
Robotic Grasp Control using Tactile
Feedback

August John Bull
University of Utah

UUCS-20-009

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

7 May 2020

Abstract

As we move towards more autonomous robots, object interaction and manipula-
tion remains difficult for robots. Grasping approaches vary from learning-based to
traditional control means, each with their own challenges. Learning-based methods
perform well on specific tasks, but struggle to move to other tasks. Approaches using
control require a thorough predetermined model, which is not feasible for all tasks.
Humans mastered dexterous manipulation and tool use through millions of years of
evolution. What can we learn from human capabilities? We provide background in
robotics and human inspiration necessary for a grasp controller using only tactile sens-
ing on a robot. This controller encodes the whole pick-and-place operation, from grasp
initiation to careful placement. We detail the implementation of the controller and pro-
vide insights to improvement by extracting events from sensory data. We present our
work as a key step towards making dexterous robots.

1

ROBOTIC GRASP CONTROL

USING TACTILE FEEDBACK

by

August John Bull

A Senior Honors Thesis Submitted to the Faculty of
The University of Utah

In Partial Fulfillment of the Requirements for the

Honors Degree in Bachelor of Science

In

Computer Science

Approved:

Tucker Hermans, PhD
Thesis Faculty Supervisor

Ross Whitaker, PhD
Director, School of Computing

Erin Parker, PhD
Honors Faculty Advisor

Sylvia D. Torti, PhD
Dean, Honors College

May 2020

Copyright © 2020

All Rights Reserved

Abstract

As we move towards more autonomous robots, object interaction and manipulation re-

mains difficult for robots. Grasping approaches vary from learning-based to traditional

control means, each with their own challenges. Learning-based methods perform well on

specific tasks, but struggle to move to other tasks. Approaches using control require a thor-

ough predetermined model, which is not feasible for all tasks. Humans mastered dexterous

manipulation and tool use through millions of years of evolution. What can we learn from

human capabilities? We provide background in robotics and human inspiration necessary

for a grasp controller using only tactile sensing on a robot. This controller encodes the

whole pick-and-place operation, from grasp initiation to careful placement. We detail the

implementation of the controller and provide insights to improvement by extracting events

from sensory data. We present our work as a key step towards making dexterous robots.

ii

Contents

Abstract ii

1 Manipulation by Humans and Robots 1

1.1 Human Movement and Manipulation . 3

1.2 Robot Movement . 5

1.3 Robot Manipulation . 7

1.4 Tactile Feedback in Humans and Robots 9

2 Designing a Grasp Controller 11

2.1 Controller Goals . 12

2.2 Robots and Software . 13

2.3 Grasping in Discrete Phases . 14

2.4 Grasp Model . 15

3 Grasp Controller Implementation and Tuning 21

3.1 Implementation Considerations . 21

3.2 Sensor and Event Detection Experiments 23

3.3 Results . 24

4 Discussion 28

Bibliography 30

iii

1

Chapter 1

Manipulation by Humans and Robots

Imagine the near future, where you sit for dinner at your favorite restaurant. A robot waiter

brings your table drinks and begins handing them out. Tragedy strikes! The robot has set

your drink down wrong, and risks spilling it! Your robot server is quick to act and corrects

its error, like a veteran waitress, keeping your beverage in the cup. Robot grasping and

manipulation has a rich background in heavily controlled situations, like when the robot

can assume an object will not fall over after releasing it from its grasp. Alternatively, the

complexity of manipulation is reduced by attaching a specific tool to a robot, or designing

it around a specific task. However, this reduces the ability of the robot to perform other

tasks well. Specificity is a compromise.

Robots are widespread in industry, from agriculture to hospitality [1]. Surgical robots

promise precise procedures with teleoperation [2]. Assistive robots offer an alternative to

retirement living for low-ability individuals who value their independence [3]. In the wake

of the COVID-19 pandemic, robots provide a passable solution to the shortage of medical

staff and reducing the risk of infecting health care workers.

Humans are able to use a range of tools due to our ability to manipulate them. Human-

level dexterity allows for general tool use, making manipulation a highly valuable area

of investigation. To achieve this in robots, several approaches may be taken with regards

2

to the robot’s end-effector. Designers may opt for a specialized end-effector with various

tools attached [4]. For a general-purpose robot, a robotic gripper is much better suited to

general manipulation. Grippers come in various forms. Parallel jaw grippers are the most

basic, offering simple control often with one motor [5]. Grippers with interphalangeal

joints offer more versatility, but control each individual motor must be coordinated [6]. An

underactuated robot hand has more joints than motors. This is achieved by having some

pliable material or pivot act as the joint and have it change when the robot pose demands

[7].

Humans have a number of nerve endings in the hand that give rich tactile information

to the brain [8], [9]. This complex representation of grip force is key to the versatility

of human grasping [8]. Additionally, human reflexes allow recovery of failed placements.

Humans can reflexively regrasp an object if it unexpectedly stretches the muscles of the

finger [10]. We believe this added layer of adaptability is key to making general-use robot

systems. A similar reflex in a robot would allow it to stop objects falling from its grasp.

Research seeks to lessen the gap between human and robot capabilities by mimicking

human senses and reactions [11]. This perspective on robot manipulation yields coded con-

trollers that account for an object’s malleability, or even breaking point. Mimicry requires

perception. Visual information is useful for gaining location data of robots and target ob-

jects [12]–[14], but it contains no information on the stability or force of a grip. A camera

cannot stop a robot from cracking an egg. We may use force-torque sensors in motors

to estimate grip strength. We prefer robotic grippers come equipped with or the possi-

bility to equip pressure sensors. These sensors give a direct representation of forces the

robot applies to an object, and they come in a variety of robotic manipulators that vary in

complexity. Robot manipulation is a difficult problem to solve, with entire university labs

pursuing solutions involving optimization, learning and control. Determining how to suc-

cessfully grasp an object is nontrivial. Finger position can vary widely, and there are often

multiple feasible grasp types [15]. Beyond succesfully initiating a grasp is the question of

3

how to apply enough force to lift the object, but not so much that the object deforms or

breaks.

