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Abstract

Functional MRI connectivity is a technique that uses the synchrony of functional
magnetic resonance imaging (MRI) signal over time to infer a ”wiring diagram” be-
tween brain regions, or a brain network graph. Recent advances have suggested that
topological data analysis may be used to obtain novel information about the struc-
ture and function of brain networks using functional MRI connectivity data. How-
ever, there is controversy in the field about what data should be used for constructing
brain graphs. Specifically, the postprocessing steps taken to remove noise from func-
tional MRI data may substantively affect the results obtained through topological data
analysis. Moreover, it is unclear whether topological measures are more useful when
applied to spatial or temporal components of functional MRI data.

A dataset from the Human Connectome Project from 1003 subjects, each with
four independent high-quality functional MRI scans, was used to compute differences
in graph-theoretic metrics and topological data analysis results for four distinct post-
processing pipelines that attempt to correct for different aspects of physiological noise
within functional MRI data. Reproducibility of measures, as well as their ability to
discriminate one subject from another (brain fingerprinting), was used to assess the
relative strength or weakness of a postprocessing pipeline to yield informative data.
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Further, a correlation of graph-theoretic and topological metrics was made to be-
havioral, demographic, and technical factors across subjects to determine which mea-
sures were most informative about aspects of human brain function. Measurements
were applied to both temporal and spatial dimensions of the functional MRI signals to
compare efficacy and reliability.

There were marked improvements in reproducibility, as measured by an intraclass
correlation coefficient, as well as stronger correlations with behavior across subjects
for the more highly processed functional MRI data. Specifically, the pipeline that used
independent component analysis to remove many possible noise sources was most
reproducible and yielded the most useful information about brain function and behav-
ior, both for graph-theoretic and topological measurements. When considering graph-
theoretic and topological metrics applied to spatial and temporal fMRI signals, both
approaches had distinct advantages with complementary information. Graph-theoretic
metrics for both time and space domains suggested information about different as-
pects of brain function, whereas topological measurements for time and space domains
yielded roughly similar information. Applying results to the time domain may confer
resilience of analyses to head motion artifacts. Topological analyses, whether in time
or space domains, discriminate two sets of behavioral variables and may represent a
novel phenotypic characterization of human brains.
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ABSTRACT

Functional MRI connectivity is a technique that uses the synchrony of functional mag-

netic resonance imaging (MRI) signal over time to infer a ”wiring diagram” between brain

regions, or a brain network graph. Recent advances have suggested that topological data

analysis may be used to obtain novel information about the structure and function of brain

networks using functional MRI connectivity data. However, there is controversy in the

field about what data should be used for constructing brain graphs. Specifically, the post-

processing steps taken to remove noise from functional MRI data may substantively affect

the results obtained through topological data analysis. Moreover, it is unclear whether

topological measures are more useful when applied to spatial or temporal components of

functional MRI data.

A dataset from the Human Connectome Project from 1003 subjects, each with four

independent high-quality functional MRI scans, was used to compute differences in graph-

theoretic metrics and topological data analysis results for four distinct postprocessing

pipelines that attempt to correct for different aspects of physiological noise within func-

tional MRI data. Reproducibility of measures, as well as their ability to discriminate one

subject from another (brain fingerprinting), was used to assess the relative strength or

weakness of a postprocessing pipeline to yield informative data.

Further, a correlation of graph-theoretic and topological metrics was made to behav-

ioral, demographic, and technical factors across subjects to determine which measures

were most informative about aspects of human brain function. Measurements were ap-

plied to both temporal and spatial dimensions of the functional MRI signals to compare

efficacy and reliability.

There were marked improvements in reproducibility, as measured by an intraclass

correlation coefficient, as well as stronger correlations with behavior across subjects for

the more highly processed functional MRI data. Specifically, the pipeline that used in-

dependent component analysis to remove many possible noise sources was most repro-



ducible and yielded the most useful information about brain function and behavior, both

for graph-theoretic and topological measurements. When considering graph-theoretic and

topological metrics applied to spatial and temporal fMRI signals, both approaches had

distinct advantages with complementary information. Graph-theoretic metrics for both

time and space domains suggested information about different aspects of brain function,

whereas topological measurements for time and space domains yielded roughly similar

information. Applying results to the time domain may confer resilience of analyses to head

motion artifacts. Topological analyses, whether in time or space domains, discriminate

two sets of behavioral variables and may represent a novel phenotypic characterization of

human brains.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Functional magnetic resonance imaging (fMRI) uses a strong magnetic field and radio

waves to measure the blood flow in the brain to detect areas of activity and has been a

critical tool in discovering function of individual brain regions. By measuring synchrony

of activity over time between regions, it is possible to measure functional MRI connectivity

(fcMRI). Measurements of functional connectivity have led to the discovery of intrinsic

connectivity networks in the brain. However, many sources in brain images of shared

variance or noise has nothing to do with brain function. In raw images, several artifacts

such as head motion, heart rate, respiration, etc. are captured in the readings, resulting in

“noisy” images that obscure the desired brain activity registration.

1.2 Aim 1: Analyze Differences in Postprocessing Methods
In order to obtain biologically meaningful results, it is critical to identify which aspects

of the fMRI signal are related to neural activity, and which are noise. There is a general

consensus in the scientific community that the fMRI images do need to be cleaned, but

the overall pipeline may vary, and the optimal processing strategy is still in debate. Most

pipelines include an aggressive head motion correction, normalization to a common space,

and regression of physiological noise sources. However, it is not clear to what degree

different cleaning pipelines may render consequential correlation and topological analysis

moot: will the analysis results change if different pipelines are used?
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1.3 Aim 2: Analyze Information Contained in Temporal
Components vs. Spatial Components

Most of the research done analyzing functional MRI connectivity has focused on mea-

suring average synchronization (activity) over time. Although this approach has led to a

better understanding of brain network correlation, average correlation analysis will miss

dynamically changing connections throughout the scan. Instead, we could flip the time

and space dimensions and study how correlated time points are over nodes: at a time

point t in a scan, how many nodes were coactivated, and how long did the correlation

last? This approach shifts the focus to correlating duration and changes in connectivity

and may allow asking more biologically relevant questions about how the brain functions

in time.

1.4 Overview
The ultimate goal of this research is to find new ways to measure individual differences

in human behavior in the brain. The temporal approach is particularly attractive because

while the architecture in the brain is similar even in individuals with severe disabilities

such as down syndrome, the timing of brain activation can vary dramatically from individ-

ual to individual and condition to condition. Establishing the robustness of postprocessing

methods will increase confidence that these results represent meaningful differences in

behaviors rather than artifacts of processing.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 fMRI Data
Functional MRI images are acquired in the same way and with the same scanners as

traditional MRI images, but they use subtle changes in signal intensity to measure shifting

patterns of brain function over time. fMRI uses a particular type of pulse sequence called

BOLD.

2.1.1 BOLD Data

BOLD (blood oxygen level dependent) data is recorded as a 3D brain image over time

points, producing a series of 3D volumes. A typical patient scan will produce 1200 such

volumes; for a series of 1200 sequential time periods, a 3D volume of the patient’s brain

will be recorded. A complete scan through the brain is performed every 0.7 to 3 seconds,

repeated up to a thousand times or more, depending on technique.

2.1.2 Sources of Artifact

Many sources in brain images of shared variance or noise have nothing to do with brain

function. In raw fMRI images, several artifacts such as head motion, heart rate, respiration,

etc. are captured in the readings, resulting in “noisy” images that obscure the desired

brain activity registration. In the raw images, synchronized noise components contribute

more to the overall synchrony between brain regions than does the neural activity itself.

