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Abstract

Functional MRI connectivity is a technique that uses the synchrony of functional
magnetic resonance imaging (MRI) signal over time to infer a “wiring diagram” be-
tween brain regions, or a brain network graph. Recent advances have suggested that
topological data analysis may be used to obtain novel information about the struc-
ture and function of brain networks using functional MRI connectivity data. How-
ever, there is controversy in the field about what data should be used for constructing
brain graphs. Specifically, the postprocessing steps taken to remove noise from func-
tional MRI data may substantively affect the results obtained through topological data
analysis. Moreover, it is unclear whether topological measures are more useful when
applied to spatial or temporal components of functional MRI data.

A dataset from the Human Connectome Project from 1003 subjects, each with
four independent high-quality functional MRI scans, was used to compute differences
in graph-theoretic metrics and topological data analysis results for four distinct post-
processing pipelines that attempt to correct for different aspects of physiological noise
within functional MRI data. Reproducibility of measures, as well as their ability to
discriminate one subject from another (brain fingerprinting), was used to assess the
relative strength or weakness of a postprocessing pipeline to yield informative data.
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Further, a correlation of graph-theoretic and topological metrics was made to be-
havioral, demographic, and technical factors across subjects to determine which mea-
sures were most informative about aspects of human brain function. Measurements
were applied to both temporal and spatial dimensions of the functional MRI signals to
compare efficacy and reliability.

There were marked improvements in reproducibility, as measured by an intraclass
correlation coefficient, as well as stronger correlations with behavior across subjects
for the more highly processed functional MRI data. Specifically, the pipeline that used
independent component analysis to remove many possible noise sources was most
reproducible and yielded the most useful information about brain function and behav-
ior, both for graph-theoretic and topological measurements. When considering graph-
theoretic and topological metrics applied to spatial and temporal fMRI signals, both
approaches had distinct advantages with complementary information. Graph-theoretic
metrics for both time and space domains suggested information about different as-
pects of brain function, whereas topological measurements for time and space domains
yielded roughly similar information. Applying results to the time domain may confer
resilience of analyses to head motion artifacts. Topological analyses, whether in time
or space domains, discriminate two sets of behavioral variables and may represent a
novel phenotypic characterization of human brains.
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ABSTRACT

Functional MRI connectivity is a technique that uses the synchrony of functional mag-
netic resonance imaging (MRI) signal over time to infer a “wiring diagram” between brain
regions, or a brain network graph. Recent advances have suggested that topological data
analysis may be used to obtain novel information about the structure and function of brain
networks using functional MRI connectivity data. However, there is controversy in the
field about what data should be used for constructing brain graphs. Specifically, the post-
processing steps taken to remove noise from functional MRI data may substantively affect
the results obtained through topological data analysis. Moreover, it is unclear whether
topological measures are more useful when applied to spatial or temporal components of
functional MRI data.

A dataset from the Human Connectome Project from 1003 subjects, each with four
independent high-quality functional MRI scans, was used to compute differences in graph-
theoretic metrics and topological data analysis results for four distinct postprocessing
pipelines that attempt to correct for different aspects of physiological noise within func-
tional MRI data. Reproducibility of measures, as well as their ability to discriminate one
subject from another (brain fingerprinting), was used to assess the relative strength or
weakness of a postprocessing pipeline to yield informative data.

Further, a correlation of graph-theoretic and topological metrics was made to behav-
ioral, demographic, and technical factors across subjects to determine which measures
were most informative about aspects of human brain function. Measurements were ap-
plied to both temporal and spatial dimensions of the functional MRI signals to compare
efficacy and reliability.

There were marked improvements in reproducibility, as measured by an intraclass
correlation coefficient, as well as stronger correlations with behavior across subjects for
the more highly processed functional MRI data. Specifically, the pipeline that used in-

dependent component analysis to remove many possible noise sources was most repro-



ducible and yielded the most useful information about brain function and behavior, both
for graph-theoretic and topological measurements. When considering graph-theoretic and
topological metrics applied to spatial and temporal fMRI signals, both approaches had
distinct advantages with complementary information. Graph-theoretic metrics for both
time and space domains suggested information about different aspects of brain function,
whereas topological measurements for time and space domains yielded roughly similar
information. Applying results to the time domain may confer resilience of analyses to head
motion artifacts. Topological analyses, whether in time or space domains, discriminate
two sets of behavioral variables and may represent a novel phenotypic characterization of

human brains.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Functional magnetic resonance imaging (fMRI) uses a strong magnetic field and radio
waves to measure the blood flow in the brain to detect areas of activity and has been a
critical tool in discovering function of individual brain regions. By measuring synchrony
of activity over time between regions, it is possible to measure functional MRI connectivity
(fcMRI). Measurements of functional connectivity have led to the discovery of intrinsic
connectivity networks in the brain. However, many sources in brain images of shared
variance or noise has nothing to do with brain function. In raw images, several artifacts
such as head motion, heart rate, respiration, etc. are captured in the readings, resulting in

“noisy” images that obscure the desired brain activity registration.

1.2 Aim 1: Analyze Differences in Postprocessing Methods

In order to obtain biologically meaningful results, it is critical to identify which aspects
of the fMRI signal are related to neural activity, and which are noise. There is a general
consensus in the scientific community that the fMRI images do need to be cleaned, but
the overall pipeline may vary, and the optimal processing strategy is still in debate. Most
pipelines include an aggressive head motion correction, normalization to a common space,
and regression of physiological noise sources. However, it is not clear to what degree
different cleaning pipelines may render consequential correlation and topological analysis

moot: will the analysis results change if different pipelines are used?



1.3 Aim 2: Analyze Information Contained in Temporal
Components vs. Spatial Components

Most of the research done analyzing functional MRI connectivity has focused on mea-
suring average synchronization (activity) over time. Although this approach has led to a
better understanding of brain network correlation, average correlation analysis will miss
dynamically changing connections throughout the scan. Instead, we could flip the time
and space dimensions and study how correlated time points are over nodes: at a time
point ¢ in a scan, how many nodes were coactivated, and how long did the correlation
last? This approach shifts the focus to correlating duration and changes in connectivity
and may allow asking more biologically relevant questions about how the brain functions

in time.

1.4 Overview
The ultimate goal of this research is to find new ways to measure individual differences
in human behavior in the brain. The temporal approach is particularly attractive because
while the architecture in the brain is similar even in individuals with severe disabilities
such as down syndrome, the timing of brain activation can vary dramatically from individ-
ual to individual and condition to condition. Establishing the robustness of postprocessing
methods will increase confidence that these results represent meaningful differences in

behaviors rather than artifacts of processing.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 fMRI Data

Functional MRI images are acquired in the same way and with the same scanners as
traditional MRI images, but they use subtle changes in signal intensity to measure shifting

patterns of brain function over time. fMRI uses a particular type of pulse sequence called

BOLD.

2.1.1 BOLD Data
BOLD (blood oxygen level dependent) data is recorded as a 3D brain image over time
points, producing a series of 3D volumes. A typical patient scan will produce 1200 such
volumes; for a series of 1200 sequential time periods, a 3D volume of the patient’s brain
will be recorded. A complete scan through the brain is performed every 0.7 to 3 seconds,

repeated up to a thousand times or more, depending on technique.

2.1.2 Sources of Artifact

Many sources in brain images of shared variance or noise have nothing to do with brain
function. In raw fMRI images, several artifacts such as head motion, heart rate, respiration,
etc. are captured in the readings, resulting in “noisy” images that obscure the desired
brain activity registration. In the raw images, synchronized noise components contribute
more to the overall synchrony between brain regions than does the neural activity itself.
These components include drifts in signal over time related to thermal properties of the
MRI scanner, changes in blood oxygenation from variability in heart rate, swallowing,
and breathing, head motion including micro-movements, and noise related to magnetic
artifacts, such as from a truck driving by the building with the scanner or someone turning

on a microwave [7]. If the brain moves even a millimeter, it can create large artifacts,



4

especially when these regions are on the edges of the brain or next to an interface with

bone or fluid.