This project seeks to widen the scope of how manipulators can pick up and replace

objects by detecting grip strength and adjusting to loosen or strengthen as necessary. To

do this we believe human inspiration is key due to the versatility and sensitivity of human

grasps. This thesis provides an overview of techniques in robotic manipulation and com-

pares them to human ability. It then introduces a method of actuating a robot hand based

on tactile feedback to achieve careful grasp initiation and release. In implementing tactile

feedback in the robot grasp model, we hope to take robotic manipulation closer to human

levels of robustness.

1.1 Human Movement and Manipulation

Humans have many degrees of freedom in their hands between flexion and extension for

each finger, adduction and abduction of the fingers, and opposition of the thumb. The

advanced muscle and tendon structures of the hand make this level of expression possible

[9]. The muscles of each finger span multiple joints, combining with the tendons to make a

pulley-like system that allows for a number of finger poses independent of their orientation

to the hand. We can keep a finger straight while flexing it relative to your palm thanks to

extensor muscles on each interphalangeal joint. The muscles working in opposition, the

flexor pollicis brevis and flexor pollicis longus, allow us to grasp objects and control what

parts of the finger touch. These are only two sets of muscle agonist/antagonist pairs. The

number of muscles and joints in the hand allow and facilitate immense dexterity. Combined

with the palm, humans learn a myriad of grasps. Figure 1.1 provides examples of basic

human grasp types.

More advanced than the musculoskeletal structure of the hand are the nerves that control

it. The portion of the motor cortex dedicated to hand movement is roughly the size required

4

Figure 1.1: Basic human grasp types from Taylor and Schwarz [9, Fig. 3].

to control the arm, torso (trunk), and legs [9]. This increased demand makes sense when

comparing the number of distinct muscle groups and number of movements possible in

each structure.

Less obvious than the complexity of movements of the hand are the nerves that respond

to tactile stimuli. The glabrous, or non-hairy skin on palms and fingertips has a high number

of nerve endings, containing a variety of afferent nerves that send information to the brain.

In particular there are four types of mechanoreceptors that work to provide a wide range of

sensations: slow-adapting and fast-adapting nerve endings, each having two subtypes [8],

[11]. These nerves vary in fidelity in both area and time, allowing humans to detect simple

sensations like direct pressure to more advanced movements like movement parallel to the

finger’s surface.

The mechanics of human manipulation outside the anatomy are relatively simple. To

grasp, we apply normal force to an object’s surface such that the tangential force of friction

is sufficient to overcome gravity. The deformation of the skin, fat and muscles of a human

finger contributes to grasp capability as well: deformation allows for contact area to be

compliant to the variations of a surface, ensuring good contact area.

5

1.2 Robot Movement

Moving a robot involves understanding its kinematics – the parameters that define the an-

gles of the joints and orientations between them. In general each joint along an open-loop

chain, such as an arm not grasping a fixed object, offers one degree of freedom, though

underactuated joints are an exception to this. With 7-DOF robotic arms, a robot can reach

nearly every point in its workspace [16]. Because some motors in robot systems may be

able to turn infinitely, the vector space defined by the joint angles of the robot is often some

subspace of Rd , where d is the robot’s degrees of freedom. The forward kinematics allow

us to determine a robot’s end-effector position based on the robot parameters including

joint angles and link dimensions. This is rather easy as the transformations may be written

symbolically, and simple multiplication of matrices for each link gets the desired result. In-

verse kinematics is quite difficult in comparison. Because the transformation matrices vary

with joint angles, computing an inverse transformation demands an inverse matrix calcu-

lation with a matrix varying over time. This is difficult to represent symbolically. When

accounting for obstacles, conventional robotics considers mapping collisions into the joint

space infeasible. To counteract this complexity, major methods involving robot movement

use numerical methods to reduce the impact of high degrees of freedom on computation.

Motion planning involves taking a set of waypoints in the robot’s joint space and com-

manding the robot to move to each during execution of a plan [17]. Determination of these

waypoints requires only that the inverse kinematics be calculated for the desired beginning

and end positions of the robot. Through forward kinematics we can know the robot’s swept

volume in real space. The initial and final configurations of the robot are often set by a

human. The robot’s decision process comes from the method it chooses to interpolate its

motion. If obstacles and objects in real space are of concern and can be simulated, many

optimal algorithms exist, and any-time motion planning solutions such as RRT* allow for a

degree of optimality within a restricted timeframe. However, the time scale for replanning

in case of failure for a 7-DOF arm can be as high as .2 seconds. This may seem like a short

6

time, but this is as fast as human conscious reaction time [18], and does not account for the

time it takes for the robot to execute the new plan.

Data-backed machine learning is a well-studied method to decide on final configura-

tions, especially for manipulation tasks [12], [14], [19]–[21]. Typically this involves col-

lecting data on a simulated or real robot system to decide on what causes good and bad

outcomes. In the case of supervised learning, what constitutes the value of an outcome is

human-determined. Reinforcement learning leverages the long-term expected reward, or

value, of actions an agent may take at a given point in time. By maximizing value, which

we encode by modeling reward, a robot agent will, with practice, perform some desired

task by forming a policy, which tells the agent which action to take to maximize value.

This approach is particularly appealing in robotics for its ability to learn online. These

methods often require large amounts of data to inform the maximization process, but us-

ing an actor-critic model, two functions (e.g., neural networks) operate in tandem. The

“actor” determines what actions the robot should take and the “critic” decides how good

or bad those actions are. Methods in this area have a lower data demand to reach optimal

outcomes [22]. Neural networks offer the ability to learn features of the state space, reduc-

ing potential human bias towards what observable variables gain priority. Together with

planning, learning sends robots closer to full automation.

A large body of work exists around grasping, but placement is a less explored area.

Work focusing specifically on placement models location accurately, but small errors in

locations for placement coming from learned methods create artifacts such as dropping the

item in question [23]. This is undesirable for good manipulation. Humans can place objects

gently, and this is often critical in areas we desire robots the most. For example, dropping

glass vials in a medical lab costs a significant amount of money for materials lost and risks

contamination of other materials in the lab.

In the moment-to-moment movements, robotic control is a fantastic solution to make

small adjustments or account for outside stresses on a system. Control is a well-studied

7

engineering discipline and contributes greatly to automation. A controller uses a set of

variables to determine the state of a system. Open-loop control adjusts the system based

on its current state. A microwave timer is an example of open-loop control; the system

turns off once enough uptime has elapsed. Feedback control explicitly incorporates outside

variables and the system state in a cost function. Modeling cost gives a path to minimization

through adjusting the system itself. Basic feedback control adjusts based on history, one

or more steps in the past. Model predictive control adds a forecast of the system state to

optimize at the current time and future times as well. Controllers can operate on the time

scale of thousands of times per second, limited of course by the processing speed of the

system and communication means. Most importantly, feedback control allows modeling

gentle grasping and placement [11]. This in part achieves our goal of human mimicry.

