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Abstract

This paper introduces a novel, supportive tool for engimgeeducators while making
course adaptations. As pointed out in the 2013 FIE workskopOnline Revolution in
Learning and Teaching,” online learning is likely to impagery department and teacher in
some manner. Other innovations impacting engineeringadtginclude active learning,
peer instruction, problem-based learning, and justaretieaching. When implementing
change, educators are expected to present existing coatseials in alternative formats.
One resultant difficulty is visualizing, understandingdgudging the impact of various
alternatives. Learning materials’ organization is oftemtied by delivery methods such as
learning management systems that present material ynddnis project uses text analysis
and graph transformation techniques to produce varioasnatives allowing educators to
envision ways changes can be effectively implemented im toairses. We demonstrate
how temporal and topical relations between individualriéag items can be extracted from
existing courses and used to produce a graph that is anieffegpresentation of the course.
From this, graph transformations produce alternative ramgdions of course material al-
lowing various solutions for educators to consider whildesigning their courses. This
form of automated brainstorming stimulates out-of-the-tionking, often producing op-
tions previously not considered.



1 INTRODUCTION

In an effort to meet the changing landscape of education rdapgrtments and universities
are offering more online courses —a move that is likely toaotgvery department in some
way [9]. This will require more instructors create onlineucges. Other innovations in
instructional strategies are also widely impacting engiimgy educators [2] including peer
instruction, flipped classrooms, problem-based learrjusd;in-time teaching, and a vari-
ety of active learning strategies. Implementing any of ¢éh&sategies requires changes to
existing courses. Sometimes an educator is so familiartiwélturrent course organization
that it becomes a stumbling block for visualizing altervabptions.

When anticipating change it is valuable to see how existiagii@g materials can be orga-
nized and used in new ways. The purpose of the ENABLE projdotfsovide assistance
in making informed changes. ENABLE is not an acronym, ratheame that reflects the
purpose to enable the implementation of quality educakistrategies. The two major
contributions of the current ENABLE system are that it:

¢ gathers information about the existing course and creaggaphical representation
of the relations between the learning items, and

e uses text analysis and graph transformation techniquegsept alternative arrange-
ments of the learning items.

As an example, consider the data from a sample CSO coursed&mums of Computer
Science, taught at Utah State University. The informatiooua the learning items for this
course was gathered from Canvas (a standard learning maeagsystem) and a graph
was produced representing the current organization of dlkese; see Figure 1 (upper).
This shows all the learning items for the course laid out ieoracross the days of the
semester. Figure 1 (middle) shows the initial course grapisttucted directly from the
learning materials, and visually exhibiting the relatiarfsnterest: precedes, occurs in,
andincludes. The orange nodes (small, no fill color) represent the legritems. The
orange edges between the learning item nodes aner¢hedes relations. The green nodes
(larger with solid fill color) represent the topics. The gremges go between the topic
nodes and the learning item nodes and represertches in relations. The unit relations
are expressed visually by locating nodieduded in a unit near the same vertical location.
Figure 1 (lower) shows the class material after text analgsid graph transformation by
the ENABLE system. Note that this is one possible reorgaiizaif the course. In this
transformation the learning items are organized by topiber& are significantly fewer
precedesrelations which is one of the benefits of the transformatidreoccursinrelations
are all represented. In this particular transformatmhudes relations are not expressed.
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Figure 1. CSO, Foundations of Computer Science Original CoDrganization (upper).
CSO, Initial Course Graph Relations (middle). CSO, Transfor@edrse Organization
(lower).



2 Discovery of Relations in Course Material

Many types of relations exist between the learning items hleve we focus on three ba-
sic ones: temporal, topical, and unit coherence. Theseildeshe chronological order,
similarity of topics, and presentation organization of lierning items, respectively.

2.1 Identifying Temporal Relations

Temporal relations express the relation in time betweemieg items. The worgrecedes

is used to express this relation. A learning item (Itempfgcedes another learning item
(Item B) when the due date of Item A is before the due date of Berihese relations
are transitive such that if ltem A precedes Item B and ltem &edes Item C, then Item
A precedes Item C. When all these relations are included oreatda graph the learning
item at locationk in the sequence hds— 1 in-edges ana. — £ out-edges, where is the

number of learning items. These graphs are too cluttereé ioformative. See Figure 2

(upper).

A simpler view of the temporal relations displays only {recedes relations that come

immediately before a given node. This graph displays an éage a node to the node
it immediately precedes in time. This reduces the numberdgeés to n-1 and makes a
much more readable graph. Since these relations are tvansib connection is lost. See
Figure 2 (lower). These figures are the graphs produced éoC80 course.

