogue data such that it can be domain adapted for psychotherapy. We

achieve state-of-the art results in every measured metric of classifying Motivational

Interviewing skill codes. While prior work has sought to model patient and therapist

as separate agents, we show that a unified model can further improve state-of-the-art

results. We conclude by examining how well classical NLP interpretation methods

work on transformer models by analyzing probing results on these models. We are

able to show that interpretation techniques, that have been useful for other NLP tasks

such as question answering, may not be powerful enough to explain the inner workings

of transformer models.
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ABSTRACT

Motivational Interviewing is a style of psychotherapy which has shown success as

a method for treating addiction and substance abuse problems. In recent years, Nat-

ural Language Processing (NLP) techniques have shown promising results in assisting

Motivational Interviewing (MI) training and advancing its popularity. One of the ways

they are achieving this is by providing therapists feedback on their counseling efficacy by

providing feedback to therapists via automatically tagged Motivational Interviewing skill

codes (MISC) of utterances in a session.

The recent transformer architecture-based language models offer off-the-shelf, domain

adaptation capabilities and have achieved state-of-the-art results in many NLP tasks. How-

ever, these models have not been trained on dialogue data, which is structured much dif-

ferently than the linear structure of passages. We propose methods to encode dialogue data

such that it can be domain adapted for psychotherapy. We achieve state-of-the art results

in every measured metric of classifying Motivational Interviewing skill codes. While prior

work has sought to model patient and therapist as separate agents, we show that a unified

model can further improve state-of-the-art results. We conclude by examining how well

classical NLP interpretation methods work on transformer models by analyzing probing

results on these models. We are able to show that interpretation techniques, that have

been useful for other NLP tasks such as question answering, may not be powerful enough

to explain the inner workings of transformer models.
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wi the i-th word in vocabulary, like ”apple”
w1, ...wt words indexed in a sequence. unrelated to wi
t, T sequence position variable, T represents a maximum vaue
q vector. In general, lower case bold letters
Q matrix. In general, upper case bold letters
C(wi) the word embedding of wi
et the word embedding at timestamp t
[x; y] Vector concatenation. if x 2 Ra and y 2 Rb then [x; y] 2 Ra+b

a � b Hardamard product



CHAPTER 1

INTRODUCTION

Dialogue is the first mode of communication that we learn and develop, yet it is signif-

icantly complex due to the volume of external knowledge that is required to comprehend

the exchange of information, opinions and intentions in human discourse. Following a

conversation requires not only the understanding of individual utterances, but also an

understanding of the how these utterances relate to each other, what information can

be understood or inferred between the exchanges and how the speaker is an evolving

agent throughout the life of the conversation. While great progress has been made in

understanding language by attempting to learn model distributed representations and

extract contextual embeddings [10], conversations and dialogues often rely on long spans

of context, multiple-hops of reasoning, and advanced forms of language inferences [19].

The ultimate goal of dialogue modeling is to produce intelligent agents capable of

holding human-like conversations. Conversational agents have been implemented in the

field of psychotherapy for a relatively long time, going back to chatbots such as ELIZA

[49] or PARRY [9], which aim to simulate an agent conversing with a human participant

by relying on pattern matching and rules for generating responses. This thesis explores

and studies observer agents for psychotherapy which can monitor and moderate a therapy

conversation on the fly for a style of therapy known as motivational interviewing.

Motivational interviewing (MI) is a style of psychotherapy that is commonly employed

to treat patients who suffer from addiction, obesity and other detrimental lifestyle choices

[27]. Statements in MI conversations can be categorized using Motivational Interviewing

Skill Codes (MISC) [18], which bucket each utterance according to its function in the con-

versation. These codes are used to measure the effectiveness of the technique and the

counselor’s adherence to the MI principles. They can also be used to evaluate MI train-

ing that the counselor has undergone. Some examples of positive MISC labels that are
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used to categorize therapist responses are facilitate (FA), giving information (GI), and MI

non-adherent behavior (MIN).

MI fidelity and MISC labels are usually annotated by human raters on concluded ther-

apy sessions, a task that has considerable costs associated with time, training, and money

[40]. Manual annotation hinders the ability to give a counselor immediate feedback, since

it would be useful for a therapist to have access to MISC labels in real-time during a coun-

seling session. Natural language processing and deep learning techniques have recently

been utilized for coding MI sessions successfully, but existing works have only relied on

recursive or recurrent neural networks [40] [42].

Relevant work has explored the capability of deep learning NLP models which are able

to 1) categorize and 2) forecast MISC codes in psychotherapy [7]. Categorization is the

task of predicting MISC labels for an agent’s most recent utterance given recent dialogue

history, while forecasting is the task of predicting the MISC label of the next utterance

given the history and the next speaker’s identity. We focus entirely on the categorization

task for the scope of this thesis, as it is a predecessor of the forecasting task.

The recently proposed transformer neural network architecture [46] is capable of cap-

turing complex sequential information without any locality constraints between the seg-

ments of a sequence. These models have revolutionized transfer-learning in natural lan-

guage processing and usually use a pre-trained transformer model and fine-tune for a

specific task [38]. The pre-trained models are general-purpose language models trained

on gigabytes of data for days on numerous GPUs [37] and are then domain-adapted for

specific use cases. Fine-tuning these models has been very successful, starting with GPT

[30] and BERT [11] as they now hold state of the art performances across many prominent

natural language processing datasets and tasks such as language modeling [43], question

answering [32] and general language understanding [47].

These transformer models are trained using the masked-language modeling (MLM)

objective [11] [44], and many of them yield great semantic and syntactic knowledge [31].

However, language modeling does not capture many elements of language that dialogue

does, notably the notion of a speaker and the duality of their utterances in a conversation.

To this end, we explore the feasibility of domain-adapting these transformer models as

dialogue systems. Pre-trained transformer models are usually trained on dumps of the
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internet or other media like books, so therapy sessions would very much be a new domain

of knowledge for these models.

We start by searching for the best format to encode dialogue data to transformer based

language models. Since transformer inputs are not recurrent, they will need to learn

sophisticated layouts of information to understand and learn from inflections in conver-

sations that occur due to changing speakers. In order to measure the effectiveness of each

input format, we will evaluate the models’ ability to classify MISC labels on annotated

psychotherapy sessions across different transformer models.

We attempt to understand a model’s textual reasoning using gradient-based interpre-

tation methods. We conclude by exploring how a model interprets dialogue by examining

a model’s self-attention, which can help us understand whether it is possible for these

models to learn the notion of dialogue instead of treating it as continuous text. The ability

to do so is paramount for processing dialogue data with transformer networks.

