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Abstract

Network traffic classification that is generally applicable and highly accurate is
extremely valuable for many network security and management tasks. A flexible and
easily configurable classification framework is ideal so it can be customized for use in
many different networks. In this thesis we propose a highly configurable and flexible
machine learning traffic classification method that relies only on statistics of sequences
of packets to distinguish known or approved traffic from unknown traffic. Our method
is based on likelihood estimation, provides a measure of certainty for classification
decisions, and can classify traffic at adjustable certainty levels. Our classification
method can also be applied in different classification scenarios, each prioritizing a
different classification goal. We demonstrate how our classification scheme and all its
configurations perform well on real-world traffic from a high performance computing
network environment.
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ABSTRACT

Network traffic classification that is generally applicable and highly accurate is extremely
valuable for many network security and management tasks. A flexible and easily
configurable classification framework is ideal so it can be customized for use in many
different networks. In this thesis we propose a highly configurable and flexible machine
learning traffic classification method that relies only on statistics of sequences of packets
to distinguish known or approved traffic from unknown traffic. Our method is based on
likelihood estimation, provides a measure of certainty for classification decisions, and
can classify traffic at adjustable certainty levels. Our classification method can also be
applied in different classification scenarios, each prioritizing a different classification
goal. We demonstrate how our classification scheme and all its configurations perform

well on real-world traffic from a high performance computing network environment.

i



TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

BACKGROUND AND RELATED WORK

TRAFFIC REPRESENTATION METHODOLOGY

MACHINE LEARNING REPRESENTATION METHODOLOGY

RESULTS

CONCLUSION AND FUTURE WORK

REFERENCES

il

i1

11

21

32

34



INTRODUCTION

The accurate and timely classification of network traffic is crucial to many
network management and security tasks. Categorization of network traffic yields valuable
information on a network's activity, and classification done in real-time enables this
information to be quickly acted upon to ensure a secure and efficient network. Anomaly
detection, quality of service monitoring, intrusion or attack detection, and resource
allocation planning are all difficult network management tasks where traffic classification
plays a critical role in solving. With the pervasive and diverse usage of the internet and
online devices, large volumes of traffic from many different applications are constantly
hosted on networks. Robust and flexible traffic classification is a difficult task due to the
wide variety of traffic and dynamic nature of source applications. Traffic classification
techniques have changed greatly over time, in reaction to changes in networking as a
field.

Early and simple methods of traffic classification use port numbers to identify the
traffic sources [1-3]. However, application port numbers became more unpredictable as
more applications used obscure, protocol-based, or configurable ports, so port numbers
were no longer a reliable source of classification [4-6]. In response to port-based
classification becoming less effective, research turned to classification methods that use
data packet inspection to find application or protocol signatures, i.e., patterns or data
specific to the source application or protocol [4], [7-9]. These procedures require the
ability to inspect packet payloads, so they are unable to classify encrypted traffic and also

require high computational overhead and up-to-date application or protocol signatures to



match traffic with. These issues present considerable limitations to inspection-based
classification.

Most current approaches to traffic classification use machine learning algorithms
and statistical properties of traffic flows to categorize traffic. A flow is usually defined by
all packets with the same 5-tuple: source/destination IP, source/destination port, protocol.
The statistical properties of flows are referred to as features. Using statistical features of
networking activity for classification avoids using ports or packet payloads, thereby
remedying the limitations of port and payload based procedures. Machine learning
techniques rely on the fact that different applications have differing networking behavior
and patterns. These differences are represented in features then discovered and used to
discern flows' classes by a machine learning model.

In this paper, we present a machine learning technique that uses statistics of
subflows, or some series of packets from a flow, to classify traffic with a measure of
certainty. We classify traffic using probabilistic learning with likelihood estimation and
adjustable certainty levels, so we can classify traffic at higher or lower confidence levels
based on network preferences. This approach allows network administrators to configure
and use our classification so that it performs best on the most important traffic in their
network. Our method can operate in three different classification scenarios: (1)
classification performed with strict certainty thresholds resulting in known, unknown, and
uncertain classification decisions; (2) classification with majority likelihood, eliminating
any uncertain classification decisions; (3) incremental classification, where the classifier
gathers information subflow by subflow, enabling the classifier to reach a classification

decision as soon as possible. These different classification options along with adjustable



classification certainty levels make our technique very configurable, allowing it be be
easily customized to best fit a network's needs.

We classify traffic into known and unknown classes where the known class
consists of traffic from some group of applications approved for network usage, and the
unknown class consists of traffic from any applications not in the known group. These
class definitions fit well into real-world networks and take advantage of the fact that
networks with specific intended application usage usually allow applications with similar
functions and behaviors. The broad definition of the unknown class allows it to include a
huge array of diverse application traffic, so the variation between unknown traffic and
known traffic is bound to be greater than the variation within the known traffic class. The
known class will generally contain specified applications with similar traffic and the
unknown class will include a huge variety of applications that have different behaviors
from the known traffic. Our method successfully finds and utilizes these differences for
classification via machine learning. This class scheme is also flexible since the known
class can be defined with any set of applications, allowing network administrators to
define a custom known class for their network with applications that are allowed for
usage on their network. Our technique is easily configured to fit a variety of network
needs and is widely applicable to many real-world networks.