These components include drifts in signal over time related to thermal properties of the

MRI scanner, changes in blood oxygenation from variability in heart rate, swallowing,

and breathing, head motion including micro-movements, and noise related to magnetic

artifacts, such as from a truck driving by the building with the scanner or someone turning

on a microwave [7]. If the brain moves even a millimeter, it can create large artifacts,
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especially when these regions are on the edges of the brain or next to an interface with

bone or fluid.

2.1.3 fMRI Connectivity Correlation

The traditional approach to brain connectivity is to analyze average brain activity over

the time span of a scan. A brain image contains roughly 90 thousand or more voxels per

scan, each of which has limited signal to noise, so it is common practice to group nearby

voxels in regions for analysis. There are many parcellations of the brain, and grouping

can be arbitrary. The grouping used for this analysis consists of 361 gray matter regions of

interest (ROIs) across the brain. For each of the 361 ROIs (which can loosely be thought of

as “nodes”), a time series vector of 1200 time points is created, as illustrated in Figure 2.1.

Figure 2.1. Time series with scan parcellated into 361 ROIs.

With the cleaned and normalized times series, we can represent connectivity between

nodes as a graph G={V, E}, V={node
i

}, E = {e
ij

} where an edge exists between two nodes

if the average activation over time is correlated greater than a given threshold. Traditional

connectivity between two nodes is measured by a correlation coefficient between nodes:

• A threshold is chosen (which can be varied - strongly/weakly connected regions)

• A correlation coefficient c
ij

between two time series is measured by the dot product

of two time series, c
ij

= Y
i

· Y
j

, where Y
i

is the time series for node
i

and Y
j

is the time

series for node
j
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• If c
ij

> threshold ) there exists an edge between node
i

and node
j

Connectivity between nodes can be represented as a binary symmetric matrix, demon-

strated in Figure 2.2.

Figure 2.2. Edge e
ij

= 1 ) node
i

and node
j

are connected.

For a fixed subject scan and a chosen postprocessing technique, a Pearson correlation

coefficient is typically computed for each pair of rows in the 361 ⇥ 1200 time series,

yielding 361 ⇥ 361 matrices of weighted connectivity.

2.2 Post-Processing Pipeline Methods
Specific postprocessing pipelines have been proposed, but there is no standardly imple-

mented approach. There is controversy about specific steps, the order in which they should

be performed, and why. Researches in this field agree that postprocessing is critical, and

any of these schemes is better than none at all [11, 22]. Different postprocessing strategies

will affect the results of functional connectivity, but any of them will likely be much more

accurate than with no correction [32, 35].

The general consensus is to include some form of aggressive head motion correction [30],

normalization to a common space, and regression of physiological noise sources (either by

independent component analysis or general linear regression methods). Although there

is an extensive literature discussing relative merits of different postprocessing strategies,

there is no consensus on optimal strategies, although initial steps of normalizing brain

images to a common template steps are well established and validated [18].
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2.2.1 Noise Sources To Be Removed

2.2.1.1 Head Motion Correction

A complete scan through the brain is performed every 0.7 to 3 seconds, repeated up to a

thousand times or more, depending on the technique. If the brain moves even a millimeter

(which it does, all the time), then some regions of the brain can change signal intensity

dramatically, especially when these regions are on the edges of the brain or next to an

interface with bone or fluid. These large changes in signal can swamp the physiological

signal, and are meaningless to analyze. Motion is particularly problematic for functional

connectivity, because big spikes from motion dominate the time series. With motion,

functional connectivity is ultimately a measurement of head motion, not brain function,

and imaging science corrects for motion as thoroughly and completely as possible [29, 31].

2.2.1.2 Normalization

Everyone’s brain has a different shape and size, but we want to compare findings in

similar regions across brains. To do this, we have to “squish” or stretch a brain to be

roughly the same size and shape as all the other brains we want to measure. There are two

decades of literature with thousands of papers discussing methods for registration and

normalization, including both linear and nonlinear methods. This remains an active area

of research, but basic techniques are well-established and validated [18].

2.2.1.3 Nuisance Regression

Even with careful normalization and motion correction, many artifacts persist in the

data. The remaining artifacts require some attempt to further clean the data. Covariate

time series are identified that are thought to be noise, and these components are removed

from the BOLD data at each point in the brain by linear regression.

However, the question is: which covariates should be used? There are two basic

approaches to address the question. One explicitly identifies covariates of interest, and

the other uses independent component analysis to identify components that are likely

noise-related and regresses these out. In this project, we consider the following:

• Heart rate [9, 33]

• Breathing [3, 10, 19]
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• Head motion (parameters obtained from motion correction step)

• White matter and CSF (Cerebrospinal fluid) [2]

• Global signal [2, 17, 25, 26]

An alternate approach is to use ICA-based methods to find regressors, identify which

components are likely noise, and regress out these components [4, 21].

2.2.2 General Linear Models for Data Cleaning

When a scan is obtained, measurements of physiologic parameters can be simultane-

ously recorded. An fMRI study often includes a covariate file consisting of a matrix file X

produced from the fMRI data itself, which estimates effects from extraneous factors (heart

rate, etc.), as illustrated in Figure 2.3.

Figure 2.3. Covariate file X provided with the Human Connectome Project data

Each of the 361 ROIs is represented by a vector time series, Yt, containing the measured

values for that region across time. We are trying to find a best fit model for the time series

using the covariates: how much of the time series can be explained by a linear combination

of the covariates? The linear equation we wish to solve is

Y

t

= bX + U

t

(2.1)

This is illustrated by Figure 2.4, where Ut represents the cleaned data matrix.
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Figure 2.4. Calculating the “cleaned” data.

If we could calculate the value of the b matrix for each time series, we could extract the

cleaned data Ut for that series. We use the following closed-form solution to solve for b:

b = (X

T ⇤ X)�1 ⇤ X

T ⇤ Y

t

(2.2)

Figure 2.5. Calculating (XT ⇤ X)�1 using Gauss-Jordan elimination

The following steps are used to clean the data:

1. Calculate (XT ⇤ X)�1, as demonstrated in Figure 2.5.

2. Transpose fMRI data into “point vectors” and calculate (XT ⇤ Yt). See Figure 2.6.

3. For each point vector Yt, calculate a set of beta values b = (XT ⇤ X)�1 ⇤ XT ⇤ Yt.
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Figure 2.6. Transposing a vector of values for a node across time

4. Plug the calculated b values into the original equation Yt = bX + Ut. The remainder

Ut is the cleaned data for this time series.

5. Normalize the cleaned data to center around 0 by subtracting the mean and dividing

by the standard deviation.

2.3 Information Contained in Temporal Components vs. Spatial
Components

Traditionally, functional MRI connectivity has been performed as a measurement of

connectivity between brain regions. Nevertheless, there is a symmetry where a time series

can arbitrarily be seen as connectivity between time points across the brain. Although less

intuitive, this perspective may offer some advantages. At a given time point in a scan, how

many ROI nodes are registering similar activity? How repeatable is this pattern in the time

points? Measuring connectivity in this manner may also be less sensitive to head motion

noise, as the head motion will be uniquely contained in the time node itself and not likely

correlated with other time nodes. Temporal information in brain connectivity may also

be approached by using finer grained spatial connectivity. Several approaches have been

proposed. One such approach is the “sliding window” to capture connectivity in smaller

subsets of time [1]. This approach, however is limited by the fact that each window uses

a small number of data points, producing noisy estimates of connectivity, as illustrated in

Figure 2.7.

By inverting time and space, we are effectively asking which time points show similar

patterns of relative brain activity. In other words, how frequently does a given pattern

of brain network activity appear in the instantaneous brain activation time series? This

data would allow comparison of dwell times in a given network, relative order in which
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Figure 2.7. Sliding window approach to measuring connectivity

different networks are activated, and the relative duration a network persists. This type of

information may speak to the dynamical stability of brain networks, rather than simply the

architecture across the space of brain networks. Such dynamical information is likely to be

of interest in studying brain development, mental illness, and brain function. Figure 2.8

shows two measured time points with locations of similar activity.

