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Abstract

The human genome project has been completed, but there are barriers between
researchers who study the genetic sequences and clinicians who treat cancers. First
of all, there is low reproducibility in genetic studies, caused by different sequencing
techniques and batch effects. Secondly, it is difficult for clinicians who do not have a
computational background to interpret existing computational methods. To minimize
these disconnections, a computational model should be developed to find the signifi-
cant genes in a genome that separate batch and experimental effects from biological
effects. The proposed solution is to use the generalized singular value decomposition
(GSVD) to reveal genetic patterns on the transformation of genes, and to separate the
tumor-exclusive genotype from experimental inconsistencies.

Here we developed a computation and visualization toolkit to improve computing
and visualizing the GSVD in Python.
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ABSTRACT

The human genome project has been completed, but there are barriers between re-

searchers who study the genetic sequences and clinicians who treat cancers. First of all,

there is low reproducibility in genetic studies, caused by different sequencing techniques

and batch effects. Secondly, it is difficult for clinicians who do not have a computa-

tional background to interpret existing computational methods. To minimize these dis-

connections, a computational model should be developed to find the significant genes in a

genome that separate batch and experimental effects from biological effects. The proposed

solution is to use the generalized singular value decomposition (GSVD) to reveal genetic

patterns on the transformation of genes, and to separate the tumor-exclusive genotype

from experimental inconsistencies.

Here we developed a computation and visualization toolkit to improve computing and

visualizing the GSVD in Python.
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CHAPTER 1

INTRODUCTION

Sequencing human genomes has become less expensive. However, scientists are hav-

ing a difficult time obtaining the information they expect to derive with the results from

genetic sequencing. For example, scientists need to analyze the genome to find out which

parts on the genome are significant. In order to determine the potentially significant areas,

scientists need to perform a large number of trials among the whole genome. An example

of the difficulty researchers face is the regularly observed patterns of copy-number varia-

tions in cancer. Although the sequencing results known as recurring DNA alterations have

been observed to play an important role in the study of cancer, they have not been applied

to actual clinical use.

Genomic signal processing tools are built to remove the barriers of transferring genetic

sequencing results to usable information. Genomic signal processing tools that have been

built to uncover the underlying patterns of sequencing results and assist clinicians to better

interpret recurring DNA alterations.

Most of the research relevant to genome-wide patterns of DNA copy-number variations

does not focus on the subtypes of DNA copy-number variations. However, the subtypes

of DNA copy-number variations are the indicators. The subtypes of DNA copy-number

variations can increase the accuracy of predictions. By including the tools mentioned

above in the research experiments, the results become more persuasive.

Our lab’s genomic signal processing has been implemented in Mathematica. The func-

tions that are used in Mathematica can be extended into a toolkit. While Mathematica

computes matrix decompositions correctly there is no evidence that it uses highly opti-

mized LAPACK routines. The decompositions contained in the Numpy linear algebra

library, however, are based on these LAPACK routines. This indicates that we may be

able to obtain performance improvements by implementing the GSVD in Python utilizing
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the Numpy library. An additional benefit that Python has is that there are many cloud

computing pipelines that interface well with Python, but a paucity that are compatible

with Mathematica. Finally, due to Python being available at no cost and the ease of creating

and sharing libraries Python offers a platform for our labs research to appeal to a broader

audience.



CHAPTER 2

BACKGROUND

2.1 The GSVD as a comparative spectral
decomposition

Given two column-matched but row-independent real matrices Di ∈ RMi×N , each with

full column rank N ≤ Mi, the GSVD is an exact simultaneous factorization [1–4],

Di = UiΣiVT =
N

∑
n=1

σi,nui,n ⊗ vT
n , i = 1, 2, (2.1)

where Ui ∈ RMi×N are real and column-wise orthonormal and VT ∈ RN×N is real, invert-

ible, and with normalized rows. The 2N positive generalized singular values are arranged

in Σi = diag(σi,n) ∈ RN×N in a decreasing order of the ratio σ1,n/σ2,n. The GSVD is unique

up to phase factors of ±1 of each triplet of corresponding column and row basis vectors,

i.e., ui,n and vn, except in degenerate subspaces defined by subsets of pairs of generalized

singular values of equal ratios, i.e., σ1,n/σ2,n. The GSVD generalizes the SVD from one to

two matrices. Like the SVD, the GSVD is a mathematical building block of algorithms, e.g.,

for solving the problem of constrained least squares in algebra [5], and theories, e.g., for

describing oscillations near equilibrium in classical mechanics [6].