This work makes these main contributions:
e We present a probabilistic machine learning method that classifies traffic with a
measure of certainty. We describe how the certainty of classification decisions can be

easily configured to yield different results.



We show that our method can be applied in 3 different classification scenarios, each
prioritizing a different classification goal.
We demonstrate how our method and all of its configurations can be used to

effectively classify traffic in the Science DMZ [10] network setting.



BACKGROUND AND RELATED WORK

Traffic classification techniques using machine learning comprise two main
components: the representation of network traffic and machine learning algorithm. From
the vast existing research we present a brief overview of work relevant to ours.

Many different representations and statistical features of flows have been
explored in previous work. Statistics on packet size, arrival times, and packet types have
resulted in high classification accuracies when used with a wide variety of machine
learning methods [5], [9], [11], [12]. These features can be calculated over all the packets
in an entire flow or on some series of packets sampled from the flow [5], [11], [13], [14].
Research also exists on feature selection techniques used to reduce the number of features
needed for classification and to find optimal features that result in the best statistical
representation of network traffic [12], [15]. In these works, packet size statistics and
discrete feature values were found to enable classification accuracies of 93% and above
for multiple machine learning algorithms [12].

Calculating features over an entire flow is not ideal for timely classification,
prompting more practical network traffic classification methods that classify sequences of
packets in a flow. Using features on only the first few packets of flows was found to
yield reasonable classification results [11-12]. Earlier work also found that using a
sequence of packets, or subflows, of as few as 25 packets can result in
classification precision and recall of above 95% [13]. This subflow work was expanded
upon by [14], finding that classification performance is not affected by the position of the

subflow within the overall flow or the direction of the packets. Other work has explored



different methods of selecting subflows that are especially representative of the statistics
of the overall flow for training, so that training requires minimal processing of only the
optimal examples [14], [16]. In [13], [14], [17] the length of the subflow (value of N)
results in a trade-off between classification performance and processing requirements,
with higher values of N leading to better classification but requiring more processing
time and memory [13], [14], [16].

Many different machine learning algorithms have been used for traffic
classification. Early work used traditional supervised learning methods, that classify
traffic into pre-defined classes, include decision trees and Bayesian analysis techniques
[5], [13], [18], [19]. These methods have been shown to perform classification at
accuracies above 95% on various sets of applications [5], [18]. Unsupervised and semi-
supervised learning methods, where traffic is grouped based on similarity rather than
explicitly classified into a class, have also been explored in [6], [20-23]. Clustering
unlabelled or partially labelled traffic resulted in classification accuracies of 90-93% [6],
[20]. Recent methods use deep learning, with supervised classification performed by
convolutional neural networks and recurrent neural networks, and unsupervised learning
of traffic representations and traffic imitation performed by auto-encoders and generative
adversarial networks [11]. Various architectures of neural nets used for classification
have achieved high accuracies of up to 96% [17].

Most of this existing work classifies traffic by mapping it to an application,
application type, or protocol. A few classify traffic into known and unknown classes by
discerning a specific, known application or group of applications from other traffic which

may include many other applications [13-14], [24]. Our work uses this latter scheme of



known and unknown classification as it is less explored, more flexible, and widely
applicable. For example: known traffic could be defined as a broad set of non-malicious
activities for a well-protected, low-risk network but a small set of specifically approved
applications for a network with less security designed for specialized uses only. The
flexibility of this known vs. unknown classification brings additional challenge, as our
classification method must be robust enough to perform well on many different sets of
known applications.

In addition to addressing the more challenging task of classifying traffic into
flexible known and unknown classes, we consider classification in the Science DMZ
network setting which has not been previously explored. A Science DMZ is a
subnetwork, usually part of a university network, that is configured and designed to
optimize the usage of high-performance scientific computing applications [10]. This
network definition fits well with our known vs. unknown classification, as a Science
DMZ is intended to host traffic from specific scientific computing applications and no
other traffic. Our traffic dataset is sourced from University X's Science DMZ, which
allows us to evaluate our method on realistic high-performance computing traffic. Our
approach performs classification at or near 100% accuracy on representative Science
DMZ traftic, and we additionally evaluate on a more challenging traffic dataset with

reasonable results to show that our method is generalizable.



TRAFFIC REPRESENTATION METHODOLOGY

A feature vector representation of network traffic is necessary in order to use
machine learning for classification. We present the format and statistical features used to

represent traffic captures as a dataset for machine learning.