After connectivity is measured (using the same traditional approach of calculating cor-

relation coefficients), the next step involves creating a graph over time points and noting

how long different networks remain connected, what patterns see repetition, and topolog-

ical relationships between clusters, which requires a look into topological analysis tech-

niques currently applied to the traditional connectivity-over-time pipeline. If the time

and space dimensions of fMRI data is flipped, what interesting graphical and topological

results can be abstracted? Can we note how long brain networks are correlated, pick

out specific patterns of correlation, and possibly note how separated brain networks are

(hypothesized to be necessary for healthy brain function).
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Figure 2.8. Similar activity across time points

2.4 Metrics Used for Evaluating Both Temporal and Spatial Data
2.4.1 Graph Theoretical Methods

2.4.1.1 Modularity

Modularity, shown in Figure 2.9, is a measure of the degree to which a graph’s com-

ponents may be separated into modules (also called groups, clusters, or communities).

Networks with high modularity have dense connections between the nodes within mod-

ules but sparse connections between nodes in different modules. The optimal community

structure is a subdivision of the network into nonoverlapping groups of nodes in a way

that maximizes the number of within-group edges, and minimizes the number of between-

group edges. Biological networks are thought to exhibit high degrees of modularity [27].

2.4.1.2 Characteristic Path Length

Characteristic path length, shown in Figure 2.10, is the average shortest path length

in the network, or the number of steps along the shortest paths for all possible pairs

of network nodes. It is a measure of the efficiency of information on a network, and

is considered one of the more robust graph theoretical measures, particularly useful in

neuroscience. The average path length distinguishes an easily negotiable network from

one that is complicated and inefficient, with a shorter average path length being more

desirable.
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Figure 2.9. Modularity: Nodes clustered into dense connections with sparse connections
in between.

Figure 2.10. Characteristic path length: average path length between nodes.

2.4.1.3 Global Efficiency

Global efficiency, shown in Figure 2.10, is the average inverse shortest path length in

the network, and is inversely related to the characteristic path length. For a specific node,

local efficiency is the global efficiency computed on the neighborhood of the node, and

it characterizes how efficiently information is exchanged by its neighbors if the node is

removed. On the global scale, global efficiency quantifies the exchange of information

across the whole network and how resistant to failure the network is.
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Figure 2.11. Global efficiency: a measure of how efficiently information is exchanged.

2.4.1.4 Betweenness Centrality

Node betweenness centrality is the fraction of all shortest paths in the network that

contain a given node. Nodes with high values of betweenness centrality participate in

a large number of shortest paths. Nodes with high values of betweenness centrality are

considered “hubs” for the graph, because more information will pass through that node

and therefore the node has a higher degree of influence. The red node in Figure 2.12 has a

high betweenness centrality value.

Figure 2.12. Betweenness centrality measures the degree to which a node behaves as a
hub.

2.4.1.5 Eigenvector Centrality

Eigenvector centrality is also a measure of the degree to which a node behaves as a

hub for the graph, and ultimately is a measure of how influential that node is. It is a self-

referential measure of centrality. A high eigenvector score means that a node is connected

to many nodes who themselves have high scores. Relative scores are assigned to all nodes



14

in the network based on the concept that connections to high-scoring nodes contribute

more to the score of the node than do equal connections to low-scoring nodes, as illustrated

in Figure 2.13.

Figure 2.13. Eigenvector centrality is the degree a node is connected to highly influential
nodes.

2.4.1.6 Clustering Coefficient

The clustering coefficient is a measure of the degree to which nodes in a graph tend to

cluster together. The clustering coefficient of an individual node is the degree to which

neighbors of the node are also connected to each other, and can be visualized as the

fraction of possible triangles the node participates in. A graph with an average high

clustering coefficient is thought to be more robust and resilient to failure, as demonstrated

in Figure 2.14.

2.4.2 Reproducibility Methods

There are two aspects of reliability of functional connectivity measurements. One is

how consistently a certain measurement can be produced in the same subject, and the

other is how well one subject can be discriminated from others. The intraclass correlation

coefficient (ICC) is a well-accepted measurement that addresses both aspects of reliability.

ICC is particularly convenient for studying the Human Connectome data, because this

data set provided four scans for each subject. Although ICC is viewed as a type of cor-

relation, unlike most other correlation measures it operates on data structured as groups,
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Figure 2.14. Clustering coefficient is the fraction of possible triangles a node participates
in.

rather than paired observations. With the four scans, ICC can provide a sense of how

strongly the four scans from a particular subject resemble each other as opposed to scans

from other subjects in the group.

Several statistical methods have been proposed for calculating ICC, leading to some

debate about which method should be used since different methods can lead to different

results for the same data [24]. Modern ICC definitions resemble the random effect model,

Yij = µ + aj + eij, (2.3)

where Yij is the ith observation in the jth group, µ is an overall mean, aj is the random effect

share by all values in group j, and eij is an unobserved noise term.

Matlab specifically uses the following: for a matrix M of n subjects and k observations,

MSR = var(mean(M, 2)) ⇤ k; (Across subject variance) (2.4)

MSW = sum(var(M, 0, 2))/n; (Average within subject variance) (2.5)

r = (MSR � MSW)/MSR; (2.6)

To evaluate the “goodness” of an ICC score, the following guidelines are considered

standard [12]:

• Poor Less than 0.40

• Fair 0.40 - 0.59

• Good 0.60 - 0.74

• Excellent 0.74 - 1.00
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2.4.3 Topological Methods

2.4.3.1 Explanation of Topological Methods

A new approach to the analysis of graph representations of functional imaging data

has been to extend concepts from topological data analysis (TDA) of time series to fMRI

data [34, 36]. Persistent homology is a method for computing topological features of a

space at different spatial metrics. To find the persistent homology of a space, the space

must first be represented as a simplicial complex (a set of points and line segments). Given

a set of points or nodes, we can calculate pairwise distances, often using straight forward

Euclidean distances between two points, shown in Figure 2.15.

Figure 2.15. Pairwise Euclidean distances between two points.

With a distance metric defined on the set of points, discs centered at each point can be

metaphorically drawn with a gradually increasing radius. Initially the radius starts out

at 0 and each point is considered its own cluster. As the value of the radius continues to

increases, certain discs will intersect, topologically merging two points into a single cluster,

shown in Figure 2.15. The clustering of points are dimension 0 topological features for the

set.

The distances at which points merge into clusters can be tracked by producing a set of

barcodes representing the ”birth” and ”death” of a cluster. For dimension 0 features, all

nodes are their own cluster with a birth of distance 0. The barcode ends for a node when

it merges with another cluster. This is displayed in Figure 2.17.
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Figure 2.16. As the radius size of discs around points increases, points merge into clusters.

Figure 2.17. Dimension 0 barcodes.

The radius size can continue to increase, and eventually enough points can merge into

clusters that form more complex structures, such as encapsulated balls in the center of the

points. These are dimension 2 topological features, shown in Figure 2.18.

To get a visual sense of the dimension 0 topological behavior of a set, the barcodes

can be reordered from shortest to longest. Using the endpoints of the barcodes, we can

create a sigmoid curve to show how rapidly clusters are merging for the set, as shown in

Figure 2.19.

2.4.3.2 FMRI Topological Methods Application

For the purposes of this study, the connectivity matrix itself is considered a simplicial

complex composed of points (nodes in the graph) and line segments (connected nodes).
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Figure 2.18. Dimension 1 topological feature.

Figure 2.19. Barcodes reordered to create a sigmoid curve.

Only dimension 0 topological features (barcodes) are measured. A distance function is

applied to the connectivity matrix, gradually increasing the allowed distance to measure

when nodes merge into clusters.