2.1.1 Generalized fractions and angular distances

The authors [16] formulated the GSVD as a comparative spectral decomposition that

can simultaneously identify the similarity and dissimilarity between two column-matched

but row-independent matrices, and, therefore, create a single coherent model from two

datasets recording different aspects of interrelated phenomena [7, 8]. This formulation

[9–12] is possible because the GSVD is exact, exists, and has uniqueness properties that

directly generalize those of the SVD [13, 14] Eq. (2.1). The only assumption is that there

exists a one-to-one mapping between the columns of the matrices but not necessarily
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between their rows. The authors [16] defined the significance of the row basis vector vT
n

and the corresponding column basis vector ui,n in the corresponding matrix Di, i.e., the

“generalized fraction” pi,n, to be proportional to the corresponding generalized singular

value σi,n, and the “generalized normalized Shannon entropy” of Di to be proportional to

the arithmetic mean of pi,n log pi,n. The authors [16] defined the significance of vn and u1,n

in D1 relative to that of vn and u2,n in D2, i.e., the “GSVD angular distance,” to be a function

of the ratio σ1,n/σ2,n that, from the cosine-sine decomposition, is related to an angle,

−π/4 < θn = arctan(σ1,n/σ2,n)− π/4 < π/4. (2.2)

Note that the angular distances θn are different from the principal angles corresponding

to canonical correlations, just as the GSVD is different from canonical correlations analysis

(CCA) [15].

A unique row basis vector vT
n that is significant in either D1 or D2, and with an angular

distance of θn ≈ ±π/4, which corresponds to a ratio of σ1,n/σ2,n � 1 or � 1, respec-

tively, is mathematically approximately exclusive to either D1 or D2, and for consistency

should be interpreted with the corresponding column basis vector u1,n or u2,n to represent

phenomena exclusive to either the first or the second dataset. A unique row basis vector

vT
n that is significant in both D1 and D2, and with an angular distance of θn ≈ 0, which

corresponds to σ1,n/σ2,n ≈ 1, is mathematically common to D1 and D2, and should be

interpreted with both u1,n and u2,n to represent phenomena common to both datasets.

The GSVD, which is mathematically invariant under the exchange of the two matrices

or the reordering of the pairs of matched columns or the rows, and then here is also blind

to the labels of the matrices, the columns, and the rows. These labels are used to interpret

only the row and column basis vectors in terms of the phenomena recorded in the datasets.

2.1.2 Computing the GSVD via QR decomposition and the SVD

The GSVD is numerically stably computed by using the QR decomposition of the

appended D1 and D2, followed by the SVD of the block of the column-wise orthonormal

Q that corresponds to D1, i.e., Q1,
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D1
D2

]
= QR =

[
Q1
Q2

]
R

=

[
UQ1 ΣQ1VT

Q1

Q2

]
R
=

[
UQ1 ΣQ1

UQ2 ΣQ2

]
VT

Q1
R

,

(2.3)

where R is upper triangular [4, 5]. Since D1 and D2 are with full column rank, then Q1

and Q2 are also with full column rank, VT
Q1

is orthonormal, and ΣQ1 is positive diagonal.