A. Use of Subflows

Practical traffic classification needs to occur quickly, so that a network's allowed
traffic is not delayed by classification and unknown or unapproved traffic can be
effectively stopped. Since entire flows can last long periods of time and require high
amounts of memory to process fully, it is ideal for a classification method to only use
some portion of packets from a flow. Using subflows, defined as some N packets taken
from any point in a flow, for classifier training and evaluation was first introduced in
[13]. We use N-packet subflows to represent our traffic, where N=25, 100, 1000 due to
these aforementioned advantages. These values of N were discussed, experimented upon
extensively, and found to be sufficient subflow lengths in [13-14], [16], with the larger
values of N leading to better classification performance but requiring more processing
time and memory. Our statistical features are calculated over each N-packet subflow and
all of our flows are split into N-packet subflows for classification.

An additional advantage that using subflows gives our classification approach is the
ability to gather multiple data points per flow. Each subflow gives our classifier some
statistical data on the overall flow, so it can use each subflow to increase or decrease

certainty in a classification decision for the overall flow. Thus, our classification



approach can gain valuable classification progress for each encountered subflow,

effectively utilizing the breakdown of flows into subflows.

B. Statistical Features of Traffic

We calculate the 14 statistical features below over all packets in each subflow: Total
Bytes, Largest Packet Size, Smallest Packet Size, Number of TCP ACKs, Minimum
Advertised Receive Window, Maximum Advertised Receive Window, Standard
Deviation of Packet Size, Average Packet Size, Average Packet Inter-Arrival Time,
Standard Deviation of Packet Inter-arrival Time, Maximum Packet Inter-arrival Time,
Minimum Packet Inter-arrival Time, Average Packet Throughput (packets per second),
Average Byte Throughput (bytes per second). Each subflow is represented by a 14-
element data point where each element is a feature value, and is subsequently processed
by our machine learning method as a 14-dimensional vector.

These features are sourced from a broader set of flow statistics used in previous work
that were found to achieve the best network traffic classification performance [6], [9],
[12], [18], [24]. For our feature selection process, we graphed the cumulative density
function (CDF) of feature value distributions for our known and unknown traffic datasets
to ensure that the features we use capture notable differences between known and

unknown traffic. Fig. 1 shows example CDFs for various feature values.
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MACHINE LEARNING METHODOLOGY

In this section we discuss the reasoning and data analysis leading to the
formulation of our machine learning approach. We also describe the classification
method and the various ways it may be applied. Fig. 2 shows our methodology's

components, pipeline, and various usage options.

Classification (C.)
Various Applications:
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Machine Learning Approach: | Certainty
7| Classification
(C.1)
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Incremental
- Classification
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Fig. 1: Machine Learning Approach and Applications (with
corresponding thesis sections)

A. Average Nearest Neighbor Distances Analysis

Our classification method builds a regression model of the average distance of a
traffic data point to its K nearest known traffic data points. Using the average distance to
K nearest known traffic data points provides an intuitive measure of distance to the
known data based on k-Nearest-Neighbor (KNN) classification, where a points gets a
label based on the label of its k nearest neighbors [25]. We use Euclidean distance and

K=3 for all our experiments. This measure of distance allows our method to model the
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similarity or dissimilarity of the statistics of sub-flows in the known and unknown classes
and perform classification based on distances between values.

An intuitive assumption that known traffic will behave more similarly to other known
traffic than unknown traffic is the underlying reasoning to our classification approach and
the usage of distances. This approach is reasonable, since the known class is defined as
some set of applications that are approved for network usage, and often networks with
specific intended usage will allow applications with similar functions and behaviors.
Additionally, the unknown class is defined as any traffic not belonging to the approved
applications, so it can encompass a huge array of diverse traffic which is bound to have

more variation in behavior than between known applications.

10 r 10
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Fig. 3: CDFs of Average Nearest Neighbor Distances

Fig. 3 shows cumulative density functions (CDFs) of average nearest neighbor
distances of known and unknown traffic to a KNN training set of only known traffic, for
25 and 100 packet subflows. From these CDFs, it can be seen that the distance

distributions are notably different between known and unknown traffic. Generally a much
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higher percentage of known traffic distances are near 0, which aligns with our assumption
that known traffic will behave similarly to other known traffic. The unknown traffic
distances have a much larger range with smaller percentages of their distances at small
values; this also supports the assumption that unknown traffic has more varied behavior
that's more dissimilar to known traffic. Thus, we believe this distance-based technique is
very powerful and flexible since it can adapt to different sets of known traffic. Some
unknown traffic is still similar to known traffic, as seen by the percentages of unknown
subflows with very small distances to the known subflows present in the CDFs. So our
classification task is still quite challenging.

