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Abstract

This paper proposes a method for converting a non-watertight trimmed B-spline
B-rep model to a watertight hybrid model representation that preserves the original
model’s parameterization, representation, and geometry, except within a banded re-
gion along the trimming curve. Also, it addresses the problem of volumetric model
completion. Solutions to both of these problems are important to have a conformal
representation for analysis, in particular, isogeometric analysis, and for describing ma-
terial attributes. The approach for the boundary representation modifies the original
B-spline bases to take into account the trimming curves and introduces new func-
tions along the trimming curves to preserve independence and the convex hull prop-
erty. Then a volumetric completion algorithm with the new hybrid boundary is in-
troduced. Outside of this research, volume representation completion has witnessed
few advances for trimmed B-spline B-rep models. Building on the approach of [21]
that is proposed only for untrimmed B-reps, this research generalizes the methodol-
ogy and solves related issues to make it appropriate for the ubiquitous trimmed B-rep
models. The efficacies of both the hybrid B-rep and the hybrid volumetric method are
demonstrated on trimmed B-rep models.
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Abstract

This paper proposes a method for converting a non-watertight trimmed B-spline B-rep model
to a watertight hybrid model representation that preserves the original model’s parameterization,
representation, and geometry, except within a banded region along the trimming curve. Also, it
addresses the problem of volumetric model completion. Solutions to both of these problems are
important to have a conformal representation for analysis, in particular, isogeometric analysis,
and for describing material attributes. The approach for the boundary representation modifies
the original B-spline bases to take into account the trimming curves and introduces new functions
along the trimming curves to preserve independence and the convex hull property. Then a
volumetric completion algorithm with the new hybrid boundary is introduced. Outside of this
research, volume representation completion has witnessed few advances for trimmed B-spline
B-rep models. Building on the approach of [21] that is proposed only for untrimmed B-reps,
this research generalizes the methodology and solves related issues to make it appropriate for
the ubiquitous trimmed B-rep models. The e�cacies of both the hybrid B-rep and the hybrid
volumetric method are demonstrated on trimmed B-rep models.

1 Introduction

Geometric modeling has focused on Boundary representations (B-rep), but with recent advances

in Additive Manufacturing (AM), material representations and higher order analyses, the need for

volumetric representations is growing [16]. Isogeometric Analysis (IGA) [7] is aimed at bridging

the gap between CAD and FEA. In IGA the same basis functions used in modeling, usually B-

splines [6] or a variant [29, 8], are also used to solve analyses. A fundamental notion is to keep the

parameterization and representation of the CAD model in creating the volume completion. However,

there is no general technique for creating a volumetric parameterization of the interior that preserves

the boundary parameterization and representation of the original complex multi-surface B-spline

model. Trimmed B-spline B-rep models present even more complexity.

A trimmed B-rep consists of trimmed B-spline surfaces and their sets of associated trimming

curves. Two trimmed surfaces meet along their shared trimming curves. Commercial CAD systems

provide each trimming curve approximation in three co-existent representations: 1 in each corre-

sponding parametric domains and 1 in Euclidean space [34]. None of them exactly represents the

true trimming curve, nor is any pair identical [28]. This is fundamentally why trimmed models are

not watertight so defining a volumetric representation is more challenging for trimmed models.
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B-rep model to a watertight hybrid model representation that preserves the original
model’s parameterization, representation, and geometry, except within a banded re-
gion along the trimming curve. Also, it addresses the problem of volumetric model
completion. Solutions to both of these problems are important to have a conformal
representation for analysis, in particular, isogeometric analysis, and for describing ma-
terial attributes. The approach for the boundary representation modifies the original
B-spline bases to take into account the trimming curves and introduces new func-
tions along the trimming curves to preserve independence and the convex hull prop-
erty. Then a volumetric completion algorithm with the new hybrid boundary is in-
troduced. Outside of this research, volume representation completion has witnessed
few advances for trimmed B-spline B-rep models. Building on the approach of [21]
that is proposed only for untrimmed B-reps, this research generalizes the methodol-
ogy and solves related issues to make it appropriate for the ubiquitous trimmed B-rep
models. The efficacies of both the hybrid B-rep and the hybrid volumetric method are
demonstrated on trimmed B-rep models.
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Figure 1: The pipeline: (a) G, a trimmed B-rep. Lower inset (b) a gap between trimmed surfaces.

(c) The HB-rep, B. Red area adjacent to the Euclidean trimming curve is to seal the gap, (See Upper

inset (b)). (d) Tracing paths for control points from the polyhedron boundary. Control meshes for

G appear in grey. Vertices with no tracings are not on the polyhedron and have no vector field.

(e) A cutaway view of the semi-structured trimmed trivariate volume S (blue) and the outermost

boundary of the unstructured region U (gold) are shown.

Because of the ambiguous representation of trimming curves, alternative representations have

been proposed to replace trimmed B-splines for model representation both in the design process

and as the representation for IGA simulation. Many methods “re-patch” and approximate the

surfaces. Others derive a di↵erent geometric representation to perform IGA. We review those ideas

in Section 2. Since trimmed NURBS is the predominant technology, according to [22], we focus on

dealing with its shortcomings while maintaining the overall representation framework.

The starting point for this research is a trimmed B-spline B-rep model. The goal is to maintain

the original B-spline representation and revise the surfaces locally around the trimming curve so

that gaps between trimmed surfaces are sealed. Then the problem of generating a volumetric rep-

resentation is addressed. This document focuses on developing the representations which we term

Hybrid B-rep (HB-rep) and the Hybrid Volumetric representation (HV-rep). The contributions of

this paper include defining

• The HB-rep that preserves the origin original representation including parameterization, con-

trol points, and basis functions in a banded region ⌦ (defined in Section 4) around the trimming

curve, and introduces trim functions within ⌦ for gluing across trimming curves.

• The HV-rep such that it preserves the HB-rep on its boundary, creates trivariate B-splines

from the boundary inward and fills the innermost region with Bézier tetrahedra.

• Suitable Bézier pyramids as an interface layer between tensor product trivariate elements and

Bézier tetrahedral elements to significantly reduce the DoF.

Figure 1 illustrates methodologies. Related work is discussed in Section 2. B-spline basics are

introduced in Section 3. HB-rep and its construction are introduced in Section 4. The volumetric

completion is in Section 5. Results are shown in Section 6. Section 7 has concluding remarks.
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2 Related work

In dealing with the inexactness of the trimmed model to create watertight representations, sur-

face representations are necessarily modified, and frequently reparameterized in regions around the

trimming curves, then remodeled to approximate the original surface with regular patches. These

methods are categorized as global methods as surveyed in [22]. For example, [10] preserves the exact

geometry (except very close to the trimming curves) by using surface-surface composition to convert

trimmed surfaces into regular tensor product NURBS surfaces so that their boundaries match the

trimming curves. The method su↵ers from the high degree of the surface after composition and can

result in significantly more knot lines and patches, as well as a modified parameterization.

[28] propose converting NURBS to T-spline surfaces and reconstructing the surface near the

trimming curve. This involves parameterization modification and surface approximation near the

trimming curve. They argue that error can be made arbitrarily small with su�cient T-spline refine-

ment, each adding degrees of freedom to the representation. [31, 30] propose utilizing Catmull-Clark

and non-uniform subdivision surfaces, respectively, to replace the original trimmed surfaces. [31]

required approximating the whole B-spline/NURBS surface, as well as the trimming curve. [30]

converts the boundary representation to be a non-uniform subdivision surface and represents the

trimming curve exactly. However, the geometry and parameterization are changed to emanate from

the trimmed region and the surface must be approximated in the new representation. These ap-

proaches are aimed at cases when the usage of either T-splines or subdivision surfaces is desirable.

[15] assumes trimmed planar regions, and parameterizes trimmed knot intervals as Bézier tri-

angles that match the trimming curve on one of its edges. [36] uses Bézier triangles and Bézier

tetrahedra to construct a watertight representation suitable for IGA. After constructing trimming

curves with synchronized knot vectors in corresponding surfaces and model space, the parametric

space ones are linearly approximated, adding new knots if necessary, then the surfaces are further

refined. Each knot interval of the bi-cubic surface corresponds to two degree 6 Bézier triangles to

reproduce the surface. [11] decomposes a model with no trims into an unstructured Bézier dis-

cretization. The bounding Bézier tensor product patches are extracted from the boundary B-spline

surfaces and are then either left alone or most frequently decomposed into Bézier triangles that

represent the surfaces exactly. The volume is then tetrahedralized for IGA.

Other approaches are aimed at using trimmed B-reps for analysis without a watertight rep-

resentation. Categorized as local methods by [22], for surface analysis, trimming curves separate

elements/knot intervals into 3 groups: interior, exterior, and cut element [26, 27, 13]. During inte-

gration, exterior elements are excluded, and integration in a cut element is done by subdividing the

cut element into equally spaced parametric subcells recursively for integration purposes. They say

that as the subcells get smaller, the integral of the partial element gets more accurate. According

to [22], no explicit coupling in DoFs across the involved set of surfaces of a trimming curve exposes

stability issues.

In general, global approaches reparameterize the surface in an extended region, of at least the

trimmed knot intervals, and require surface approximation. On the other hand, while useful in the

context of IGA, local methods seem intended to support just analysis.