2.1.3 fMRI Connectivity Correlation
The traditional approach to brain connectivity is to analyze average brain activity over
the time span of a scan. A brain image contains roughly 90 thousand or more voxels per
scan, each of which has limited signal to noise, so it is common practice to group nearby
voxels in regions for analysis. There are many parcellations of the brain, and grouping
can be arbitrary. The grouping used for this analysis consists of 361 gray matter regions of
interest (ROISs) across the brain. For each of the 361 ROIs (which can loosely be thought of

as “nodes”), a time series vector of 1200 time points is created, as illustrated in Figure 2.1.
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Figure 2.1. Time series with scan parcellated into 361 ROIs.

With the cleaned and normalized times series, we can represent connectivity between
nodes as a graph G={V, E}, V={node;}, E = {e;;} where an edge exists between two nodes
if the average activation over time is correlated greater than a given threshold. Traditional

connectivity between two nodes is measured by a correlation coefficient between nodes:

o A threshold is chosen (which can be varied - strongly /weakly connected regions)

e A correlation coefficient c;; between two time series is measured by the dot product
of two time series, ¢;; = Y;+ Yj, where Y; is the time series for node; and Y is the time

series for node;



o If Cij > threshold = there exists an edge between node; and node]-

Connectivity between nodes can be represented as a binary symmetric matrix, demon-

strated in Figure 2.2.

Nodes 1 — N

Nodes 1 — N

Figure 2.2. Edge e;; = 1 = node; and node; are connected.

For a fixed subject scan and a chosen postprocessing technique, a Pearson correlation
coefficient is typically computed for each pair of rows in the 361 X 1200 time series,

yielding 361 X 361 matrices of weighted connectivity.

2.2 Post-Processing Pipeline Methods

Specific postprocessing pipelines have been proposed, but there is no standardly imple-
mented approach. There is controversy about specific steps, the order in which they should
be performed, and why. Researches in this field agree that postprocessing is critical, and
any of these schemes is better than none at all [11, 22]. Different postprocessing strategies
will affect the results of functional connectivity, but any of them will likely be much more
accurate than with no correction [32, 35].

The general consensus is to include some form of aggressive head motion correction [30],
normalization to a common space, and regression of physiological noise sources (either by
independent component analysis or general linear regression methods). Although there
is an extensive literature discussing relative merits of different postprocessing strategies,
there is no consensus on optimal strategies, although initial steps of normalizing brain

images to a common template steps are well established and validated [18].



2.2.1 Noise Sources To Be Removed

2.2.1.1 Head Motion Correction

A complete scan through the brain is performed every 0.7 to 3 seconds, repeated up to a
thousand times or more, depending on the technique. If the brain moves even a millimeter
(which it does, all the time), then some regions of the brain can change signal intensity
dramatically, especially when these regions are on the edges of the brain or next to an
interface with bone or fluid. These large changes in signal can swamp the physiological
signal, and are meaningless to analyze. Motion is particularly problematic for functional
connectivity, because big spikes from motion dominate the time series. With motion,
functional connectivity is ultimately a measurement of head motion, not brain function,

and imaging science corrects for motion as thoroughly and completely as possible [29, 31].

2.2.1.2 Normalization

Everyone’s brain has a different shape and size, but we want to compare findings in
similar regions across brains. To do this, we have to “squish” or stretch a brain to be
roughly the same size and shape as all the other brains we want to measure. There are two
decades of literature with thousands of papers discussing methods for registration and
normalization, including both linear and nonlinear methods. This remains an active area

of research, but basic techniques are well-established and validated [18].

2.2.1.3 Nuisance Regression

Even with careful normalization and motion correction, many artifacts persist in the
data. The remaining artifacts require some attempt to further clean the data. Covariate
time series are identified that are thought to be noise, and these components are removed
from the BOLD data at each point in the brain by linear regression.

However, the question is: which covariates should be used? There are two basic
approaches to address the question. One explicitly identifies covariates of interest, and
the other uses independent component analysis to identify components that are likely

noise-related and regresses these out. In this project, we consider the following:
e Heart rate [9, 33]

e Breathing [3,10,19]



e Head motion (parameters obtained from motion correction step)

e White matter and CSF (Cerebrospinal fluid) [2]

e Global signal [2,17,25,26]

An alternate approach is to use ICA-based methods to find regressors, identify which

components are likely noise, and regress out these components [4, 21].

2.2.2 General Linear Models for Data Cleaning
When a scan is obtained, measurements of physiologic parameters can be simultane-
ously recorded. An fMRI study often includes a covariate file consisting of a matrix file X
produced from the fMRI data itself, which estimates effects from extraneous factors (heart

rate, etc.), as illustrated in Figure 2.3.

heart rate head motion
i respiration etc..
v v
tlmfj[) = {XD{UJ Xltoy XZEOJ T tho}
tlm€1 = {X(Jrlv Xlrlv erl""’ X””l} . matrix X

1200 x m

nmelZOO:{Xmuoo’ X“lzoo’ Xzfizoo e X?“fizuo} )

Figure 2.3. Covariate file X provided with the Human Connectome Project data

Each of the 361 ROlIs is represented by a vector time series, Y;, containing the measured
values for that region across time. We are trying to find a best fit model for the time series
using the covariates: how much of the time series can be explained by a linear combination

of the covariates? The linear equation we wish to solve is
Yy = pX + U; (2.1)

This is illustrated by Figure 2.4, where U; represents the cleaned data matrix.
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Figure 2.4. Calculating the “cleaned” data.

If we could calculate the value of the B matrix for each time series, we could extract the

cleaned data U; for that series. We use the following closed-form solution to solve for B:

B=XT+X)1xXTxY, (2.2)

Figure 2.5. Calculating (X * X)~! using Gauss-Jordan elimination

The following steps are used to clean the data:
1. Calculate (XT x X)~!, as demonstrated in Figure 2.5.
2. Transpose fMRI data into “point vectors” and calculate (X * Y;). See Figure 2.6.

3. For each point vector Y}, calculate a set of beta values B = (XT x X) 1 x XT x Y,.



Y:

Valtime_O
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Valtimeﬁn
Figure 2.6. Transposing a vector of values for a node across time

4. Plug the calculated § values into the original equation Y; = BX + U;. The remainder

U, is the cleaned data for this time series.

5. Normalize the cleaned data to center around 0 by subtracting the mean and dividing

by the standard deviation.

2.3 Information Contained in Temporal Components vs. Spatial
Components

Traditionally, functional MRI connectivity has been performed as a measurement of
connectivity between brain regions. Nevertheless, there is a symmetry where a time series
can arbitrarily be seen as connectivity between time points across the brain. Although less
intuitive, this perspective may offer some advantages. At a given time point in a scan, how
many ROI nodes are registering similar activity? How repeatable is this pattern in the time
points? Measuring connectivity in this manner may also be less sensitive to head motion
noise, as the head motion will be uniquely contained in the time node itself and not likely
correlated with other time nodes. Temporal information in brain connectivity may also
be approached by using finer grained spatial connectivity. Several approaches have been
proposed. One such approach is the “sliding window” to capture connectivity in smaller
subsets of time [1]. This approach, however is limited by the fact that each window uses
a small number of data points, producing noisy estimates of connectivity, as illustrated in
Figure 2.7.

By inverting time and space, we are effectively asking which time points show similar
patterns of relative brain activity. In other words, how frequently does a given pattern
of brain network activity appear in the instantaneous brain activation time series? This

data would allow comparison of dwell times in a given network, relative order in which
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Figure 2.7. Sliding window approach to measuring connectivity

different networks are activated, and the relative duration a network persists. This type of
information may speak to the dynamical stability of brain networks, rather than simply the
architecture across the space of brain networks. Such dynamical information is likely to be
of interest in studying brain development, mental illness, and brain function. Figure 2.8
shows two measured time points with locations of similar activity.