The CDFs also show the distance value ranges that the highest frequencies of known
and unknown sub-flows fall into. X-axis ranges where a CDF slope is steep indicate high
counts of sub-flows that have those distances. Regions where the CDFs of known and
unknown traffic distances have the most differing slope are of special interest, as they
show distance ranges that are common in one class's traffic but not in the other. We
propose to utilize these distance ranges where known and unknown traffic distributions
behave differently to perform our classification. The overall idea is to create distance
bins, or ranges, that include distances where there are considerably different counts of
known and unknown subflows, then to assign class likelihoods to these bins so that a
subflow is assigned a likelihood based on its average distance to its K nearest known

traffic points. This method is described in more detail in the next subsection.
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Through this straightforward, density-based analysis of distance distributions of

known and unknown traffic, we can discover distance ranges where there exists the most

difference between classes. Some example distance bins are visualized with vertical lines

marking their boundaries in Fig. 4. This analysis is valuable as it yields a quantifiable

measure of difference between known and unknown traffic.
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Fig. 4: Vertical lines mark distance ranges where known and
unknown traffic distributions differ the most

B. Regression Model of Average Nearest Neighbor Distance

After discovering distance bins where there exists considerable difference in the

amount of known and unknown subflows with distances in the bin's range, we use these

bins to form a regression model.

We train the regression model by assigning known and unknown class likelihoods to

each bin. These class likelihoods can be thought of as estimated probabilities that a

subflow with an average nearest neighbor distance in the bin's range is from a flow of

either class. For class likelihood, we simply use the count of subflows in the regression
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training set that have distances in the bin and are of the corresponding class, divided by
the total number of subflows in the regression training set that have distances in the bin.
The class label counts of subflows in the regression training set are the same, to ensure
fair class likelihoods. Thus, high frequencies of a certain class in a bin translates into that
bin having a high likelihood for that class. Figures 5 and 6 show all of our experimental
datasets' CDFs with regression distance bins. Note that for the Science DMZ Unknown
Data, the known and unknown distances ranges are drastically different so only 2 bins are

defined with the distance boundary being the maximum known subflow distance.



16

T

Percentage of Subflows

Percentage of Subflows
Percentage of Subflows
Percentage of Subflows

— Known Subfiows — Known — Known Subfiows — xnown
0 — Unknown Subflows. 00 — Unknown 00 — Unknown Subfiows (1) — Unknown

000 025’ 050 075 100 135 1% H + 13 . ] H b © [] » o " 1 2 3 bl 5 13
Avg. Distance to Nearest Neighbors. - Avg. Distance to Nearest Neighbors. w Avg. Distance to Nearest Neighbors Avg. Distance to Nearest Neighbors

(a) 25-Packet Subflows (a) 25-Packet Subflows

. . " . | qatemer |
é 1 §
Zu B g us a%
s k] 5 s
£. . 5. k.
— Known subtlows — toown — Known subtioms —
w koo Subhoss @  rnown o = Uk S o [= hionn
%0 12 ) o 3 'y

02 o4 06 08 10 o2 o4 3 3 10 12 02 a4 3 [ o2 e o6 8
Avg. Distance to Nearest Neighbors e Avg. Distance to Nearest Neighbors o Avg. Distance to Nearest Neighbors Avg. Distance to Nearest Neighbors

(b) 100-Packet Subflows (b) 100-Packet Subflows

0 0 0 0
— Known Subflows — xnown — Known subfioms — Known
00 = Unknown Subflows L] — Unknown (1] = Unknown Subflows. 00 — Unknown
1] i H 3 i 4 3 7 ] @5 10 15 3o 28 38 15 40 G0 25 so 75 mWo ws ®o Us Bo o i 3 3 i 13
Avg. Distance to Nearest Neighbors wl Avg. Distance to Nearest Neighbors wr Avg. Distance to Nearest Neighbors Avg. Distance to Nearest Neighbors

(c) 1000-Packet Subflows (c) 1000-Packet Subflows

Fig. 5: Science DMZ Dataset: CDFs with Regression Fig. 6: General Dataset: CDFs with Regression Distance
Distance Bins Marked as Vertical Lines Bins Marked as Vertical Lines



17

C. Classification Via Likelihood Estimation and Certainty Threshold
For classification using our regression model, the class likelihoods of individual

subflows, assigned by their distance bins, are used to create joint class likelihoods over a
sequence of subflows sy, 55, ... all belonging to the same flow. The ratio of known and
unknown joint likelihoods are then compared to a configurable, user-given certainty
threshold to classify the flow from which the subflows come from.

To create the class joint likelihoods over multiple subflows, we assume independence
and take the product of all subflow likelihoods of the same class. The class joint
likelihoods can be used as estimated probabilities that the sequence of subflows is of the
corresponding class. The flow likelihoods can also be used to form a likelihood ratio,
which we use as a measure of certainty for classification. The likelihood ratio is a fraction
of the class likelihoods, indicating how much larger one class likelihood is than the other.

For example, if the known class likelihood is 0.95 and the unknown class likelihood is
0.05 then the likelihood ratio is g:—zz. This indicates that under our model, we are 95%
certain that the flow is known, as the marginal probability that the flow is known, given
all the subflows the classifier has seen, is 0.95. However, likelihoods of the numerator
and denominator may not sum to 1, and in general the joint ones will not. But if the ratio

is still 19, i.e., %, then the confidence is still 95%.