Most research into transforming boundary representations into volume representations has fo-

cused on transformations of triangle meshes. Some is aimed further at creating semi-structured

hexahedral representations that can then be approximated as volumetric B-splines, see [19, 12, 42,

2, 3, 18]. [40] solves the problem of completing the representation given a region bounded by a hex-

ahedron whose faces are B-spline surfaces resulting in a trivariate B-spline representation that has

been optimized for IGA. The idea was generalized to domains bounded by B-spline surfaces that were

already partitioned into hexahedra in [39]. Generalizing the optimization idea to complex planar
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regions bounded by B-spline curves, [38] created a semi-structured quadrilateral parameterization

preserving the original boundary curve. [23] designs models directly with volumes, eliminating the

problem of volume completion, and introduces Booleans on volumes. It raises the dimension of the

trimming issues to trimming surfaces.
Related hybrid approaches preserve the B-spline boundary representation. Volume completion

“grows” the trivariate representation from the original surface to create a trivariate B-spline to a

model depth dependent on a mid-structure. [21] fills the rest of the interior with linear tetrahedral

elements, while [41] fills it with high degree Bézier tetrahedra that reproduce the interior bounding

surface of the trivariate B-spline. These hybrid approaches exploit the advantage high accuracy of B-

spline elements in simulation and the freedom in meshing the geometry in complex topology provided

by tetrahedral meshes. However, neither approach confronts the issues surrounding trimmed B-rep

models.

To our knowledge, there is no methodology that keeps the original B-spline representation in both

watertight B-reps and related volumetric representation starting with a trimmed B-spline B-rep.

3 B-spline Basics

Given a non-decreasing sequence µ = {µi}i called a knot vector, a univariate B-spline consists

of a non-negative, piecewise degree-d polynomial with minimal local support on [µi, µi+d+1

]. If

µi < µi+1

2 µ then each nonzero Ni,d,µ is a single polynomial over [µi, µi+1

). Such a single interval

is called a parametric knot interval. There are d + 1 nonzero B-splines over each interval. A full

set {Ni,d,µ(⇠)}i is a family of linearly independent B-spline functions that form a partition of unity

over each knot interval [µi, µi+1

) of the domain, where the parametric domain and the number of

functions are determined by the degree and the knot vector. For tensor product surfaces of the form

s(⇠, ⌘) =
P

i,j ri,jNi,d,µ(⇠)Nj,d,⌫(⌘), a knot interval is a rectangular region [µi, µi+1

]⇥ [⌫j , ⌫j+1

] that

forms the for a single bivariate bi-d polynomial piece.

Because a B-spline restricted to any knot-free bivariate interval [⇠
1

, ⇠
2

] ⇥ [⌘
1

, ⌘
2

] is purely poly-

nomial, it can be written in terms of a tensor product Bézier basis over that interval. The Bézier

coe�cients depend on the knot vectors, µ, ⌫, the degree d, and the values ⇠
1

, ⇠
2

, ⌘
1

, ⌘
2

. For exam-

ple, let {B⇠
k}dk=0

designate the degree d univariate Bézier basis functions over a particular interval

⇠ = [⇠
1

, ⇠
2

]. Then,

Ni,d,µ(⇠) =
dX

k=0

↵µ,⇠
i,k B⇠

k(⇠) for ⇠ 2 [⇠
1

, ⇠
2

] (1)

where B⇠
k(⇠) =

�d
k

�
(⇠2�⇠)d�k

(⇠�⇠1)
k

(⇠2�⇠1)d
. An analogous result holds for the ⌘ direction. Thus, for each

tensor product B-spline basis function restricted to J rect

= [⇠
1

, ⇠
2

]⇥ [⌘
1

, ⌘
2

], we have,

Ni1,i2(⇠, ⌘) = Ni1,d,µ(⇠)Ni2,d,⌫(⌘)

=

dX

k1=0

dX

k2=0

↵µ,⇠
i1,k1

↵⌫,⌘
i2,k2

B⇠
k1
(⇠)B⌘

k2
(⌘)

=

dX

k1=0

dX

k2=0

↵µ,⇠
i1,k1

↵⌫,⌘
i2,k2

B⇠,⌘
k1,k2

(⇠, ⌘) for (⇠, ⌘) 2 J rect. (2)

So the surface piece over J rect

= [⇠
1

, ⇠
2

] ⇥ [⌘
1

, ⌘
2

] can be written in terms of a local Bézier
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representation,

s(⇠, ⌘) =
dX

k1=0

dX

k2=0

⇢k1,k2B
⇠,⌘
k1,k2

(⇠, ⌘) for (⇠, ⌘) 2 J rect, (3)

and,

⇢k1,k2 =

X

i1

X

i2

↵µ,⇠
i1,k1

↵⌫,⌘
i2,k2

ri1,i2 . (4)

Since there are only (d+1) nonvanishing B-spline basis functions over J rect

, each double summation

in Equation (3) has just (d+ 1)

2

terms.

If J rect

does not correspond to a full knot interval, it is referred to as a sub-knot interval to

distinguish it from the full knot intervals in µ ⇥ ⌫. Thus, over any bivariate interval J rect

, it is

possible to compute interchangeably with the original B-spline or with the corresponding Bézier

representation. This duality is particularly useful when evaluating a model’s integral properties

such as mass or moments, or solving PDEs, as proposed in [4].

Over a canonical triangle with vertices at (0, 0), (1, 0), and (0, 1), each Bézier triangle basis

function of degree d is written Gi,j,k(u, v) =
d!

i!j!k!u
ivj(1 � u � v)k where i, j, k � 0, i + j + k = d,

0  u, v and u + v  1. A surface sT with the canonical triangle as its parametric space has

representation

sT(u, v) =
X

0i,j,k,
i+j+k=d

bi,j,kGi,j,k(u, v) (5)

The domain for the Bézier triangle can have an arbitrary triangle M as the domain in parametric

space by mapping vertex P
0

to (0, 0), P
1

to (1, 0) and P
2

to (0, 1) with an a�ne transformation [6].

Typically if the parametric triangle is a right triangle, the right angle vertex is mapped to (0, 0).
If a single Bézier segment of a trimming curve forms a curvilinear diagonal of a sub-knot interval

in the parametric space of the surface, the curvilinear triangle part of the sub-knot interval that is

kept as part of the trimmed surface is called a curvilinear sub-knot interval and is denoted J tri

.

4 Watertight HB-rep B
In this section, we introduce related schemes for transforming the ubiquitous trimmed B-spline B-rep

model into a B-rep with watertight boundaries. The representations all create a parametric region

⌦ bounded between rectilinear curves and parametric trimming curves. Outside ⌦, the schemes

preserve the original B-spline representation. Within ⌦ the parameter spaces di↵er but lead to the

same geometry. The di↵erence is related to whether the trimmed parametric domain is fully utilized.

Let G represent a fully detailed trimmed B-spline B-rep model, including all surfaces, trimming

curves, and topology information. For each surface in G, its trimmed control mesh contains the

control points (denoted R) and structure necessary to define the part of the surface that remains

in the model after Boolean operations. Suppose two trimmed surfaces s
1

and s
2

meet along their

shared trimming curve. Commercial CAD systems provide each trimming curve approximation in

three co-existent representations: c
1

and c
2

are mappings from the unit interval into each respective

parametric domain, and c
m

maps the unit interval into model space [34]. None of them exactly

represents the true trimming curve, nor is any pair of them identical [28]. A parametric curve can

be composed with its respective surface mapping to create a model space curve that also represents

the intersection curve (s
1

c
1

and s
2

c
2

, respectively). Both parametric trimming curves and the model

space curve are typically represented as either piecewise cubic or piecewise linear curves. Without
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Figure 2: left: a B-spline trimmed along a parametric trimming curve; right: its corresponding

revised basis function.

loss of generality, the work reported herein matches the model space trimming curve c
m

rather than

making one parametric space representation dominant.

Recall the term knot interval is used herein to denote a tensor product of two nontrivial intervals

between knots in each parametric direction of an original surface, respectively. The term sub-knot
interval is used to denote a tensor product of two knot-free intervals that may not span a full possible

parametric knot interval. For each surface in G, a knot interval is classified into 3 groups, interior,
trimmed, and exterior, based on its relative position with respect to trimming curves. Each trimmed
knot interval can intersect a parametric trimming curve by having a trim be a part of the knot

interval’s isoparametric boundary or by the trimming curve crossing in its interior.

Now we give a high-level outline of the detailed procedure that follows. For each trimmed surface

s 2 G,
1. For each trimmed knot interval K, construct a rectilinear approximation to the trimming

curve that does not touch it and is completely interior to the trimmed surface. The region ⌦

is bounded by the rectilinear approximation and the trimming curve illustrated by the orange

polyline in Figure 3d. Changes from the original surface to seal the representation can occur

only inside ⌦.

2. Create basis functions for the new representation.

• The revised basis functions are identical to B-splines outside ⌦ and continuously decrease

to evaluate to 0 on the trimming curve inside ⌦.

• Define trim functions with support in ⌦ that form a partition of unity on the trimming

curve and are linearly independent.

3. Determine coe�cients for the new basis functions to complete the watertight representation

and match the model space trimming curve. The representation is called a Hybrid Boundary

Representation (HB-rep).

4. The region in each trimmed knot interval minus ⌦, K�⌦, is a rectilinear region, see Figure 3c

and 11 left. It is represented by the original surface. Since it is easier to evaluate B-spline

surfaces over rectangular sub-knot intervals, K�⌦ is partitioned into interior sub-knot intervals

with locally optimal shape properties. See Figure 11.

Thus each trimmed surface s 2 G becomes a surface s̃ 2 B that is identical to s except in ⌦.