Humans have to detect when they make contact with a surface, whether through muscular

sensation, tactile sensation, or some other means [8]. We pick feedback control as our

preferred method for our desired robot system. Its ability to incorporate robot sensor data

and fast computation time make it the best choice for a pick-and-place robot.

1.3 Robot Manipulation

Getting to an object involves a combination of planning and control. Fittingly, grasping

involves planning and control on a smaller scale. Manipulation can be performed with or

without a grasp and may incorporate learning similar to large robot movements [19], [24].

Often, manipulation tasks focus on moving location [23], but more precise movements like

manipulating objects in-hand have backing research [25].

When building a robot to manipulate objects, one needs a gripper. There are several

robotic grippers that incorporate tactile feedback, varying in degrees of freedom and sen-

sory capabilities. Figure 1.2 provides gripper examples. A parallel jaw gripper like the

one on the PR2 robot [5] has multiple sensors in each gripper pad, allowing localization

8

(a) PR2 Jaw Gripper (b) Allegro Hand (c) ReFlex TakkTile Hand

Figure 1.2: Examples of robotic manipulators.

of contact and measurement of grip strength. Its main limitation is its simplicity; a lack

of a thumb or flexible digits means it can only pick up objects that it can hold with sheer

force alone. Its simplicity makes it easier to model tasks, and it shows promise in general

manipulation [3], [11]. A more complex gripper like the Allegro [6] has more degrees of

freedom and has a wider range of possible grasps. The tradeoff with such a hand is the

increased complexity of moving the hand. The motors in the Allegro give it an incredibly

complex joint space. In addition, the only possible location for tactile sensors is on the

fingertips, at least without severe modification.

Imitating humans yields a unique design result for robotic manipulators. The ReFlex

TakkTile line of hands [7] provide tactile sensing in a gripper that can actively abduct,

adduct, and flex its fingers. The tendon structures of the hand model a simplified human

finger, mimicking a three-fingered hand with only two phalanges and the flexor pollicis

longus on each digit. The downfall of these systems is there is no explicit representation

of the pose of these underactuated joints, making simulation difficult. The underactuation

serves as a benefit in the mechanics of a grasp, however. Because the motor pulls on the

tendon to flex the finger, the interphalangeal joint keeps flexing after the first phalanx has

hit the object. The fingers close around an object without explicit modeling of their angles.

The hand fits the compliance of the object due to its imitation of human anatomy.

Advanced grippers give robots opportunity to mimic the expressiveness of human grasps.

Robot grasps are considered in two forms: precision and power. Precision grasps use the

fingertips, relying on finger pad pressure as the contact area. These grasps are well-suited

9

(a) Power grasp (b) Precision grasp

Figure 1.3: Examples of robot grasp types [14, Fig. 6].

for dexterous tasks. Power grasps may incorporate any length of the finger and the palm.

They grant stability when holding an object, so they are well-suited for high-movement

tasks and heavy objects. Figure 1.3 gives examples of power and precision grasps. This

classification nowhere near meets the expressiveness of human grasps, but nevertheless

leads to successful grasps for robot manipulators [14]. Modeling grasp type transforms a

robot’s decision-making to be closer to our understanding of human grasps. Just as a hu-

man decides on how to grab a pen differently than a water glass, a robot must decide how

to grab any object it targets.

1.4 Tactile Feedback in Humans and Robots

Human tactile sensation is key to manipulation. We detect slip and shock, allowing us to

sense object properties and collisions in motion to even allow blind manipulation. The sen-

sations a blind individual gains from a cane gives them a representation of objects around

them. While humans have thousands of nerve endings in a given finger pad, tactile sens-

ing on a robot is much more difficult, requiring specialized hardware and often with lower

fidelity. For example, ReFlex TakkTile hands have a maximum of 14 sensors per finger,

compared to the continuous coverage of nerves in human finger pads. To correct this dis-

parity, filters on sensor readings discriminate important events [11]. Computation power

10

facilitates the explicit construction of a complex tactile representation where anatomy gives

humans the same ability naturally.

Incorporating tactile and visual feedback in machine learning is effective on tasks sim-

ilar to our project [11], [26]. Visual information allows learned estimation of geometric

properties [13]. Learning and subsequent inference also facilitate dynamics estimation

through tactile feedback [20], [27]. Tactile feedback has the advantage over purely visual

information of approximating dynamics properties of an object. Through dynamics esti-

mations, robots can estimate proper forces to apply to an object, similar to humans [8].

Machine learning allows robots to come closer to human levels of object knowledge from

tactile information alone. Much like humans learn through experience, robots perform well

on manipulation tasks given enough data.

Robot learning shows promise in extensions of grasping and placement. Through learn-

ing, robots may be able to correct mistakes or detect when the robot is not in compliance

with its environment – for example, if a cup does not lie flat on some surface, but part of it

still touches. Continuous feedback has been shown to be a fast and feasible approach when

using only haptic data as well [28], [29]. Human tactile reflexes are the same regardless

of sight, or even distraction [18]. By disentangling the visual and tactile representations of

manipulation, isolated tactile information moves robots closer to human prehensile ability.

11

Chapter 2

Designing a Grasp Controller

We are ready to move forward in our design of a tactile-sensitive robot controller. Feedback

control, or closed-loop control, is the natural choice for incorporating tactile sensory data.

As mentioned in Section 1.2, feedback control uses a combination of observed variables

from the system and the system state to decide on a course of action. Given a desired value

of observed variables Sdes and observed variables Sobs, we can operate the system by

u = p(Sdes,Sobs)

where p is a function dependent on system state and u is the adjustments to the system. The

simplest form of this p is the calculation of an error signal, Sdes−Sobs. When controlling

a robot, the configuration adjustments force changes in the real-world dynamics, changing

Sobs at the next measurement step. This process forms the titular “closed-loop” of feedback

control. The goal of p is induction of a negative feedback loop to get the system closer to

the desired variables. When p operates on the error signal, this means the system adjusts

less if it is close to the desired variables. The system is stable when it reaches equilibrium.