The meaning of therecedes relation is limited. Learning items connected in this wag ar
not necessarily related by topic or grouped in the same i\ote thatprecedes does not
mean it is a prerequisite. This relation expresses nothioiggtihan how learning items are
laid out in time in the original course.

By itself, the temporal relation seems trivial, and yet ithe predominant relation pre-
sented to students. An educator who has designed and impiedna course is aware of
other relations between the learning items such as how tiegyrauped together to create a
unit of learning, how they are related by a single topic oraugrof topics, and prerequisite
recommendations. Although the educator may consider thibse relations more signifi-
cant, the learning management systems currently availedgi¢he temporal relation as the
dominant organizational aspect when presenting learnetgmals. Even when the module
tool is used in Canvas to group learning items together iniis uhe student view presents
learning items in a linear format based solely on tempotatiens in the assignments page,
the gradebook, and the syllabus.
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When combined with topical and unit relations the temporktiens add some informa-
tion. For example, if there are two assignments that coweséme topic and one precedes
the other itis likely that there is a non-commutative relatoetween the two learning items
and it is important that the first is completed before the othe

Not all items in Canvas have due dates. In the sample CSO c@woséof 49 learning items

do not have due dates associated with them. These undatathigdems include lecture

notes, videos, and frequently asked questions. It is likedse items are informational
materials that are most beneficial when preceding othersitenthe same unit or other
items of the same topic. As topics extend across a largergemned than units, associating
the undated learning items with other items in the unit idggred. These learning items
are dated two days before the first dated item in their unit.

2.2 Topical Relations

To identify the topical relations the text of each learnitegn is gathered. Canvas provides
a title and a text description of each learning item. Theseine the basis of the text. This
text is analyzed to see if there is a link to a file. Canvas hazeifspway of referencing
files that have been uploaded making it possible to use tegingeand regular expressions
to identify these references. Once a filename is found, theefitension is considered.
Currently ENABLE adds .txt and .pdf files to the text descripti®df files are converted
to text before being added. Canvas has a category of itemsfiddras quizzes. These
contain questions in addition to the text description. Rese types of learning items, the
guestions are added to the text description.

ENABLE uses a .txt file to store a series of topic lists. Thests Icontain topic words,
word groups, and variations. Each line in the file represaisiagle topic. Individual topic
variations are separated by a comma. The original list atsofor the sample CSO course
includes:

e <content

e <html, structure-

e <attribute, attributes
e <tag, tags-,

¢ <element, elements



e <publishing, host, publish, published

e <careers, career, careers in cs, cs careers
e <darpa-

e <history, cs history,

e <CSS, style-

e <hardware, system

e <javascript, script

e <functions, function-

e <textboxes, textbox

e <using the web, use the web

The use of a list of topic variations allows different versoof the same word such as
publishing, publish, andpublishedto be counted as a single topic. Stemming algorithms
[11] may be used to accomplish this same grouping. Howelisr]ist of topic variations
allows entirely different words to be associated with thensdopic. For example, the
word hostis included in the list withpublishing. This allows the instructor a great deal of
flexibility in associating a variety of words or word phrasgth a single topic.

Using these lists of topic words, a term frequency vectoresied for each learning item
document. Term frequencyf)is a count of how many times a term occurs in the learning
item document [7]. The document in this case is the desonpdif the learning item.
This description includes any text available in Canvas ooagéd by the instructor. The
frequency count of terms found in a topic list are combinegrtmuce a singlé count for
each topic.

When computindf for all the terms in a corpus of documents, this process mesltigh-
dimensional, sparse vectors [8]. Techniques such as tHeafgn of singular value de-
composition (SVD) to a topic similarity matrix (i.e., spedtgraph analysis) may allow
the reduction of dimension to make computationally intems$ext analysis more efficient
[3]. In the CSO example here, the limited number of specifimgefound in the topic lists
producedf vectors for which no dimensional reduction was possible.

This raw count of how many times a term occurs in a documenbeanore informative if
it is weighted. The weighting approach used by ENABLEgIf. tf-idf starts with thetf
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and then multiplies it by the inverse of the document freqyeifhe document frequency
(df) of a term is the count of how many of the documents in the cogauntain that specific
term. If thedf is high, the term is very common so the fact that it shows updo@ment
is not as significant as a term that is less common. Whernmftie low, the occurrence
of the term in a document is more significant. By multiplyiidpy the inverse document
frequency (df) the resulting value results from a weighting based on ttadive frequency
of the term in the corpus. The ENABLE system computedf using log weighting of the
tf count and log inverse frequency weighting on the documemisq7].