Each B-spline function Ni,j whose support overlaps the trimmed region is modified to a revised basis

function ˜Ni,j whose support is the trimmed version of its original support, and that continuously

decreases to evaluate to 0 on the trimming curve. New trim functions have support over ⌦ to enable

exact representation of the model space trimming curve and to help approximate the surface s in ⌦.
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In the following, it is assumed that all three of its representation for each trimming curve are

compatible. That is, their knot vectors are the same and the model space images of each knot value

represent the same trimming curve point, even though they are not identically the same. Knot

insertion and reparameterization may be necessary to ensure this. Supposing c
1

and c
2

are the

parametric trimming curves corresponding to c
m

, if c
1

crosses a knot line in the parameter space of

s
1

at some value t⇤, or if a local extremum occurs there, then a knot is inserted at t⇤ in c
2

and c
m

,

as well as in c
1

. Analogously, knots are inserted in c
1

and c
m

wherever c
2

crosses a knot line in the

parametric space of s
2

or at a local extremum. Finally, extra knot multiplicities are inserted into

B-spline representations of the trimming curves to cause the representation to turn into piecewise

Bézier. Each Bézier curve segment is monotonic in its embedded surface’s parameter space. If the

trimmed representation input does not have these prerequisite characteristics, the technique in [36]

can be used to produce it.

4.1 Creating the Rectilinear Approximation

When a parametric trimming curve touches a knot interval, either by crossing it or sharing part of

its parametric boundary, that interval is called a trimmed knot interval. The trimming curve may

have multiple Bézier segments within a single trimmed knot interval. (See Figure 3a.) A rectilinear

approximation is built for each segment. We will present several approaches for dealing with the

curvilinear triangles that result from constructing ⌦. The approach to creating the rectilinear

approximation and the region ⌦ is the same for whichever alternative is chosen.

Given a Bézier segment with endpoints at (⇠
0

, ⌘
0

), and (⇠
1

, ⌘
1

), we assume without loss of gen-

erality that (⇠
0

, ⌘
1

) is in the interior of the trimmed domain, as in Figure 3b. The rectilinear

approximation to the Bézier segment is found by connecting the two segment endpoints to (⇠
0

, ⌘
1

).

The orange region between the trimming Bézier segment and its rectilinear approximation defines

a curvilinear triangle that is the interior part of the sub-knot interval with vertices (⇠
0

, ⌘
1

), (⇠
0

, ⌘
0

),

(⇠
1

, ⌘
0

), and (⇠
1

, ⌘
1

). It is called a curvilinear triangular sub-knot interval. In Figure 3c, the rectilin-

ear approximations and their corresponding curvilinear triangular sub-knot intervals are shown for

all the Bézier segments in the trimmed knot interval. Figure 3d shows (⇠
1

, ⌘
1

) is a shared endpoint

of two Bézier trimming segments and is on the rectilinear approximation that is not separated from

the interior. It must have an added rectangle whose boundary will form a boundary to a modified

rectilinear approximation. It is constructed to have edges identical with its adjacent curvilinear tri-

angle sub-knot intervals. This specifies all vertices of the rectangle, as the vertex (⇠
1

, ⌘
2

) is implied

by the other three, as shown in Figure 3d (the orange rectangle). In Figure 3d, all such rectangles

constructed to separate points on the trimming curve from the rest of the interval have orange and

blue sides. For the trimmed knot interval shown, ⌦ is defined as the region bounded by the orange

rectilinear piecewise linear curve and the trimming curve.

If instead of the configuration depicted in Figure 3, a Bézier segment is isoparametric as in Fig-

ure 4a with endpoints (⇠
0

, ⌘
0

) and (⇠
0

, ⌘
1

), a suitable rectilinear approximation is found with corners

(⇠
0

, ⌘
0

), (⇠
1

, ⌘
0

), (⇠
1

, ⌘
1

), (⇠
0

, ⌘
1

) where (⇠
1

, ⌘
1

) follows from the endpoint of the adjacent curvilinear

triangle and of the isoparametric segment. In this case, the region between the Bézier curve and its

rectilinear approximation is a rectangular sub-knot interval, shown in orange in Figure 4. Note that

rectilinear approximations should not have intersections with rectilinear approximations for other

trimming curves nor with themselves. If it occurs, the related trimming curve segments should be

subdivided before a rectilinear approximation is recomputed.
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(a) (b) (c) (d)

Figure 3: A progressive construction for generating ⌦. The retained portion of a single knot interval

is in gray. (a) a trimming curve with 5 Bézier segments (breaks shown with green markers.) (b)

the rectilinear approximation and curvilinear triangle for one trimming Bézier segment (in orange).

Similarly, this is repeated for each Bézier trimming curve segment with results shown in (c). In (d)

rectangular sub-knot intervals are created that have one corner point on the trimming curve. See the

orange rectangle. The orange rectangle’s fourth corner (⇠
1

, ⌘
2

) aligns with the right angle vertices

of adjacent curvilinear triangles.

(a) (b)

Figure 4: (a) A trimmed knot interval with a trimming curve touching its boundary. (b) ⌦ near an

isoparametric trimming curve segment.

4.2 Consistency Constraints

In order to keep the resulting new basis functions C0 valid sub-knot intervals in ⌦ requires that (i)

curvilinear triangular sub-knot intervals exist only in ⌦; (ii) the initial and end control points of each

Bézier trimming curve segment corresponds to corners of sub-knot intervals; and (iii) a shared edge

between two sub-knot intervals in ⌦ must be the full edge of the two involved sub-knot intervals.

Two types of inconsistencies may result in invalid ⌦ and must be resolved to ensure the new basis

functions are C0

over each trimmed surface and across multiple surfaces. This section describes the

inconsistencies and presents methods to resolve them.

A Type 1 inconsistency can occur across the trimming curve of two surfaces. Since Bézier

segments in a surface may have been subdivided during Section 4.1, representations of the trimming

curves segments on each side of the intersection may no longer be synchronized. The piecewise

Bézier trimming curves c
1

and c
2

from their respective surfaces, now augmented through the results

of Section 4.1, are compared. c
1

is subdivided at a value if c
2

had been subdivided, and vice versa,

and c
m

is made consistent. Corresponding sub-knot interval partitioning then takes place in s
1

and

s
2

to accommodate the added trimming curve segments, also modifying the rectilinear partitioning.

See Figure 5a for illustration.
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(a) Type 1 (b) Type 2

Figure 5: (a) Type 1 inconsistency: Section 4.1 introduced a subdivision to the trimming curve at P
1

on surface s
1

and at P
2

on s
2

causing inconsistent trimming curve representations. Corresponding

sub-knot intervals must be partitioned (dashed lines). (b) Two examples of Type 2 inconsistency: T-

junctions exist along an isoparametric edge inside ⌦ in the parametric domain of trimmed surfaces.

They must be eliminated by further partitioning sub-knot intervals (red dashed line).

A Type 2 inconsistency arises within ⌦ of a single trimmed surface when T-junctions were created

during partitioning. This is a potential problem only within ⌦ since basis functions are defined across

sub-knot intervals. If two adjacent sub-knot intervals share one edge i.e., have the same endpoints

on that edge, both tensor product Bézier basis function and Bézier curvilinear triangle basis function

reduce to 1-D Bézier basis functions on that edge, forming a C0

basis functions across that edge.

When an edge is only partially shared at a T-junction, it breaks the continuity when the control

point associated with the trimming curve is moved. So the relevant sub-knot interval is subdivided,

as shown in Figure 5b.

Satisfaction of each constraint process on one surface might introduce new sub-knot intervals,

breaking the consistency constraint of the other, and so require repetition. Since only partitioning of

rectangular sub-knot intervals can lead to new T-junctions, the process termination condition is that

no rectangular sub-knot intervals is allowed to have two opposite edges that both contain trimming

curves. Before constraint satisfaction, the algorithm checks and bisects any such rectangular sub-

knot interval.

4.3 Revised and Trim Basis Functions

⌦ is used in defining the revised and trim basis functions. A sub-knot interval in ⌦ is either

an isoparametric rectangular sub-knot interval, denoted J rect

, or a curvilinear triangular sub-knot

interval, denoted J tri

. The sub-knot interval has been trimmed by the trimming curve according to

one of the following configurations: (i) at least one isoparametric edge of J rect

resides on a trimming

curve, (ii) a corner of J rect

is on the trimming curve, or (iii) the curvilinear edge of J tri

is part of

trimming curve, or (iv) a curvilinear triangle that has been split into multiple triangles to avoid an

inconsistency.

Using the multi-index i, let Ni = Ni1,i2 . Each B-spline Ni and its corresponding revised basis

function

˜Ni are identical, except in ⌦. Thus, for (⇠, ⌘) 2 J rect * ⌦, then

˜Ni(⇠, ⌘) ⌘ Ni(⇠, ⌘), and it

can be evaluated using Equation (2). For J rect ✓ ⌦, where the support of Ni overlaps J rect

, using

Equation (2), the tensor product Bézier functions defining Ni over J rect

are partitioned into two

sets: those basis functions that vanish on the trimming curve and those that are nonzero. Letting

d = 3, Figure 6 illustrates this for bicubic surfaces. Figure 6a shows a red trimming curve segment

coincident with a sub-knot interval’s isoparametric boundary. The basis functions that vanish on

the trimming curve, whose coe�cients in Figure 6a have blue dots, are used in Equation (2) to

define

˜Ni. Then

˜Ni is defined over J rect

by substituting the 0 functions in Equation (2) for those

Bézier functions that are nonzero on the trimming curve. Over J rect

,

˜Ni now has been modified to

9



(a) (b) (c)

Figure 6: Trimmed sub-knot interval with local representations. In (a) Colors show the groupings

of control points associated with basis functions for revised basis functions and trim basis functions.