Once the system state changes, Sdes changes, altering the behavior of the system.

As we are attempting to command a robot based on tactile feedback, closed-loop con-

trol provides direct incorporation of tactile information via the error signal, respecting our

12

inspiration of human grasps. It has a large body of work supporting its positive performance

across manipulation tasks. Control also works well alongside robot learning, allowing ex-

tension of our work in the future.

2.1 Controller Goals

We wish to explicitly state our goals for the controller. Specific desired properties give

each part of the controller motivation for its inclusion. Explicit goals also present criteria

for comparing alternatives when comparing design options. Our goals for the controller are

1. Stable. Controllers are subject to chattering when controlling on a high-frequency

signal, as sensor data can cause the error signal to fluctuate in such a way that the

system is constantly over-compensating. To achieve stability, the controller must

limit itself to small changes and tolerate a level of error or compensate for instability

in the control signal.

2. Tactile. The sensation of human touch is key to prehensile capabilities. Taking

humans as inspiration means using tactile data from robots. Moreover, we wish to

solely use tactile data, as humans have the capability to manipulate without vision.

3. Complete. Our controller should span the entire task. Object manipulation is a

nontrivial problem with many subtasks, so we should pursue a controller that adapts

from the initiation of a grasp to releasing an object. This includes detecting events

like the placement of an object on a surface.

With our controller goals in mind, we can make conscious design choices that help us reach

them. We will use feedback control as the backbone of our design. The exact design of

the controller depends on the abilities of the system. The rest of the system depends on the

hardware used and our state model for manipulation subtasks. We also require software to

encode our model and communicate commands to the robot.

13

2.2 Robots and Software

The KUKA LBR4+ arm is our choice for the base of our system. It is a 7-DOF robot

arm, allowing for arbitrary position and orientation in its workspace, and its attachment

head makes robotic grippers interchangeable. The ReFlex TakkTile robot manipulators are

our choice for the project due to their human-inspired design and the compliant properties

of the interphalangeal joints. Figure 2.1 depicts the combined setup. These hands have

simple pressure sensors along each link in the fingers, allowing a degree of localization of

pressure. The second version contains an internal measurement unit (IMU) in the palm and

each fingertip with accelerometers and gyroscopes, allowing physical disturbance detection

via linear acceleration [7]. The preshape motor that abducts and adducts the fingers will be

useful in performing precision grasps as well. Lastly, each finger has a magnetic proximal

encoder that measures the joint angle from 0 radians when open and at rest to π radians

when closed.

The ReFlex hands work best in the real world. Simulating the 3D-printed deformable

material in the hands is nontrivial, as is simulating the underactuated joints. The pressure

sensors are also difficult to model as there are multiple along each finger, with limited

surface area. Thus pressure values in simulation are prone to spiking without an accurate

calibration of how much pressure it takes to maximize the sensor reading in the real world.

Due to the COVID-19 pandemic, non-essential University of Utah labs must work remotely.

As such, simulation is a more appealing option going forward, but due to the difficulties

mentioned the transition is not yet complete.

To operate the robot, the creators of the ReFlex hands provide a package [30] for Robot

Operating System (ROS), an open-source platform aimed towards robotics research [31].

ROS includes the roscpp and rospy APIs for C++ and Python, respectively. The just-

in-time compilation and simple syntax of Python makes iterations on software development

incredibly fast. These factors distinguish Python as the best choice for our controller soft-

ware. We choose Ubuntu as the operating system under our controller as it is a requirement

14

(a) Simulated KUKA arm [32] (b) Real-world KUKA arm and ReFlex hand

Figure 2.1: Desired robot and manipulator for tactile feedback control.

for ROS. With our software and hardware decided, we have the constraints under which we

design the rest of the controller.

2.3 Grasping in Discrete Phases

Object manipulation is a nontrivial task, with many subtasks across a single instance of

manipulation. Johansson and Flanagan provide a breakdown of these subtasks as phases

which humans perform semi-consciously as part of manipulation [8]. Romano et al. refine

these phases into a state machine for application to the PR2 robot [11]. Breaking manipu-

lation into phases allows more precision at any given time by interpreting robot feedback

differently based on the phase. More importantly, Johansson and Flanagan give a phase

to placement. Using their model means we include object placement, a chief goal of our

controller. A state machine model provides an outline of software design, guiding develop-

ment. We outline the phases and their purposes in manipulation so we may design around

human performance. Section 2.4 provides explanations of our changes from the PR2 con-

troller to our own. The phases in order are

1. Close. The fingers must close around the object before any meaningful manipulation

may be performed. Fast-adapting nerves detect when the fingers make contact and

the next phase begins. This phase is referred to as Reach by Johansson and Flanagan.

15

2. Load. Fingers increase force on the object while slow-adapting nerves detect skin

deformation. Application of force continues alongside lifting force until the object

leaves the surface, which fast-adapting nerves detect.

3. Lift. The object is in motion towards some goal location. Fast-adapting nerves detect

any collision with objects while in motion and slips the object may have in-grasp.

Slow-adapting nerves continue to fire to provide the sensation of applying force.

4. Hold. The object is static and stable in-grasp.

5. Replace. The hand moves the object towards is goal placement, and fast-adapting

nerves detect when collision is made with the desired surface.

6. Unload. The fingers loosen around the object, and slow-adapting nerve activity

lessens as the fingers decrease normal force on the object. Eventually, the fingers

break contact with the object.

Johansson and Flanagan describe 3 and 4 as separate phases, but we opt for the sim-

plification from the PR2 controller that combines these. The robot may remain in motion

and have many waypoints to which it wishes to move the object. Combining these phases

turns them into one that simply needs to compensate for slips while the arm moves the

manipulator and object to different locations. In addition, we add the phase from the PR2

called Open, which signals to the robot that it may freely return the gripper back to an open

position.

2.4 Grasp Model

We must have a detailed approach to our grasp controller in order to achieve good per-

formance. The PR2 controller from which we draw inspiration controls on E, the gripper

16

motor effort, by

E = KP · (xg− xg,des)+KD · (vg− vg,des)− sign(vg,des) ·E f ric

where xg and vg are observed position and velocity variables of the gripper with desired

counterparts xg,des and vg,des. KP, KD, and E f ric are empirically tuned constants. We desire

a simpler model for movement, ideally one that uses a simple error signal. To do this, we

first define our observed variables of the system for our control law. In detailing the math

of the controller, we denote the L2 norm by ||x||2 = |x| for compactness. Let

F =


f11 f12 . . . f1s

f21 f22 . . . f2s

f31 f32 . . . f3s


be the 3× s matrix of pressure values where fi j is the jth sensor reading on the ith finger.