This thesis evaluates the effectiveness of training transformer-based observer agents

that can automatically label utterances and assist the therapist in providing proper care

to their patients. We show that these models can achieve state-of-the-art results with

significantly less training steps and can show an understanding of both the patient and

therapist in dialogue.



CHAPTER 2

BACKGROUND: RECENT ADVANCES IN

MODELING LANGUAGE

In this chapter we provide a brief survey of neural network classifiers for natural

language processing that lead up to the transformer neural networks.

2.1 Sequence Classification
MISC prediction, as is dialogue act prediction, is a sequence classification problem. The

transformer architecture is derived using a culmination of insights that have revolution-

ized natural language processing. In this section we will go over advances in NLP which

have motivated and paved way for the formulation of the transformer architecture. Each

subsection will focus on language modeling, the act of attaining the joint probability of a

sentence, P(w1, w2, ..., wt). This formulation is often approached through marginalization,

P(w1, w2, ..., wt) = Â
wi2V

P(wt = wi|w1, w2, ..., wt�1)

Because of this decomposition, language modeling can be thought of as deriving the prob-

ability of wt being a certain word wi 2 V given some prior probability P(w1, w2, ..., wt�1),

which is a |V|-way classification problem. Sequence classification is an abstraction of this

task, in which instead of predicting the next word’s identity, we calculate probabilities of

higher level concepts such as ”Does this sentence contain inflammatory language?” or ”Is

this paragraph talking about mammals?” Our work focuses on sequence classification, but

the advances we highlight are more apparent and motivated through language modeling.

2.2 Word Embeddings
Language is intrinsic and inherent to human understanding, yet is difficult to quantify.

This begs the question: what are words, and how do they get their meaning? The first

idea to quantify each word is through discrete representations. However this assumption
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suffers from the curse of dimensionality, where the dimensionality of the resulting repre-

sentation is computationally infeasible or inefficient. For example, modeling the joint

probability of five consecutive words in a language with vocabulary of size 100,000 would

result in 100 0005 = 1025 � 1 free parameters. Additionally, an inherent problem with this

representation in that these representations have no way of encoding word similarity: it is

beneficial to be able to deduce that the representations for ”dog” and ”cat” line up more

than ”dog” and ”chair.”

To capture this phenomenon, distributed probabilistic representations of word vectors

were proposed to harness word embeddings in [6]. This work trains a neural model on a

sequence w1, w2, ..., wT consisting of words wi 2 V, where the vocabulary RV is a large but

finite set.

The objective was to learn a good model f (wt�n�1, ..., wt) = P̂(wt�n�1|w1, ..., wt�1),

which is able to generalize to out of sample examples well. The parameter n is the context

window size of the model, and is constrained to a small number (n = 3 or 5), so f is a

probabilistic n-gram model. Model f is composed of two components:

1. A mapping C which converts wi 2 V to a real vector C(wi) 2 Rm. This transfor-

mation C is represented by a simple |V| ⇥ m matrix which performs a ”lookup”

operation. This transformation has since then come to be known as an embedding

layer.

2. The probability function, g which maps the words in the n-gram context [C(w1); ...; C(wt)] 2

Rt⇥m and produces p̂t 2 R|V|, the conditional probabilities of the next word.

The embedding transformation, C, converts discrete words into real valued vectors and is

optimized with n-gram training examples. This allows us to learn distributed representa-

tion for words, which leverages word contexts to derive meaning. While it is now possible

to represent words in a continuous space, a problem with the function g is that it works

over a fixed context window n, which makes it difficult to scale this solution over large

contexts such as dialogue. With word vectors established, we now explore a model which

is capable of handling sequences of arbitrary length.
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Figure 2.1. Probabilistic neural model. Figure borrowed from Bengio et at. [6], and
highlights the two components f and g that form the language model. The first component
converts words wt�n�1, ...wt�1 into vectors C(wt�n�1), ..., C(wt�1) using the lookup table C,
the second component is a single layer perceptron function g which outputs probabilities
of the next word wt.

2.3 Recurrent Neural Networks
The problem with a n-context fully connected classifier g is that it cannot handle inputs

of variable lengths unless we create the notion of a padding token for sequences shorter

than length n or combining context windows for sequences longer than n. Words are

sequences of characters, sentences are sequences of words, and paragraphs are sequences

of sentences. Therefore, it is natural to utilize a classifier which leverages the sequential

nature of textual data.

Using the marginal probability formulation of language modeling mentioned earlier,
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a language model can calculate the probability of a sentence ”It was a good day to play

tennis,” as P(It)⇥ P(was | It)⇥ P(a | It was)...⇥ P(tennis | It was a good day to play).

A recurrent neural network (RNN) [12] keeps track of these probabilities at timestamp

t� 1 by maintaining a hidden state ht�1 which is a vector that is able to retain information

from the prior inputs, in the case of language modeling P(w1, ...wt�1). Given a new input

C(wt), it uses the hidden state to attain P(w1, ..., wt).

Recurrent neural networks are composed of RNN cells that take two inputs, 1) the

input at the current time-stamp C(wt) ! et, and 2) the recurrent input from the previous

timestamp ht�1, and cells that generate 2 outputs, 1) the output at the current cell ot, and

2) the recurrent output at the current step ht. The plain vanilla recurrent cell uses the

following equations:

ht = sh(Whht�1 + Weet + b1), sh 2 {ReLu, Tanh, Sigmoid}

ot = so(Woht + b2) so 2 {So f tmax, Sigmoid}

The learned parameters of the RNN are Wh, We and Wo

Figure 2.2. An recurrent neural network. At any timestamp t, input wt (blue) is converted
into et and fed into the recurrent cell (green). The recurrent unit uses two activation
functions so, sh to obtain ht and ot(orange). Usually only ot is used for classification tasks.
Usually the sigmoid or softmax activation functions are chosen for so for classification
choices, and tanh or sigmoid activation functions are chosen for sh to propagate informa-
tion effectively.
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2.4 Gated Recurrent Neural Networks
Recurrent neural networks rely on both recurrent and current inputs, so they must

be optimized using the backpropagation through time algorithm [51]. Let Jt(q; Ot, yt) be

the loss for the model given model parameters q at timestamp t. We will represent this

loss concisely as Jt(q). Figure 2.3 highlights this process. Since Wh is shared across all

timestamps,

∂Jt

∂Wh
=

t

Â
i=1

∂hi
∂Wh

· ∂Jt

∂hi
=

t

Â
i=1

"
∂Jt

∂ht
· ∂hi

∂Wh
·

t�1

’
j=i

∂hj+1

∂hj

#

Which means that just as the forward pass relies on recurrent inputs, backward propaga-

tion needs to go back through timestamps to be calculated. Figure 2.4 illustrates this.