After connectivity is measured (using the same traditional approach of calculating cor-
relation coefficients), the next step involves creating a graph over time points and noting
how long different networks remain connected, what patterns see repetition, and topolog-
ical relationships between clusters, which requires a look into topological analysis tech-
niques currently applied to the traditional connectivity-over-time pipeline. If the time
and space dimensions of fMRI data is flipped, what interesting graphical and topological
results can be abstracted? Can we note how long brain networks are correlated, pick
out specific patterns of correlation, and possibly note how separated brain networks are

(hypothesized to be necessary for healthy brain function).
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Figure 2.8. Similar activity across time points

2.4 Metrics Used for Evaluating Both Temporal and Spatial Data
24.1 Graph Theoretical Methods

24.1.1 Modularity

Modularity, shown in Figure 2.9, is a measure of the degree to which a graph’s com-
ponents may be separated into modules (also called groups, clusters, or communities).
Networks with high modularity have dense connections between the nodes within mod-
ules but sparse connections between nodes in different modules. The optimal community
structure is a subdivision of the network into nonoverlapping groups of nodes in a way
that maximizes the number of within-group edges, and minimizes the number of between-

group edges. Biological networks are thought to exhibit high degrees of modularity [27].

2.4.1.2 Characteristic Path Length

Characteristic path length, shown in Figure 2.10, is the average shortest path length
in the network, or the number of steps along the shortest paths for all possible pairs
of network nodes. It is a measure of the efficiency of information on a network, and
is considered one of the more robust graph theoretical measures, particularly useful in
neuroscience. The average path length distinguishes an easily negotiable network from
one that is complicated and inefficient, with a shorter average path length being more

desirable.
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Figure 2.9. Modularity: Nodes clustered into dense connections with sparse connections
in between.

Figure 2.10. Characteristic path length: average path length between nodes.

2.4.1.3 Global Efficiency

Global efficiency, shown in Figure 2.10, is the average inverse shortest path length in
the network, and is inversely related to the characteristic path length. For a specific node,
local efficiency is the global efficiency computed on the neighborhood of the node, and
it characterizes how efficiently information is exchanged by its neighbors if the node is
removed. On the global scale, global efficiency quantifies the exchange of information

across the whole network and how resistant to failure the network is.
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High Global Efficiency Low Global Efficiency

Figure 2.11. Global efficiency: a measure of how efficiently information is exchanged.

2.4.1.4 Betweenness Centrality

Node betweenness centrality is the fraction of all shortest paths in the network that
contain a given node. Nodes with high values of betweenness centrality participate in
a large number of shortest paths. Nodes with high values of betweenness centrality are
considered “hubs” for the graph, because more information will pass through that node
and therefore the node has a higher degree of influence. The red node in Figure 2.12 has a

high betweenness centrality value.

High Betweenness
Centrality

Figure 2.12. Betweenness centrality measures the degree to which a node behaves as a
hub.

2.4.1.5 Eigenvector Centrality

Eigenvector centrality is also a measure of the degree to which a node behaves as a
hub for the graph, and ultimately is a measure of how influential that node is. It is a self-
referential measure of centrality. A high eigenvector score means that a node is connected

to many nodes who themselves have high scores. Relative scores are assigned to all nodes
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in the network based on the concept that connections to high-scoring nodes contribute
more to the score of the node than do equal connections to low-scoring nodes, as illustrated

in Figure 2.13.

High Eigenvector
Centrality

Figure 2.13. Eigenvector centrality is the degree a node is connected to highly influential
nodes.

2.4.1.6 Clustering Coefficient

The clustering coefficient is a measure of the degree to which nodes in a graph tend to
cluster together. The clustering coefficient of an individual node is the degree to which
neighbors of the node are also connected to each other, and can be visualized as the
fraction of possible triangles the node participates in. A graph with an average high
clustering coefficient is thought to be more robust and resilient to failure, as demonstrated

in Figure 2.14.

2.4.2 Reproducibility Methods
There are two aspects of reliability of functional connectivity measurements. One is
how consistently a certain measurement can be produced in the same subject, and the
other is how well one subject can be discriminated from others. The intraclass correlation
coefficient (ICC) is a well-accepted measurement that addresses both aspects of reliability.
ICC is particularly convenient for studying the Human Connectome data, because this
data set provided four scans for each subject. Although ICC is viewed as a type of cor-

relation, unlike most other correlation measures it operates on data structured as groups,
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Figure 2.14. Clustering coefficient is the fraction of possible triangles a node participates
in.

rather than paired observations. With the four scans, ICC can provide a sense of how
strongly the four scans from a particular subject resemble each other as opposed to scans
from other subjects in the group.

Several statistical methods have been proposed for calculating ICC, leading to some
debate about which method should be used since different methods can lead to different

results for the same data [24]. Modern ICC definitions resemble the random effect model,
Yi]' = U+ aj+e€ip, (2.3)

where Yj; is the i observation in the j* group, y is an overall mean, aj is the random effect
share by all values in group j, and ¢;; is an unobserved noise term.

Matlab specifically uses the following: for a matrix M of n subjects and k observations,

MSR = var(mean(M,2)) x k; (Across subject variance) (2.4)
MSW = sum(var(M,0,2))/n; (Average within subject variance) (2.5)
r = (MSR — MSW)/MSR; (2.6)

To evaluate the “goodness” of an ICC score, the following guidelines are considered

standard [12]:

e Poor Less than 0.40
e Fair 0.40-0.59
e Good 0.60-0.74

e Excellent 0.74 - 1.00
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2.4.3 Topological Methods

2.4.3.1 Explanation of Topological Methods

A new approach to the analysis of graph representations of functional imaging data
has been to extend concepts from topological data analysis (TDA) of time series to fMRI
data [34,36]. Persistent homology is a method for computing topological features of a
space at different spatial metrics. To find the persistent homology of a space, the space
must first be represented as a simplicial complex (a set of points and line segments). Given
a set of points or nodes, we can calculate pairwise distances, often using straight forward

Euclidean distances between two points, shown in Figure 2.15.

Pairwise distance
between nodes 1
and2 @2

]
P

Node 1(
°

Figure 2.15. Pairwise Euclidean distances between two points.

With a distance metric defined on the set of points, discs centered at each point can be
metaphorically drawn with a gradually increasing radius. Initially the radius starts out
at 0 and each point is considered its own cluster. As the value of the radius continues to
increases, certain discs will intersect, topologically merging two points into a single cluster,
shown in Figure 2.15. The clustering of points are dimension 0 topological features for the
set.

The distances at which points merge into clusters can be tracked by producing a set of
barcodes representing the “birth” and ”death” of a cluster. For dimension 0 features, all
nodes are their own cluster with a birth of distance 0. The barcode ends for a node when

it merges with another cluster. This is displayed in Figure 2.17.
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Figure 2.16. As the radius size of discs around points increases, points merge into clusters.

All nodes exist as separate clusters at distance=0;

Cluster 5 __ as clusters merge, one of the bar codes ends (in

Cluster 4 ’7 this example 3 merges with 4 at distance=1.3

Cluster 3 -

Cluster 2 w Eventually, everything connects
Cluster 1 "into a single cluster
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Figure 2.17. Dimension 0 barcodes.

The radius size can continue to increase, and eventually enough points can merge into
clusters that form more complex structures, such as encapsulated balls in the center of the
points. These are dimension 2 topological features, shown in Figure 2.18.

To get a visual sense of the dimension 0 topological behavior of a set, the barcodes
can be reordered from shortest to longest. Using the endpoints of the barcodes, we can
create a sigmoid curve to show how rapidly clusters are merging for the set, as shown in

Figure 2.19.