It follows from Eq. (2.3) that the diagonal ΣQ2 = (I − Σ2
Q1
)

1
2 is also positive, and that

UQ2 = Q2VQ1(I − Σ2
Q1
)−

1
2 is column-wise orthonormal,

I = QTQ = QT
1 Q1 + QT

2 Q2

= VQ1 Σ2
Q1

VT
Q1

+ QT
2 Q2,

Σ2
Q2

= I − Σ2
Q1

= (Q2VQ1)
T(Q2VQ1) > 0,

UT
Q2

UQ2 = I

= [Q2VQ1(I − Σ2
Q1
)−

1
2 ]T[Q2VQ1(I − Σ2

Q1
)−

1
2 ].

(2.4)

That is, the SVD of Q1 also defines an SVD of Q2, where the singular values are arranged

in ΣQ2 in an increasing order, because the singular values of Q1 are arranged in ΣQ1 in a

decreasing order.

It follows from Eq. (2.4) then that the SVD of Q1 factorizes D1 and D2 into the GSVD,

U1 = UQ1 ,

U2 = UQ2 ,

Σ1 = ΣQ1{diag[(VT
Q1

R)(VT
Q1

R)T]} 1
2 ,

Σ2 = (I − Σ2
Q1
)

1
2 {diag[(VT

Q1
R)(VT

Q1
R)T]} 1

2 ,

VT = {diag[(VT
Q1

R)(VT
Q1

R)T]}− 1
2 VT

Q1
R, (2.5)

where U1 and U2 are column-wise orthonormal, Σ1 and Σ2 are positive diagonal, and VT,

identical in both factorizations, has normalized rows. The positive generalized singular

values are arranged in Σ1Σ−1
2 = ΣQ1(I − Σ2

Q1
)−

1
2 in a decreasing order.

The QR decomposition is unique and, from Eq. (2.5), the uniqueness properties of the

GSVD follow from the uniqueness properties of the SVDs of Q1 and Q2.
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2.2 Genomic signal processing case study
DNA alterations had been observed in astrocytoma for decades. A copy-number geno-

type predictive of a survival phenotype was discovered only by using the generalized sin-

gular value decomposition (GSVD) formulated as a comparative spectral decomposition.

In this case study, the authors [16] used the GSVD to compare whole-genome sequenc-

ing (WGS) profiles of patient-matched astrocytoma and normal DNA. First, the GSVD un-

covered a genome-wide pattern of copy-number alterations, which was bounded by pat-

terns recently uncovered by the GSVDs of microarray-profiled patient-matched glioblas-

toma (GBM) and, separately, lower-grade astrocytoma and normal genomes. Like the

microarray patterns, the WGS pattern was correlated with an approximately one-year

median survival time. By filling in gaps in the microarray patterns, the WGS pattern

revealed that this biologically consistent genotype encoded for transformation via the

Notch together with the Ras and Shh pathways. Second, like the GSVDs of the microarray

profiles, the GSVD of the WGS profiles separated the tumor-exclusive pattern from normal

copy-number variations and experimental inconsistencies, including the WGS technology-

specific effects of guanine-cytosine content variations across the genomes that were corre-

lated with experimental batches. Third, by identifying the biologically consistent phe-

notype among the WGS-profiled tumors, the GBM pattern proved to be a technology-

independent predictor of survival and response to chemotherapy and radiation, statis-

tically better than the patient’s age and tumor’s grade, the best other indicators, and

MGMT promoter methylation and IDH1 mutation. The authors [16] concluded that by

using the complex structure of the data, comparative spectral decompositions underlay a

mathematically universal description of the genotype-phenotype relations in cancer that

other methods missed.

Here we demonstrate a computation and visualization toolkit by applying it to the data

from this case study.



CHAPTER 3

METHODS

3.1 Computing the GSVD via QR decomposition
and the SVD

The QR decomposition and the SVD are important steps in computing the GSVD. The

efficient computation of the GSVD is based on the QR and SVD decompositions of the

datasets. QR decomposition is performed on the stacked datasets such as matrix1 in the

code snippet, and the SVD is computed on the rows of Q that correspond to D1 and D2

separately.