Figure 2.3. A recurrent neural network language model. At timestamp t, et is fed to the
recurrent network to attain Ot, which is usually the output of a softmax activation function.
Loss Jt(q; Ot, yt) is calculated and backpropagated at every timestamp.

Figure 2.4. Backpropagation through time. We omit the details of ∂J(q)
∂WO

since it does not
backpropagate through time.
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A problem with simple recurrent neural networks is that the intermediary factors in

t�1

’
j=i

∂hj+1

∂hj

tend to be a product of factors with magnitude less than 1 for activation functions such

as sigmoid [?]. Repeated products of such terms will decay the gradient, hindering the

ability for RNNs to optimize for NLP tasks [29]. As a result, it is difficult for gradients to

be propagated from longer distances and learn long range input-output dependencies. In

the example above, ∂J4(q)
∂h0

requires four chain rule products through time, whereas ∂J1(q)
∂h0

requires only two.

A gated recurrent neural network architecture, called long short-term memory (LSTM)[16]

attempts to mitigate the vanishing gradients problem. The LSTM stores long-term infor-

mation using additional memory, and providing additional functionality to this memory

structure: the ability to 1) erase, 2) write and 3) read memory.

A gated neural network ”gates” which sections of memory get erased/written/read

using additional learned parameters. At a given timestamp t, an LSTM contains a hidden

state ht and cell state ct, both of which are n-dimensional vectors. The gates of the LSTM

are also n-dimensional, and their values lie in the range (0, 1). The gate values are dynamic

and are determined on the current context of the LSTM.

A newer gated network, GRU [8], proposes a simpler architecture which only has two

gates, update, represented by zt and reset, represented by rt. While LSTMs have been

more popular, GRU’s have shown to yield similar performance, and there is no conclusive

work that proves one consistently outperforms the other. A candidate state is calculated

similarly to an RNN hidden state update, except the reset gate state rt is used to determine

how much information from ht�1 is used to determine h̃t.

h̃t = tanh(rt �Uht�1 + Wxt) Candidate state

The GRU uses a linear interpolation between the previous state ht�1 and the current can-

didate state h̃t to calculate the new state.

ht = (1� zt) � h̃t + zt � ht�1 Hidden state
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The update gate value zt indicates how much of prior hidden state ht�1 should be retained

in the next state, and consequently how much information from h̃t is used to calculate

current state.

zt = s(Wzxt + UZht�1) Update gate

If rt is a vector of ones, it is the exact same as an RNN hidden state update. If rt is a vector

of zeros, it forgets history completely.

rt = s(Wrxt + Urht�1) Reset gate

Figure 2.5. Detailed view of the GRU internals. Figure is borrowed from [26]. See text for
further details and explanations.

The learned parameters of the GRU are W, U, Wr, Ur, Wz, Uz, which are roughly double

that of simple RNNs.



11

2.5 Neural Attention
Language modeling is an unsupervised learning task in which at any given time the

model has to predict the next word in a sentence given the past few. However, many

NLP tasks, such as language generation, summarization and machine translation rely on

sequential outputs, where the model is responsible for generating sequences as its output.

A Sequence-to-sequence model (usually abbreviated as seq2seq) [39] is an end-end

neural network model which is made up of two recurrent neural network components: an

encoder, which is responsible for encoding the input sequence w1, w1, w2...wT of variable

length T to a fixed-size context vector cT, and a decoder, which can be thought of as a

language model of the target sequence P(y1, ..., yn|cT).

Figure 2.6. Sequence Modeling tasks. Left: Language modeling is considered a many–
to-one sequence learning task, whereas tasks such as machine translation rely on many–
to-many classification. Figure is borrowed from [13]. Right: The structure of a sequence–
to-sequence classifier. The illustrated model has a unified encoder-decoder RNN, which
means that the weights are shared between modules. Usually, a token representing the end
of sequence <eos> signals the model to start the decoding phase of the task has started.
This figure is borrowed from [25].

A problem with the seq2seq architecture is that it requires an entire sequence to be

encoded into cT before the decoder can start generating its output sequence [50]. This has

led to degrading performance with longer input sequences, suggesting that the encoder

creates a bottleneck that can be a source of problems for a sequence model [5]. Rather

than utilizing a single context vector that is derived from encoder’s last hidden state, the

attention mechanism [5] creates shortcut connections between the decoder and the entire

input sequence.
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Figure 2.7. A seq2seq attention model. Figure borrowed from Bahadanu et al. [5]. This
encoder relies on a Bidirectional-RNN, which consists of concatenating the hidden states
of two RNNs, one going forwards, the other going backwards. The attention weights at,u
indicate the amount of attention to pay to encoder output at timestamp u for generating
the decoder output at timestamp t.

In a traditional seq2seq model, the encoder’s final hidden state, ht = [
�!
hT;
 �
hT], is con-

sidered as s0, the decoder model’s initial hidden state. With neural attention, weights a

are generated using a feed-forward network and provide an additional context vector at

for the decoder.

Consider the task of translating a sequence x of length n into a sequence y of length m.

The decoder’s generated word at position t 2 1, 2, ..., m is calculated using the information

st = f (st�1, yt�1, aT), where the attention vector a is a weighted sum of the encoder’s

hidden states.

at =
n

Â
u=1

at,uhi Attention vector

at,u = so f tmax(score(st�1, h1...n), u) Attention weights

=
exp(score(st�1, hu)

Ân
u0=1 exp(score(st�1, hu0 )

The attention scores, also known as alignment scores, define how much of the source

hidden state should be considered for each output. In the original work, the attention

weights a are calculated using a single hidden layer position-wise feed-forward-network,

and is trained end-to-end with the rest of the model.
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score(st, hu) = va · tanh(Wa[st; hu]) Attention score function

va and Wa are the learnable parameters of the attention network.

In sequence classification, attention can be used to directly calculate the label of the

sequence, without having to rely only on the encoder’s hidden state.

Figure 2.8. An attention-based RNN classification model. Whereas earlier models would
rely on a combination of pooling over the hidden states and the final hidden state ht, an
attention based model can learn a aggregating function which can be used to classify the
sequence.

In summary, neural attention curbs some the problems associated with long distance re-

lationships that traditional RNNs imposed. With neural attention, sequence classification

possesses a fully connected component which can yield benefits over a simply recurrent

network.