To date, TDA methods for functional MRI connectivity are limited [14] , but an analo-

gous approach has been described for structural MRI images [28]. More persistent features

are detected over a wide range of spatial scales and are deemed more likely to represent

true features of the underlying space rather than artifacts of sampling, noise, or particular

choice of parameters [8, 13].

For each subject scan, a barcode representation is obtained, which can then be com-

pared to other subjects, time points, or population average graphs. This approach assumes

that the graphs representing brain connectivity may have higher order topological features
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that can inform brain connectivity beyond simple graph-theoretical properties that have

already been studied [6].



CHAPTER 3

METHODS

3.1 Data Sources
3.1.1 Human Connectome Project Funded by NIH

The BOLD dataset used was provied by the Human Connectome Project, consisting of

4 resting-state fMRI scans (60 minutes per subject) each from 1003 subjects with 534 female

and 469 male participants, ages 21-35. In this dataset, there are 1200 time points in a single

scan, with each of the time points capturing a 3D image volume of the brain. To account

for artifacts at the beginning of each scan, I discarded the first 20 to obtain 1180 time points

per scan.

IRB approval to analyze the Human Connectome Project dataset has been obtained

from the University of Utah Institutional Review Board #IRB 00087725 Analysis of Re-

stricted Human Connectome Project Data.

3.1.2 Measures Obtained

3.1.2.1 Brain Parcellation.

Resting functional MRI data was analyzed using a brain parcellation consisting of

333 regions in the cerebral cortex [20]. Fourteen participant-specific subcortical regions

were added, using Freesurfer-derived segmentation [16] of bilateral thalamus, caudate,

putamen, amygdala, hippocampus, pallidum, and nucleus accumbens, segmented inde-

pendently for each participant. 14 cerebellar regions were also added comprising left

and right-hemispheric representations of a 7-network parcellation [5]. This combined

parcellation scheme covering cortex, subcortical structures, and the cerebellum comprised

a total of 361 regions [15, 32]. Average BOLD time series were extracted for each volume

in each run for each subject.
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3.1.2.2 Behavioral Measures.

Provided with the Human Connectome data is a set of 81 behavioral, demographic,

and technical factors for each subject. Each imaging metric of interest was correlated with

the factors across subject. The behaviors are as follows:

1. Age: Age of patient in years

2. Sex: Female = 1, Male = 2

3. Height: Height in inches

4. Weight: Patient weight in kilograms

5. Systolic: Systolic blood pressure

6. Diastolic: Diastolic blood pressure

7. Hematocrit Mean: Average of 2 hematocrit values (blood test)

8. Education: Years of education

9. HoursSleep: Hours of sleep per night over the last month (self report)

10. Handedness: Patient handedness (1 = right handed, -1 = left handed)

11. MeanHeadMotion: Average motion per volume in mm

12. MaxHeadMotion: Maximum head motion per scan in mm

13. MeanDiffHeadMotion: Average derivative of head motion in mm

14. MaxDiffHeadMotion: Maximum derivative of head motion in mm

15. PicSeq Unadj: Picture Sequencing (Episodic Memory)

16. CardSort Unadj: Wisconsin Card Sort (Cognitive Flexibility)

17. Flanker Unadj: Flanker Task (Attention and Inhibitory Control)

18. PMAT24 A CR: Progressive Matrices (Fluid Intelligence)

19. ReadEng Unadj: Oral Reading Recognition Test (Reading Ability)
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20. PicVocab Unadj: Oral Picture Vocabulary: (Receptive Language Ability)

21. ProcSpeed Unadj: Processing Speed

22. DDisc AUC 200: Delay Discounting (Impulsivity)

23. DDisc AUC 400: Delay Discounting (Impulsivity)

24. VSPLOT TC: Variable Short Penn Line Orientation Test (Visuospatial Ability)

25. SCPT SEN: Continuous Performance Test (Maintenance of Attention)

26. SCPT SPEC: Continuous Performance Test (Inhibitory Control)

27. IWRD TOT: Penn Word Memory Test (Verbal Episodic Memory)

28. ListSort Unadj: List Sorting (Working Memory)

29. ER40 CR: Emotion Recognition

30. AngAffect Unadj: NIH Toolbox Anger and Affect Survery (Attitudes of Anger)

31. AngHostil Unadj: NIH Toolbox Anger and Affect Survery (Attitudes of Hostility)

32. AngAggr Unadj: NIH Toolbox Anger and Affect Survery (Attitudes of Aggression)

33. FearAffect Unadj: NIH Toolbox Fear-Somatic Arousal Survery (Attitudes of Fear)

34. FearSomat Unadj: NIH Toolbox Fear-Somatic Arousal Survery (Attitudes of So-

matic Arousal)

35. Sadness Unadj: NIH Toolbox Sadness Survery (Attitudes of Sadness)

36. LifeSatisf Unadj: NIH Toolbox Life Satisfaction Survey (Life Satisfaction)

37. MeanPurp Unadj: NIH Toolbox Meaning and Purpose (Attitudes of Life Mean-

ing/Purpose)

38. PosAffect Unadj: NIH Toolbox Positive Affect (Psychological Well-Being)

39. Friendship Unadj: NIH Toolbox Friendship Survery (Social Relationships)

40. Loneliness Unadj: NIH Toolbox Loneliness Survery (Loneliness)



23

41. PercHostil Unadj: NIH Toolbox Perceived Hostility Survery (Social Distress)

42. PercReject Unadj: NIH Toolbox Perceived Rejection Survery (Perceived Social Re-

jection)

43. EmotSupp Unadj: NIH Toolbox Emotional Support Survery (Social Support Ad-

vice)

44. InstruSupp Unadj: NIH Toolbox Instrumental Support Survery (Social Network

Resources)

45. PercStress Unadj: NIH Toolbox Perceived Stress Survery (Perceived Stress Level)

46. SelfEff Unadj: NIH Toolbox Self-Efficacy Survery (Sense of Control Over Life)

47. GaitSpeed: Speed of Walking

48. Agreeableness: Personality - Agreeableness

49. Openness: Personality - Openness to Experience

50. Conscientiousness: Personality - Conscientiousness

51. Neuroticism: Personality - Neuroticism

52. Extroversion: Personality - Extraversion

53. ASR Anxd Raw: Achenbach Adult Self-Report (Anxious/ Depressed)

54. ASR Witd Raw: Achenbach Adult Self-Report (Withdrawal Symptoms)

55. ASR Soma Raw: Achenbach Adult Self-Report (Somatic Complaints)

56. ASR Thot Raw: Achenbach Adult Self-Report (Thought Problems)

57. ASR Attn Raw: Achenbach Adult Self-Report (Attention Problems)

58. ASR Aggr Raw: Achenbach Adult Self-Report (Aggressive Behavior)

59. ASR Rule Raw: Achenbach Adult Self-Report (Rulebreaking Behavior)

60. ASR Intr Raw: Achenbach Adult Self-Report (Intrusive Thoughts)
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61. ASR Intn Raw: Achenbach Adult Self-Report (Internalizing Symptoms)

62. ASR Extn Raw: Achenbach Adult Self-Report (Externalizing Symptoms)

63. Agoraphobia: Fear of Open Spaces

64. BloodTHC: Marijuana Detectable in Urine Test

65. THCTimesUsed: How Many Times Subject has Used Cannabis

66. Drinks 7days: How Many Alcoholic Drinks in Last 7 Days

67. Tobacco 7days: How Many Times Used Tobacco in Last 7 Days

68. DSM Depr Raw: Depression Score

69. DSM Anxi Raw: Anxiety Score

70. DSM Somp Raw: Somatic Problems Score

71. DSM Avoid Raw: Avoidant Personality Score

72. DSM Adh Raw: Attention Deficit/Hyperactivity Score

73. DSM Inat Raw: Inattention Score

74. DSM Hype Raw: Hyperactivity Score

75. DSM Antis Raw: Antisocial Personality Score

76. Income: Financial Income

77. Relationship: Is Subject in a Long-Term Relationship

78. DepressiveSymptoms: Symptoms of Depression

79. MMSE: Mini-Mental Status Exam (Basic Mental Function)

80. GripStrength: Grip Strength

81. Dexterity: Dexterity Test



25

3.2 Postprocessing Methods
3.2.1 Cleaning Methods

Five separate postprocessing pipelines were used to process the data. The first four

pipelines used the minimally preprocessed data provided with the Human Connectome

Project 1200 Subjects Release, and the last pipeline (ICA) used image data that had al-

ready been subject to the FIX ICA cleaning procedure [21]. Each post-processing pipeline

resulted in a 361 ⇥ 1180 matrix of time series for each of the 361 nodes for each scan in

each subject, which results in 1003 subjects ⇥ 4 scans ⇥ 361 nodes ⇥ 1180 time points ⇥ 5

post-processing pipelines.