In (b) the groupings show which tensor product basis functions, signified by their control points, are

replaced by triangular Bézier basis functions. The X-ed vertices indication subscripts of functions

that are discarded. Along with (c) the locations in the summation for the Bézier functions are

specified.

decrease continuously to have value 0 on the parametric trimming curve. For (⇠, ⌘) 2 J rect ✓ ⌦, as

in Figure 6a, the revised basis functions and the trim functions are now,

˜Ni1,i2(⇠, ⌘) =
3X

k1=0

2X

k2=0

↵µ,⇠
i1,k1

↵⌫,⌘
i2,k2

B⇠,⌘
k1,k2

(⇠, ⌘) (6)

˜Tk1(⇠, ⌘) = B⇠,⌘
k1,3

(⇠, ⌘) for i = 0, 1, . . . , 3. (7)

sR(⇠, ⌘) =
X

i1

X

i2

ri1,i2 ˜Ni1,i2 +

3X

k1=0

⇢k1,3
˜Tk1(⇠, ⌘) (8)

for (⇠, ⌘) 2 J rect 2 ⌦

Each Bézier function for J rect

that is nonzero on the trimming curve is used to define a trim

function(s) over that element. Using its coe�cient from Equation (4) and keeping its part of the

summation under its new name still permits the surface to be represented exactly over J rect

, so

s ⌘ sR, as in Equation (8). When the coe�cients of the trim functions are modified to match the

model space trimming curve, thus sealing the model, sR is altered to be s̃, an approximation of s
that matches c

m

exactly over the shared model space Bézier trimming segment.

Given a J tri ✓ ⌦, there are two main approaches to approximating the model space surface. They

can result in related representations. Without loss of generality, suppose the curvilinear triangle

has 3 corners at (⇠
0

, ⌘
0

), (⇠
1

, ⌘
0

), and (⇠
0

, ⌘
1

) with 2 isoparametric edges and 1 Bézier trimming

curve segment edge, as in Figure 7b. Note that these vertices are labeled di↵erently than those in

Figure 3b to simplify the explanation. Assume the model space untrimmed surface in Figure 6b is

over the sub-knot interval [⇠
0

, ⇠
1

] ⇥ [⌘
0

, ⌘
1

] with the basis functions and control mesh generated by

Equation (2) and (4), as shown in Figure 6b. Let M be the triangle with the same corners as J tri

,

and let {Gk1,k2,k3} 0k1,k2,k3
k1+k2+k3=d

be the Bézier triangle basis functions over M.
Figure 7a shows a trimmed sub-knot interval for a single Bézier segment of the parametric

trimming curve. One approach, call it Method I approximates the surface over a straight-sided

triangular subregion of ⌦, shown in Figure 7c as the green triangle. A Bézier triangle representation

is constructed to approximate the surface and then the control points along the diagonal edge that is

supposed to correspond to the trimming curve are adjusted to be the control points for the relevant
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(a) (b) (c)

Figure 7: Possible triangle regions. (a): A single cubic Bézier trimming segment and its sub-knot

interval. (b) The curvilinear triangle with the Bézier segment forms the rectilinear approximation

(green). (c) The Bézier segment is approximated by either a single edge (green triangle) that can

result in poor coverage of the parametric domain. A good fit to the parametric trimming curve

(blue) has a good parametric approximation and more triangular regions are used.

Bézier segment of c
m

. The parameter space for Method I is either not the full curvilinear triangle

J tri

(for example in Figure 7c shaded) or the rectilinear approach must be recomputed and the

approximation must occur over multiple straight-sided triangles. It has the advantage that by using

a degree 2d Bézier triangle, the surface over that straight-sided triangle can be computed exactly.

However, the approach presented here has the goal of using the full curvilinear parametric triangle in

its surface representation. To do this, the single Bézier segment must be approximated to get better

coverage of the curvilinear triangle, and then the rectilinear approximation must be reconstructed

and ⌦ recomputed. Typically, the triangle size becomes relatively small and the polynomial surface

over it can be approximated with a low degree surface. In what follows, we approximate the surface

over M by constructing revised and trim basis functions using cubic Bézier triangle basis functions

and name the approximation sT. We discuss why this is appropriate at the end of the presentation

of the construction.

The second approach, say Method II first creates a Bézier triangle mapping � : M ! J tri

that is

the identity on the two isoparametric sides and maps the diagonal to the parametric space trimming

curve. Then, each revised and trim basis function over M is composed with ��1

to create a mapping

sc = sT ���1

that maps J tri

to a model space approximation of s. If s is a bicubic B-spline surface,

then each revised basis function is exactly the same curve as its corresponding B-spline basis function

on the isoparametric boundaries of J tri

, and sc matches s. In that way, J tri

remains the parametric

space for that piece of the surface. However, ��1

is not rational, so sc is not rational. Numerical

integration methods can take advantage of the curvilinear parametric domain in Method II when

the mapping from the integration domain to J tri

uses the curvilinear mapping in [33].

The idea for Method I is to substitute Bézier triangle basis functions for tensor product basis

functions in Equation (2), and to determine trim functions from the Bézier triangle basis functions.

Since J tri

is only a subset of the rectangle, all the tensor product basis functions are not used. With-

out loss of generality, the substitution rules are presented for just one triangle because the relative

relationships between the triangle and the tensor product basis functions subscripts (control net)

are rotated and analogously applied for the other types of triangles. For the surface triangle shown

in Figure 6b, the Bézier triangle basis functions are substituted for the tensor product Bézier basis

functions whose subscripts are in the lower triangular control mesh of tensor products subscripts,

and split into those that are zero on the trimming curve and used to define

˜N ’s ,and those that are

not and used for

˜T ’s. For the case illustrated in Figure 6b, the basis functions with subscripts above
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Figure 8: � maps from a related parametric triangle to the parametric domain of the curvilinear

triangle, while  maps from the parametric triangle to the physical domain. Coe�cients of  and

� with light blue circles are from Euclidean/parametric trimming curves, respectively; the rest of

those for  are from rrect (green) and its corresponding nodal values (orange). The original surface

mapping is approximated by  � ��1

.

the diagonal are discarded. Using d = 3 as indicated in Figure 6b,

for (⇠, ⌘) 2 M⇠,⌘ 2 ⌦

the following equations hold:

˜Ni1,i2(⇠, ⌘) =
X

0k1,k2;0<k3,
k1+k2+k3=3

↵µ,⇠
i1,k1

↵⌫,⌘
i2,k2

Gk1,k2,3�k1�k2(⇠, ⌘) (9)

˜Tk1(⇠, ⌘) = G
3�k1,k1,0(⇠, ⌘) for k

1

= 0, 1, . . . , 3. (10)

sT(⇠, ⌘) =
X

i1

X

i2

ri1,i2 ˜Ni1,i2(⇠, ⌘) +
3X

k1=0

⇢
3�k1,k1

˜Tk1(⇠, ⌘) (11)

The coe�cients for the trim functions in Equation (11) are modified to be the coe�cients for the

Bézier segment of c
m

over J tri

and form a final approximation in Section 4.4. The set of all control

points that are coe�cients of trim functions is ⌥. There are four possible orientations of the retained

curvilinear triangle (and its straight-sided pairing). In addition to substituting for the lower trian-

gular subscripted tensor product basis function, the upper triangular ones, and the two using the

other diagonal are the corresponding orientations. The subscripted triangular Bézier functions must

be inserted into the summations with the correct orientations and parts of the sub-knot interval

domain.

Method II maintains the parameterization of the original surface s as closely as possible, as

well as the geometric representation, using a C1

mapping from J tri

to M. Define � : M ! J tri

to be a degree 3 triangular Bézier mapping that is the identity on the isoparametric edges and

reproduces the degree 3 parametric Bézier trimming curve segment boundary exactly and without

folds or degeneracies. The simplest general initializes � =

P
0i,j,k,
i+j+k=3

fi,j,kGi,j,k(u, v) : M ! M as

the identity. Then, coe�cients f
2,1,0 and f

1,2,0 are modified to the interior coe�cients for the cubic

parametric space Bézier trimming segment, and � now maps M to J tri

. (The segment end coe�cients

already match the coe�cients for the identity function.) In the case that f
1,1,1 is not in the interior

of J tri

,then a point along the line between f
0,0,3 and f

1,1,1 that is interior to J tri

is chosen to replace
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(a)

(b)

Figure 9: In (a), the partition of knot interval [0, 1] ⇥ [�1, 0] consists of 4 sub-knot intervals: 3

rectangular and 1 curvilinear triangular. ⌦ is represented by the hatched region, and the 4 black

dots represent the control points of the trimming curve. (b) shows all of the 16 revised B-spline

basis functions

˜Ni,j and 4 trim basis functions

˜Ti corresponding to the 4 dots.

the value of the identity f
1,1,1.

��1

is C1

inside J tri

and maps onto M. Each

˜Ni is modified over J tri

, so that instead of

substituting Bézier triangle basis functions Gi into Equation (2), Gi � ��1

is substituted. The

Bézier triangle functions that are used for the trim functions are composed with ��1

similarly. This

new mapping, sc = sT � ��1

, is a reparameterization of sT so all of J tri

, the parametric domain of

the trimmed surface can be used. (See Figure 8.)