2.6 Transformer Neural Networks
The Transformer neural network [46] extends seq2seq by using an attention mecha-

nism that now replaces recurrent units. This new mechanism, self-attention, increases the

number of parameters and compute to process text but enables the transformer to behave

similar to a fully connected network and leverage parallelism.

Self-attention is formulated as a function which maps a set of key-value {K, V}pairs

to an output attention weight using a query Q. The output value is a weighted sum
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of the values, and each attention weight is calculated using a similarity function on the

query and the respective key. Given the sequence length T and embedding dimension d,

three weights WQ, WK, WV 2 Rd⇥dk will perform a position-wise transformation to convert

every embedding into its corresponding qt, kt, vt

Figure 2.9. Left: QKV-self attention described in Vaswani et al. Right: How embeddings
x1, x2 are converted to their respective queries keys and values. See texts for full details
and descriptions. Figures borrowed from [46] and [1].

Given Q, K, V 2 Rdk⇥T, Self-attention is calculated with matrix multiplication, using

scaled-dot product attention:

Attention(Q, K, V) = so f tmax(
QKT
p

dk
)V

The weighted average softmax values so f tmax(QKT
p

dk
) 2 Rdk⇥dk are multiplied by V 2

Rdk⇥T to attain the self attended output embeddings for the next layer, which means that

for most cases dk = d. The input sequence X 2 Rd⇥T, and Attention(Q, K, V) 2 Rd⇥T.

The transfomer architecture further utlizes self-attention by linearly projecting queries,

keys and values h times with different projections such that Q, K, V 2 Rd⇥T⇥h. Each of the

h ”heads” conducts self-attention independently, and an additional weight WO 2 Rd⇥h

projects these heads back into one dimension for the next layer.
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MultiHeadAttention(Q, K, V) = Concat(head1, ...headh)WO

headi = Attention(QWi
Q, KWi

K, VWi
V)

Here the projections are parameter matrices Wi
Q, Wi

K, Wi
V 2 Rd⇥dk . Since each of these

heads can be calculated independently until the final linear transformation, multi-headed

attention adds little overhead with proper parallelism and its ensemble properties can

boost performance of the transformer network.

In a stacked transformer encoder, all keys, queries and values come from the output of

the previous layer in the encoder. Each position has the flexibility to attend all positions in

the previous layer. The transformer model contains no recurrence or convolution units, so

there is no inherent way for the model to understand the order of tokens in the sequence.

Therefore, the authors proposed adding positional encodings to input embedding vectors

as means to inject the notion of order within these tokens.

2.7 Masked language models: BERT
Language models can be built up using context information from both the previous and

the subsequent words in a sentence. Bidirectional RNNs can emulate this. However, the

bottleneck of locality caused by RNNs provoked the usage of attention. Language mod-

eling on a transformer model, however, is not straightforward, as self-attention makes is

possible for a transformer embedding to ”cheat” by relying on self-attention to ”see itself,”

something that could make the model trivially predict the target word in a multi-layered

context. Unfortunately, it may not be sufficient to enforce a uni-directional self-attention

mechanism, as subsequent context is crucial for language modeling. A recent language

representation model titled BERT, short for Bidirectional Encoder Representations from

Transformers [11], aims to train bidirectional representation from unlabeled text by jointly

conditioning on both left and right context of all layers. The resulting model, pre-trained

BERT, can then be fine-tuned with just an additional layer to cater to many NLP tasks.

Upon its release, BERT achieved state of the art results on many tasks, such as SQUAD

[32], GLUE [47], and MultiNLI [52].

BERT addresses the language modeling complications self-attention creates by using

a masked-language model pre-training objective, which randomly masks tokens from the

input. BERT’s objective is to predict the original emitted token of the masked word, relying
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purely on its context. The final hidden vectors are fed into an output softmax over the

vocabulary, a standard LM prediction task. 15% of all tokens in each sequence are masked

at random. Of the 15% masked out tokens, 80% of the tokens are replaced with a special

[MASK] token, 10% replaced with a random token from the vocabulary, and the token is

untouched another 10% of the time.

In order to instill textual inference capabilities, BERT was also trained on a secondary

task called next sentence prediction (NSP), which trains BERT to understand the relationship

between two sentences. The NSP objective feeds an input example composed of two

sentences, [A; B] and requires BERT to predict whether A actually precedes B or not. This

dataset can be generated from any corpus with multiple sentences, and the sentence order

is shuffled 50% of the time. Figure 2.10 gives an overview of pre-training and fine-tuning

BERT.

Figure 2.10. BERT model. Figure borrowed from [11]. Pre-trained BERT is trained using 1)
Masked language modeling and 2) Next sentence prediction tasks on a large corpus. BERT
can then be fine-tuned for other downstream NLP tasks. The [CLS] token is a special token
added at the beginning of every input example, and is typically used for prediction tasks.
[SEP] token is used for separating two sentences. This token separates A and B during
pre-training NSP task, but can separate segments such as question-answer pairs during
fine-tuning. Figure borrowed from original work.

Having introduced the limitations and the advancements in NLP models that led up

to the transformer model, we now have the tools and modules for discussing the previous
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state of the art models and the general purpose transformer-based language models we

fine-tune as MISC classifiers.



CHAPTER 3

MOTIVATIONAL INTERVIEWING

3.1 Motivational Interviewing and Psychotherapy
Motivational Interviewing is a style of psychotherapy which focuses on motivating

and encouraging a person’s commitment to positive change. Counseling conversations

can broadly lay anywhere in the spectrum of directing and following. In directing conver-

sations, the counselor is usually deliberate and explicit about their instructions, advice,

and information. In following conversations, the counselor refrains from injecting their

opinions and advice and instead focuses on understanding and being interested in what

the person has to say. Motivational Interviewing uses elements from both of these styles

and relies on guiding the patient through listening and offering feedback and advice when

necessary [27].

People who undergo motivational interviewing are often aware but ambivalent of the

changes that they need to make to address their negative lifestyle patterns. Ambivalent

people usually have arguments for both making the change and not, so they generally

speak in a mixture of two kinds of talks, change talk and sustain talk. Change talk refers

to the person’s own reasons to make the change, while sustain talk refers to the person’s

reasons to sustain their current behavior. MI believes that couselors who take one side of

the argument can often be met with resistance from the client who clings to the other side,

so the objective of the counselor is to guide the client into voicing the reasons for change

themselves. MI has shown to be particularly effective at treating patients who suffer from

addictions and substance abuse problems, and has also been applied to natural language

processing tasks [2].

The NLP task that most closely aligns with MI skill coding is dialogue act prediction.