1. Minimally Processed Data. This BOLD dataset is derived from images provided by

the Human Connectome Project directly in its initial release. Some minimal steps

that are required for the scans to be usable and are standard practice; the dataset

provided has had these steps applied. The first involves normalization to MNI space.

In order for brain scans to have widely applicable meaning, a standard spatial brain

template is used to manipulate images to have the same spatial architecture. After

normalization, a common coordinate system allows reference of similar positions

in each individual’s brain. When the fMRI scan is performed, with it comes an

MPRAGE structural image that captures the spatial map of the individual’s brain

in high resolution. This image provides the parameters necessary to perform the

transformation to MNI space. The postprocessed data also contains some motion

correction. fMRI scans are hypersensitive to even a fraction of a millimeter of head

motion (which happens frequently during a patient scan), and without some motion

correction, the important signal is lost in motion noise. From each of these scans I

have extracted time series from 361 ROI???s.

2. Head Motion, White Matter, and CSF Regressed Data. With the BOLD dataset de-

scribed above, a linear regression analysis on each ROI’s time series was performed.

The first processing step aggressively corrected for head motion. The minimally

postprocessed data does have some correction for head motion, but there are artifacts

associated with the correction. When the initial motion correction is performed,

motion parameters are saved in six directions: x, y, z Euclidean space as well as
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pitch, roll, and yaw rotation directions. For each of the 1200 volumes, a time series of

motion parameters records how much the brain moved from one image to the next.

The artifacts in the data caused by head motion will track with motion parameters,

and standard practice is to regress out the motion parameters and their derivatives

(the motion parameters themselves capture how much the brain has moved, and the

derivatives capture how much change there is between volumes). The head motion

was regressed out using a standard Ordinary-Least-Squares regression.

In addition to motion correction, a correction was applied for noisy signal generated

by white matter (axons that connect all the gray cells) and CSF (cerebrospinal fluid,

liquid around the brain and spinal cord). During a scan, some signal will come

from fluid inside and around the brain as the fluid responds to motion, breath, and

pressure. There are no cells in this fluid, and we wish to remove any distracting

signal the fluid produces. For white matter, there is a BOLD signal resulting from

the blood flow to the axons, but this is not energy being produced by neurons so

we need to remove it. Care must be taken to not include signal from gray matter,

as this is what we are trying to measure, so the signals from CSF and white matter

are “degraded”. Every voxel that is one voxel away from gray matter is discarded,

and the remaining voxels are averaged to obtain CSF and white matter time series

for regression.

3. Head Motion, White Matter, CSF, and Global Signal Regressed Data. The removal

of global signal is controversial and highly debated in its effectiveness. The process

involves taking an average signal from the entire image over the brain, using it as a

time series, and regressing it out. With the removal of global signal, inevitably some

of the BOLD signal from gray matter will be regressed out as well as noise, so the risk

is that important signal is being removed or smeared across the rest of the brain. We

use this dataset because of its controversial nature to see how different the numeric

matrices present after an aggressive global signal removal.

4. ICA Data. This dataset is also released directly from the Human Connectome Project.

Another commonly used approach is to bypass all of the previous steps, and in-

stead of explicitly going after the CSF, white matter, head motion, etc., using the
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ICA method. This method algorithmically finds the principal components of the

3D volume matrices and classifies input as signal or noise. This dataset represents

aggressively cleaned data, and is used by many investigators prior to calculating

functional connectivity.

3.2.2 Connectivity Matrix

Connectivity matrix is also called the adjacency matrix, where a Pearson correlation

coefficients were computed on the data from the above five post-processing techniques.

For each pair of rows in the 361 ⇥ 1180 time series for each subject, scan, and processing

technique, this yields 361 ⇥ 361 matrices of weighted connectivity.

3.3 Temporal Domain Connectivity Matrix
For this part of the study, only the data from ICA cleaned time series was used (with

the time and space dimensions flipped). Each column in the 361 ⇥ 1180 times series for

a subject scan contains the values of each ROI for a given time point. For each pair of

columns, a Pearson correlation coefficient was performed, resulting in an 1180 ⇥ 1180

weighted connectivity matrix across time nodes. For this domain, it is no longer assumed

that the nodes have any analogous attachment to a physical location in space, nor do

they mean the same thing across subjects and scans. The nodes have meaning within

the context of a single scan only, reflecting which time points behave similarly relative to

other time points in the same scan. Because the matrices are orders of magnitude larger

than their spatial counterparts, computational complexity rose significantly, with several

studies taking over a week to finish computations.

3.4 Evaluation Metrics for Both Temporal and Spatial Domains
3.4.1 Mean Connectivity

Mean connectivity was accomplished by calculating the L2 norm for differences be-

tween post-processing strategies for each subject. Mean connectivity provides a quanti-

tative estimate for how much the connectivity matrix is altered in each successive step of

post-processing, suggesting which steps are most influential in altering the connectivity

matrix.
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3.4.2 Graph Theoretical Methods

For many of the graph theoretical methods detailed below, the connectivity matrix was

first normalized with a normalization function weight conversion.m provided by the Brain

Connectivity Toolbox for Matlab. Normalization rescales all connectivity values to the

range [-1, 1] and is required for several of the Brain Connectivity Toolbox graph functions.

In addition, some of the graph theoretical methods also required a distance matrix as input

rather than a connectivity matrix. Nodes that are highly connected have short distances

close to 0, whereas nodes that are less connected or not connected will have distances

approaching 1 or greater. To accomplish this, each element of the normalized connectivity

matrix was subtracted from 1 providing a measure of distance rather than connectivity for

that matrix element. That is, m
ij

= 1 - m
ij

for each element m
ij

of the connectivity matrix

M. The revised matrix was input directly as an undirected and weighted graph.

1. Modularity was calculated using the function modularity und.m for undirected graphs

from the Brain Connectivity Toolbox for Matlab. Connectivity matrices were first

normalized and then input directly as an undirected and weighted graph. Output

was a single modularity value for each scan’s connectivity matrix (or graph).

2. Characteristic Path Length was calculated using the function charpath.m for undi-

rected graphs from the Brain Connectivity Toolbox for Matlab. In addition to nor-

malization, this method required a distance matrix as opposed to a connectivity

matrix. The distance matrix was created from the normalized connectivity matrix

as describe above and used as input to the function. The output was a single average

characteristic path length value for each scan’s connectivity matrix.

3. Global Efficiency was calculated using the function efficiency wei.m for undirected

weighted graphs from the Brain Connectivity Toolbox for Matlab. In addition to

normalization, this method required a distance matrix as opposed to a connectivity

matrix. The distance matrix was created from the normalized connectivity matrix as

describe above and used as input to the function. The output was a single average

global efficiency value for each scan’s connectivity matrix.