The first ReFlex TakkTile model has nine sensors per finger, and the second has four-

teen, hence the variable number of columns in F . Figure 2.2 displays the sensor layout

on each hand using RViz, a ROS visualization tool. These sensors are ordered proximal

to distal, with the sensors on the side of the ReFlex TakkTile 2’s fingers coming after the

normal-oriented sensors. The first finger lies parallel to the second finger at rest, and the

third finger is the thumb of the hand. We apply a low-pass filter to each force sensor reading

over time to adjust for noise. For IMU readings, let a = [ax,ay,az] be the linear accelera-

tion in the coordinate system of the hand, where y points in the direction of the thumb and

z is vertical through the center of the hand. We use a high-pass filter to get the accelera-

tion disturbances ã. The position of the fingers are each controlled by one motor. Using

an error signal, channeling the error into a 3× 1 matrix allows direct command of finger

17

adjustments. Define Fobs by

Fobs =


max(f11, f12, . . . , f1s)

max(f21, f22, . . . , f2s)

max(f31, f32, . . . , f3s)

 .

We constrain Fdes to be a 3×1 vector in each controller phase to achieve the desired 3×1

form for the error signal. To adjust the signal’s relative strength, we use the constant KF as

a form of gain to scale the error signal to the joint distance parameters. This is important as

the tactile sensors range in value from 0 to 255, while the motor angle is defined in radians

from 0 in rest position to π when the finger touches the palm. KF acts as a scaling down

to achieve reasonable values for motor adjustments. Additionally, to achieve stability we

allow errors within some target window. We adjust the window with lower bound ∆F− and

upper bound ∆F+. Let Fdes,i and Fobs,i be the ith components of their respective vectors.

Then define

u =


p1(Fdes,1−Fobs,1)

p2(Fdes,2−Fobs,2)

p3(Fdes,3−Fobs,3)


with

pi(Fdes,i−Fobs,i) =


0 ∆F− < Fdes,i−Fobs,i < ∆F+

KF · (Fdes,i−Fobs,i) otherwise.

as our control function where ∆F−, ∆F+, and KF are constants manually tuned for perfor-

mance. In plain English, the control function subtracts the observed maximum forces from

the desired and zeros them if they fall within a tolerance window. Note the maximum to

gain Fobs makes it so only one sensor along a finger must fit in the tolerance window, effec-

tively making the max operation act as a logical OR on the condition of window contain-

18

(a) ReFlex Takktile sensor layout (b) ReFlex TakkTile 2 sensor layout

Figure 2.2: Visualization of ReFlex TakkTile hands. Disks indicate sensor locations.

ment for all sensors along a finger. The tolerance window allows more undercompensation

or overcompensation based on its defining constants. For example, having a relatively small

∆F− compared to ∆F+, we still operate proportional to the error when making our adjust-

ments, but we allow for adjustments coming into the window to be above target slightly to

stop chattering by repeated overcompensating adjustments around the target variable. Once

the values for u are set, the system commands each finger angle change by the respective

u component, positive or negative. Our phases change from Johansson and Flanagan’s

model and take large inspiration from the PR2 controller. Figure 2.3 provides a graphical

depiction of the model.

1. Close. We initiate the closing of the fingers at velocity vclose around the object and

stop each finger when they make contact. This is done by detecting when any sensor

along a finger has passed some nontrivial threshold set in the code base.

2. Load. In this phase we set Fmax = max(Fhist) and Fdes = [Fmax,Fmax,Fmax]
T , where

Fhist is a five-second history of finger sensor readings and max operates elementwise

across the entire history. With Fdes set we explicitly invoke our control law.

3. Lift & Hold. After stabilizing, we wait for a time tsettle before beginning control in

the new phase. Rest time allows any potential deformations of the object or hand

material to resolve. In this phase we use a first-order bandpass filter on F over time

19

and perform the same max to get Fobs,BP. We also track the high-frequency varia-

tions by running F under a high-pass filter to get F̃ . We classify slip as when the

magnitude of this vector surpasses a threshold |Fobs|εslip, and the mid-level distur-

bances are below the threshold εBP. This discrimination in a mid-range passband is

to eliminate false positives from increasing grip force. Making the high-frequency

disturbances proportional to |Fobs| is an encoding of Weber’s Law: a more intense

sensation requires a higher change for the disturbance to be noticed. When we detect

slip, we compensate by multiplying Fdes by an increasing factor Kslip. As noted in

the PR2 controller, a bandpass filter combined with our highpass filtered disturbances

is effective for detecting signals similar to the fast-adapting nerves that detect sheer

forces across a finger pad.

4. Replace. Through a ROS command, the user sends the replace command to the

robot, initiating this phase. A placement is considered when the controller detects

a slip or when |ã| > εã, where εã is another tuned constant. This rapid acceleration

change signifies the robot’s ability to sense when it has stopped.

5. Unload. We set our desired force at time t to Fdes,t set by

Fdes,t =
(tunload− t)

tunload
·Fdes

where t ∈ [0, tunload] is the system time since the beginning of the phase.

6. Open. The finger motors open with angular velocity vopen until they reach their rest

positions.

Before the COVID-19 pandemic, we found working values that allowed good performance

for our controller. We based performance on the consistency of phase switches and the

stability of the fingers around an object. Table 2.1 lists the best found values of these

constants. The discrete-time filters have varying effects based on their cutoff rates, which

20

we explore in Section 3.2.

Figure 2.3: State machine of grasp model.

Constant Value Units
∆F− -5
∆F+ 40
KF 0.0036 radians

Kslip 1.08
εslip 1
εBP 0.25
εã 0.008

tsettle 0.1 s
tunload 0.2 s
vclose 1.2 radians/s
vopen -1.5 radians/s

Table 2.1: Values of controller constants. A blank last column signifies the constant is
unitless.