2.4.3.2 FMRI Topological Methods Application
For the purposes of this study, the connectivity matrix itself is considered a simplicial

complex composed of points (nodes in the graph) and line segments (connected nodes).
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Figure 2.18. Dimension 1 topological feature.

Figure 2.19. Barcodes reordered to create a sigmoid curve.

Only dimension 0 topological features (barcodes) are measured. A distance function is
applied to the connectivity matrix, gradually increasing the allowed distance to measure
when nodes merge into clusters.

To date, TDA methods for functional MRI connectivity are limited [14] , but an analo-
gous approach has been described for structural MRI images [28]. More persistent features
are detected over a wide range of spatial scales and are deemed more likely to represent
true features of the underlying space rather than artifacts of sampling, noise, or particular
choice of parameters [8,13].

For each subject scan, a barcode representation is obtained, which can then be com-
pared to other subjects, time points, or population average graphs. This approach assumes

that the graphs representing brain connectivity may have higher order topological features
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that can inform brain connectivity beyond simple graph-theoretical properties that have

already been studied [6].



CHAPTER 3

METHODS

3.1 Data Sources
3.1.1 Human Connectome Project Funded by NIH

The BOLD dataset used was provied by the Human Connectome Project, consisting of
4 resting-state fMRI scans (60 minutes per subject) each from 1003 subjects with 534 female
and 469 male participants, ages 21-35. In this dataset, there are 1200 time points in a single
scan, with each of the time points capturing a 3D image volume of the brain. To account
for artifacts at the beginning of each scan, I discarded the first 20 to obtain 1180 time points
per scan.

IRB approval to analyze the Human Connectome Project dataset has been obtained
from the University of Utah Institutional Review Board #IRB_00087725 Analysis of Re-

stricted Human Connectome Project Data.

3.1.2 Measures Obtained
3.1.2.1 Brain Parcellation.

Resting functional MRI data was analyzed using a brain parcellation consisting of
333 regions in the cerebral cortex [20]. Fourteen participant-specific subcortical regions
were added, using Freesurfer-derived segmentation [16] of bilateral thalamus, caudate,
putamen, amygdala, hippocampus, pallidum, and nucleus accumbens, segmented inde-
pendently for each participant. 14 cerebellar regions were also added comprising left
and right-hemispheric representations of a 7-network parcellation [5]. This combined
parcellation scheme covering cortex, subcortical structures, and the cerebellum comprised
a total of 361 regions [15,32]. Average BOLD time series were extracted for each volume

in each run for each subject.
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3.1.2.2 Behavioral Measures.

Provided with the Human Connectome data is a set of 81 behavioral, demographic,

and technical factors for each subject. Each imaging metric of interest was correlated with

the factors across subject. The behaviors are as follows:

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Age: Age of patient in years

Sex: Female = 1, Male =2

. Height: Height in inches

. Weight: Patient weight in kilograms

Systolic: Systolic blood pressure

Diastolic: Diastolic blood pressure

Hematocrit_Mean: Average of 2 hematocrit values (blood test)
Education: Years of education

HoursSleep: Hours of sleep per night over the last month (self report)
Handedness: Patient handedness (1 = right handed, -1 = left handed)
MeanHeadMotion: Average motion per volume in mm
MaxHeadMotion: Maximum head motion per scan in mm
MeanDiffHeadMotion: Average derivative of head motion in mm
MaxDiffHeadMotion: Maximum derivative of head motion in mm
PicSeq_Unadj: Picture Sequencing (Episodic Memory)
CardSort_Unadj: Wisconsin Card Sort (Cognitive Flexibility)
Flanker_Unadj: Flanker Task (Attention and Inhibitory Control)
PMAT24_A_CR: Progressive Matrices (Fluid Intelligence)

ReadEng_Unadj: Oral Reading Recognition Test (Reading Ability)



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
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PicVocab_Unadj: Oral Picture Vocabulary: (Receptive Language Ability)
ProcSpeed_Unadj: Processing Speed

DDisc_AUC_200: Delay Discounting (Impulsivity)

DDisc_AUC_400: Delay Discounting (Impulsivity)

VSPLOT_TC: Variable Short Penn Line Orientation Test (Visuospatial Ability)
SCPT _SEN: Continuous Performance Test (Maintenance of Attention)
SCPT_SPEC: Continuous Performance Test (Inhibitory Control)

IWRD _TOT: Penn Word Memory Test (Verbal Episodic Memory)

ListSort_Unadj: List Sorting (Working Memory)

ER40_CR: Emotion Recognition

AngAffect_Unadj: NIH Toolbox Anger and Affect Survery (Attitudes of Anger)
AngHostil_Unadj: NIH Toolbox Anger and Affect Survery (Attitudes of Hostility)
AngAggr Unadj: NIH Toolbox Anger and Affect Survery (Attitudes of Aggression)
FearAffect_Unadj: NIH Toolbox Fear-Somatic Arousal Survery (Attitudes of Fear)

FearSomat_Unadj: NIH Toolbox Fear-Somatic Arousal Survery (Attitudes of So-

matic Arousal)
Sadness_Unadj: NIH Toolbox Sadness Survery (Attitudes of Sadness)
LifeSatisf_Unadj: NIH Toolbox Life Satisfaction Survey (Life Satisfaction)

MeanPurp_Unadj: NIH Toolbox Meaning and Purpose (Attitudes of Life Mean-
ing /Purpose)

PosAffect_Unadj: NIH Toolbox Positive Affect (Psychological Well-Being)
Friendship_Unadj: NIH Toolbox Friendship Survery (Social Relationships)

Loneliness_Unadj: NIH Toolbox Loneliness Survery (Loneliness)



41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
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PercHostil_Unadj: NIH Toolbox Perceived Hostility Survery (Social Distress)

PercReject_Unadj: NIH Toolbox Perceived Rejection Survery (Perceived Social Re-

jection)

EmotSupp_Unadj: NIH Toolbox Emotional Support Survery (Social Support Ad-

vice)

InstruSupp_Unadj: NIH Toolbox Instrumental Support Survery (Social Network

Resources)

PercStress_Unadj: NIH Toolbox Perceived Stress Survery (Perceived Stress Level)
SelfEff_Unadj: NIH Toolbox Self-Efficacy Survery (Sense of Control Over Life)
GaitSpeed: Speed of Walking

Agreeableness: Personality - Agreeableness

Openness: Personality - Openness to Experience

Conscientiousness: Personality - Conscientiousness

Neuroticism: Personality - Neuroticism

Extroversion: Personality - Extraversion

ASR_Anxd_Raw: Achenbach Adult Self-Report (Anxious/ Depressed)
ASR_Witd_Raw: Achenbach Adult Self-Report (Withdrawal Symptoms)
ASR_Soma_Raw: Achenbach Adult Self-Report (Somatic Complaints)
ASR_Thot_Raw: Achenbach Adult Self-Report (Thought Problems)
ASR_Attn_Raw: Achenbach Adult Self-Report (Attention Problems)
ASR_Aggr Raw: Achenbach Adult Self-Report (Aggressive Behavior)
ASR_Rule_Raw: Achenbach Adult Self-Report (Rulebreaking Behavior)

ASR _Intr_Raw: Achenbach Adult Self-Report (Intrusive Thoughts)



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

ASR_Intn_Raw: Achenbach Adult Self-Report (Internalizing Symptoms)
ASR_Extn_Raw: Achenbach Adult Self-Report (Externalizing Symptoms)
Agoraphobia: Fear of Open Spaces

BloodTHC: Marijuana Detectable in Urine Test

THCTimesUsed: How Many Times Subject has Used Cannabis
Drinks_7days: How Many Alcoholic Drinks in Last 7 Days
Tobacco_7days: How Many Times Used Tobacco in Last 7 Days

DSM _Depr_Raw: Depression Score

DSM_Anxi_Raw: Anxiety Score

DSM_Somp_Raw: Somatic Problems Score

DSM_Avoid_Raw: Avoidant Personality Score

DSM_Adh_Raw: Attention Deficit/Hyperactivity Score
DSM_Inat_Raw: Inattention Score

DSM_Hype_Raw: Hyperactivity Score

DSM_Antis_Raw: Antisocial Personality Score

Income: Financial Income

Relationship: Is Subject in a Long-Term Relationship
DepressiveSymptoms: Symptoms of Depression

MMSE: Mini-Mental Status Exam (Basic Mental Function)
GripStrength: Grip Strength

Dexterity: Dexterity Test
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3.2 Postprocessing Methods
3.2.1 Cleaning Methods
Five separate postprocessing pipelines were used to process the data. The first four
pipelines used the minimally preprocessed data provided with the Human Connectome
Project 1200 Subjects Release, and the last pipeline (ICA) used image data that had al-
ready been subject to the FIX ICA cleaning procedure [21]. Each post-processing pipeline
resulted in a 361 x 1180 matrix of time series for each of the 361 nodes for each scan in
each subject, which results in 1003 subjects x 4 scans x 361 nodes x 1180 time points X 5

post-processing pipelines.