29

4. Betweenness Centrality was calculated using the function betweenness wei.m for undi-

rected weighted graphs from the Brain Connectivity Toolbox for Matlab. In addition

to normalization, this method required a distance matrix as opposed to a connectivity

matrix. The distance matrix was created from the normalized connectivity matrix

as describe above and used as input to the function. The output was a vector of

betweenness centrality values for each node in a connectivity matrix. To get a sense

of graph-level performance, both the mean and median values were calculated from

these vectors.

5. Eigenvector Centrality was calculated using the function eigencentrality und.m for

undirected graphs from the Brain Connectivity Toolbox for Matlab. In addition to

normalization, this method required a distance matrix as opposed to a connectivity

matrix. The distance matrix was created from the normalized connectivity matrix as

describe above and used as input to the function. The output was an eigenvector

associated with the largest eignevalue of the connectivity matrix. To get a sense of

graph-level performance, both the mean and median values were calculated from

these vectors.

6. Clustering Coefficient was calculated using the function clusteringcoef wu.m for weighted

undirected graphs from the Brain Connectivity Toolbox for Matlab. Connectivity ma-

trices were first normalized and then input directly as an undirected and weighted

graph. Output was a clustering coefficient vector with a value for each node. To get a

sense of graph-level performance, both the mean and median values were calculated

from these vectors.

3.4.3 Intraclass Correlation Coefficient

The Intraclass Correlation Coefficient (ICC) was calculated using the ICC.m [23] func-

tion in MATLAB using four independent measurements by comparing results for each of

a subject’s 4 scans. For each ICC calculation, a matrix M of 1003 subjects by 4 observations

where each row is one subject and each column is a judge or measure. When calculating

ICC for metrics with more than a single value per subject, such as the minimally processed

connectivity matrix, the measurement had to be calculated separately for each node in the
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graph. Input for node 1 consisted of measurements for 4 scans in all subjects for node 1.

This was then repeated for node 2, etc.

3.4.4 Topological Barcodes

Topological dimension 0 barcodes were calculated with the R toolbox package TDA,

statistical tools for data analysis [14]. Specifically connectivity matrices were converted

into normalized distance matrices and used directly as input into function ripsDiag from

the TDA library. The distance function used was
p

1 � corrcoe f

ij

for each i, j element of

the correlation (connectivity) matrix. This function returned a text list of births and deaths

of each cluster. The list was sorted from earliest deaths to most recent deaths to create a

sigmoid curve to provide a sense of the clustering rate for the nodes. The text file was also

read into Matlab for further behavioral correlation processing.

3.4.5 Behavior Correlation

Behavioral correlation was accomplished with Matlab’s function corrcoef function. In-

put was two vectors of measurements for the desired correlation coefficient. For example,

to assess correlation between the behavior Agreeableness and ROI barcodes, a vector of

Agreeableness values for all subjects and a vector of sorted values for ROI node 1 barcodes

is input to the correlation function to return a single scalar. This process was repeated for

all behaviors and all node barcode values.



CHAPTER 4

RESULTS

4.1 Postprocessing Strategy Results
4.1.1 Effects of Postprocessing Strategy on Functional Connectivity

4.1.1.1 Mean Difference

To get a broad sense of how different postprocessing strategies were for subjects, for

every subject a mean difference was calculated between each postprocessing type. To

accomplish this, each subject’s four scans were first averaged per processing type, resulting

in 5 averaged connectivity matrices per subject. The 5 averaged connectivity matrices were

then compared to each other to create a mean difference. For example, to compare ICA

connectivity matrix to minimally cleaned connectivity matrix for a subject, element-wise

difference were calculated, squared and summed, divided by the number of elements, and

then the square root was taken. Mathematically,

meanDi f f (ICA, minproc) =
q

Â ((ICA

ij

� minproc

ij

)2)/numElements (4.1)

This resulted in 5⇥5 mean difference matrices for each of 1003 subjects, with the matrix

being symmetrical and redundant across the diagonal (i.e. mean difference between ICA

and minproc is the same as the mean difference between minproc and ICA). These mean

differences between processing types were then averaged for the population, and the

bottom half of the resulting difference matrix is shown in Figure 4.1.

Because the minimally postprocessed and head motion results were so similar, the

head motion processing was discarded for subsequent analyses. We have noticed that

progressively more aggressive cleaning methods show larger differences in measured con-

nectivity, not just to the minimally preprocessed data, but also to each other.
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Figure 4.1. Mean difference in connectivity values between post-processing methods.
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4.1.1.2 ICC Reproducibility Metric

Element-wise ICC values were calculated over each of the four cleaning pipeline con-

nectivity matrices. Note that ICA clearly shows the strongest ICC reproducibility, whereas

global signal shows a slight drop in reproducibility from the minimally processed data.

Results are shown in Figure 4.2.

Figure 4.2. ICC measures for four cleaning pipelines.
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4.1.2 Effects of Postprocessing Strategy on Graph Theoretical Measures

1. Modularity. Shown in Figure 4.3 are modularity and ICC results across process-

ing type. Note that ICA processing reduces both the mean and variance of calcu-

lated modularity while simultaneously increasing ICC reproducibility. Removing

the Global Signal has the opposite effect.

Figure 4.3. Modularity results by processing type for ROI.



35

2. Characteristic Path Length. Shown in Figure 4.4 are the results for characteristic path

length and corresponding ICC measures by processing type. The more aggressive

ICA cleaning process increases the average path length between nodes. ICC results

remain stable across processing type except for a drop in Global Signal processing.

Figure 4.4. Characteristic path length results by processing type for ROI.
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3. Global Efficiency. Shown in Figure 4.5 are the results for ROI global efficiency

across cleaning pipelines. Interestingly, more aggressive cleaning pipelines suggest

a higher Global Efficiency, or a more efficient exchange of information. Once again,

ICC results drop with Global Signal removal.

Figure 4.5. Global efficiency results by processing type for ROI.
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4. Betweenness Centrality. Shown in Figure 4.6 are population mean and median

results for Betweenness Centrality. Betweenness results were sparse vectors for all

cleaning types, suggesting only a few outliers acted as strong hubs for the graph.

ICA processing removed most outliers.

Figure 4.6. Mean and median betweenness centrality values averaged across subjects.

Figure 4.7 displays the ICC results for betweenness centrality for each ROI. Over all

processing pipelines, ICC results for this graph measure were lower, perhaps because
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the vectors were so sparse. Once again the higher ICC values surfaced with ICA

processing, while the lowest values were reported in global signal processing.

Figure 4.7. ICC values by ROI for betweenness centrality across cleaning pipelines.

Figure 4.8 shows population ROI mean betweenness centrality results mapped onto

the brain surface. The relatively homogeneous blue color suggests that all regions

are seen as hubs more or less equally for Betweenness Centrality results regardless

of cleaning type. Aggressively cleaned ICA data more accurately localizes influential

hubs within complex regions of the parietal lobes.
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Figure 4.8. Mean betweenness centrality values shown superimposed on brain ROIs.
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5. Eigenvector Centrality. Another capture of hub behavior is eigenvector centrality.

Although the means and medians themselves remain relatively stable across clean-

ing types, the variance notably changes with ICA data showing the greatest mean

variance, yet reduced median variance. Population mean and median eigenvector

centrality are shown in Figure 4.9.

Figure 4.9. Median and mean eigenvector centrality values averaged across subjects.

Of particular note is the stark contrast in ICC results for eigenvector centrality. Min-

imally processed, HM/WW/CSF, HM/WW/CSF/Global Signal cleaning pipelines



41

all performed poorly, while ICA alone had remarkably high ICC reproducibility.

Figure 4.10. ICC values for eigenvector centrality graph measures.

Figure 4.11 shows population ROI mean eigenvector centrality results mapped onto

brain models. While other graph measures were reduced by more aggressively cleaned

data, in this case ICA data detects ROI hub behavior that other pipelines miss.
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Figure 4.11. Mean eigenvector centrality values shown superimposed on brain ROIs.
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6. Clustering Coefficient. Figure 4.12 shows the population mean and median clus-

tering coefficient for each cleaning type. Each cleaning progression tends to reduce

reported node clustering. Note that mean and median clustering coefficient results

are almost identical.