21

Chapter 3

Grasp Controller Implementation and

Tuning

With our selection of a grasp model, robots, and software, we proceed to integrate the

components of our design into a whole system. Synthesizing the system for our grasp

controller requires software engineering skills to communicate with the embedded systems

of the robots. Translating our model into code requires adapting it to the specific structures

and models present in our software. A complete system requires we negotiate interactions

between all of the parts of our design. Section 3.1 details the challenges in bringing our

design together. Section 3.2 outlines experiments to test the impact of signal filters on the

isolation of events and smoothing of sensor data, and Section 3.3 qualitatively discusses

our experimental results.

3.1 Implementation Considerations

The software implementation alone presented many challenges. ROS uses an asynchronous

event model to send message information. We build event handlers with thread-safe struc-

tures to allow safe modification and reading of the data from the controller software. This

event model works to our advantage: after measuring the maximum rate of 20 Hz for in-

22

coming messages, we set our control loop rate to 20 Hz likewise, as our linear operations

and filtering complete well within that time scale. The control loop operates as a recurring

event: every 0.05 seconds, an event fires that runs one iteration of the control loop. During

this iteration, the controller pulls sensor data, filtered where appropriate, from an interme-

diary controlling thread safety, reading of hand messages, and data filtering. The thread

running the control iteration then interprets the data as demanded by the system state and

sends the command to the hand. The code is available online and builds on the code from

RightHand Robotics [33].

Research began on the ReFlex TakkTile hand. Due to a hardware failure, the sensors

along the second finger would report maximum values even when nothing touched it. This

failure, along with the additional features of the ReFlex TakkTile 2, motivated the move to

the new hand model. The ReFlex TakkTile 2 by default does not send linear acceleration

data in communication packets, instead opting to send quaternion measurements from the

IMU. The firmware picked up this data by starting at the register address of the IMU’s

quaternion data. By changing this start address, we replaced the quaternion vector with

linear acceleration data in the communication packets sent to ROS. The packet included

enough space for four values of a quaternion (w,x,y,z). Altering the address turned the

quaternion vector into (ax,ay,az,b) where we disregarded b entirely. From this we obtained

a well-formed acceleration vector.

At the Learning Lab for Machine Automation (LL4MA) where this project took place,

we had two of the newer TakkTile hand model. This redundancy proved invaluable when

two failures occurred. One hand, Hand A, had a communications port failure and stopped

sending data to the controller. The other hand, Hand B, had a finger lose the ability to gain

power from the hand’s control board, meaning the tactile sensors and proximal encoder

on that finger sent back bad data. The failure caused the hand to think it was detecting

less force and the joint angle was less than in reality. With two broken hands we made a

new one by transplanting a working finger from the noncommunicative hand to the hand

23

with an insensitive finger. By the time we had working hardware the date was March 12,

2020. That same day, the University of Utah announced the move to online classes for

the remainder of the semester [34]. In the following two weeks we managed to run the

controller on the ReFlex TakkTile 2 a handful of times to verify our software. Like many

engineering labs, the LL4MA moved to remote work for the safety of its students. For the

time being, we put efforts with real robots on hold. We take this opportunity to look at the

data we have and propose next steps for this project.

3.2 Sensor and Event Detection Experiments

Given the series of events surrounding this thesis, it is hard to see what can be gained

from this project that is reliant on real-world systems and data. Fortunately, ROS allows

recording of messages sent across its communications model, and with these recordings

replay messages from robots from sessions past. We possess two such recordings where

we recall the events that took place with the hand. With these, we observe the effects of

filtering in two aspects: noise and placement detection via acceleration.

Experiment A: Eliminating Tactile Sensor Noise

Our first recording is of the ReFlex TakkTile hand repeatedly grasping a water bottle using

explicit commands to close and open the hand. We used the default tactile stop thresholds

for these commands. From this recorded run of the hand we extract the sensory data from

the first finger and run it through a low-pass filter with the goal of eliminating sensor noise.

Our filter design is a first-order discrete-time Butterworth low-pass filter, where we

vary the cutoff frequencies across trials. This filter allows for dropoff beyond the cutoff

frequency, making exact frequency selection less crucial. More importantly, it has no ripple

in the passband, leaving fewer filtering artifacts. A five-second history at a sampling rate of

20 Hz gives us a Nyquist frequency of 50 Hz, leaving plenty of room to find a suitable filter

24

cutoff. We run the filter with 1, 5, and 10 Hz cutoffs, as contacts worth noting are made for

long periods of time. We compare filter effects on the signal noise over twenty seconds of

runtime. During this runtime there are two grasp cycles of gripping and releasing the water

bottle. Figure 3.1 shows the filter’s effects on each of the nine sensors along the finger over

time.

Experiment B: Isolating Quick Acceleration Changes

The second recording gained before the campus shutdown is a run of the ReFlex TakkTile 2

testing the IMU’s accelerometer. The goal of this run was to examine if linear acceleration

readings were coming through after our firmware change. We moved the hand on and off

a table for a brief period of time. We isolate three significant changes in acceleration over

seven seconds of the twenty-five second recording. Our chosen filter design is a first-order

discrete-time Butterworth high-pass filter. In this experiment we choose cutoffs of 5 Hz,

10 Hz, 15 Hz, and 25 Hz and compare the magnitude of the filter response ã against the

magnitude of the base signal a over time. Figure 3.2 depicts the results, with dotted gray

lines marking significant events in the time period.

3.3 Results

Experiment A

The base readings give clear start and end points for the two grasp cycles. Two sensors

responded chiefly to each grasp, signified by the orange and green lines. The chief response

has an initial spike just before sustained contact, and the secondary responder spikes with

the contact event to then settle as the hand maintains its grip.

Each cutoff frequency from our chosen set has a noticeable impact on the initial read-

ings. The 1 Hz cutoff frequency is extreme and severely slows the ramp time of the contact

25

(a) Unfiltered readings (b) 1 Hz cutoff

(c) 5 Hz cutoff (d) 10 Hz cutoff

Figure 3.1: Comparisons between low-pass filter thresholds for reducing noise in pressure
sensor readings. The pink dotted lines mark the beginning of contact, and the blue ones
mark the release of the grip.

events. Setting the cutoff to 5 Hz makes for smooth readings while keeping the identity

of the contact events intact. A sensor that spiked with the contact event lost the spike en-

tirely under this filter, instead having a measured response to the grip initiation. The 10

Hz filter decreases the small spike before the main contact event, but still contains small

variations compared to the other frequency cutoffs. Some of the spike from the less respon-

sive contacting sensor still remains under this modality. For its noticeable but light-handed

smoothing, 5 Hz appears to be the best of our choices for noise filtering.