Fidfoa = (1+ log(tft,d»)log(d%)

A Pearson correlation was done betweentthdf values of the topics. For each correlation
that was greater than 0.8, the topics were considered fobicong. In the sample CSO
course there was a correlation betweenHi@ML, attribute, element, andtag topic lists.
Combining these was obvious once the correlation pointed the. These are all parts of
the HTML language. The other topics that were highly coteslavereJavaScript, func-
tions, andtextboxes. Although functions is a topic that exists outside of Javgdscin the
context of this course, functions are only discussed or us@dvaScript. This correlation
made the instructor aware that their broader view of the adergscience curriculum was
reflected in this separation of topics and would best be adaptfit the content of this spe-
cific course. This provided the instructor a fresh perspediformed by feedback from
ENABLE.

This illustrates one of the many benefits of gaining anotlespective when consider-
ing changes to current courses. This process of identifgorgelations between topics
provided new insights into possible changes to the topis. liBhese insights were not rec-
ognized when the original topic lists were made. This pre¢ed to the reduction of topics
from the original fifteen to the following ten:

e <content

e <html, structure, attribute, attributes, element, elemean, tags
e <publishing, host, publish, published

e <careers,career,careers in cs,cs careers

e <darpa-



e <history, cs history

e <CSS, style-

e <hardware, system

e <javascript, script, functions, function, textboxes, bt

e <using the web, use the web

2.3 Unit Relations

Units are a set of learning items that are grouped togeth@trélations come directly from

the modules tool in Canvas. This tool allows an instructortwug learning items into units.

Many different groupings are used. Some instructors groepmaterial based on a text-
book such as a unit for each chapter. Others use it to orgéemzgorally such as one unit
for each week in the course. Another approach is to orgarnjizgbcific topic coverage.

Current grouping in these modules reflects groupings thahaeme way meaningful to

the instructor. The unit grouping of learning items is usetha y-value in Figure 1 (upper
and middle) and Figure 2. This visually shows how learniegs are related by unit.

3 Creating the Initial Graph

3.1 Temporal Relations

When graphing the temporal relations firecedesrelation is used. Nodes represent learn-
ing items and edges are the relations between them. Thigreaet! graph with the arrow
of the edge on the node with the later due date, expressingrieanode precedes the other
node in time. To make the graphs more readable, these edgkbated withP.

3.2 Topical Relations

To graph the topical relations, a bipartite graph is useti wite set of nodes representing
the topics and the other set of nodes representing the hggitems. This is a directed graph
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with the arrow of the edge on the learning item nodes exprgdsiat the topi®occursin
the learning item. For readability, these edges are lal@led

3.3 Unit Relations

The unit relations represent a grouping of the current argaion. This is represented as
a bipartite graph with one set of nodes representing thes amt the other set of nodes
representing the learning items. This is a directed graph tlve arrow of the edge on the
learning item nodes expressing that the umstudes the learning item.

3.4 Combining the Graphs

The temporal and topical relations go well together sinedd¢imporal relations are entirely
in the set of learning items. This combined graph includethaltopic nodes and learning
item nodes with both thprecedes and theoccursin edges included.

The unit relations are loosely expressed by using the uhiteveo compute the vertical
location of the nodes in the starting graph. This providesaal representation of how the
learning items are grouped into units but does not inclugeeaiges that connect items in
a unit. Figure 1 (middle) shows the graph structure proddcethe learning materials in
sample CSO course when these relations are combined.

4 Transforming the Graph

Because ENABLE identifies alternative course structuresiantain the relations be-
tween learning items it becomes necessary to transformreqghgvhile still keeping the

meaningful relations intact. Graph grammars and graplstoamation systems provide a
means for doing this. There is much research and many suigcapgplications based on

the research in this area [4]. One of the application aregsagth transformation systems
is model transformations. This area of model transfornmatias become important to the
field of software engineering [1]. The models used in sofen@mgineering have enough
similarities to the graphical representation of learningtenials to allow model transfor-

mation as the graph transformation technique used by ENABDBEse similarities include

typed nodes, node attributes, and edges that represesredifftypes of relations.
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For graph transformation, ENABLE uses AGG, a developmenitremment for attributed
graph transformation [6]. It is based on an algebraic apgrda graph transformations.
The implementation of this approach closely follows tharfal, theoretical foundation of
algebraic graph transformation and so provides validatigyport [5] and sound behavior
concerning graph transformation [10]. AGG has non-deteistic rule and match selection
but provides control of this with rule layers.