1. Minimally Processed Data. This BOLD dataset is derived from images provided by
the Human Connectome Project directly in its initial release. Some minimal steps
that are required for the scans to be usable and are standard practice; the dataset
provided has had these steps applied. The first involves normalization to MNI space.
In order for brain scans to have widely applicable meaning, a standard spatial brain
template is used to manipulate images to have the same spatial architecture. After
normalization, a common coordinate system allows reference of similar positions
in each individual’s brain. When the fMRI scan is performed, with it comes an
MPRAGE structural image that captures the spatial map of the individual’s brain
in high resolution. This image provides the parameters necessary to perform the
transformation to MNI space. The postprocessed data also contains some motion
correction. fMRI scans are hypersensitive to even a fraction of a millimeter of head
motion (which happens frequently during a patient scan), and without some motion
correction, the important signal is lost in motion noise. From each of these scans I

have extracted time series from 361 ROI??7?s.

2. Head Motion, White Matter, and CSF Regressed Data. With the BOLD dataset de-
scribed above, a linear regression analysis on each ROI'’s time series was performed.
The first processing step aggressively corrected for head motion. The minimally
postprocessed data does have some correction for head motion, but there are artifacts
associated with the correction. When the initial motion correction is performed,

motion parameters are saved in six directions: x,y,z Euclidean space as well as
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pitch, roll, and yaw rotation directions. For each of the 1200 volumes, a time series of
motion parameters records how much the brain moved from one image to the next.
The artifacts in the data caused by head motion will track with motion parameters,
and standard practice is to regress out the motion parameters and their derivatives
(the motion parameters themselves capture how much the brain has moved, and the
derivatives capture how much change there is between volumes). The head motion

was regressed out using a standard Ordinary-Least-Squares regression.

In addition to motion correction, a correction was applied for noisy signal generated
by white matter (axons that connect all the gray cells) and CSF (cerebrospinal fluid,
liquid around the brain and spinal cord). During a scan, some signal will come
from fluid inside and around the brain as the fluid responds to motion, breath, and
pressure. There are no cells in this fluid, and we wish to remove any distracting
signal the fluid produces. For white matter, there is a BOLD signal resulting from
the blood flow to the axons, but this is not energy being produced by neurons so
we need to remove it. Care must be taken to not include signal from gray matter,
as this is what we are trying to measure, so the signals from CSF and white matter
are “degraded”. Every voxel that is one voxel away from gray matter is discarded,
and the remaining voxels are averaged to obtain CSF and white matter time series

for regression.

. Head Motion, White Matter, CSE and Global Signal Regressed Data. The removal
of global signal is controversial and highly debated in its effectiveness. The process
involves taking an average signal from the entire image over the brain, using it as a
time series, and regressing it out. With the removal of global signal, inevitably some
of the BOLD signal from gray matter will be regressed out as well as noise, so the risk
is that important signal is being removed or smeared across the rest of the brain. We
use this dataset because of its controversial nature to see how different the numeric

matrices present after an aggressive global signal removal.

. ICA Data. This dataset is also released directly from the Human Connectome Project.
Another commonly used approach is to bypass all of the previous steps, and in-

stead of explicitly going after the CSF, white matter, head motion, etc., using the
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ICA method. This method algorithmically finds the principal components of the
3D volume matrices and classifies input as signal or noise. This dataset represents
aggressively cleaned data, and is used by many investigators prior to calculating

functional connectivity.

3.2.2 Connectivity Matrix
Connectivity matrix is also called the adjacency matrix, where a Pearson correlation
coefficients were computed on the data from the above five post-processing techniques.
For each pair of rows in the 361 x 1180 time series for each subject, scan, and processing

technique, this yields 361 x 361 matrices of weighted connectivity.

3.3 Temporal Domain Connectivity Matrix

For this part of the study, only the data from ICA cleaned time series was used (with
the time and space dimensions flipped). Each column in the 361 x 1180 times series for
a subject scan contains the values of each ROI for a given time point. For each pair of
columns, a Pearson correlation coefficient was performed, resulting in an 1180 x 1180
weighted connectivity matrix across time nodes. For this domain, it is no longer assumed
that the nodes have any analogous attachment to a physical location in space, nor do
they mean the same thing across subjects and scans. The nodes have meaning within
the context of a single scan only, reflecting which time points behave similarly relative to
other time points in the same scan. Because the matrices are orders of magnitude larger
than their spatial counterparts, computational complexity rose significantly, with several

studies taking over a week to finish computations.

3.4 Evaluation Metrics for Both Temporal and Spatial Domains
3.4.1 Mean Connectivity
Mean connectivity was accomplished by calculating the L2 norm for differences be-
tween post-processing strategies for each subject. Mean connectivity provides a quanti-
tative estimate for how much the connectivity matrix is altered in each successive step of
post-processing, suggesting which steps are most influential in altering the connectivity

matrix.
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3.4.2 Graph Theoretical Methods

For many of the graph theoretical methods detailed below, the connectivity matrix was
first normalized with a normalization function weight_conversion.m provided by the Brain
Connectivity Toolbox for Matlab. Normalization rescales all connectivity values to the
range [-1, 1] and is required for several of the Brain Connectivity Toolbox graph functions.
In addition, some of the graph theoretical methods also required a distance matrix as input
rather than a connectivity matrix. Nodes that are highly connected have short distances
close to 0, whereas nodes that are less connected or not connected will have distances
approaching 1 or greater. To accomplish this, each element of the normalized connectivity
matrix was subtracted from 1 providing a measure of distance rather than connectivity for
that matrix element. That is, m;; = 1 - m;; for each element m;; of the connectivity matrix

M. The revised matrix was input directly as an undirected and weighted graph.

1. Modularity was calculated using the function modularity_und.m for undirected graphs
from the Brain Connectivity Toolbox for Matlab. Connectivity matrices were first
normalized and then input directly as an undirected and weighted graph. Output

was a single modularity value for each scan’s connectivity matrix (or graph).

2. Characteristic Path Length was calculated using the function charpath.m for undi-
rected graphs from the Brain Connectivity Toolbox for Matlab. In addition to nor-
malization, this method required a distance matrix as opposed to a connectivity
matrix. The distance matrix was created from the normalized connectivity matrix
as describe above and used as input to the function. The output was a single average

characteristic path length value for each scan’s connectivity matrix.