Figure 9a shows a partition of trimmed knot interval. Originally, 16 B-spline basis functions Ni,j

for i 2 {�1, 0, 1, 2}, j 2 {�2,�1, 0, 1} exist over this domain corresponding to 16 original control

points. Two types of new basis functions exist: (i) 16 revised B-spline basis functions

˜Ni,j that are

di↵erent from original ones only in ⌦, and forced to be 0 on the trimming curve; (ii) 4 trim basis

functions

˜Ti for i 2 {0, 1, 2, 3} with coe�cients that correspond to 4 control points of the Euclidean

cubic trimming curve (Figure 9b).

˜Ti serve as C0

interface basis functions for consistency across

trimming curves. Outside of ⌦, all

˜Ti = 0, and

˜Ni,j = Ni,j . The extraction relationship between

13



Figure 10: Making the representation watertight. Two trimmed surfaces that intersect at c
m

(green)

in model space. Representations of each surface over its trimmed J rect

and J tri

are shown to not

actually coincide. Then the appropriate coe�cients of the trim basis functions are modified so that

the model space trimming curve bounds on both the red and blue surfaces.

the original surface and the sub-knot interval is maintained so there are no new degrees of freedom,

except those in ⌥.

4.4 Sealing the Representation

Each trim function from sR and sc has associated with it a cubic parametric space Bézier segment

and its corresponding cubic model space Bézier segment from c
m

. Since c
m

is compatible with the

parametric space trimming curves, global subscripts are coordinated, so the control points of sR and

sc corresponding to the trimming curve can be replaced by the corresponding control point for c
m

,

as shown in Figure 10. All individual trim basis functions with the same control point coming from

di↵erent sub-knot intervals and di↵erent surfaces are combined to form global trim basis function.

The global

˜Ni is completely defined by its behavior for parametric points ⌦ and those not in ⌦, with

two di↵erent types of

˜N depending on whether the full parametric domain is desirable or whether

just the geometry is important. The control point for a revised basis function is set to be the

control point for the corresponding B-spline basis function. The new basis functions are thereby

constructed, and with the specified coe�cients, the new representation is watertight, as illustrated

in Figure 10. The set of all control points that are coe�cients of trim basis functions is denoted ⌥.

The total number of independent basis functions in the watertight representation is the sum of the

number of control points in G and the number of control points in ⌥.

By careful construction, the error in the new representation s̃ occurs only over intervals in ⌦.

If the revised functions are constructed using the straight-sided triangles, the error is di�cult to

measure because of the lack of agreement in the parametric domains of s and s̃. While it is possible

to measure error between the same parameter value on the surfaces, that leaves some part of s that

has no comparison in s̃, or vice versa, depending on the particular curvilinear triangles. Otherwise,

it is possible to measure only orthogonal distance between points on each surface and the other

surface. Instead, by using the curvilinear triangle intervals as the domain with the non-polynomial

result, it is possible to measure the error as the distances between model space values of the same

parameter under s and s̃. E↵ectively, this also measures the error in the straight-sided triangle

approximation.

The choice was made to use degree d Bézier triangles instead of degree 2d, despite having more

accurate representational properties with a higher degree [41]. The main representation is the

tensor product B-spline from the original surface, so in creating the HB-rep, one aim was to keep

the curvilinear triangle regions relatively small where the surface is not rapidly changing. Using

degree d Bézier triangle basis functions has added triangular regions, but overall, the error has been

small to start and decreased rapidly with any trimming curve subdivision. We discuss examples in

Section 6.

There are two types of error that can easily be avoided in the stage of creating the rectilinear
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Figure 11: left: The trimmed knot interval minus ⌦ results in a rectilinear region, shown bounded

by orange rectilinear curves. right: The inset partitioning into rectangular sub-knot intervals by the

greedy algorithm

approximation and ⌦. In one type, the triangular region may be too big a part of the surface,

even if it is an excellent approximation. This can happen with relatively flat surfaces. Or the

approximation sc may not be a good approximation to the surface. In both cases, these attributes

can be tested in the early stage of ⌦ creation by creating each local surface

˜sc and

˜sR and testing

it. If either error problem arises, the triple of curves representing a single trimming curve can be

further subdivided. With each subdivision, the size of the new curvilinear triangles is approximately

1/4 the parent triangle size. With that subdivision, new rectangular elements may be added to ⌦,

and some rectangular sub-knot intervals must have their sides shortened to match the length of the

sides of the new adjacent curvilinear triangles. Since the representation is approximated for the

smaller curvilinear triangles, if the parametric trimming curve segment is short enough then it will

be almost a straight line, so � is close to the identity. Little error occurs in assuming � and ��1

are

the identities.

4.5 Partitioning each K�⌦

After ⌦ is created in a trimmed knot interval K, the residual part of the trimmed knot interval

K�⌦ is a rectilinear region. All evaluations and properties can be computed over this region using

the original surface representation. While rectilinear, K�⌦ is not a rectangle, so, for the purpose

of computation, it is partitioned into interior rectangular sub-knot intervals whose local surface

representations are defined as in Equation (2) and (3). A greedy divide-and-conquer recursive

approach was introduced to find locally as square as possible rectangles (See Figure 11). These

partitions enable fast, simple computation over s̃.
One goal is that the resulting sub-knot intervals should not have a relatively very short edge.

However, finding an optimal solution of such a problem is considered to be NP-hard [25]. Therefore,

a divide-and-conquer approach is introduced to solve the problem recursively. Starting from any

rectilinear domain the algorithm iterates through all vertex pairs, for example, (⇠i, ⌘i) and (⇠j , ⌘j),
and tests if the axis-aligned rectangle defined by two points (with 4 vertices (⇠i, ⌘i), (⇠i, ⌘j), (⇠j , ⌘j)
and (⇠j , ⌘i)) is valid, i.e., non-degenerate and interior to the rectilinear region without intersections

with its boundary. Valid rectangles are considered candidates. Edge length ratio of all candidates

is evaluated; the one with ratio closest to 1 (with its shape closest to a square) is chosen and

removed from the rectilinear domain. The removal partitions the residual rectilinear domain into 1

or more pieces. The scheme is then recursively applied to the remaining pieces until the rectilinear

is partitioned into rectangular sub-knot intervals.

The final collection of sub-knot intervals in the segmentation of the trimmed domains of all the

surfaces in the B-rep is named ⌅. All interior knot intervals of the original trimmed surfaces are

in ⌅. After being converted into watertight HB-rep, the revised version of surfaces in G along with

their partitioning ⌅ is denoted B. The set of B-spline control points needed to define B is R [ ⌥,
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where R is the set of control points needed for the trimmed surfaces in G and ⌥ is the set of control

points of the introduced basis functions. Therefore, the total number of control points is equal to

|R|+ |⌥|. We note that |⌥| can be larger than the number of control points on the original trimming

curve since some Bézier segments may have been subdivided in Section 4.2.

5 HV-rep V
B-spline B-rep models with no trimming curves have been completed to volumes [21, 41]. With no

trimming curves and consistent open knot vectors and surface degrees, the model control meshes

quad faces converted to triangles. The result is manifold and forms a polyhedron. Then, a point

set mid-structure was input and a discrete harmonic function created with increasing values from

the boundary to the mid-structure. Each of the surface control points was traced in the harmonic

gradient field and used to compute the control mesh for a trivariate B-spline representation that

had one boundary surface on the original model boundary and the other boundary surface in the

interior. The remaining interior was filled with Bézier tetrahedra. While related to the approach

in [41], the approach presented here deals with the di�cult issues occasioned by having trimmed
surfaces.

A trimmed model (denoted G) contains trimmed surfaces. Trimming curves go through the

parametric domain of the surface, representing the boundary of trimmed surfaces. An HB-rep

(denoted B) of G is identical to G except in a banded region near the trimming curves where control

points from the trimming curve along with introduced trim basis functions help seal the seam.

Control points from trimmed surfaces and trimming curves that contribute to B are denoted R and

⌥, respectively.

That process of volume completion cannot be directly applied to the HB-rep model for several

reasons. In particular,

1. The collection of control meshes inherited from the trimmed B-rep and used as the control

meshes of B do not form a manifold, as shown in Fig. 13. This requires determining a new

approach to creating a vector field through which to trace control points.

2. The construction of trivariate region in volume completion (as did in [21, 41]) require that

the traced control mesh results in manifold topologically identical to B in each layer so that

the basis functions defined in Section 4 can be used. However, the surfaces move inward

independently and the match at the parametric trimming curves is lost because there is a lack

of control mesh consistency.

3. A discrete harmonic field may have negative [35] or 0 value around the boundary. These

regions can lead to gradient fields pointing outside the model or gradient values of 0.

4. In e↵orts to generate Bézier tetrahedra from tensor product B-reps such as in [41, 36], surfaces

are often reproduced, which lead to degree 6 Bézier tetrahedron from a bi-cubic B-spline. This

lead to high DoF in tetrahedra.

The methodology in creating the Hybrid Volume Representation (HV-rep) goes according to the

following steps:

1. Input an HB-rep B and a mid-structure M, as well as several parameters, where one of them

is the number of control levels in the final trivariate spline, say n. Note that the information

in G is contained in B.
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2. Create a vector field for tracing the control points in R from the given boundary surface to

the mid-structure M. Set R0

= R.

3. Proceed through the following process, for i from 1 to n,

(a) Trace each control point in Ri�1

from its current location to the mid-structure and

compute its length.

(b) Normalize the newly computed length to

n�i+1

n , and move along the trace a scaled dis-

tance of

1

n . These new points form the initial ith control mesh layer Ri
tr

. Since it is likely

that when the trimming curves are applied, the surfaces do not match along their trims,

they must be adjusted.

(c) Apply a least squares process to adjust the surfaces so the trimmed surfaces edges are

close to each other, forming Ri
lstsq

.