In more detail, we divide the distances into t bins By, B,, B3, ... B; (we either use t =

. . : : . . : XgNB;
2 or t = 4 in experiments); each one is fit with an empirical probability pg(i) = %
i

that a subflow is known, given that it falls in bin B;. This is the fraction of known
training data X that is in bin B; compared to all training data X N B; in that bin. The

empirical probability py (i) of being unknown is computed symmetrically with X;; in
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place of X. Given a subflow s; let B(sj) map to the index of the bin it is in, e.g.,
B(s3) = 2 if s5 is in bin B,. We estimate the likelihood a series of observed subflows
S1,S2, -, Sm are known as Ly = pg(B(s1)) - px(B(s2)) - - px(B(sm)), and similarly
for unknown Ly, and their ratio as:

E _ PK(B(51)) : pK(B(SZ)) S pK(B(sm))
Ly pU(B(51)) : pU(B(Sz)) I pU(B(sm))

By using a certainty threshold for classification, we can easily enforce the
likelihood required for a flow to be classified. The use of different certainty thresholds
for each class is also possible, which may be useful if the certainty of classification
should be different between known and unknown traffic. For example, if a network is
using our classification to block unknown traffic and wants to avoid disrupting allowed
traffic, our technique would be applied with a very high certainty threshold for unknown
classifications to ensure blocked traffic is classified as unknown with high confidence.
The ease of adjusting classification certainty allows the certainty to be used as a
parameter for classification. Different certainties can yield different classification
accuracies depending on the underlying known and unknown traffic, and certainty can be
a cross-validated hyperparameter that optimizes classification performance.

This likelihood estimation classification method can be applied in 3 different
scenarios that we describe below and evaluate in our experiments:

1) Strict Certainty Classification:
In this classification scenario, flows are classified as known, unknown or uncertain. If the
know or unknown likelihood ratio reaches the desired certainty level, then the flow is

classified as known or unknown. However, it is possible that neither likelihood ratio
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reaches the certainty level, so the flow is considered uncertain as its subflows do not yield
a likelihood of high enough certainty for either class. Uncertain flows are indicative of
traffic that is not similar enough to either class for a confident classification.

This designation of uncertain flows may be useful as a means of filtering and
monitoring traffic, enabling uncertain flows to be found and tracked. Uncertain flows
may be used for further analysis with a more specific method of classification or
inspected as the potential source of network issues. The amount of traffic classified as
uncertain is configurable with the certainty level, as higher certainties result in more
uncertain decisions.

2) Majority Likelihood Classification

For this classification scenario, if neither of the class likelihood ratios have reached
the certainty level after all available subflows are seen, then the flow is classified as the
class with the larger likelihood. This scenario results in no uncertain flow classifications
since all uncertain flows are classified by their majority likelihood. This approach allows
some flows to be classified with less certainty than the given certainty level, but generally
increases accuracy in our experiments and is a viable option if uncertain flows are not
desired.
3) Incremental Classification
In this classification scenario, the class likelihood ratios are updated with each
encountered subflow's likelihoods, and classification occurs immediately once either
class likelihood ratio reaches the given certainty level. Incremental classification takes
full advantage of our usage of subflows, utilizing each sequence of packets in a flow to

gain information on the flow and classify it after seeing the least amount of subflows
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possible. A classification decision is made as soon as possible, so this scenario prioritizes
classification speed. In our Results section, we show that this scenario results in very fast
classification after encountering a small fraction of subflows with excellent unknown
detection capabilities. Note that incremental classification can use strict certainty or

majority likelihood classification when making its classification decisions.
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RESULTS

A. Dataset

To demonstrate and evaluate our classification method, we use the Science DMZ
subnetwork setting. A Science DMZ is a subnetwork, usually part of a university campus
network, that is configured and designed to optimize the usage of high-performance
scientific computing applications [10]. These subnetworks are commonly used by
researchers to transfer large datasets and have performance optimizing security measures
or other policy differences to enable faster data transfers. This setting fits well with our
known vs. unknown classification, as a Science DMZ is intended to host traffic of
specific scientific computing applications and no other traffic. Fig. 7 shows the location
of our traffic capture tap in a university's Science DMZ and Table 1 shows size statistics
of our dataset.

Science
DMZ Virtual Testlab Virtual
Router , Router

Data Collection Point
Wireshark é %
Tap

Science DMZ Science DMZ

Router
AT
o .I

Emulab
Testbed

Logical VLAN
Switch ,

— CHPC
=1 Production
o N = Tk

BGP GENI CloudLab APT
Project Perfsonar
- J
Y —

Mirror
Testbeds

Fig. 7: Data Collection Point in the Science DMZ Sub-network

TABLE I: Dataset Statistics

Globus FDT rclone Mirror WIDE
Bytes 51.6 129 82.1 42.6 30.48
(GB)
Flows 185 72 12,292 2,239 1,112,554
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Note that we have different numbers of known and unknown flows, so our
experimental accuracies are calculated separately for each label. All of our traffic is TCP
and uses IPv4. We randomly select 80% of our data for training and the rest for
evaluation and ensured that the flows in the train and evaluation sets are mutually
exclusive. The specifics and application breakdowns of our known and unknown datasets
are below:

Known Dataset:

Our known traffic is from 3 widely used large file transfer applications: Globus [26-27],
FDT [28], and rclone [29]. We consulted domain experts and system administrators at the
Center for High Performance Computing at the University of Utah to ensure that these 3
applications are commonly used by science researchers on the Science DMZ. The Globus
captures were of ongoing file transfers between Globus endpoints at a university and
various other universities in the United States. The FDT traffic was generated by moving
DNA sequencing datasets from the Hunstman Cancer Institute to and from Data Transfer
Nodes [30] in the Science DMZ. The rclone traffic was generated by transferring ESnet
test datasets [31] to and from Google Drive. We verified with domain experts that our
usage of FDT and rclone to generate traffic was consistent with their common usage in
science research workflows, to ensure that our data is representative of real FDT and
rclone traffic.

Unknown Dataset:

For our unknown traffic, we use the Mirror and WIDE datasets. The Mirror dataset
consists of random captures from a mirror server on the University of Utah's Science

DMZ subnetwork that hosts repositories and other downloadable content. The WIDE
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dataset consists of captures, performed on the same dates as the Mirror captures, from the
WIDE Traffic Archive [32]. The WIDE captures are from the main internet exchange
link and internet service provider transit link of the WIDE organization [32].

For all of our classification experiments, we train and evaluate our models using 2
different datasets. The known dataset always consists of the Globus, FDT, and rclone
datasets but we use 2 different unknown class definitions: Science DMZ and General.
The Science DMZ unknown class consists of only the Mirror traffic dataset, which was
captured from the University of Utah's Science DMZ subnetwork but does not contain
known application traffic. This approach allows us to simulate traffic classification in a
realistic Science DMZ setting. The General unknown class consists of both the Mirror and
WIDE datasets, resulting in a much broader, more diverse unknown traffic class since
WIDE's traffic is not from the same network and contains many more flows. Using this
more varied unknown traffic allows us to evaluate how well our classification method

generalizes when classifying more challenging, varied traffic.

B. Strict Certainty Classification Results

To evaluate Strict Certainty classification, we perform our likelihood estimation
classification and require a flow's class likelihood ratio to reach the given certainty
threshold to be classified as known or unknown. Flows with class likelihood ratios that
do not surpass the certainty threshold are considered uncertain. In our experiments, we
perform classification using 25%, 50%, 75%, and 100% of subflows in each of the test
set flows in order to evaluate classification performance when varying amounts of

packets in flows are seen. We require at least 15 subflows in a flow portion to perform
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classification. We also perform classification on features calculated over subflows of
different packet lengths, using 25, 100, and 1000 packet subflows. We use these different
combinations of percentage-defined subflow subsets and differing lengths of subflows to
thoroughly evaluate classification in many situations where different portions of flows
are seen.

Science DMZ Dataset: TABLE II: Science DMZ Dataset: Strict Certainty and Major-

. . ity Likelihood Accuracies
Table II shows classification

Percentages 25% 50% 75% 100 %
of
accuracies on the Science Subflows
Known Accuracies:

. 25-Packet 100 100 100 100

DMZ dataset, when using a Subflews
100-Packet 100 100 100 9428

. . Subflows
strict certainty threshold of 1000- 96.97 96.97 96.97 96.97

Packet
Subflows

95%. Our accuracies are

Unknown Accuracies:
25-Packet 100 100 100 100
extremely high across all Subflows

100-Packet 100 100 100 100
Subflows
subflow sizes and subflow 1000- 100 100 100 100
Packet
Subflows

percentage subsets, with a
minimum accuracy of 94.28% and most experiments reaching 100% accuracy. These
results show that the unknown traffic is very different from the known application traffic
and our method can successfully find and utilize these differences for classification.
Additionally these results show that our classification performs better on smaller subflow
sizes, which is ideal because classification can be done using less packets from a flow.

No flows were classified as uncertain across all experiments.



General Dataset:

Fig. 8 shows classification
accuracies on the General
dataset, using the same strict
certainty threshold of 95%.
These accuracies are
generally lower than the
Science DMZ accuracies,
which is expected since the
General dataset contains

unknown traffic that is more

25

~@~ 25-Packet Subflows

—&—~ 100-Packet Subflows

-~ 1000-Packet Subflo
w— Known Accuracies

WS

e Unknown Accuracies

03 04

05

06

07 08 09

Percentage of Flow Seen for Classification

Fig. 8: General Dataset: Strict Certainty Classification Accu-

racies

varied and similar to the known traffic, resulting in a more challenging classification task.