26

Experiment B

(a) Unfiltered acceleration

(b) 5 Hz cutoff (c) 10 Hz cutoff

(d) 15 Hz cutoff (e) 25 Hz cutoff

Figure 3.2: Comparisons between high-pass filter thresholds for isolating rapid changes in
acceleration. The gray vertical lines reference significant changes in unfiltered acceleration
readings across each trial.

27

The magnitude of the acceleration vector from the IMU varies rapidly due to its small

scale. Any inspection at such a small scale is impacted by noise, but there are three distinct

events we detect in the time frame chosen. The first is a large spike in the magnitude,

potentially signifying a sudden stop, possibly against a rigid object. The two other events

see rapid oscillations in the magnitude, even more so than the normal sensor noise. In each

case, peaks bookend a sharp decline in acceleration magnitude. These rapid changes show a

potential rebound against an object, although small. These final two events are particularly

responsive under our high-pass filter design as a result of their increased oscillation.

The 5 Hz cutoff shows some sensitivity to the highlighted events, but the readings

outside those events contain a high level of variation as well. The step to 10 Hz shows

a more isolated response from the final two events, but less from the first. Third, the 15

Hz cutoff curbs many of the sharp but insignificant peaks present in the filters with lower

cutoffs while eliciting fantastic response from the final two events. The first event is far

less noticeable than in lower-cutoff filters, however it still has a degree of response. At the

highest cutoff lies the 25 Hz filter. This filter does not have perceivable response gains over

the 15 Hz filter in terms of the later two events and sees no distinguishable response from

the first event. This filter approaches diminishing returns for filter cutoffs on this system.

This makes sense, given the underlying sampling rate of 20 Hz from the robot.

The combined responses of the 10 Hz and 15 Hz filter show promise for different in-

stances of fluctuating acceleration. Less extreme cutoffs isolate the single spike from our

data decently, but allow a noticeable amount of oscillation from the raw measurements.

Sensor noise is by definition high-frequency, so the best a high-pass filter does is reduce

the noise’s amplitude to focus on significant events. With a balance of noise cancellation

and event preservation, the band of 10 to 15 Hz for a filter cutoff shows promise in isolating

rapid changes in acceleration from the sensor data.

28

Chapter 4

Discussion

A tactile grasp controller is no simple piece of software. It requires knowledge from many

engineering disciplines: mechanical, electrical, and computer science. The level of back-

ground required to approach this task is significant. Robotics is a specialized interdis-

ciplinary field, and current research reflects that. Beyond the background knowledge of

robotics alone is the human motivation. We compare machine learning classification sys-

tems with humans as the gold standard. Robotics holds many of the same principles as other

machine learning specialties in this respect. Taking inspiration from humans, we adapted a

grasp controller using only tactile information. This is a major step towards blind manipu-

lation in robotics. Despite a global pandemic freezing lab work, we investigated what little

data we had and focused the search on two key detection systems in the controller.

In future projects, more data will facilitate deeper analysis of the capabilities of a tactile

controller. In the case of ROS, labelling robot session recordings with real-world events

will be invaluable in parsing the data at a later time. A more refined search for filtering

methods will benefit the controller in the long-term, as a more precise filter cutoff molds

the filters to our desired effect. Hardware can be unpredictable, and the best salve for

broken hardware is time, whether working on the system or ordering a new part. We will

account for failure recovery time in the future for hardware and software and achieve a

29

fail-safe timeline for the project.

For the foreseeable future, we must be able to work from home. Simulation offers

an opportunity to continue our work remotely, and the modeling difficulties of our robot

expressed in Section 1.3 make this a challenge worthy of any quarantine duration. Upon

verifying a functional controller, we can extend it to many other projects. Before even that,

constants within the controller need tuning and refinement. Learning approaches can help

achieve this through trials of different control values and searching for the optimal values

through inference or reinforcement learning.

The Learning Lab for Machine Automation sees this project in the context of its larger

grasping pipeline. The work of Lu, Van der Merwe, Sundaralingam and Hermans [14]

complements our work quite well. We can use learning for the approach to the object and

the controller to successfully grasp it from an optimal preshape. There are more ways we

may incorporate learning. The example presented in the introduction of a robot waiter

involves a situation where a robot could classify, based on tactile information, whether a

grasp was going to fail. From there it could use a reinforcement learning-based policy

to readjust the object so it sets properly. This grasp recovery also applies to fitting the

compliance of a surface. In the case a robot needs to stably place an object on a slanted

surface or on unstable material, the same work could apply to readjust the object to a stable

equilibrium. There are many places for our controller in robotics. We look forward to

seeing how we can push the field forward with tactile manipulation.

30

Bibliography

[1] S. H. Ivanov and C. Webster, “Adoption of robots, artificial intelligence and service
automation by travel, tourism and hospitality companies – a cost-benefit analysis,”
in Contemporary Tourism – Traditions and Innovations, Sofia University, Oct. 2017,
pp. 19–21.

[2] Intuitive Surgical, About da Vinci Systems, https : / /www.davincisurgery.com/da-
vinci-systems/about-da-vinci-systems, Accessed: May 1, 2020, 2020.

[3] D. Park, Y. Hoshi, H. Mahajan, W. Rogers, and C. Kemp, “Toward active robot-
assisted feeding with a general-purpose mobile manipulator: Design, evaluation, and
lessons learned,” Apr. 2019.

[4] DESTACO, Automatic & Manual Robot Tool Changers, https://www.destaco.com/
tool-changers-effectors.html, Accessed: May 1, 2020, 2020.

[5] Willow Garage, PR2 overview, http://www.willowgarage.com/pages/pr2/overview,
Accessed: May 1, 2020, 2015.

[6] Wonik Robotics, Allegro Hand, http://wiki.wonikrobotics.com/AllegroHandWiki/
index.php/Allegro Hand, Accessed: May 1, 2020, 2020.

[7] Righthand Labs, ReFlex Robotic Gripper, https://www.labs.righthandrobotics.com/
reflexhand, Accessed: April 30, 2020, 2020.