4.1 Defining Semantic Rules

Once the initial course graph is available, it becomes ptestd begin a conversion process
from a linear (chronological) style class organization tma@re non-deterministic, multi-
path organization of the learning items more suitable tmerdelivery. It is now necessary
to determine the types of desirable transforms and theimmga. We begin with the
consideration of how to eliminate unnecessangcedes relations.

We define a restraint as an unnecessary constraint betwedtetws. Thus, restraints are
removed in order to open up more possibilities for the refeibetween learning items.
When removing restraints it is important to maintain thegnitg of the course representa-
tion.

4.1.1 T1: Topic-basedrecedes Elimination Rule

The major restraint is thprecedes relation. It restricts any change in the order of learning
items. However, many of thprecedes relations are not necessary and can be removed
without changing the necessary relations. The first steprierhove unnecessapyecedes
relations. As discussed earligrecedes relations by themselves have little meaning. The
fact that one learning item comes before another providgslionited information. Now
that the temporal and topical relations have been combimedai single graph the system
can identifyprecedes relations that have no topical connections and can be regnove

If A precedes B and Bprecedes C and there are no common topics that occur in both A
and B, theprecedesrelation from A to B can be removed. When removing this refatios
important to keep the relation thatpgkecedes C and Bprecedes C. Note, however, that the
net number ofprecedes relations is reduced by 1 as there was an impl&d., C') before
the application off 1.
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Figure 3: Graph Transformation to Eliminate Unnecesgpaggedes.

O

More formally, this can be stated as:
if P(A,B)\P(B,C)\N AT > (OI(T,A) NOI(T, B))

then removeP (A, B) and addP(A, C)

We call this theTopic-based precedes Breaking rule (T1). Figure 3 shows a graphical
representation of this transform.

4.1.2 T2: Topic-based Exam Splitting Rule

One result of building course organization based on tenhpetations is illustrated by
exams. Commonly, an exam is written to assess the matertdidlsabeen covered over a
specific period of time such as since the last exam or sincbagmning of the semester.
This time-based connection is not required for assessmbetefore it is possible to divide
the material assessed in an exam by topic. Separating thotahgrouping inherent in
exams provides additional possibilities for change. Thé exams rule is applied after the
removeprecedes rule has been applied. Enforcing this rule application optevents any
exams being split when preceding learning items are tdpicalated. AGG allows the user
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Positive Condition Negative Application Condition (NAC) Transformed Graph
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Figure 4: Graph Transformation to Split Unrelated Exam Eats.

to specify which rule layer a specific rule is in. It enforcekerordering by applying all the
rules in one layer before applying rules in the next layeisTtmen, is another example of
a restraint: when exams tie learning items together than@ireslated in any other way.

If A precedes Exam 1 and Borecedes Exam 1 and there are no common topics that occur
in both A and B, then Exam 1 can be split into two exams, Exam 1d\Eaxam 1B such
that A precedes Exam 1A and Borecedes Exam 1B, and A and B are independent of Exam
1B and Exam 1A, respectively. See Figure 4. This transforrstine applied aftef1.

Currently ENABLE applies both these semantic rules usinglgteansformations. There
are additional meaningful transformations to be exploreithé future work of this project,
but we give them here to show the power of the approach.

4.1.3 T3: Material Splitting Transform

It may be determined from analysis of student success on\Wworkgroblems and exams
that there is too much material in some learning items. Téasl$ to the transform shown
in Figure 5.
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Positive Condition Negative Application Condition (NAC) Transformed Graph
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Figure 5: Learning Item Split Due to Too Much Material.

4.1.4 T4: Reduced Pressure Splitting Transform

Another way to reduce the cognitive load for an exam is ta spliexam temporally. This
leads to the transform shown in Figure 6.