A dialogue act describes the function of an utterance in the scope of a conversation. These
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help detect discourse structure and are pivotal for understanding dialogue [36]. Just like

normal dialogue, there are benefits to being able to determine the function of an utterance

in a Motivational Interviewing session. Motivational Interviewing Skill Code (MISC) was

developed to help identify and code responses in MI, and is regularly utilized in training

counsellors and to test and refine the principles of MI [34]. Natural language processing

techniques have shown good results in coding MI sessions using machine learning tech-

niques rather than human coders, and earlier work has explored the benefits of time and

money that these models save [41]. Tables 3.1 and 3.2 show the MI codes used in this thesis.

These codes are drawn from previous work in this domain [7] [53].

Code Count Description Examples

FA 17468 Facilitate conversation “Mm Hmm.”, “OK.”,“Tell me more.”
GI 15271 Give information or feedback. “I’m Steve.”, “Yes, alcohol is a depressant.”

RES 6246 Simple reflection about the client’s
most recent utterance.

C: “I didn’t smoke last week”
T: “Cool, you avoided smoking last week.”

REC 4651 Complex reflection based on a
longer conversation or context.

C: “I didn’t smoke last week.”
T: “You mean things begin to change”.

QUC 5218 Closed question “Did you smoke this week?”
QUO 4509 Open question “Tell me more about your week.”

3869 Other MI adherent, e.g., affirma-
tion, advising with permission, etc.

“You’ve accomplished a difficult task.”
“Is it OK if I suggested something?”

MIN 1019 MI non-adherent, e.g., confronta-
tion, advising without permission..

“You hurt the baby’s health for cigarettes?”
“You ask them not to drink at your house.”

Table 3.1. Therapist MISC labels and dataset used for the scope of this thesis. Table
borrowed from Cao et al. [7]

Code Count Description Examples

FN 47715 Follow/ Neutral: unrelated to
changing or sustaining behavior.

“You know, I didn’t smoke for a while.”
“I have smoked for forty years now.”

CHANGE 5099 Changing unhealthy behavior. “I want to stop smoking.”
SUSTAIN 4378 Sustaining unhealthy behavior. “I really don’t think I smoke too much.”

Table 3.2. Client MISC labels and dataset used for the scope of this thesis. Table borrowed
from Cao et al. [7]



20

3.2 Natural language processing for MISC
In this section we outline the advancements made in predicting MISC labels in Cao et

al. [7], which serves as a precursor and baseline to this thesis. Given an annotated corpus

of MISC labels, the authors formulated two tasks: 1) Categorization and 2) Forecasting.

The goal of the categorization task is to classify the MISC of an anchor utterance un given

a snapshot of the conversation: u1, u2...un, and the identities s1, s2...sn. The following

subsections cover the paper’s approaches and highlight the state-of-the-art results.

3.2.1 MISC Classification Setup

The MISC dataset we use is composed of psychotherapy sessions collected and labeled

for motivational interviewing dissemination studies. Encounters include hospital settings

[33], outpatient clinics [4] and college alcohol interventions [20] [28] [45]. All sessions

were annotated with MISC codes [2]. Following Cao et al. [7], we split the data into 243

MI sessions for training, 110 for testing, and 24 for development. We follow the labels

formulated in Xiao et al. [54] , which adopts 3 client codes {CHANGE, SUSTAIN, FN} and

8 therapist codes {FA, RES, REC, GI, QUO, QUC, other MIA, MIN}. Refer to Table 3.1

and 3.2 for more details on these labels.

3.2.2 Encoding Dialogue

Since categorization is a classification task given some dialogue history, the goal is to

convert the sequence of utterences into a fixed size vector that will be used for classification

at prediction time. The authors used a hierarchical GRU encoder (HGRU) [21] to encode

dialogues using a two level, utterance and dialogue, encoder. The utterance is encoded

bidirectionally and the i-th utterance is known as vi. The dialogue encoder is an unidirec-

tional GRU that operates on a concatenation of utterance vectors vi and a trainable vector

representing the speaker si. The final hidden state of the dialogue GRU aggregates the

entire dialogue history into a vector Hn.

3.2.3 Word-level Attention

To give this hierarchical recurrent models the ability to attend at a word level, the

authors propose a couple attention mechanisms for the ability for the kth word in anchor

utterance, vnk to attend to the jth word in ith utterance, vij. The attention weighted vector
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aij = Âk ak
j vnk, where

ak
j =

exp( fm(vnk, vij))

Âj0 exp( fm(vnk, vij0 ))

A combining function fc combines original vij and the weighted word vector aij into a new

representation zij

zij = fc(vij, aij)

Method fm fc
BiDAF [35] vnkvT

ij [vij; aij; vij � aij; vij � a0]

GMGRU [48] we tanh(W kvnk + Wq[vij; hj�1]) [vij; aij]

Table 3.3. The word-level attention mechanisms used in Cao et al. [7].

3.2.4 Utterance-level Attention

The relevancy of an utterance to anchor utterance’s label is modeled using a multi-

headed, single layered transformer network. Two different variants of transformer-attention

mechanisms are compared: anchor-based and self attention. The anchor-based attention

uses Q = vn and K = V = [v1...vn] while self-attention sets all three matrices to [v1...vn].

3.2.5 Label Imbalance

Each classifier is evaluated on its performance based on the F1 score it achieves on the

individual MISC labels. Since it is crucial to detect rarer MISC labels, such as MIN and

SUSTAIN, overal unweighted F1-score, also known as the macro F1-score is also reported.

For each model, the best checkpoint on the development set is used to calculate the F1-

scores on the test set. In order to address the label imbalance present in the dataset, a focal

loss [22] optimization function is adopted. For a label l with a model softmax probability

of pt, the loss is defined as

FL(pt) = �at(1� pt)
glog(pt)

The paper uses a as {1.0, 1.0, 0.25} for CT,ST and FN respectively, and {0.5, 1.0, 1.0, 1.0, 0.75,

0.75, 1.0, 1.0} for FA, RES, REC, GI, QUC, QUO, MIA, MIN, and fixing g = 1, which is

effectively just adding class weights to the cross entropy loss function. We do not use any

strategy to address label imbalance in our experiments.
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3.2.6 Results

The best configuration for modeling a patient observer does not rely on any word or

utterance attention, which most likely means that client responses do not require much

context to categorize. The best therapist observer model uses GMGRU word attention and

ANCHOR utterance attention.