3. Global Efficiency was calculated using the function efficiency_wei.m for undirected
weighted graphs from the Brain Connectivity Toolbox for Matlab. In addition to
normalization, this method required a distance matrix as opposed to a connectivity
matrix. The distance matrix was created from the normalized connectivity matrix as
describe above and used as input to the function. The output was a single average

global efficiency value for each scan’s connectivity matrix.
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4. Betweenness Centrality was calculated using the function betweenness_wei.m for undi-
rected weighted graphs from the Brain Connectivity Toolbox for Matlab. In addition
to normalization, this method required a distance matrix as opposed to a connectivity
matrix. The distance matrix was created from the normalized connectivity matrix
as describe above and used as input to the function. The output was a vector of
betweenness centrality values for each node in a connectivity matrix. To get a sense
of graph-level performance, both the mean and median values were calculated from

these vectors.

5. Eigenvector Centrality was calculated using the function eigencentrality_und.m for
undirected graphs from the Brain Connectivity Toolbox for Matlab. In addition to
normalization, this method required a distance matrix as opposed to a connectivity
matrix. The distance matrix was created from the normalized connectivity matrix as
describe above and used as input to the function. The output was an eigenvector
associated with the largest eignevalue of the connectivity matrix. To get a sense of
graph-level performance, both the mean and median values were calculated from

these vectors.

6. Clustering Coefficient was calculated using the function clusteringcoef_wu.m for weighted
undirected graphs from the Brain Connectivity Toolbox for Matlab. Connectivity ma-
trices were first normalized and then input directly as an undirected and weighted
graph. Output was a clustering coefficient vector with a value for each node. To geta
sense of graph-level performance, both the mean and median values were calculated

from these vectors.

3.4.3 Intraclass Correlation Coefficient
The Intraclass Correlation Coefficient (ICC) was calculated using the ICC.m [23] func-
tion in MATLAB using four independent measurements by comparing results for each of
a subject’s 4 scans. For each ICC calculation, a matrix M of 1003 subjects by 4 observations
where each row is one subject and each column is a judge or measure. When calculating
ICC for metrics with more than a single value per subject, such as the minimally processed

connectivity matrix, the measurement had to be calculated separately for each node in the
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graph. Input for node 1 consisted of measurements for 4 scans in all subjects for node 1.

This was then repeated for node 2, etc.

3.4.4 Topological Barcodes

Topological dimension 0 barcodes were calculated with the R toolbox package TDA,
statistical tools for data analysis [14]. Specifically connectivity matrices were converted
into normalized distance matrices and used directly as input into function ripsDiag from
the TDA library. The distance function used was,/1 — corrcoef;; for each i,j element of
the correlation (connectivity) matrix. This function returned a text list of births and deaths
of each cluster. The list was sorted from earliest deaths to most recent deaths to create a
sigmoid curve to provide a sense of the clustering rate for the nodes. The text file was also

read into Matlab for further behavioral correlation processing.

3.4.5 Behavior Correlation
Behavioral correlation was accomplished with Matlab’s function corrcoef function. In-
put was two vectors of measurements for the desired correlation coefficient. For example,
to assess correlation between the behavior Agreeableness and ROI barcodes, a vector of
Agreeableness values for all subjects and a vector of sorted values for ROI node 1 barcodes
is input to the correlation function to return a single scalar. This process was repeated for

all behaviors and all node barcode values.



CHAPTER 4

RESULTS

4.1 Postprocessing Strategy Results
4.1.1 Effects of Postprocessing Strategy on Functional Connectivity

4.1.1.1 Mean Difference

To get a broad sense of how different postprocessing strategies were for subjects, for
every subject a mean difference was calculated between each postprocessing type. To
accomplish this, each subject’s four scans were first averaged per processing type, resulting
in 5 averaged connectivity matrices per subject. The 5 averaged connectivity matrices were
then compared to each other to create a mean difference. For example, to compare ICA
connectivity matrix to minimally cleaned connectivity matrix for a subject, element-wise
difference were calculated, squared and summed, divided by the number of elements, and

then the square root was taken. Mathematically,

meanDif f(ICA, minproc) :\/2 ((ICA;; — minproc;j)?)/numElements 4.1)

This resulted in 5 X 5 mean difference matrices for each of 1003 subjects, with the matrix
being symmetrical and redundant across the diagonal (i.e. mean difference between ICA
and minproc is the same as the mean difference between minproc and ICA). These mean
differences between processing types were then averaged for the population, and the
bottom half of the resulting difference matrix is shown in Figure 4.1.

Because the minimally postprocessed and head motion results were so similar, the
head motion processing was discarded for subsequent analyses. We have noticed that
progressively more aggressive cleaning methods show larger differences in measured con-

nectivity, not just to the minimally preprocessed data, but also to each other.
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4.1.1.2 ICC Reproducibility Metric

Element-wise ICC values were calculated over each of the four cleaning pipeline con-
nectivity matrices. Note that ICA clearly shows the strongest ICC reproducibility, whereas
global signal shows a slight drop in reproducibility from the minimally processed data.

Results are shown in Figure 4.2.
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4.1.2 Effects of Postprocessing Strategy on Graph Theoretical Measures

1. Modularity. Shown in Figure 4.3 are modularity and ICC results across process-
ing type. Note that ICA processing reduces both the mean and variance of calcu-
lated modularity while simultaneously increasing ICC reproducibility. Removing

the Global Signal has the opposite effect.
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Figure 4.3. Modularity results by processing type for ROL
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2. Characteristic Path Length. Shown in Figure 4.4 are the results for characteristic path
length and corresponding ICC measures by processing type. The more aggressive
ICA cleaning process increases the average path length between nodes. ICC results

remain stable across processing type except for a drop in Global Signal processing.
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Figure 4.4. Characteristic path length results by processing type for ROL
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3. Global Efficiency. Shown in Figure 4.5 are the results for ROI global efficiency
across cleaning pipelines. Interestingly, more aggressive cleaning pipelines suggest
a higher Global Efficiency, or a more efficient exchange of information. Once again,

ICC results drop with Global Signal removal.
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Figure 4.5. Global efficiency results by processing type for ROL
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4. Betweenness Centrality. Shown in Figure 4.6 are population mean and median
results for Betweenness Centrality. Betweenness results were sparse vectors for all
cleaning types, suggesting only a few outliers acted as strong hubs for the graph.
ICA processing removed most outliers.
Betweenness Centrality ROI: Mean Results Across Subjects By Processing Type Betweenness Centrality ROI: Median Results Across Subjects By Processing Type
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Figure 4.6. Mean and median betweenness centrality values averaged across subjects.

Figure 4.7 displays the ICC results for betweenness centrality for each ROIL Over all

processing pipelines, ICC results for this graph measure were lower, perhaps because
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the vectors were so sparse. Once again the higher ICC values surfaced with ICA

processing, while the lowest values were reported in global signal processing.
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Figure 4.7. ICC values by ROI for betweenness centrality across cleaning pipelines.

Figure 4.8 shows population ROI mean betweenness centrality results mapped onto
the brain surface. The relatively homogeneous blue color suggests that all regions
are seen as hubs more or less equally for Betweenness Centrality results regardless
of cleaning type. Aggressively cleaned ICA data more accurately localizes influential

hubs within complex regions of the parietal lobes.
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5. Eigenvector Centrality. Another capture of hub behavior is eigenvector centrality.
Although the means and medians themselves remain relatively stable across clean-
ing types, the variance notably changes with ICA data showing the greatest mean
variance, yet reduced median variance. Population mean and median eigenvector

centrality are shown in Figure 4.9.
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Figure 4.9. Median and mean eigenvector centrality values averaged across subjects.

Of particular note is the stark contrast in ICC results for eigenvector centrality. Min-

imally processed, HM/WW /CSE, HM/WW /CSF/Global Signal cleaning pipelines
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all performed poorly, while ICA alone had remarkably high ICC reproducibility.

ICC for Eigenvector Centrality: ROI
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Figure 4.10. ICC values for eigenvector centrality graph measures.

Figure 4.11 shows population ROI mean eigenvector centrality results mapped onto
brain models. While other graph measures were reduced by more aggressively cleaned

data, in this case ICA data detects ROI hub behavior that other pipelines miss.
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Mean eigenvector centrality values shown superimposed on brain ROIs.