(d) Move the surfaces apart so that there is a small separation gap around each trimming

curve (i.e., the surfaces do not overlap), forming Ri
sep

(e) Form Ri
by applying mesh smoothing (as in [21, 41]) so the spacing of the tracings is

more uniform.

(f) Using ⌦, the revised and trim basis functions, seal the layer and create Bi
.

4. Combine all surface layers Bi
to generate a trivariate structure

5. Create a Bézier pyramid element layer using ⌅ in the innermost region of the trivariate B-spline

6. The interior volume without representation is filled with Bézier tetrahedral elements

The input is the HB-rep B, a mid-structure M and parameters, including n, the number of

inward trajectory layers, the parameter of the innermost layer !, o↵setting distance ✏, blending

factor � of Laplacian smoothing and pyramid thickness parameter ✓. The naming convention has

the superscript designate the corresponding layer, and the subscript means the stage in each layer

such as Ri
tr

and Gi
. By using the naming convention, Step 3 is simply,

. . .Ri�1

tracing����! Ri
tr

least squares��������! Ri
lstsq

separation������! Ri
sep

relaxation������! Ri tracing����! Ri+1

tr

. . .

Fig. 12 demonstrates the issues as well as the solution approach in a 2D scenario. Section 5.1

(corresponding to Step 3a and 3b) presents a methodology to find an inward trajectory of n > d
points for each control point in R, where n is an input parameter. The ith points in all trajectories

form a layer Ri
tr

of meshes. A surface layer Gi
tr

can be evaluated using B-spline functions and

corresponding control points as specified in Ri
tr

. This treats the trajectories of R as families of

trimmed surfaces, one family for each surface in G. The original B-spline functions are used because

for each collection of surfaces Gi
, appropriate new trimming curves must be computed. Each surface

in a family has the basis functions and parametric trimming curves. It is desirable that the edges

of the two surfaces across a trimming curve are near each other, so the method in Section 4 can be

applied to glue them. However, since each surface in Gi
has been computed individually, it is possible

for two of them to intersect in other places or have a large gap (Fig. 12b). Section 5.2 (Step 3c-3f)

presents the 3-step method used to adjust ith trajectory control point locations to address this issue

with Ri
lstsq

, Ri
sep

and Ri
as the resulting control points for each step. To create a C0

match from a

bi-degree d to triangular surfaces at the interface between the unstructured tetrahedral region and

the structured tensor product region, it was necessary in [41] to use degree 2d triangles, and hence

degree 2d tetrahedra. In Section 5.3 (Step 4-6), a Bézier pyramid interface layer is generated that

enables use of degree d tetrahedra instead.
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(a) (b) (c) (d)

Figure 12: A 2D example of our approach. (a) An intersection of two curves with control polygons

(Pi . . . Pi+3

and Qi . . . Qi+3

) uses only part of the curves (thick strokes). Control points are separated

into two groups: E (colored dots in black circles) and R�E . (b) E are traced appropriately through

the vector field while inward trajectories for R � E are generated using the trajectories from their

mesh neighbors (Section 5.1). Resulting curves can intersect with each other and are resolved in

Section 5.2 (c). In (d), endpoints of traced trimmed curve are moved to their midpoint sealing the

gap.

(a) (b) (c)

Figure 13: Generation of polyhedron P: (a) shows the control mesh (blue) and resulting triangle

mesh (grey) of an untrimmed model. The triangle mesh forms a manifold. (b) Boolean subtraction

is taken places on two models. The parts of the control meshes that a↵ects the resulting trimmed

surfaces are drawn in blue and red. (c) shows the resulting polyhedron P that is a manifold with

the same topology with B.

5.1 Tracing R
This subsection presents the construction of a sequence of n copies of each control point in R. The

control meshes R are used to form a polyhedron, that, along with a mid-structure M, help create a

vector field that points inward from its boundary. While points on the polyhedral boundary can be

traced, not all of the points in R are vertices of the polyhedron, but still must be traced. Ensuring

the result leads to manifold trimmed inward surfaces is addressed in Section 5.2. Each sequence

of traced n copies of a control point is an inward trajectory of the control point, starting from the

original and moving each subsequent copy closer to the center of the body (as defined by the M)

than the previous.

First, the control meshes in R each quadrilateral of a control mesh is divided into two triangles,

creating faceted triangle meshes. The same Boolean operations that were used to create G are

then applied to corresponding triangle meshes to generate a polyhedron P that should have the

same topology as B. If the control meshes are too coarse, it may be necessary to refine individual

surfaces until this requirement is satisfied. This is always possible since, under refinement, control

meshes converge to the surfaces. Then R is separated into subsets: those control points that

are on P and those that are not (denoted E and R � E , respectively). Define OE = {r 2 E :

there is an edge in R joining r to a point in R � E}. Define OR�E analogously, interchanging the

roles of E and R � E . Define O = OE [OR�E . Geometrically, the control points in O are close to
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the trimming curves.

A mid-structure M is an input to the tracing process. It can be computed from P using methods

such as those that create polyhedral medial axes or simplified versions (farther away from the

boundary) such as [24] and [17] or by sampling the orthogonal inward o↵set of P. A simplified

mid-structure farther from the boundary can lead to a region S that penetrates deeper into the

interior. An exact medial axis is likely to extend down to the polyhedral vertices and edges and so

must be simplified. The user decides the appropriate mid-structure as in [21, 41].

The control points of E are traced inward towards M by following a vector field. In [20, 35], the

points in P along with the points in M are tetrahedralized using TetGen [32]. By setting P (value

0) and M (value 1) as the Dirichlet boundary conditions and solving a discrete Laplacian equation

over the tetrahedral mesh, a discrete harmonic function is created [35]. Ideally, by following the

gradient field of the harmonic function, an inward trajectory for each vertex on the boundary can

be generated. However, that gradient may be 0, i.e., when all four corners of a tetrahedron have

the same harmonic value, or, may point outward if the harmonic function has negative value around

the boundary [35] as a property of the cotangent weight used to form the Laplacian operator. To

avoid this, the vector field f used is a blend of the gradient of the harmonic function, h, and the

gradient of a signed distance function, g, that always points to the interior of the boundary. Both

of the harmonic field and the signed distance function are computed using LibIGL [14]. A simple

blend is

f =

(
h rh
krhk + (1� h)rg if 0 < h  1,

rg if h  0,
(12)

As the tracing follows an inward trajectory, the influence of the harmonic field dominates, so eventu-

ally, the trace terminates at the mid-structure M. Because the harmonic gradient field is generated

from a discrete representation it is possible that trajectories could tend to get very close or merge,

also a problem with the distance vector field. We prevent this possibility by correcting the tracing

trajectories in a relaxation step in Section 5.2, related to that in [21].

For each vertex in E i
, the tracing curve to find E i+1

tr

terminates at harmonic value 1 (on M).

Normalized arc-length parameterization of the tracing curve are reparameterized to parametric do-

main [

i
n!, 1]; and the point at parametric value

i+1

n ! is assigned to E i+1

tr

. As control points in R�E
are not on P, they cannot be traced. Instead, for p 2 R� E , a breadth-first search is applied on the

control mesh to find q 2 E closest to p in Euclidean distance. A translated copy of the tracing of q
is used.

Finally, R itself and its n layers of inward trajectories, {R0

tr

,R1

tr

, . . . ,Rn
tr

}, with R0

tr

= R, form

the initial estimate of the control lattice of the semi-structured volume. Control mesh Ri
tr

, along

with the original basis functions of G and parametric trimming curves result in a trimmed surfaces

layer Gi
. Gi

, in general, is not a manifold at this stage and its control mesh positions, Ri
tr

, must be

adjusted as each layer is generated.

5.2 Adjusting Ri
tr

By following the tracing, the resulting Gi
tr

is not a manifold as illustrated in Figures 14b and 14d. Ri
tr

are adjusted so that the resulting trimmed surfaces do not intersect and corresponding trimming

curve pairs on di↵erent surface pieces are close to each other. In this section, control points in

Ri
tr

, 1  i  n are adjusted so that trimmed surfaces in Gi
do not intersect and corresponding

trimming curve pairs on di↵erent surface pieces are close to each other. A three-step process is

proposed that adjusts Ri
tr

. The basic idea first fits a least squares to move the surfaces on the

two sides of the trimming curves close to each other, forming control meshes Ri
lstsq

. Then adjacent
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(a) (b) (c) (d)

Figure 14: HB-rep models are shown in (a) and (c). When only tracing is applied, self-intersections

are typically found in models that involve either Boolean intersection or subtractions (b). Tracing

on model that only has union operations leads to gaps around trimming curves (d).

trimmed surfaces are pushed away from each other leaving a small gap around the shared trimming

curve to form Ri
sep

. Finally, relaxation is applied to generate a better-spaced control mesh, Ri
.

Tracing (Section 5.1) is applied again to generate Ri+1

tr

from Ri
for the next layer.