Figure 4.12. Median and mean clustering coefficient Values averaged across subjects.
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Figure 4.13 shows the ICC results by ROI node across cleaning pipelines. Global

signal processing reveals a sharp drop in ICC reproducibility, whereas again ICA

processing returns the highest ICC scores.

Figure 4.13. ICC values for clustering coefficient graph measures

Figure 4.14 shows population ROI mean Clustering Coefficient results mapped onto

brain models. Each processing step removes reported ROI node clustering tenden-

cies.
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Figure 4.14. Mean clustering coefficient values shown superimposed on brain ROIs.
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4.1.3 Effects of Postprocessing Strategy on Topological Analysis

4.1.3.1 ROI Barcode Creation

ROI barcodes represent distances at which ROI nodes merge into clusters as the con-

nectivity threshold is relaxed from strongly to weakly connected. For data visualization

purposes, it is often informative to reorder the barcodes from shortest clustering distance

to longest, using the endpoints to create a smooth curve. Visualizing the reordered data

provides a sense of how quickly nodes are merging into single clusters. Figure 4.15 demon-

strates this process.

Figure 4.15. Reordering barcodes to create population sigmoid curves.

4.1.3.2 ROI Population Barcodes

Figure 4.16 shows all population barcodes by processing type, with the mean popula-

tion barcode superimposed in black. This figure provides a sense of the spread of barcodes

over the population for each cleaning type.

Figure 4.17 combines the population average barcodes by processing type and their

accompanying ICC ROI values. With each progressive cleaning process, average node
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Figure 4.16. Population barcodes by processing type.

clustering is pushed into larger distances. ICC reproducibility presents strong for ICA

cleaned data, whereas other processing pipelines are significantly weaker, with global

signal processing showing a slight drop in ICC values from minimally processed data.

4.1.4 ROI Behavior Correlation

Figures 4.18 and 4.19 show behavior correlations captured by each processing type.

Only correlations with p-values less than 0.05 are shown. Whereas all processing types

show some correlation with artifacts such as head motion, ICA finds higher correlation in

general across many more relevant behavioral measures. Global signal processing reduces

the amount of overall behavioral correlation.
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Figure 4.17. Average population barcodes and ROI ICC values by cleaning pipeline.
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Figure 4.18. Correlation with behavior: minProc, Hm/Wm/Gs.
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Figure 4.19. Correlation with behavior: Hm/Wm/Csf/Gs, ICA
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4.2 Comparing Temporal and Spatial Connectivity Graphs
For all ROI and time domain correlation matrix comparisons, ICA cleaned data was used.

4.2.1 Functional Connectivity Results

Figure 4.20 gives a sense of connectivity in the time domain for a single patient. The

bottom graph reorders the Time Domain nodes into eight clusters, each cluster containing

time domain nodes that exhibit more similarity in the relative activity pattern across spatial

ROIs to each other than to other clusters. Time domain nodes refer to arbitrary time

points that are not meaningful to compare across subjects, as opposed to ROI nodes, which

represent a physical location on the brain that is analagous across subjects.

Figure 4.20. ICC values for ROI barcodes.
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4.2.2 Graph Theoretical Measures

1. Modularity. Modularity results for ROI graphs and time domain graphs are com-

pared in Figure 4.21. Means and variance are similar across both domains, with ICC

values slightly higher for the time domain.

Figure 4.21. Modularity results for ROI and time domain correlation matrices.
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Figure 4.22 shows the significant correlations found with behaviors and modularity

results for both domains. Although both domains identify signicant correlation to

behavior, each captures a different set of behaviors.

Figure 4.22. Modularity correlation results across ROI and time domains.
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2. Characteristic Path Length. Characteristic path length results show similar values

across both domains as well. However, ICC reproducibility is stronger for the phys-

ical ROI domain in this graph measure. Results are shown in Figure 4.23.

Figure 4.23. Characteristic path length results for ROI and time domain correlation matri-
ces.
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Figure 4.24 shows behavioral correlation with characteristic path length results. The

time domain characteristic path length results correlate with a larger set of behaviors

than do the ROI results.

Figure 4.24. Characteristic path length correlation results across ROI and time domains.
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3. Global Efficiency. Figure 4.25 contains ROI and time domain results for global

efficiency. Mean values were roughly equivalent for both with only the variance

changing. The time domain global efficiency ICC results were nearly perfect.

Figure 4.25. Global efficiency results for ROI and time domain correlation matrices.
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Figure 4.26 contains Global Efficiency and behavior correlation results for ROI and

time domains. Only the physical ROI domain shows numerous significant behav-

ioral correlations.

Figure 4.26. Global efficiency correlation results across ROI and time domains.
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4. Betweenness Centrality. Betweenness centrality also produced sparse vectors for

the time domain. ICC values for the time domain did not score high enough to

register, and all mean and median values hover around 0. Figure 4.27 shows these

results. Figure 4.28 contains behavioral correlation results.

Figure 4.27. Betweenness centrality results for ROI and time domain correlation matrices.
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Figure 4.28. Betweenness centrality mean and median correlation across ROI and time
domains.
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5. Eigenvector Centrality. Eigenvector centrality results for ROI and time domains are

contained in Figure 4.29. The ROI domain notably provides stronger results, both in

eigenvector centrality and ICC scores. Figure 4.30 shows behavior correlation with

eigenvector centrality, with the ROI domain showing more correlation.

Figure 4.29. Eigenvector centrality results for ROI and time domain correlation matrices.
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Figure 4.30. Eigenvector centrality mean and median correlation across ROI and time
domains.
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6. Clustering Coefficient. ROI and time domain clustering coefficient results are shown

in Figure 4.31. Although mean and median results remain steady across both do-

mains (with ROI ICC values registering slightly higher), the time domain contains

stronger clustering coefficient correlation with behavior, shown in Figure 4.32. ROI

and time domain each capture a different set of behaviors with this metric.

Figure 4.31. Clustering coefficient results for ROI and time domain correlation matrices.
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Figure 4.32. Clustering coefficient mean and median correlation across ROI and time
domains.
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4.2.3 Topological Analysis

4.2.3.1 ROI and Time Domain Barcodes

Figure 4.33 shows the population barcodes for scan 3 ICA data, first created for ROI

followed by barcodes created for the time domain. Nodes in the time domain require

initially larger distances to begin merging into clusters, but the curve drops sharply once

significant merging begins.

Figure 4.33. Comparing ROI and time domain ICA barcodes.
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4.2.3.2 ICC for Time Domain.

Figure 4.34 displays ICC reproducibility for time domain barcodes. Barcode values

were first sorted from shortest merging distances to longest, because there is no spatial

counterpart to physically placed ROI nodes. Regardless, sorted barcodes across the four

scans for a subject resembled each other more than they did results from other patient

scans. Because the ICC results were unexpectedly high, the available different processing

pipeline data was also used for comparison.

Figure 4.34. ICC values for time domain barcodes.

4.2.3.3 Time Domain Behavior Correlation.

While ROI Behavior and barcode correlation picked up a few more correlated behaviors

than did the time domain, what is remarkable is how similar the results present, both in
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capturing the same behaviors as well as in the scores for the behavior. Figure 4.35 shows

behavior correlation for both ROI and time domains.

Figure 4.35. Correlation with behavior: ROI vs time domain.



CHAPTER 5

CONCLUSIONS

5.1 Postprocessing Pipeline Findings
5.1.1 Summary of Core Postprocessing Findings

The postprocessing strategy used will affect both graph and topological analytical re-

sults, and therefore deserves consideration. In general, more aggressive cleaning strategies

will remove artificial connectivity between nodes created by shared noise. Removing

global signal (the mean time series of the whole brain), however, goes a step too far and

removes or dilutes important signal and reliability. The results consistently showed that

ICA cleaned data had the highest ICC scores, significantly removed misleading results

attributed more to noise than to signal, and presented the strongest correlation results

with behavior.