Figure 4.11.



43

6. Clustering Coefficient. Figure 4.12 shows the population mean and median clus-
tering coefficient for each cleaning type. Each cleaning progression tends to reduce
reported node clustering. Note that mean and median clustering coefficient results

are almost identical.
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Figure 4.13 shows the ICC results by ROI node across cleaning pipelines. Global
signal processing reveals a sharp drop in ICC reproducibility, whereas again ICA

processing returns the highest ICC scores.
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Figure 4.13. ICC values for clustering coefficient graph measures

Figure 4.14 shows population ROI mean Clustering Coefficient results mapped onto
brain models. Each processing step removes reported ROI node clustering tenden-

cies.
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Figure 4.14. Mean clustering coefficient values shown superimposed on brain ROIs.
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4.1.3 Effects of Postprocessing Strategy on Topological Analysis
4.1.3.1 ROI Barcode Creation
ROI barcodes represent distances at which ROI nodes merge into clusters as the con-
nectivity threshold is relaxed from strongly to weakly connected. For data visualization
purposes, it is often informative to reorder the barcodes from shortest clustering distance
to longest, using the endpoints to create a smooth curve. Visualizing the reordered data

provides a sense of how quickly nodes are merging into single clusters. Figure 4.15 demon-

strates this process.

Population Mean
Individual

Number of Distinct Clusters

0.2 04 06 08 ) 02 04 06 08 10
Connectivity Distance Between ROIs Connectivity Distance Between ROIs
(Normalized) (Normalized)

Figure 4.15. Reordering barcodes to create population sigmoid curves.

4.1.3.2 ROI Population Barcodes

Figure 4.16 shows all population barcodes by processing type, with the mean popula-
tion barcode superimposed in black. This figure provides a sense of the spread of barcodes
over the population for each cleaning type.

Figure 4.17 combines the population average barcodes by processing type and their

accompanying ICC ROI values. With each progressive cleaning process, average node
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Paopulation Barcodes for Hm/WM/CSF ROI Data
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clustering is pushed into larger distances. ICC reproducibility presents strong for ICA

cleaned data, whereas other processing pipelines are significantly weaker, with global

signal processing showing a slight drop in ICC values from minimally processed data.

4.1.4 ROI Behavior Correlation

Figures 4.18 and 4.19 show behavior correlations captured by each processing type.

Only correlations with p-values less than 0.05 are shown. Whereas all processing types

show some correlation with artifacts such as head motion, ICA finds higher correlation in

general across many more relevant behavioral measures. Global signal processing reduces

the amount of overall behavioral correlation.
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Figure 4.18. Correlation with behavior
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4.2 Comparing Temporal and Spatial Connectivity Graphs

For all ROI and time domain correlation matrix comparisons, ICA cleaned data was used.

4.2.1 Functional Connectivity Results
Figure 4.20 gives a sense of connectivity in the time domain for a single patient. The
bottom graph reorders the Time Domain nodes into eight clusters, each cluster containing
time domain nodes that exhibit more similarity in the relative activity pattern across spatial
ROIs to each other than to other clusters. Time domain nodes refer to arbitrary time
points that are not meaningful to compare across subjects, as opposed to ROI nodes, which

represent a physical location on the brain that is analagous across subjects.
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Figure 4.20. ICC values for ROI barcodes.
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4.2.2 Graph Theoretical Measures
1. Modularity. Modularity results for ROI graphs and time domain graphs are com-
pared in Figure 4.21. Means and variance are similar across both domains, with ICC

values slightly higher for the time domain.
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Figure 4.21. Modularity results for ROI and time domain correlation matrices.



53

Figure 4.22 shows the significant correlations found with behaviors and modularity

results for both domains. Although both domains identify signicant correlation to
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2. Characteristic Path Length. Characteristic path length results show similar values
across both domains as well. However, ICC reproducibility is stronger for the phys-

ical ROI domain in this graph measure. Results are shown in Figure 4.23.
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Figure 4.23. Characteristic path length results for ROI and time domain correlation matri-
ces.
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Figure 4.24 shows behavioral correlation with characteristic path length results. The

time domain characteristic path length results correlate with a larger set of behaviors

than do the ROI results.
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3. Global Efficiency. Figure 4.25 contains ROI and time domain results for global
efficiency. Mean values were roughly equivalent for both with only the variance

changing. The time domain global efficiency ICC results were nearly perfect.
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Figure 4.25. Global efficiency results for ROI and time domain correlation matrices.
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Figure 4.26 contains Global Efficiency and behavior correlation results for ROI and

time domains. Only the physical ROI domain shows numerous significant behav-

ioral correlations.
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Figure 4.26. Global efficiency correlation results across ROI and time domains.
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4. Betweenness Centrality. Betweenness centrality also produced sparse vectors for
the time domain. ICC values for the time domain did not score high enough to
register, and all mean and median values hover around 0. Figure 4.27 shows these

results. Figure 4.28 contains behavioral correlation results.
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Figure 4.27. Betweenness centrality results for ROI and time domain correlation matrices.
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Figure 4.28. Betweenness centrality mean and median correlation across ROI and time
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5. Eigenvector Centrality. Eigenvector centrality results for ROI and time domains are
contained in Figure 4.29. The ROI domain notably provides stronger results, both in
eigenvector centrality and ICC scores. Figure 4.30 shows behavior correlation with

eigenvector centrality, with the ROI domain showing more correlation.
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Eigenvector Centrality Mean Results and Behavoir Correlation (p < 0.05)
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6. Clustering Coefficient. ROl and time domain clustering coefficient results are shown
in Figure 4.31. Although mean and median results remain steady across both do-
mains (with ROI ICC values registering slightly higher), the time domain contains
stronger clustering coefficient correlation with behavior, shown in Figure 4.32. ROI
and time domain each capture a different set of behaviors with this metric.
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4.2.3 Topological Analysis
4.23.1 ROI and Time Domain Barcodes
Figure 4.33 shows the population barcodes for scan 3 ICA data, first created for ROI
followed by barcodes created for the time domain. Nodes in the time domain require
initially larger distances to begin merging into clusters, but the curve drops sharply once

significant merging begins.
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Figure 4.33. Comparing ROI and time domain ICA barcodes.
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4.23.2 ICC for Time Domain.

Figure 4.34 displays ICC reproducibility for time domain barcodes. Barcode values
were first sorted from shortest merging distances to longest, because there is no spatial
counterpart to physically placed ROI nodes. Regardless, sorted barcodes across the four
scans for a subject resembled each other more than they did results from other patient
scans. Because the ICC results were unexpectedly high, the available different processing

pipeline data was also used for comparison.
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Figure 4.34. ICC values for time domain barcodes.

4.2.3.3 Time Domain Behavior Correlation.
While ROI Behavior and barcode correlation picked up a few more correlated behaviors

than did the time domain, what is remarkable is how similar the results present, both in
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capturing the same behaviors as well as in the scores for the behavior. Figure 4.35 shows

behavior correlation for both ROI and time domains.
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CHAPTER 5

CONCLUSIONS

5.1 Postprocessing Pipeline Findings
5.1.1 Summary of Core Postprocessing Findings
The postprocessing strategy used will affect both graph and topological analytical re-
sults, and therefore deserves consideration. In general, more aggressive cleaning strategies
will remove artificial connectivity between nodes created by shared noise. Removing
global signal (the mean time series of the whole brain), however, goes a step too far and
removes or dilutes important signal and reliability. The results consistently showed that
ICA cleaned data had the highest ICC scores, significantly removed misleading results
attributed more to noise than to signal, and presented the strongest correlation results

with behavior.