Method macro FN CHANGE SUSTAIN

Majority 30.6 91.7 0.0 0.0
BiGRUELMo 52.9 87.6 39.2 32.0

CONCAT 51.8 86.5 38.8 30.2
GMGRU 52.6 89.5 37.1 31.1
BiDAF 50.4 87.6 36.5 27.1

CC 53.9 89.6 39.1 33.1

Table 3.4. RNN based MISC classification results on client codes. CC is a simple
MLP(Hn) + MLP(vn) model which does not rely on any attention mechanism.

Method macro FA RES REC GI QUC QUO MIA MIN

Majority 5.87 47.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BiGRUgeneric 60.2 94.5 50.5 49.3 72.0 70.7 80.1 54.0 10.8
BiGRUELMo 62.6 94.5 51.6 49.4 70.7 72.1 80.8 57.2 24.2

CONCAT 61.0 94.5 54.6 34.3 73.3 73.6 81.4 54.6 22.0
GMGRU 64.9 94.9 56.0 54.4 75.5 75.7 83.0 58.2 21.8
BiDAF 63.8 94.7 55.9 49.7 75.4 73.8 80.7 56.2 24.0

CT 65.4 95.0 55.7 54.9 74.2 74.8 82.6 56.6 29.7

Table 3.5. RNN based MISC classification results on therapist codes. Models use the same
configuration as Table 3.2, but tuned for therapist anchor utterance codes.

In both tables, the first set utilizes only the anchor utterance, while the second sets of

baselines use the context in some manner as well. CONCAT is a simple BiGRU model which

utilizes contextualized ELMo embeddings. generic embeddings utilize GloVe vectors. The

best client model CC suggests that a client’s MISC code is predominantly dictated by their

utterance and not heavily reliant on the conversation history. However, a simple MLP(Hn)

module seems to boost the performance of the model, suggesting a summarization of the

context is sufficient for prediction.
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Model CT relies on both GMGRU-based word-level attention and anchor-based multi-

head sentence-level attention, suggesting that therapist MISC codes rely a lot more on the

context of the conversation. Anchor-based attention also emphasizes the importance of the

current utterance while considering previous statements. The complexity of this model

indicates that more complex architectures like the transformer models may perform even

better on such a task.



CHAPTER 4

APPROACH: REPRESENTING DIALOGUE TO

TRANSFORMERS

We begin this chapter by setting up our experiments, elaborating on our training schema

and interpretations studies.

4.1 Dialogue Encoding
Our training dataset consists of roughly 60, 000 annotated client and 50, 000 therapist

utterances. Since transformer networks process data without explicit recurrence, every

example’s context will need to be joined, concatenated and fed to the model with the

example’s utterance. As such we consider a few different methods to inject the notion

of dialogue to these models.

We start by establishing two baseline models which predict the MISC labels of an

utterance with no context, and call these UTTERC and UTTERT. Since CT did not rely heavily

on context and UTTERC relies on no context, it should be possible for this simple UTTERC to

achieve state-of-the art performance on client MISC.

Following [7] we rely on context history of at most 8 utterances for all context-based

classifiers. We establish baseline models CONCATC and CONCATT, which simply join utter-

ances as different sentences. No special [SEP] token is used to separate these sentences to

the model, and the identity of the speaker is not indicated to the model.

We then train two models SEPC and SEPT, which chunk the input with appropriate

separators for transformer models. The usage of separators should greatly increase the

performance of the model, as this input format follows closely with the usage of the these

symbols in the pre-training phase of the transformer models. To measure the effectiveness

of speaker identity, we add the identity of each utterance speaker as a cue to the models,

generating SPEAKERC and SPEAKERT. We test different variants of encoding the speaker in

the dialogue. SPEAKERC and SPEAKERT rely on prepending the speaker identity to every
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utterance as natural language. SPEAKER-SYMC and SPEAKER-SYMT introduce psychotherpy

specific special tokens [U], [P], [T] to indicate an utterance, patient speaker, and thera-

pist speaker to the model. SPEAKER-SYM-SEPC and SPEAKER-SYM-SEPT variants of the mod-

els rely on initializing these seperators to the pre-trained model’s [SEP] token. Finally, we

train SPEAKER-SPANC and SPEAKER-SPANT which rely on special tokens [U], [/U], [P],

[/P], [T], [/T] to indicate spans of the texts. A span representation approximately

doubles the number of special tokens used in the text, but may yield benefits with adding

more structure to the text. As we did before, we train variants SPEAKER-SPAN-SEPC and

SPEAKER-SPAN-SEPT, which are fine-tuned from the embedding vector of [SEP].

We also explore training unified MISC classifiers, where one model is trained on both

therapist and patient data. These models will be indicated with the same names as above

but will lack the subscript indicating the agent they are trained to classify.

Method BERT encoding
UTTER [CLS]ut[SEP]
CONCAT [CLS][u1; ...; ut][SEP]
SEP [CLS]u1[SEP]...[SEP]ut][SEP]

SPEAKER [CLS]T: u1[SEP]... [SEP]C: ut[SEP]
SPEAKER-SYM [CLS][T]u1[SEP][C]... [SEP][C][U] ut[SEP]
SPEAKER-SPAN [CLS][T]u1[/T][SEP][C]...

[/T][SEP][C][U] ut[/U][/C][SEP]

Table 4.1. Summary of dialogue data encodings we use in this work. RoBERTa uses <s>
and </s> instead of [CLS] and [SEP]. It also uses two separator tokens between utterances
in place of only one that BERT uses.

4.2 Training and Optimization
We use the HuggingFace transformers library 1 to retrieve our pre-trained transformer

models and word-piece tokenizers. For our experiments we use 3 models.

• bert-base-cased, which is the standard BERT [11] model with case-sensitive em-

beddings. BERT is trained using two special tokens [CLS] and [SEP]. For our train-

1https://github.com/huggingface/transformers
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ing purposes separate every utterance with [SEP] and append it to the end of every

input to serve as our end of text token.

• bert-base-cased-conversational, which is a BERT model trained on dialogue cor-

pra from the internet and media such as movies and books2. Since this model is

trained identically to BERT, we will use the same input patterns.

• roberta-base, a BERT-like model which was trained using more data, larger batches

and longer time [23]. RoBERTa relies on <s> and </s> tokens instead of [CLS] and

[SEP], and separates every pair of documents with two </s>, first one serving as

the end of text for the previous sentence, the latter indicating the start of the next

sentence. Each sequence ends with only one trailing </s>, marking the end of the

last document to the model.

All three models use and output 768 dimensional embeddings. For classification, BERT

based models use two fully connected layer networks that are fed the final representation

of the [CLS] or the <s> embedding. For the BERT-based models, this means a

[768! 768! 3 (patient) or 8 (therapist)

classification head. RoBERTa adds an additional layer, utilizing a slightly larger head:

[768! 768! 768! 3 (patient) or 8 (therapist)]

For unified models, we add a 3+8=11 logit classification head, and loss is only calculated

using the logits that correspond to the anchor utterance’s speaker.