3.1.1 Computing QR decomposition

The input data can potentially have missing values. We ensured that all Nulls or NAs

had been dropped from the input matrices D1 and D2. The matrices D1 and D2 were then

concatenated vertically to form a (n1 + n2) by m matrix for QR decomposition where n1

and n2 are the rows of D1 and D2, respectively, and m are the same columns of either

dataset. To perform QR decomposition on D1 and D2, we used the linalg.qr command

from the Numpy package in Python. Numpy utilizes the LAPACK algorithms, which are

highly optimized for linear algebra. Taking advantage of this optimization, we used the

Numpy linalg package instead of any others or instead of implementing our own package.

The output of the linalg.qr command is the decomposition matrices Q with orthonormal

columns and upper triangular matrix R.
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3.1.2 Computing the SVD

The matrix Q was split into two matrices, one of size n1 by m corresponding to the

dimensions of D1 and the other of size n2 by m corresponding to D2. These matrices are

referred to as Q1 and Q2, respectively. Using the linalg.svd function from the Numpy

package, we decomposed the matrix Q1 into U1, Σ1 and VT
1 and the matrix Q2 into U1, Σ1

and VT
2 .

3.2 Testing the GSVD raster visualization
To utilize the GSVD and find underlying patterns from the GSVD, we developed the

raster visualization for the GSVD. My task was to test if the visualization correctly depicted

the datasets. The raster_display function shown below can be applied to any decompo-

sition. The positional parameters of axes, matrix, row_basis_vectors, probe_num and

step are unique to each visualization. This raster_display can be applied to D1 and D2

as well as the results of the GSVD: U1, U2, Σ1, Σ2 and VT to visualize all the patterns in the

GSVD and original dataset.

3.3 Computing and visualizing the generalized
fractions and angular distances

3.3.1 Computing and visualizing the generalized fractions

The code below demonstrates how generalized fractions were computed. The first

step was to multiply each element of the diagonal with itself and store it as the variable

fractions. Then we summed all the diagonal elements and stored them in variable

total_fractions. The function returns an array of fractions divided by total_fractions.
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The function used to visualize the generalized fractions is displayed below. The func-

tion calls the generalized_fractions function described above internally to compute the

fractions. The fractions are then joined with an integer list that is the same length as the

generalized fractions array to preserve the fractions’ original location. This list is displayed

in a horizontal bar chart, with the fractions’ corresponding integer position as its label.

3.3.2 Computing and visualizing angular distances

The steps of computing angular distances follow Eq.(2.2). The variable distances

contains an array of angular distances to be plotted.

In order to visualize the angular distances, we took the variables d_1 and d_2 from

the GSVD as input to the function angular_distances. Then we indexed the angular

distances array by its length and plotted the array in the form of a horizontal bar chart.
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3.4 Computing and visualizing Kaplan-Meier
survival analysis

3.4.1 Lifelines versus scikit-survival

Lifelines and scikit-survival are two libraries in Python. Lifelines has more features

built into it, including its own plot method, and has been extensively tested against R

and SAS. The scikit-survival is dependent on the sklearn module and is not extensively

supported. Lifelines was chosen for support and capability reasons.

3.4.2 Extending lifelines visualization

Here we initialized the Kaplan-Meier objects by calling the function KaplanMeierFitter,

which is a lifelines function. KaplanMeierFitter takes time and event data and fits the

survival function to the data. Helper functions not shown here generate Boolean arrays

that separate time and event data into user-defined subgroups. These Boolean arrays are

generated based on event column data and group column data in a dataset provided by

the user.

The Kaplan-Meier objects have a built-in plot method. Each Kaplan-Meier object in

km_objs is called on a subplot given by the ax parameter and plotted with our default

styles specified by the colors parameter and censor_style dictionary parameter. If a

group has too few patients included, then it can be removed with remove_list. The

parameters of annotation_coords and patch_color are used to annotate the plot area

and increase the amount of information that can be conveyed.
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3.5 Creating boxplot displays
3.5.1 Mapping columns (attributes) to similar groups

Before displaying of patterns in the column and row basis vectors in a boxplot format,

the data have to be separated into two groups based on annotations. The user supplies an-

notations that separate the data into two groups based on a column in a pandas dataframe.