The least squares fit adjusts the control points in O. Along a trimming curve, c
1

, c
2

exist in the

parametric domains of two trimmed surfaces si
1,tr, s

i
2,tr, respectively. We start by sampling over the

trimming curve with parameter t. For each sample t on the parametric trimming curves from both

sides, the reference position of the Euclidean trimming curve is computed as their midpoint,

ci
m,tr(t) =

si
1,trc1(t) + si

2,trc2(t)

2

(13)

To simplify the explanation, the notation from Section 4 is used, and we adopt subscript k to

designate the ordering of each tensor product B-spline basis function and its corresponding control

point. Thus, let si
tr

be one of the surfaces resulting from tracing, and, with parametric trimming

curve c,

si
tr

(⇠, ⌘) =
X

k

Nk(⇠, ⌘)r
i
k,tr, (14)

where rik,tr 2 Ri
tr

, and its basis function is Nk. The least squares system is formulated as,

minimize

�rik

X

u

�����
X

k

Nk(c(t))(r
i
k,tr +�rik,tr)� cie(t)

�����

2

(15)

where �rik,tr is the unknown displacement vector of control point rik,tr. The geometric rationale is

moving each control point inRi
tr

by its � solution modifies the surface so that the resulting trimming

curve is close to c
m

. As stated, only one trimming curve between si
1,tr and si

2,tr is considered, and

each surface can be considered separately. To solve the global problem, a global least squares system

is formed and solved in the same fashion. The system is formulated to solve for displacements of

those coe�cients in Oi
tr

, since they a↵ect the surface the most. Solving a broader system whose

basis functions exert much less e↵ect can cause the system to be ill-conditioned. Hence, �rik,tr = 0 if

rk 62 Oi
tr

. We denote the set of updated control points Ri
lstsq

= {rik,lstsq = rik,tr+�rik,tr : r
i
k,tr 2 Ri

tr

}.
After corresponding trimming curve pairs are moved closer to each other with the least squares

solutions, the control points in Ri
lstsq

are pushed away from each other across the trimming curves

to avoid intersections. For that purpose, we create a direction vector in parametric space for Ri
lstsq

.
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Each mesh of parametric direction vectors is initialized to the 0 vector. Then the parametric trim-

ming curve is sampled and for each sample, planar curve normal direction pointing towards the

interior of the trimmed domain is computed. The basis function for each control point in Oi
lstsq

, is

evaluated at the parametric samples. The normal direction of the sample(s) with the largest basis

function value is assigned to the control point and denoted vik,sep. The direction vectors of Oi
lstsq

are

then propagated to all direction vectors in each mesh by applying 50 iterations of Laplacian smooth-

ing over the control meshes of parametric direction vectors. Finally, we update the control mesh by

moving the surface layer using these vectors assigned to each control point for a short distance (times

with ✏) to leave a gap around the trimming curve, creating Ri
sep

= {rik,lstsq+✏v̂ik,sep|8rik,lstsq 2 Ri
lstsq

}
where v̂ik,sep is vik,sep projected into model space using the fitted plane of rik,lstsq’s local control mesh.

Next, a relaxation step adjusts the control mesh Ri
sep

to separate control points that are close

to merging. This step is necessary because both the signed distance function and the harmonic field

shrink distances between control points non-uniformly as they move inward. The relaxation applies

Laplacian smoothing to the control mesh to get a target positions p̃ for each control point p and

move p to (1��)p+�p̃ where � is a blending input parameter in [0, 1], thus creating a better-spaced

control mesh Ri
.

Finally, the trimmed surface layer Gi
(corresponding to control meshes Ri

) is transformed to Bi

that is topologically identical to B by replacing the B-splines with revised B-splines and trim basis

functions with coe�cients ⌥

i
. Again, points in ⌥

i
are obtained from curve fitting midpoint samples

similar to equation 13, using knot vectors from corresponding B trimming curves. This glues the

two sides of the trimming curve as in Section 4.4. The resulting control lattice in all layers Bi
along

with the same degree d as the surface and uniform open knot vector (0 on B and 1 on Bn
) a hybrid

trivariate B-spline region T is defined.

5.3 Construction of Pyramid Elements

The interior boundary surface of T must transition to the unstructured remaining interior volume.

For all interior knot intervals (as defined in [26]), the problem is simplified to transition from one knot

interval to unstructured volume. With the partitioning ⌅, the same problem on the trimmed (partial)

knot intervals can be similarly described as transition from one sub-knot interval to unstructured

volume, because except for the curvilinear triangular sub-knot intervals in ⌅, the sub-knot intervals

of ⌅ are all rectangular. By adding Bézier pyramid elements [5] on top of rectangular (sub-)knot

intervals, it leaves the rest of the volume a Bézier triangle boundary, on which, the strategy in [41]

can be applied to fill the volume with Bézier tetrahedra representation U .
The benefit of having Bézier pyramid is that it has the boundary geometry of degree d Bézier

triangles on each of the 4 faces, and a tensor product bi-degree d Bézier on its base surface. Thus,

for B that is bi-degree d, the resulting Bézier triangles are degree d. Alternatively, if the interior

boundary surface of T were to match the unstructured region, there would need to be two tetrahedra

over each rectangular sub-knot interval surface, each one of degree 2d as in [41, 36].

In creating the pyramid interface, it is necessary that pyramids not intersect each other. Since

T is known to have no self-intersections, it is subdivided into two trivariate splines in the inward

direction to enforce this. The subdivision occurs at a user input parametric value ✓ < 1 that can

be greater or equal than the greatest interior knot, creating a trivariate spline T
2

with one knot

interval in the inward direction, that will become the pyramid interface layer. The remaining part

of T is T
1

.

T
2

undergoes Bézier extractions according to ⌅. The resulting elements are either Bézier wedges,

corresponding to the curvilinear triangular sub-knot intervals of ⌅, or tensor-product Bézier volumes.

The wedges in T
2

are discarded, exposing the innermost curvilinear triangular sub-knot interval
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T
2

T
1

B B

T S

(a) (b)

Figure 15: (a) T is converted to S . Left: inward extensions of rectangular (blue) and triangular

(red) sub-knot intervals. T is divided into T
1

and T
2

. Right: The wedge in T
2

are removed, and

the tensor product Béziers in T
2

converted to a pyramid (yellow). The semi-structured region S
is the union of three types of elements. The inner boundary of S consists only of Bézier triangles.

(b) T-junctions between adjacent pyramids are shown. The red dashed curves connecting the top

points and the T-junctions subdivide each Bézier triangle into two.

boundary surfaces of T
1

as inner bounding surfaces of the semi-structured region, illustrated in

Figure 15a. Each of the tensor-product Bézier volumes in T
2

is transformed to a Bézier pyramid

whose coe�cients are derived from those of its tensor-product Bézier volume. Consider each tensor-

product Bézier volumes resulting from the hierarchical partitioning of T
2

. The tensor product

Bézier volume is tri-d degree and has d + 1 layers of control mesh. For the ith (0  i  d)
layer of the control mesh, counting from the base, the ith recursion of the tensor product pyramid

algorithm/de Casteljau algorithm [1] is applied for a value 1/2, in both ⇠ and ⌘ directions. The

result is (d + 1 � i) ⇥ (d + 1 � i) control points on level i of the pyramid. The control points with

corresponding pyramid basis functions [5] define a pyramid element.

The semi-structured region consists of T
1

and the pyramids, where each pyramid is a C0

match to

the inner bounding surface of T
1

over its rectangular sub-knot interval from ⌅, and whose coe�cients

are completely determined by coe�cients from T
2

. Thus, the only DoF are the ones from Bi
for

i 2 {0, 1, . . . , n}. The region is denoted S . The number of DoF of S is (n + 1)(|R| + |⌥|). U is

an unstructured region with tetrahedral elements. Its boundary coincides with the inner surface of

S . A surface composed of Bézier triangles is formed by the inner boundary surface of S . However,

the surface contains T-junctions so it should not be tetrahedralized directly. To remove undesirable

T-junctions between neighboring pyramids, the triangular de Casteljau subdivision algorithm is

applied on the edge/face of Bézier triangles that have T-junctions to divide the triangle into two

dependent triangle faces. Figure 15b illustrates this idea.

The unstructured region U is constructed following [41]. The resulting unstructured Bézier

tetrahedral mesh is denoted U . If needed, U can be transformed into unstructured Bézier hexahedra

using reparameterization technique described in [37]. The HV-rep is complete as V = (S ,U).

6 Results

Results of applying the HB-rep are shown and analyzed in this section. Figure 16 shows a single

trimmed surface with a sculptured “L” shaped hole. The inset of a typical trimmed knot interval is

shown on its right. The model space isoparametric boundary of the trimmed knot interval is colored

in blue. Sub-knot intervals within ⌦ are rendered with yellow boundaries. In particular, there are

3 Curvilinear triangular sub-knot intervals and 4 rectangular sub-knot intervals (indicated with red

and yellow dots respectively, in their interior). The partitioning of the residual is also shown with

black lines.
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Figure 16: ⌦, as well as the partition of the residual, is shown on a single trimmed surface. The

inset of a typical trimmed knot interval is shown on the right.

Error in the HB-rep over ⌦ is now computed on the model in Figure 17. Figure 17a shows a

coarse ⌦ region, with large Bézier triangle-based representations. The surface is flat so the geometry

is exact over the triangles except for the error caused by the trimming curve itself. As shown in

Figure 17b, the error seems to reach the white level of approximately 0.0024. After refining each

surface in both parametric directions, the refined images of the triangular regions are shown in

Figure 17c with the corresponding error shown in Figure 17d. ⌦’s diameter has shrunk significantly.

The inset demonstrates the largest error in all the cases occurred on the trimming curve, that was

the output of the CAD system. Hence the error in the trimming curve is a lower bound that the

representation can achieve. The same behavior for trimming curve subdivision can also be observed

in Figure 18.

More examples of HB-rep are shown in Figure 19. The trimmed models are constructed by using

a Boolean operation feature of IRIT [9]. B-spline surfaces are trimmed by cubic trimming curves.