5.1.2 Graph Measure Results by Pipeline

For all graph theoretic results, the aggressively cleaned ICA data suggested a less con-
nected graph than did the other cleaning processes. Graph measures obtained from min-
imally cleaned data suggested higher connectivity between nodes, shorter path lengths,
and higher clustering between nodes, presumably from noise causing the nodes to produce
artificially high levels of connectivity. ICA, however, reduced the noise captured in the
signals and produced graph theoretic results more likely to be those relating to a genuine
brain signal rather than noise. In the case of eigenvector Centrality, mean values went
down for ICA data but variance increased, allowing detection of more specific influential
nodes in the network. For global efficiency, ICA data reported more efficient networks

than did the more noisy data collected from less aggressive processing.
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5.1.3 ICC Results by Pipeline

The most prominent result from graph theoretic measures was the consistent drop in
ICC reproducibility scores for removing global signal, and the simultaneous rise in ICC
reproducibility scores for ICA processed data. With four scans per subject, ICC repro-
ducibility evaluation could detect results that supported more similarity between scans of
the subject as opposed to similarity with scans in the population at large. Of particular note
is the result from eigenvector centrality. Although it might initially appear questionable
that ICA data could produce Eigenvector Centrality results not captured in other data,
the strong ICC values found only in ICA data substantiate the finding and suggest it is a
reliable result. Global signal data showed a significant drop in ICC performance for the

clustering coefficient compared to other data as well.

5.1.4 Topological Results by Pipeline

The topological barcodes produced by cleaning type showed a gradual progression
from more quickly merging clusters to slower merging clusters as the cleaning method
became more aggressive. This is consistent with the premise that noise will artificially
create connectivity where there is none, consequently merging nodes together faster than
clean signal will. The ICC results for the barcodes was remarkable. Not only did ICA data
produce persistently high ICC results for the ROI nodes, but global signal data once again
showed a drop in ICC outcomes, lower even than minimally processed data. Topological
analysis performed on ICA data will produce accurate results with a higher degree of

confidence than the other cleaning processes will.

5.1.5 Behavior Results by Pipeline

All cleaning pipelines picked up similar sets of behavior correlations with barcodes.
There was a slight drop in behavior correlation with Global Signal data as compared to
the other processes, and a slight rise in correlation for ICA data. Of interest is the strong
correlation the first three pipelines produced with artifact, especially head motion. ICA
data, however, picked up correlation with head motion, but to a lesser degree. ICA data
is the only set that correlated strongly with age, suggesting that slower merging clusters
are an indication of an older person. ICA data barcodes also correlated with high level

behaviors such as whether or not the subject was in a relationship, income levels, how
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open to experience the individual is, and 1.Q.

5.1.6 Other Pipelines To Consider

Although ICA data performed exceptionally well for this study, it is not the only ap-
proach to data cleaning that produces reliable results. Another method often used is
that of scrubbing: the technique of removing an entire volume (time point) that is par-
ticularly corrupted by high levels of head motion and concatenating the study without
this volume [30]. The scrubbing technique has shown to produce similarly high ICC
reproducibility scores to those of ICA data, even over finer grained spatial regions [32],
when combined with regression of head motion, white matter, and CSF signals (not global

signal).

5.1.7 Limitations
One limitation is the lack of ground truth observations to compare results to. The
tools available allow us to infer reliability only based on reproducibility and behavioral
correlations, but the results remain uncertain. Reproducibility and behavioral correlation
results could be further evaluated with simulated brain connectivity data with added noise
where ground truth is known. Many other graph theoretical and topological methods that
could be added to verify results obtained from different cleaning pipelines. fMRI data that

is more sparse may perform differently than the Human Connectome data.

5.2 Time vs Spatial Domain Findings
5.2.1 Summary of Core Time vs Spatial Findings

Graph theoretical measures gave mixed results when comparing Time Domain and
Spatial (ROI) domain data. The time domain performed reasonably well in most cases
in terms of ICC reproducibility, but in some cases the Spatial domain outperformed the
time domain. Most often the set of correlated behaviors was different with graph results,
suggesting different information is to be found in the flipped graph structure. In the
topological analysis, however, both the time domain and spatial domain correlated with
nearly identical behavior sets, with ICC reproducibility scores registering remarkably high.
One advantage the time domain barcodes has is that there appears to be less noise from

head motion reflected in the results.
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5.2.2 Graph Measure Differences Time vs Space

The specific graph analyses used for this study produced mixed results in terms of
stronger performance for either spatial ROI data or time domain data. For modularity,
global efficiency, and characteristic path length, both the ROI and time domains showed
similar population mean values, but the time domain showed stronger support for these
findings with higher ICC reproducibility scores (especially strong for global efficiency,
slightly lower for characteristic path length). Although the time domain produced stronger
and more correlation with behavior for modularity and characteristic path length, sur-
prisingly the time domain global efficiency results produced almost no correlation with
behavior. Betweenness centrality was not a metric that produced interesting results for
either ROI or time domains: by that measurement, the respective graphs have few strong
hubs. The hub measurement of eigenvector centrality did have some notable results for the
ROI domain, but the time domain contained no reliable eigenvector centrality information.
Finally, for the clustering coefficient, mean and median values were consistent across both

domains, with ICC reproducibility only slightly higher for ROI connectivity matrices.

5.2.3 Topology Differences Time vs Space

Side-by-side plots of population barcodes show that spatial ROI barcodes begin to co-
alesce faster and within shorter distances. However, once Time Domain barcodes do start
to merge, the merging increases at a faster rate, resulting in a single cluster before the ROI
barcodes do. The ICC reproducibility values for the time domain were conspicuously high,
and higher than those for ROI barcodes. Time domain barcode information appears to be
reliably reproducible for subjects and can readily distinguish one subject from another,
analogous to a brain fingerprint.

Perhaps one of the most compelling findings is that were not many differences between
the time domain and spatial domain in barcode and behavior correlation. The time do-
main barcodes retain information found in ROI barcodes and both produce similar sets of
behavior correlation. As might be expected, the time domain barcodes avoided significant
correlation with head motion, present in the ROI results. Because the time domain looks
across values of all nodes at a given time rather than the value of a single node across

time, the interfering noise introduced by head motion is lost, which might be considered



71

an advantage for the time domain.
For both domains, the topological data appears to discriminate between two brain

phenotypes, as illustrated in Figure 5.1.

Faster Convergence Slower Convergence

More Common in Males More Common in Females

Younger Participants Older Participants

Higher Fluid Intelligence Higher Meaning/Life Purpose

Increased Physical Strength Improved Attention/Inhibitory Control
Improved Visuospatial Ability Higher Income

Improved Working Memory More likely to have Long-term Relationship
Higher Openness to Experience Higher Agreeableness

More Rulebreaking Behaviors Higher Conscientiousness

More likely to Use Alcohol/THC Faster Walking Speed

Figure 5.1. Behaviors Associated with Faster and Slower Barcode Convergence

Faster barcode convergence is associated with higher fluid intelligence, working mem-
ory, and openness to experience, while slower convergence is associated with improved
attention and inhibitory control, higher agreeableness and conscientiousness, improved in-
come, personal relationships, and life purpose. One possible explanation is that relatively
slower vs faster convergence may be related to brain inhibition, with faster convergence in

participants with overall weaker inhibitory connections in the brain.

5.2.4 Future Directions for Analysis using Time-Based Correlation Matrices

Because the time domain retained important structural information with topological
analysis, there are more options to explore here. For this study, only dimension 0 barcodes
were used, measuring the rate of node clustering. Dimension 1 barcodes could also be
calculated to sense more complex structures in the connectivity matrix and also correlated
with behavior. Other graph theoretical results could be performed to see if different met-
rics will capture a stronger correlation with behavior. Because the spatial domain maps
to physical locations in the brain, there is an opportunity for additional investigation of
the regional effects of topology measures across the brain. For the time domain, there

is future opportunity to explore optimized clustering of temporal nodes, what spatial
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patterns across the brain these may represent, and how consistently these patterns are

seen across subjects.
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