5.1.2 Graph Measure Results by Pipeline

For all graph theoretic results, the aggressively cleaned ICA data suggested a less con-

nected graph than did the other cleaning processes. Graph measures obtained from min-

imally cleaned data suggested higher connectivity between nodes, shorter path lengths,

and higher clustering between nodes, presumably from noise causing the nodes to produce

artificially high levels of connectivity. ICA, however, reduced the noise captured in the

signals and produced graph theoretic results more likely to be those relating to a genuine

brain signal rather than noise. In the case of eigenvector Centrality, mean values went

down for ICA data but variance increased, allowing detection of more specific influential

nodes in the network. For global efficiency, ICA data reported more efficient networks

than did the more noisy data collected from less aggressive processing.
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5.1.3 ICC Results by Pipeline

The most prominent result from graph theoretic measures was the consistent drop in

ICC reproducibility scores for removing global signal, and the simultaneous rise in ICC

reproducibility scores for ICA processed data. With four scans per subject, ICC repro-

ducibility evaluation could detect results that supported more similarity between scans of

the subject as opposed to similarity with scans in the population at large. Of particular note

is the result from eigenvector centrality. Although it might initially appear questionable

that ICA data could produce Eigenvector Centrality results not captured in other data,

the strong ICC values found only in ICA data substantiate the finding and suggest it is a

reliable result. Global signal data showed a significant drop in ICC performance for the

clustering coefficient compared to other data as well.

5.1.4 Topological Results by Pipeline

The topological barcodes produced by cleaning type showed a gradual progression

from more quickly merging clusters to slower merging clusters as the cleaning method

became more aggressive. This is consistent with the premise that noise will artificially

create connectivity where there is none, consequently merging nodes together faster than

clean signal will. The ICC results for the barcodes was remarkable. Not only did ICA data

produce persistently high ICC results for the ROI nodes, but global signal data once again

showed a drop in ICC outcomes, lower even than minimally processed data. Topological

analysis performed on ICA data will produce accurate results with a higher degree of

confidence than the other cleaning processes will.

5.1.5 Behavior Results by Pipeline

All cleaning pipelines picked up similar sets of behavior correlations with barcodes.

There was a slight drop in behavior correlation with Global Signal data as compared to

the other processes, and a slight rise in correlation for ICA data. Of interest is the strong

correlation the first three pipelines produced with artifact, especially head motion. ICA

data, however, picked up correlation with head motion, but to a lesser degree. ICA data

is the only set that correlated strongly with age, suggesting that slower merging clusters

are an indication of an older person. ICA data barcodes also correlated with high level

behaviors such as whether or not the subject was in a relationship, income levels, how
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open to experience the individual is, and I.Q.

5.1.6 Other Pipelines To Consider

Although ICA data performed exceptionally well for this study, it is not the only ap-

proach to data cleaning that produces reliable results. Another method often used is

that of scrubbing: the technique of removing an entire volume (time point) that is par-

ticularly corrupted by high levels of head motion and concatenating the study without

this volume [30]. The scrubbing technique has shown to produce similarly high ICC

reproducibility scores to those of ICA data, even over finer grained spatial regions [32],

when combined with regression of head motion, white matter, and CSF signals (not global

signal).

5.1.7 Limitations

One limitation is the lack of ground truth observations to compare results to. The

tools available allow us to infer reliability only based on reproducibility and behavioral

correlations, but the results remain uncertain. Reproducibility and behavioral correlation

results could be further evaluated with simulated brain connectivity data with added noise

where ground truth is known. Many other graph theoretical and topological methods that

could be added to verify results obtained from different cleaning pipelines. fMRI data that

is more sparse may perform differently than the Human Connectome data.

5.2 Time vs Spatial Domain Findings
5.2.1 Summary of Core Time vs Spatial Findings

Graph theoretical measures gave mixed results when comparing Time Domain and

Spatial (ROI) domain data. The time domain performed reasonably well in most cases

in terms of ICC reproducibility, but in some cases the Spatial domain outperformed the

time domain. Most often the set of correlated behaviors was different with graph results,

suggesting different information is to be found in the flipped graph structure. In the

topological analysis, however, both the time domain and spatial domain correlated with

nearly identical behavior sets, with ICC reproducibility scores registering remarkably high.

One advantage the time domain barcodes has is that there appears to be less noise from

head motion reflected in the results.
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5.2.2 Graph Measure Differences Time vs Space

The specific graph analyses used for this study produced mixed results in terms of

stronger performance for either spatial ROI data or time domain data. For modularity,

global efficiency, and characteristic path length, both the ROI and time domains showed

similar population mean values, but the time domain showed stronger support for these

findings with higher ICC reproducibility scores (especially strong for global efficiency,

slightly lower for characteristic path length). Although the time domain produced stronger

and more correlation with behavior for modularity and characteristic path length, sur-

prisingly the time domain global efficiency results produced almost no correlation with

behavior. Betweenness centrality was not a metric that produced interesting results for

either ROI or time domains: by that measurement, the respective graphs have few strong

hubs. The hub measurement of eigenvector centrality did have some notable results for the

ROI domain, but the time domain contained no reliable eigenvector centrality information.

Finally, for the clustering coefficient, mean and median values were consistent across both

domains, with ICC reproducibility only slightly higher for ROI connectivity matrices.

5.2.3 Topology Differences Time vs Space

Side-by-side plots of population barcodes show that spatial ROI barcodes begin to co-

alesce faster and within shorter distances. However, once Time Domain barcodes do start

to merge, the merging increases at a faster rate, resulting in a single cluster before the ROI

barcodes do. The ICC reproducibility values for the time domain were conspicuously high,

and higher than those for ROI barcodes. Time domain barcode information appears to be

reliably reproducible for subjects and can readily distinguish one subject from another,

analogous to a brain fingerprint.

Perhaps one of the most compelling findings is that were not many differences between

the time domain and spatial domain in barcode and behavior correlation. The time do-

main barcodes retain information found in ROI barcodes and both produce similar sets of

behavior correlation. As might be expected, the time domain barcodes avoided significant

correlation with head motion, present in the ROI results. Because the time domain looks

across values of all nodes at a given time rather than the value of a single node across

time, the interfering noise introduced by head motion is lost, which might be considered
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an advantage for the time domain.

For both domains, the topological data appears to discriminate between two brain

phenotypes, as illustrated in Figure 5.1.

Figure 5.1. Behaviors Associated with Faster and Slower Barcode Convergence

Faster barcode convergence is associated with higher fluid intelligence, working mem-

ory, and openness to experience, while slower convergence is associated with improved

attention and inhibitory control, higher agreeableness and conscientiousness, improved in-

come, personal relationships, and life purpose. One possible explanation is that relatively

slower vs faster convergence may be related to brain inhibition, with faster convergence in

participants with overall weaker inhibitory connections in the brain.

5.2.4 Future Directions for Analysis using Time-Based Correlation Matrices

Because the time domain retained important structural information with topological

analysis, there are more options to explore here. For this study, only dimension 0 barcodes

were used, measuring the rate of node clustering. Dimension 1 barcodes could also be

calculated to sense more complex structures in the connectivity matrix and also correlated

with behavior. Other graph theoretical results could be performed to see if different met-

rics will capture a stronger correlation with behavior. Because the spatial domain maps

to physical locations in the brain, there is an opportunity for additional investigation of

the regional effects of topology measures across the brain. For the time domain, there

is future opportunity to explore optimized clustering of temporal nodes, what spatial
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patterns across the brain these may represent, and how consistently these patterns are

seen across subjects.
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