Due to the computational requirements of training transformer models, we conducted

preliminary studies on hyperparmeter values. We fix our experiments to use reasonable

or best performing parameters with the compute costs in consideration. Each model is

trained for 10 epochs, using two NVIDIA Titan X GPUs. We use an effective batch size of

128 using gradient accumulation, and checkpoint 4 models spread evenly across training

time. We use the AdamW [24] optimizer with a learning rate of 3⇥ 10�5. We use linear

learning rate warmup schedules, with a warmup period of 1000 warmup steps for BERT

2https://github.com/deepmipt/deeppavlov
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and conversational-BERT models, and the first 6% of training time for RoBERTa models

following suggestions given in their respective publications [11] [23]. Learning rate is set

to 3⇥ 10�5, and we use a weight decay of 0.1. We work with context length of at most

eight, and every training batch’s length is adaptively generated to match the length of the

longest example in the batch. We use the standard cross entropy loss, except when training

a unified model, for which we mask the logits of the non-anchor speaker’s MISC codes by

setting them to �10000 before we calculate softmax probabilities p̂t 2 Rj.

loss(p̂t, yt) = �pt,yt + log(Â
j

exp(pt,j))

4.3 Model Interpretation techniques
Dissecting the attention weights of a model has been an effective interpretation tool for

seq2seq RNN-based models [5][15]. However, transformer-based self-attention has been

much more difficult to visualize in the same manner because of the number of heads, layers

and the higher-order inter-layer dependencies present within self-attention models.

We explore the feasibility of interpreting these models using gradient-based saliency

map approaches [3], and evaluating the reliability of the method using input reduction

techniques mentioned in [14]. Our visualization interface is powered by AllenNLP’s frame-

work3, on which we bootstrap the usage of dialogue data.

Finally we analyze self-attention weights across the models, their layers and heads,

which end up being 12 layers ⇥12 heads = 144 attention maps for all three of our mod-

els. While it is unlikely that we can extract the role of a specific self-attention map as it

influences the prediction, it would aid in understanding model tendencies and behaviors.

To achieve this, we build upon the exBERT visualization [17]4 with the ability to process

dialogue information.

3https://github.com/allenai/allennlp-demo

4https://exbert.net/
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RESULTS

Since we run seven experiments across three different models, we will only report the

best performing model for each task. For each experiment, the checkpoint with the best

dev performance is used to evaluate test-set performance. We report the final test-time re-

sults and compare against the existing state-of-the-art baselines CC and CT. Our evaluation

methods are the same as section 3.2.6

5.1 Client Predictions

Method Model macro FN CHANGE SUSTAIN

Majority - 30.6 91.7 0.0 0.0
CC MLP 53.9 89.6 39.1 33.1

UTTERC RoBERTa 57.7 90.9 39.6 42.6
CONCATC BERT 52.3 90.4 35.4 31.2

SEPC Conversational-BERT 56.3 90.5 38.3 40.1
SPEAKERC Conversational-BERT 56.7 89.4 38.7 42.0
SPEAKER-SYMC RoBERTa 53.9 89.6 39.1 42.1
SPEAKER-SYM-SEPC RoBERTa 58.9 89.8 42.7 44.3
SPEAKER-SPANC Conversational-BERT 61.2 90.8 45.2 47.6
SPEAKER-SPAN-SEPC RoBERTa 61.5 90.8 45.3 48.5

D = SPEAKER-SPAN-SEPC � CC - +7.6 -0.9 +3.9 +3.8

Table 5.1. Transformer based MISC classification results on client codes.

Table 5.1 summarizes client prediction results. Early experiments show that three

models trained under the UTTERC outperform CC and achieve state-of-the-art performances

without any need for context. Interestingly, all context-based transformer models, starting

from CONCATC until SPEAKER-SPANC are outperformed by the baseline in at least one of

the labels. This suggests certain context encodings may behave like noise to the model

and complicate the task. The difficulty in matching the UTTERC performance in most
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context-based inputs sheds light that client MISC codes may not be as contextual as ther-

apist codes. Since it only outperforms other models in only one setting, we can see that

BERT is consistently outperformed by RoBERTa and Conversational-BERT for this task,

suggesting that the latter two models are better equipped for dialogues, since they are

trained on multi-document texts, whereas BERT is only trained on a max of two sentences

per example for NSP task.

5.2 Therapist Predictions
Table 5.2 summarizes therapist prediction results. These results indicate that context

is more important to predict therapist MISC than client MISC, as every contextual en-

coding starting from SPEAKER-SYMT outperforms UTTERT encoding. With proper encoded

dialogue, we are able to achieve state-of-the-art in every category. Conversational BERT

consistently outperforms RoBERTa for categorizing the therapist codes, most likely since

it was trained on dialogue data. The therapist MISC categorization results suggest that

client MISC falls into either too broad of a category, or relies less on the history of the

conversation than classifying therapist MISC.

Method Model macro FA RES REC GI QUC QUO MIA MIN

Majority - 5.87 47.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CT HGRU + Anchor 65.4 95.0 55.7 54.9 74.2 74.8 82.6 56.6 29.7

UTTERT RoBERTa 65.01 94.7 54.4 51.3 75.0 75.3 82.6 59.1 27.7
CONCATT RoBERTa 59.68 94.0 51.4 50.4 73.5 73.8 58.8 51.9 23.7

SEPT BERT 65.70 94.3 54.3 54.4 75.1 74.3 79.6 58.5 24.9
SPEAKERT Conv-BERT 65.81 94.5 56.5 55.0 75.9 75.5 80.6 58.6 29.9
SPEAKER-SYMT Conv-BERT 66.18 94.7 57.2 55.0 76.7 75.9 81.2 58.7 30.1
SPEAKER-SYM-SEPT Conv-BERT 66.31 94.7 57.4 54.9 76.8 76.1 81.5 58.7 30.1
SPEAKER-SPANT Conv-BERT 67.1 95.0 58.1 55.6 77.7 76.9 82.8 59.3 31.4
SPEAKER-SPAN-SEPT Conv-BERT 67.53 95.0 58.7 56.3 78.0 77.3 83.1 59.7 32.2
D = score� CT - +2.13 +3.0 +1.4 +3.4 +3.8 +2.5 +0.5 +3.1 +2.5

Table 5.2. Transformer based MISC classification results on therapist codes.
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5.3 Unified Predictions

Method FN CHANGE SUSTAIN

SPEAKER-SPAN-SEPC 90.8 45.3 48.5

SPEAKER-SYM-SEP 91.3 47.1 48.0
SPEAKER-SPAN-SEP 92.0 48.5 50.6
D = unified� separate +0.7 +3.2 +3.1

Table 5.3. Unified Transformer based MISC classification results on patient codes.