The unknown accuracies are considerably higher than the known accuracies, with the

experimental combination imposing the smallest amount of packets seen (25% of flows

with 25-packet subflows) resulting in the best classification performance of 94.87%. This

result shows that our classification method is ideal for detecting unknown traffic and can

do so after seeing a small percentage of packets in flows. Table III shows the percentages

of unknown flows that
were considered uncertain
at the 95% certainty
threshold. Percentages of

uncertain unknown flows

TABLE III: Unknown Flow Uncertainty Percentages

Percentages
of
Subflows:

25%

50%

75%

100%

25-Packet
Subflows

0.74

1.16

0.497

35.62

100-Packet
Subflows

2.81

2.81

1.33

13.49

1000-
Packet
Subflows

3.7

247

2.47

30.17
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are low overall, with a maximum of 35.62%, and the amount of uncertain flows grows as
higher percentages of subflows are used for classification. Only one experiment resulted
in any uncertain known flow classifications: 3% of known flows with 1000-packet
subflows were classified as uncertain.

On both datasets, a small number of flows were considered uncertain even when a
small percentage of subflows are seen. This shows that even if a high certainty for
classification is enforced and not all packets in a flow are seen, our method can classify a
large majority of flows. Our results indicate that smaller numbers of packets seen actually
increases the amount of certain classifications that can be made, as seeing all available
subflows of flows resulted in the highest uncertain flow percentages out of all 3 subflow

lengths.

C. Majority Likelihood Classification Results

To evaluate Majority Likelihood classification, we perform our likelihood estimation
classification to classify a flow as known or unknown if that flow's corresponding class
likelihood ratio reaches the given certainty threshold. If after all available subflows are
seen and the flow has no class likelihood ratio that has reached the certainty threshold,
then the flow is classified as whichever class has the larger, or majority, likelihood
estimate. We use the same percentage-defined subflow subsets and differing lengths of
subflows as the Strict Certainty Classification experiments (25%, 50%, 75%, and 100%

of a flow's subflows each with 25, 100, and 1000 packet subflows).
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Science DMZ Dataset:

There were no flows classified as uncertain in this dataset using 95% certainty, so all
flows reached 95% certainty for either class across all amounts of subflows seen for
classification. This means that there are no differences in accuracy between Strict
Certainty and Majority Likelihood classification for all experiments on the Science DMZ
dataset, and Table II shows the unknown and known flow classification accuracies for
Majority Likelihood classification.

General Dataset:

Fig. 9 shows classification w0

accuracies on the General . r,’/'*’"/.

dataset when using a certainty

threshold of 95%. The known

Accuracy

flow accuracies do not notably

differ from the Strict Certainty o

—@~ 25-Packet Subflows
—&—~ 100-Packet Subflows
-~ 1000-Packet Subflows

classification known accuracies = Known Accuracies

= Unknown Accuracies

03 04 05 06 07 08 09 10
Percentage of Flow Seen for Classification

because there were very few
Fig. 9: General Dataset: Majority Likelihood Classification

known flows classified as Accuracies

uncertain, so classifying uncertain flows by their majority likelihood mostly impacted

unknown flow accuracies.

The unknown accuracies when full flows are classified using Majority Likelihood are

notably higher than those from using Strict Certainty classification, with full flow

classification with 25-packet subflows reaching 98.6% accuracy. These increases in

accuracy correspond to the percentages of flows that were considered uncertain when
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using Strict Certainty classification. This indicates that classification by the larger class
likelihood is an effective way to classify traffic that is not similar enough to either class
for a classification at the certainty required by the given threshold. The unknown
accuracies when percentages of flows were seen did not drop and most slightly increased
in comparison to accuracies from Strict Certainty classification. These results indicate
that classifying traffic using majority likelihood is a viable and simple option, allowing

improved classification accuracy and the elimination of uncertain flows.

D. Incremental Classification Results

To evaluate Incremental classification, we update a flow's class likelihoods and check
if the given certainty threshold is reached for every encountered subflow. Classification
of the flow occurs immediately once a class likelihood reaches the certainty threshold,
and subflows are encountered in chronological order of packet arrival; so flows are
classified as soon as possible.

Thus, these experiments allow us to evaluate how well our classification performs
when reaching a classification decision in the fastest manner possible. We use both Strict
Certainty and Majority Likelihood classification with this Incremental classification
scheme, where Strict Certainty will allow for uncertain flows and Majority Likelihood
will classify all flows as known or unknown even if no certain decision is reached after

all subflows are seen. We evaluate on all lengths of 25, 100, and 1000 packet subflows.
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Science DMZ Dataset:
1D 100 100.0 100 100
Fig. 10 shows classification 1.43 i
. . m il
accuracies on the Science DMZ
o
@ 60 - N Unknown
dataset when using Incremental 2 EER Known
< 4
classification and a 95%
20 4
certainty threshold. 0.
25-Packet 100-Packet 1000-Packet

Just as in non-incremental Fig. 10: Science DMZ Dataset: Incremental Classification
classification, there were no

uncertain flows so the accuracies from using Strict Certainty and Majority Likelihood
classification are the same. The accuracies are very high, with all unknown classification
accuracies being 100% and classification on 25-packet subflows reaching 100% for both
known and unknown accuracies. Larger subflow lengths result in drops in known
classification performance but performance is still good, with a minimum accuracy of
87.88% using the largest subflow length of 1000. Higher accuracies on smaller subflows
is most ideal, since this shows that our method performs the best when using the fewest
amounts of packets. These results show that our method still performs very well even

when making a classification decision after seeing the fewest amount of subflows

possible.
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General Dataset:

Fig. 11 shows classification 100
85.58
. 80
accuracies from Incremental . i §6.24
E 60 1 - mnown
. . . . =2 E Know
classification with a 95% certainty g . ?
threshold on the General Dataset. 20
. . . o
When Incremental classification is 25-Packet 100-Packet 1000-Packet
used with Strict Certainty (a) Strict Certainty Classification
classification, accuracies for known 100 57 85
and unknown flows drop =
=
E 60 = Unknown
considerably when compared to E m= Known
40
accuracies from non-incremental - == l
. . . . .
Strict Certainty classification. For B el 585 Beschet 1000-Packet
Incremental classification used with (b) Majority Certainty Classification

o o ] ] Fig. 11: General Dataset: Incremental Classification
Majority Likelihood classification,

the known accuracies are lower but the unknown accuracies are slightly higher than the
results from non-incremental Majority Likelihood classification. No known flows during
Incremental classification with Strict Certainty were classified as uncertain, as switching
to Majority Likelihood did not change the known accuracies. However, a considerable
portion of unknown flows were classified as uncertain during Incremental classification
with Strict Certainty, and they were able to be successfully classified as unknown when
using Majority Likelihood. These results support the viability of Majority Likelihood

classification as a method to improve classification performance.
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On the General dataset, the mean percentage of subflows seen before making a flow
classification across all subflow lengths was 3.45% for known flows and 54.3% for
unknown flows. So the known decisions were made very quickly after seeing a small
number of subflows. The known decisions were also all certain, indicating that the
certainty threshold was reached in a small amount of subflows. This result shows that the
known flows have subflows with extreme likelihoods that quickly form a highly
confident flow likelihood estimate. Unfortunately, these likelihoods result in mostly
wrong classifications, which indicates that most of the known subflows had higher
unknown likelihoods. The unknown decisions were made on average after a bit over half
of a flow's subflows were seen, which is fairly timely, but the resulting drop in accuracy
when compared to non-incremental Strict Certainty classification on 50% of subflows
indicates that incremental classification is not ideal for unknown traffic. From results
across both datasets, it seems that Incremental classification generalizes more weakly

than non-incremental classification.
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CONCLUSION AND FUTURE WORK

In this thesis, we introduced a machine learning method for traffic classification
that uses statistics on sequences of packets, called subflows, to classify traffic as known
or unknown with a measure of certainty. Our technique creates a regression model of
traffic distances to known traffic and uses this model for probabilistic classification using
likelihood estimation. This method of classification allows traffic to be classified at an
easily configurable certainty level and in three different ways. If used with Strict
Certainty thresholds, flows are only classified as known or unknown if they can be
classified at the given certainty level, and our method can find uncertain flows that are
not similar enough to either class. If used with Majority Likelihood, all flows are
classified as known or unknown by allowing some flows to be classified with whichever
class likelihood estimate is higher rather than strictly requiring the certainty level. If used
in an Incremental classification manner, each subflow seen updates the flow's likelihood
estimate and classification of a flow occurs after seeing the fewest number of subflows
possible.

We evaluated our technique on traffic from the Science DMZ subnetwork domain
[10], as it naturally fits our class scheme and has not been used as a traffic classification
setting before. We also evaluate on a more general, challenging dataset to ensure that our
method can generalize well. Our results showed that our classification performs very well
in the Science DMZ setting, able to reach 100% accuracy for all classification options.
On the general dataset, we maintained high accuracy on unknown traffic classification,

reaching up to 98.98%, though known classification accuracies dropped. Our method was
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shown to perform well even when only seeing partial flows, reaching accuracies up to
100 on the Science DMZ dataset and 95.3 on the general dataset when only a fourth of all
subflows in a flow are used for classification. With Strict Certainty classification, very
few flows are considered uncertain even when requiring 95% certainty and seeing partial
flows. The use of Majority Likelihood classification was shown to correctly classify
flows deemed uncertain in Strict Certainty classification, improving classification
performance. The Incremental classification approach reached classification decisions
very quickly after seeing small amounts of subflows and maintained high accuracies on
the Science DMZ dataset.

Out of all the classification scenarios, Incremental classification accuracies
dropped the most between the Science DMZ and General dataset results, so further work
could be done to achieve more generalizable Incremental classification. Known
accuracies are also generally lower than unknown accuracies, because distance bins in
higher distance ranges have very large unknown likelihoods. If a known flow has
subflows that fall into these higher distance bins, it is difficult for the flow's likelihood
ratio to favor the known class, especially if the high-distance subflows are consecutive
and classification occurs after seeing a small amount of subflows. Further work on
forming the regression model and bin likelihoods could improve classification
performance by regularizing bin likelihoods so that their label likelihood values are more
similar. The usage of likelihood priors for distance bins could help standardize subflow

likelihoods, avoiding the extreme likelihoods that caused known accuracies to drop.
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