Only ⌦ around the trimming curves is modified and is shown in red (with curvilinear triangular and

rectangular sub-knot intervals in darker and lighter shades of red, respectively). Most rectangular

sub-knot intervals only have one control point modified. C0

continuity is maintained across the

trimming curve. Figures 19a and 19b show the teapot model. Figure 19c used the straight sided

method with a finer approximation to create the turbine.

Based on the HB-rep, the method for generating a volumetric representation is also tested on

several models. Figure 1 shows the model constructed by subtracting one curved box shape from

another with parameters: n = 5, ! = 0.75, ✏ = 0.15, � = 0.5 and ✓ = 0.75. In the current unopti-

mized python software, the HB-rep takes 12.41 seconds to complete while the HV-rep takes 126.68
seconds. The mid-structure used in this example is generated using Q-MAT [17]. Near trimming

curves from subtraction and intersection, tracing inward frequently causes surface layers to intersect

in undesirable curves without the adjustment process. Figure 1 demonstrates the e↵ectiveness of

the adjustment phase to correctly seal the gap. On the right, a cutaway of the HV-rep V is shown

near the trimming curve. S and U are shown in blue and gold.

Tetrapod in Figure 20a and 20b is constructed by applying union operation to 4 capsule shapes.

3 trimming curves emanate from 4 saddle points where 3 capsules touch. The Euclidean positions

of those points are determined by going through all adjacent surfaces and using the average of their

point evaluations. The model also illustrates the capability of our method to deal with branched

shapes. Sweep based methods can have di�culties with such scenarios. Parameters used are: n = 5,

! = 0.5, ✏ = 0.005, � = 0.5 and ✓ = 0.75.
Figures 20c, 20d and 20e demonstrate that our algorithm can handle transitions between di↵erent
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(a)
(b)

(c)
(d)

Figure 17: (a) a coarse HB-rep of a mechanical part is constructed with 8 Boolean operations.

Curvilinear triangular sub-knot intervals are drawn in red. Its error from original B-spline B-rep is

shown in (b). After refining the surface representation in both parametric directions, the HB-rep

and smaller triangular based surfaces are (c), with the corresponding error in (d). For both cases,

largest errors occur along the trimming curve.

geometries within one connected component. Parameters are n = 5, ! = 0.6, ✏ = 0, � = 0.85 and

✓ = 0.6.
As is discussed in Section 5.3, using Bézier pyramids as an interface layer to the unstructured

region, instead of directly using the higher degree tetrahedra needed to match the tensor product

region, reduces the number of DoF needed. We compare DoF on only the unstructured region U
of the tetrapod that has 10, 928 elements, 25, 232 faces, 17, 681 edges, and 3, 378 points. Since

the tetrapod surfaces are bi-cubic, U would be degree 6 [41], where the independent DoF for each

element, face, edge, and point are 20, 10, 5 and 1, respectively, resulting in 562, 663 DoF. However,

for degree 3 Bézier tetrahedra made possible by the pyramid interface, the DoF for each element,

face, edge, point are 0, 1, 2 and 1, respectively. The total DoF is reduced to 63, 972, a significant

89% reduction.

7 Conclusion

We introduce a novel hybrid boundary representation to create watertight trimmed CAD models.

Based on trimmed B-spline B-reps, we modify the vicinity of trimming curves and seal the gap

between trimming curves. In order to achieve that, we introduce two types of new suitably modified

basis functions that we refer to as revised and trim functions. The new basis functions utilize both

tensor product and triangular Bézier, which commonly exist in commercial CAD systems. Their

corresponding coe�cients are linear combinations of the original B-spline coe�cients so they are easy

to compute. Unlike many methods that rely on reparameterizing and reapproximating the surfaces,

methods herein preserve nearly all of the B-rep. They respect both geometry and parameterization

of original B-spline, except for a narrow region arbitrarily close to the trimming curve. When the

original parameterization is kept over larger triangles, the resulting representation in ⌦ has the
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(a) (b) (c) (d)

Figure 18: A model made by subtracting one curved box from another. Di↵erent levels of refinement

are shown in (a) and (c) with errors shown in (b) and (d), respectively.

(a) (b) (c)

Figure 19: The results of the HB-reps are shown. Each trimmed surface is assigned a color. Only ⌦

in red is di↵erent from the original. (a) shows only a small banded region at the base of the spout.

Also, on the rim of both the body and the spout, our algorithm correctly generate a rectilinear ap-

proximation on these narrow regions. In (b) trimming curves and surfaces had few knots. Although

⌦ is exact for the flat bottom, the rectilinear partitioning was refined to ensure that ⌦ is tight to

the trimming curve, and the original surface representation is kept in most of the surface.

drawback that it is non-polynomial, even though computationally it is simple to use and useful

when integrating over trimmed regions.

Based on the HB-rep, we introduce volume completion which was not possible because of the lack

of a watertight representation. The resulting HV-rep has both a semi-structured trivariate B-spline

region and an unstructured Bézier tetrahedral region near the core of the volume. The representa-

tion preserves the original HB-rep and directly extends that into a semi-structured trivariate region

without needing further approximation. The extension of the revised and trim basis functions in

that region allow explicit coupling across trims for both geometry and material attribute represen-

tations. High order analysis such as IGA can be applied to the HV-rep. Without the need of being

remodeled, the design-and-simulation loop for trimmed geometry is further streamlined. By using

Bézier pyramids, Bézier tetrahedra with significantly lower DoFs are used in the unstructured region.

The mid-structure choice remains a crucial factor of the methodology. We would like to do further

analysis on di↵erent choices of mid-structures to find out what are the preferred characteristic for

a trimmed model’s mid-structure. The explicit coupling across the trimming curves can theoreti-

cally allow some shape modifications directly on the HV-rep, without requiring recomputation. We

plan to investigate such operations. For now, parameters are specified for each model. We plan to
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(a) (b) (c) (d) (e)

Figure 20: (a) HB-rep of a tetrapod. The corresponding HV-rep is shown in (b). (c) The HB-rep of

union of a knot and two ends is shown. (d) and (e) shows enlarged views of the region around an

intersection curve of the model.

automate this process so that the process depends less on human intervention.
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Bernstein-Bézier discretizations, Computer Methods in Applied Mechanics and Engineering,

319 (2017), pp. 83 – 123.

[12] X. Gao, T. Martin, S. Deng, E. Cohen, Z. Deng, and G. Chen, Structured volume de-
composition via generalized sweeping, Visualization and Computer Graphics, IEEE Transactions

on, PP (2015), pp. 1–1.

[13] Y. Guo, M. Ruess, and D. Schillinger, A parameter-free variational coupling approach for
trimmed isogeometric thin shells, Computational Mechanics, 59 (2017), pp. 693–715.

[14] A. Jacobson, D. Panozzo, et al., libigl: A simple C++ geometry processing library, 2018.
http://libigl.github.io/libigl/.

[15] H.-J. Kim, Y.-D. Seo, and S.-K. Youn, Isogeometric analysis with trimming technique for
problems of arbitrary complex topology, Computer Methods in Applied Mechanics and Engi-

neering, 199 (2010), pp. 2796 – 2812.

[16] V. Kumar, D. Burns, D. Dutta, and C. Hoffmann, A framework for object modeling,
Computer-Aided Design, 31 (1999), pp. 541 – 556.

[17] P. Li, B. Wang, F. Sun, X. Guo, C. Zhang, and W. Wang, Q-MAT: computing medial
axis transform by quadratic error minimization, ACM Trans. Graph., 35 (2015), pp. 8:1–8:16.

[18] L. Liu, Y. Zhang, T. J. R. Hughes, M. A. Scott, and T. W. Sederberg, Volumetric T-
spline construction using Boolean operations, Engineering with Computers, 30 (2014), pp. 425–

439.

[19] T. Martin and E. Cohen, Volumetric parameterization of complex objects by respecting mul-
tiple materials, Computers & Graphics, 34 (2010), pp. 187 – 197. Shape Modelling International

(SMI) Conference 2010.

[20] T. Martin, E. Cohen, and R. Kirby, Volumetric parameterization and trivariate b-spline
fitting using harmonic functions, Computer Aided Geometric Design, 26 (2009), pp. 648 –

664. Solid and Physical Modeling 2008ACM Symposium on Solid and Physical Modeling and

Applications.

[21] T. Martin, E. Cohen, and R. M. Kirby, Mixed-element volume completion from NURBS
surfaces, Computers & Graphics, 36 (2012), pp. 548 – 554. Shape Modeling International (SMI)

Conference 2012.

[22] B. Marussig and T. J. R. Hughes, A review of trimming in isogeometric analysis: Chal-
lenges, data exchange and simulation aspects, Archives of Computational Methods in Engineer-

ing, 25 (2018), pp. 1059–1127.

27



[23] F. Massarwi and G. Elber, A b-spline based framework for volumetric object modeling,
Computer-Aided Design, 78 (2016), pp. 36 – 47. {SPM} 2016.

[24] B. Miklos, J. Giesen, and M. Pauly, Discrete scale axis representations for 3d geometry, in
ACM SIGGRAPH 2010 Papers, SIGGRAPH ’10, New York, NY, USA, 2010, ACM, pp. 101:1–

101:10.

[25] J. O’Rourke and G. Tewari, The structure of optimal partitions of orthogonal polygons into
fat rectangles, Computational Geometry, 28 (2004), pp. 49 – 71. 14th Canadian Conference on

Computational Geometry - CCCG02.

[26] M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, and E. Rank, Weakly enforced
essential boundary conditions for nurbs-embedded and trimmed nurbs geometries on the basis of
the finite cell method, International Journal for Numerical Methods in Engineering, 95, pp. 811–

846.
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