The pandas factorize method is then used to create dummy variables that are integers

in the place of strings. By using these dummy variables, the mapping step can work

independently of any user input regardless of the annotations in the input column.



CHAPTER 4

RESULTS

Case study of the TCGA astrocytoma datasets
4.1 TCGA astrocytoma tumor and patient-matched

normal DNA copy-number datasets
The Cancer Genome Atlas (TCGA) astrocytoma datasets are obtained from the Ge-

nomic Data Commons (GDC).

https://portal.gdc.cancer.gov/projects

http://www.alterlab.org/astrocytoma_genotype-phenotype/

The data are composed of two datasets, including one tumor dataset and one normal

dataset. For each dataset, rows contain the information of copy number variations along

the genomic coordinate, whereas columns contain the identification information of pa-

tients. Each column represents DNA copy number variations according to one patient, and
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each row represents the DNA copy number variations based on one subposition location

on the genome.

During the data preprocessing step, only patients who have both a normal profile and

a tumor profile are included in the datasets. Thus, the columns of the two datasets are

the same. This is an important criterion for applying the GSVD to these datasets. Both

the tumor copy-number variations information and the normal copy-number variations

information are needed in order to analyze the tumor exclusive patterns or the normal

exclusive patterns or common in both. If the target patients are not the same group of pa-

tients in both datasets, the results will no longer be comparative, and they cannot separate

patterns from the tumor datasets and normal datasets. There does not have to be an exact

match along the rows of the two datasets to be used in the GSVD. As long as the rows have

similar meanings, the datasets are valid as input to the GSVD.
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4.2 Visualization of the GSVD in this case study
After computing the GSVD as described in sections 3.1–3.2 and after visualization as

described in section 3.3, Figure 4.1 below has been generated. This figure matches the

previously generated figure in [16]. We directly compared the results of matrices U, Σ

and VT by subtracting Mathematica matrices from the corresponding ones in Python.

The absolute value of the difference is less than the default machine precision 1e−16 in

both Mathematica and Python. We also subtracted the angular distances computed by

Mathematica from the Python corresponding ones. The absolute difference is less than

default machine precision 1e−16.
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Figure 4.1. The GSVD of the WGS read-count profiles of patient-matched astrocytoma
tumor and normal DNA. The GSVD is depicted in a raster display with relative WGS
read-count, i.e., DNA copy-number amplification (red), no change (black), and deletion
(green). This GSVD depiction is denoted as approximate, even though the GSVD of
Eq. (2.1) is exact, because only the 1st through the 5th and the 81st through the 85th
rows and corresponding tumor and normal column basis vectors and generalized singular
values are explicitly shown. The angular distances of Eq. (2.2) are depicted in a bar chart.
The red and green contrasts for the datasets Di, the dataset-specific column basis vectors
Ui and generalized singular values Σi, and the dataset-shared row basis vectors VT, are
c = 1, 750 and 0.0005, and 5, respectively.



16

4.3 Visualization of the bar charts in this
case study

The bar charts in Figure 4.2 were generated using the functions described in section

3.3. The charts match the previously generated figures in [16]. We compared the results

of generalized fractions by subtracting Mathematica generalized fractions from the cor-

responding ones in Python. The absolute value of the difference is less than the default

machine precision 1e−16.
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Figure 4.2. The most significant row basis vectors uncovered by the GSVD of the WGS
astrocytoma tumor and normal datasets. (a) The 10 largest generalized fractions in the
WGS astrocytoma tumor dataset are depicted in a bar chart, showing that the two most
tumor-exclusive row basis vectors, i.e., the first and second, are also the first and second
most significant in the tumor dataset and capture ≈29% and 8% of the information, re-
spectively. The corresponding generalized normalized Shannon entropy is 0.78. (b) The 10
largest generalized fractions in the normal dataset are depicted in a bar chart, showing that
the most normal-exclusive row basis vector, i.e., the 85th, is also the most significant in the
normal dataset and captures ≈23% of the information. The 82nd row basis vector, which
is approximately common to both datasets, is the second and fifth most significant and
captures ≈14% and 2% of the information in the normal and tumor datasets, respectively.
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4.4 Visualization of the Kaplan-Meier survival
analyses in this case study

The extension of lifelines Kaplan-Meier survival analyses can be seen in Figure 4.3.