[8] R. Johansson and J. Flanagan, “Coding and use of tactile signals from the fingertips
in object manipulation tasks,” Nature Reviews Neuroscience, vol. 10, pp. 345–359,
May 2009. DOI: 10.1038/nrn2621.

[9] C. L. Taylor and R. J. Schwarz, “The anatomy and mechanics of the human hand,”
Artificial Limbs: A Review of Current Developments, vol. 2, no. 2, pp. 22–35, 1955,
Accessed: May 1, 2020.

[10] M. M. TRAUB, J. C. ROTHWELL, and C. D. MARSDEN, “A GRAB REFLEX IN
THE HUMAN HAND,” Brain, vol. 103, no. 4, pp. 869–884, Dec. 1980, [Abstract].
Accessed: May 5, 2020, ISSN: 0006-8950. DOI: 10.1093/brain/103.4.869. eprint:
https://academic.oup.com/brain/article-pdf/103/4/869/1030788/103-4-869.pdf.
[Online]. Available: https://doi.org/10.1093/brain/103.4.869.

[11] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker, “Human-
inspired robotic grasp control with tactile sensing,” IEEE Transaction on Robotics,
vol. 27, no. 6, pp. 1067–1079, Aug. 2011.

31

[12] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuo-
motor policies,” Journal of Machine Learning Research, vol. 17, Apr. 2016. arXiv:
1504.00702.

[13] M. V. der Merwe, Q. Lu, B. Sundaralingam, M. Matak, and T. Hermans, Learning
continuous 3d reconstructions for geometrically aware grasping, 2019. arXiv: 1910.
00983 [cs.RO].

[14] Q. Lu, M. V. der Merwe, B. Sundaralingam, and T. Hermans, Multi-fingered grasp
planning via inference in deep neural networks, 2020. arXiv: 2001.09242 [cs.RO].

[15] M. R. Cutkosky et al., “On grasp choice, grasp models, and the design of hands for
manufacturing tasks.,” IEEE Transactions on robotics and automation, vol. 5, no. 3,
pp. 269–279, 1989.

[16] R. L. Williams II, Baxter humanoid robot kinematics, https : / / www. ohio . edu /
mechanical-faculty/williams/html/pdf/BaxterKinematics.pdf, Internet Publication,
Accessed: May 2, 2020, Apr. 2017.

[17] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006, Accessed:
May 2, 2020.

[18] J. V. M. Hanson, D. Whitaker, and J. Heron, “Preferential processing of tactile events
under conditions of divided attention,” Neuroreport, vol. 20, no. 15, pp. 1392–1396,
2009, Accessed: May 1, 2020. DOI: 10.1097/WNR.0b013e3283319e25.

[19] O. Kroemer, S. Niekum, and G. D. Konidaris, “A review of robot learning for manip-
ulation: Challenges, representations, and algorithms,” CoRR, vol. abs/1907.03146,
2019. arXiv: 1907.03146. [Online]. Available: http://arxiv.org/abs/1907.03146.

[20] O. Kroemer and J. Peters, “A comparison of autoregressive hidden markov models
for multimodal manipulations with variable masses,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 1101–1108, 2017.

[21] S. Leischnig, S. Luettgen, O. Kroemer, and J. Peters, “A comparison of contact dis-
tribution representations for learning to predict object interactions,” in Proceedings
of International Conference on Humanoid Robots (Humanoids), Jan. 2015.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor,” CoRR, vol. abs/1801.01290,
2018. arXiv: 1801.01290. [Online]. Available: http://arxiv.org/abs/1801.01290.

[23] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place new objects in a
scene,” The International Journal of Robotics Research (IJRR), 2012.

[24] M. Wilson and T. Hermans, Learning to manipulate object collections using grounded
state representations, 2019. arXiv: 1909.07876 [cs.RO].

[25] S. Cruciani, B. Sundaralingam, K. Hang, V. Kumar, T. Hermans, and D. Kragic,
“Benchmarking in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 588–595, Apr. 2020, ISSN: 2377-3774. DOI: 10.1109/lra.2020.2964160.
[Online]. Available: http://dx.doi.org/10.1109/LRA.2020.2964160.

32

[26] S. Hoppe, Z. Lou, D. Hennes, and M. Toussaint, “Deep learning for manipulation
with visual and haptic feedback,” 2017. [Online]. Available: https://ipvs.informatik.
uni-stuttgart.de/mlr/papers/17-hoppe-IROSws.pdf.

[27] B. Sundaralingam and T. Hermans, In-hand object-dynamics inference using tactile
fingertips, 2020. arXiv: 2003.13165 [cs.RO].

[28] D. Park, A. Kapusta, J. Hawke, and C. C. Kemp, “Interleaving planning and control
for efficient haptically-guided reaching in unknown environments,” in 2014 IEEE-
RAS International Conference on Humanoid Robots, IEEE, Nov. 2014. DOI: 10 .
1109/humanoids.2014.7041456. [Online]. Available: https://doi.org/10.1109%5C%
2Fhumanoids.2014.7041456.

[29] T. Bhattacharjee, A. Kapusta, J. Rehg, and C. Kemp, “Rapid categorization of ob-
ject properties from incidental contact with a tactile sensing robot arm,” IEEE-RAS
International Conference on Humanoid Robots, vol. 2015, pp. 219–226, Feb. 2015.
DOI: 10.1109/HUMANOIDS.2013.7029979.

[30] RightHand Robotics, Reflex-ros-pkg, https://github.com/RightHandRobotics/reflex-
ros-pkg, Accessed: May 5, 2020.

[31] Open Source Robotics Foundation, Documentation - ROS Wiki, https://wiki.ros.org,
Accessed: April 30, 2020, 2018.

[32] A. Conkey, Robot control in gazebo, https://adamconkey.github.io/project/robot
control/, Accessed: May 4, 2020.

[33] A. Bull, Reflex-ros-pkg at ll4ma-tactile-feedback, https://github.com/BullAJ/reflex-
ros-pkg, Accessed: May 5, 2020.

[34] University of Utah Communications, Measures being taken to slow the spread of
covid-19 to the university community, https://attheu.utah.edu/facultystaff/measures-
being-taken-to-slow-the-spread-of-covid-19-to-the-university-community/, Accessed:
May 3, 2020, Mar. 2020.

	TR-cover-Bull
	Bull_August_Spring_2020_Computer_Science
	CSThesisTitlePage
	CS_Thesis__Thirdandahalf_Draft_