Method FA RES REC GI QUC QUO MIA MIN

SPEAKER-SPAN-SEPT 95.0 58.7 56.3 78.0 77.3 83.1 59.7 32.2

SPEAKER-SYM-SEP 95.0 58.3 54.2 77.5 78.1 82.6 50.1 31.8
SPEAKER-SPAN-SEP 95.0 58.3 56.1 78.8 77.9 83.5 59.7 32.0
D = unified� separate +0 -0.4 -0.2 +0.8 +0.6 +0.4 +0 -0.2

Table 5.4. Unified Transformer based MISC classification results on therapist codes.

Table 5.3 summarizes unified prediction results. The unified approach improves all

client MISC code predictions. Perhaps the model is able to understand dialogue and

context well enough to generalize it to client classification codes, revealing some structure

of the context which training simply on client MISC could not uncover. We observe a

general increase in performance suggesting that MISC prediction can be leveraged as a

unified modeling problem, and that both the agents do share some common representation

of psychotherapy dialogue. We release the code and runtime scripts used to run these

experiments. 1

5.4 Saliency Maps
In order to probe what tokens are the most influential towards making a prediction, we

visualized the magnitude of gradients with respect to the input embeddings with respect

to a label of our choosing. Some anchor utterances, such as Okay are strong indicators

1https://github.com/utahnlp/bert-therapy
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of FA MISC. However, our findings show that the largest input gradients are made to

transformer special tokens. The magnitude of these gradients are four or more times larger

than for tokens, and obfuscate the meaning of token gradients.

Figure 5.1. Saliency map interpretation of a sample utterance on RoBERTa
SPEAKER-SPAN-SEP. The largest 6 gradients correspond to special tokens, which played
an aggregating role during their pre-training and fine-tuning phase.

Figure 5.2. More gradients for the saliency map interpretation of a sample utterance on
RoBERTa SPEAKER-SPAN-SEP. The magnitude of token gradients is cryptic and not easily
explicable. In this MIN example, the word suffer is intuitively a big indicator of the MISC
code, but is the eigth most crucial token for the model.

It was pointed out in [14] that non-linear, higher order relationships between the tokens

make deep RNNs difficult to probe. Since transformers incorporate self-attention, which

means every token is connected to every other token with just one hop, this phenomenon

seems to be amplified, making the saliency map based interpretation uninterpretable. It

is worth noting that all three models used for experiments stack 12 transformer layers, so

further studies should explore if the gradients are better explained at any higher levels.

5.5 Attention Maps
Self-attention does not enforce any distance-related constraints on tokens. It loosely

embeds the notion of distance through position its encodings, but it’s not clear how these

positions affect self-attention. Since dialogue is lengthier than traditional NLP tasks, it

may take advantage of self-attention to capture long-range dependencies. However, our

analysis has found that self-attention offers too much freedom to be interpretable through

individual attention maps.
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There are some themes present in these attention maps. Many attention heads tend to

attend to the previous or next token, something which indicates that the models are aware

of token positions. Few of the attention heads seem to attend between different parts of

speech, but these heads usually also attend on seemingly random tokens.

Self-attention becomes less interpretable as we examine deeper layers, suggesting that

self-attention leverages on higher-order relationships between tokens in order to under-

stand the complexity of language.
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Figure 5.3. Examples of attention maps from analysis on psychotherapy dialogue data.
Only the top 10% attenion connections are shown. Left: typical attention maps in the first
layer, shows no real trends. Middle: An attention head responsible for making tokens
attend to the next token, with a couple exceptions. It is also from the first layer. Right: An
attention head at layer 12, at which point it is difficult to discern the functionality of the
attention head.



CHAPTER 6

CONCLUSIONS

The performance of pre-trained transformers outpaces RNN-based classifiers on MISC

performance. Given dialogue in the right format, transformer models can leverage self-

attention to optimize MISC categorization effectively compared to earlier RNN models

which experimented with multiple attention mechanisms between utterances and words

across those utterances. Interestingly, a concatenating the context and the anchor utter-

ance together could not match the performance of just training on the anchor utterance,

suggesting that the transformer position encodings are not powerful enough to bias more

towards the word embeddings at the end of the sentence.

Adding special tokens boosted performance greatly, especially when initialized to a

separator token. From the experiments on the client MISC codes, it seems that RoBERTa

may be able to initialize and fine-tune these special tokens better than the BERT models.

However, Conversational-BERT’s pre-training data gave it the edge to understand dia-

logue better and perform consistently better in the therapist experiments.

Even though adding span tokens can double the number of artificial tokens to the

model, it seems to perform much better than adding a prefix symbol. Since transformer

models are pre-trained on spans of text, it suggests that transformer models can specialize

at learning between two special tokens, and results indicate that they are effective learning

across these spans as well.

Gradient-based interpretation approaches do not yield interpretable results, most likely

because self-attention provides shortcut connections in the model and promotes higher-

order relationships between the embeddings, especially at deeper layers. This explains

the semantic knowledge that transformer models possess, but at the expense of making

it harder to interpret these transformer models. Attention weight interpretation attempts

result in the similar conclusions: it is hard to pinpoint the role of a specific attention head
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at a specific layer. However, these visualizations did indicate that transformer models can

indeed understand position encodings and that self-attention requires many heads and

layers to understand language properly. Overall, our studies show that off-the-shelf inter-

pretation mechanisms are lacking the ability to sufficiently probe and explain transformer

models. Future work should address this and develop more robust techniques as lack of

model insights hinder our ability to deploy these models into real-world therapy sessions

otherwise.

In this thesis, we were able to test transformer models’ ability to generalize from lan-

guage modeling to a dialogue task, particularly predicting the MISC code of an utterance

given some dialogue. Given that these models were fine-tuned on significantly less steps

and at a much smaller learning rate, transformer-based models may be robust alternatives

to hierarchical RNN-based models. We show that MISC prediction models do not have to

be client or therapist specific, and that unified learning objectives can improve state-of-the-

art results without relying on modifying or complicating cross-entropy loss minimization

objective. Our results also indicate that the client MISC may need to be expanded from

just three labels since those codes only weakly rely on the context of the conversation,

something which can further the development and adaptation of MISC labels.
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