These extensions, which are described in section 3.4 and allow more information to be

displayed. The figure here matches the previously generated figures in [16]. We compared

the results of p-values and hazard ratios by subtracting Mathematica p-values and hazard

ratios from the corresponding ones in Python. The absolute values of the differences are

less than the default machine precision 1e−16. Additionally, the number of patients and

the number of events observed in each group match as well as the median survival time

and survivor function between Mathematica and Python are the same for each survival

analysis in Figure 4.3.
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Figure 4.3. Survival analyses of the WGS astrocytoma patients. The classifications of the
85 patients based upon (a) the Agilent GBM pattern and, in addition, (b) age or (c) grade,
or (d) MGMT promoter methylation or (e) IDH1 mutation, are depicted in KM curves
highlighting median survival time differences (yellow) with the corresponding log-rank
P-values and Cox hazard ratios.
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4.5 Visualization of the boxplots in this
case study

The column and corresponding row basis vectors can be interpreted by boxplot visu-

alization. Figures 4.4 and 4.5 were generated with the methods described in section 3.5.

These images match the previously generated ones in [16]. We compared the results of

p-values by subtracting Mathematica p-values from the corresponding ones in Python.

The absolute values of the differences are less than the default machine precision 1e−16.

The values of the median, first and third quartiles and the whiskers match between Python

and Mathematica.

GC > 50%
N=308329

GC 50
N=2518708

GC Content

-0.004

-0.002

0

0.002

0.004

Re
la

ti
ve

 D
NA

 C
op

y 
Nu

mb
er

(a) Tumor Column Basis
    Vector 1
    P-value = 9.1×10 145743
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Figure 4.4. The first tumor and 85th normal column basis vectors are correlated with
the fractional guanine-cytosine (GC) content across the tumor and normal genomes.
The distributions of the copy numbers listed in the (a) first tumor and (b) 85th normal
column basis vectors between tumor and normal bins, respectively, of >50% and≤50% GC
content are depicted in boxplots with the corresponding Mann-Whitney-Wilcoxon (MWW)
P-values.
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Figure 4.5. The first and 85th row basis vectors are correlated with experimental batches.
The distributions of the copy numbers listed in the (a) first and (b) 85th row basis vec-
tors between genomic characterization centers and tissue source sites, respectively, are
depicted in boxplots with the corresponding MWW P-values.

4.6 Improvement of computational time of the
GSVD in Python relative to

Mathematica
With over four billion entries in the astrocytoma tumor dataset and astrocytoma normal

dataset, Mathematica takes about 10 minutes to finish computing the GSVD, whereas

Python takes only about two minutes to finish computing the GSVD. The times here in-

clude reading in the datasets and performing the GSVD. This improvement leads us to

believe the toolkit developed in Python can be used more efficiently compared to previous

approaches.



CHAPTER 5

CONCLUSIONS

As the case study indicated, the genomic signal processing toolkit developed in this

research facilitates speedy analysis on large-scale data with no loss of accuracy. Today’s

datasets are enormous. Instead of waiting for a long time for the results to come out,

this toolkit helps speed up the process and while maintaining accuracy. Additionally,

the toolkit improves visualization over existing Python libraries. Taking advantage of

existing Python libraries and extending their features, it becomes easier to interpret the

data visually. Also, this toolkit is reusable and can be applied to multiple datasets. The

applications of the toolkit are not limited to genomic data, but all other types of data as

well. The computation and visualization of the GSVD can also be applied to many other

types of data. Python was chosen to implement this toolkit, because it makes many cloud

computing tasks and large datasets more efficient. It is anticipated that this toolkit can be

used to analyze extremely large datasets hosted in cloud storage.
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