4.1.5 T5: Change of Topic Detection Transform

In a standard classroom setting, a sequence of material@audect will eventually give
way to a change of topic and a new set of materials. We bellemethis can be detected
in the initial course graph due to the overlap pattern ofteeldopics among the learning
items. For example, a learning item that sits at the end ofjaesgce of topic-related items,
and at the start of a distinct topic-related set of items, sttikely a transition item. This
leads to the transform shown in Figure 7.
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Figure 6: Pressure Reducing Exam Split Transform.
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Figure 7: Topic Change Item Split Transform.
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4.2 Applying Semantic Rules to the Graph

In AGG, transformations are defined by a rule with three p@s$sdescribed in the trans-
formations given above):

e LHS (Left Hand Side): specify the pattern to find in the graph.

e NAC (Negative Application Condition): identify any restiimens to be imposed on
the transformation. This part shows results that are nowvaldl. If the transformation
would produce this result, the transformation is not agblie

e RHS (Right Hand Side) demonstrate what the pattern in the gsajghbe after the
transformation is applied.

These transformations embody the semantic rules listedeabo

4.3 Applying T1: Topic-basedprecedes Elimination Rule

After the topic-basegrecedes elimination rule was first applied to the sample CSO course,
the instructor reviewed the resulting graph. Several ueetqal findings were encountered.

4.3.1 Learning Items with No Topical Relations

There were five learning items that had no topic relations.orpxamination, two of
the items were truly not related to any topic, an assignmenthich students were to
submit which team they wanted to be on, and the teacher @i@iu@oth items were left
unchanged with no topical relations.

The other three clearly were related to a specific topic buenaf the terms in the topic
list were found in the description. This could be remediedising ENABLE's file upload

tool that provides a way to add additional text to the desiompof a learning item. This
also caused the instructor to consider the value of moreuémetly using the topic terms
explicitly in the textual presentation of the learning item
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4.3.2 Learning Items with Meaningless Topical Relations

There were six topical relations that connected learnimqst to topics mistakenly. In five
of these learning items, the topic words occurred but wenegbesed in a more general
way. For example, one of the topicsdsntent. This is specifically related to selecting
content when creating a web site. However, the wamdtentwas used in its more general
way in three of the learning items. In the other case theuosbtns included a restriction
to not use JavaScript which was a future topic. These relaticere manually removed.

4.4 Applying T2: Topic-based Exam Splitting Rule

The first time the topic-based exam splitting rule was apdiere were fewer exam splits
than expected. Upon closer review it was discovered thagxhen asked questions about
a topic without using a topic word explicitly. This seemedipgogically sound. For ex-
ample, one question about computer science history was “Wdg/the invention of the
integrated circuit important?” Although this question da®t use the term history, it is
clearly assessing the student’s familiarity with the cotepscience history covered in the
course. These missing meaningful relations can includeadolyng text that includes the
missing topic words to the description using ENABLE’s file ogodl tool. This adds the text
to the ENABLE system without altering the exam itself.

There was one case where the review of the exam exposed thiiptysof adding a
word to the topic list. The wordccupationwas used in the exam that covered careers in
computer science. This word was also used in other leartengsi about the topic. It was
determined that adding this word to the topic list would akddity. Adding the term to the
topic list resolved this missing relation.

4.5 The Resulting Graph

Figure 8 shows the result of the application of the transfffnandT2. The revised graph
affords much greater leeway in the organization, presemtaand order of selection of
material for the instructor and the student.
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Figure 8: Course Graph After the Application of TransforfisandT2.

5 Alternative Arrangements

Once theTl and T2 transforms have been applied, many of the original orgéioizal
limitations have been removed. This opens the way for atemm arrangements of the
learning items.

5.1 Separating by Topics

The graph in Figure 9 shows the learning items organized jig td his arrangement sep-
arates the learning items in several distinct topic groufise large group in the middle
reflects the interrelated nature of several topics. Thigsides a visualization of how top-
ics are related and how they might be rearranged. There igsoalization ofincludes
relations.

5.2 Adding Unit Clustering

The graph in Figure 10 is clustered by units. The similargyween the graph arranged
by topic and this one indicates that the units in the origorghnization grouped learning
items into units by topic. Order of the units is not restrictd here argrecedes relations
between the five units in center of the graph. In the first amdrsé grouping there are
edges going in both directions.
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Figure 9: Course Graph Arranging Learning Items by Topic

Figure 10: Course Graph Arranging Learning Items with Clusteby Units.

19



5.3 Informing change
There is information in these graphs that can be visuallyenetd. Consider the following:

e How many topics occur in a specific assignment? This questaorbe answered by
looking at how manytopic edges come into an assignment. In the sample course,
only one topicoccursin each of HW3, HW4, and HW7 while four topicgcur inin
each of HW5, HW8, HW9, and HW10.

e What units can be rearranged without interfering witecedes relations? The an-
swer to this question can be found by looking at fnecedes edges between unit
clusters. For those units with nwecedes edges between them the order can be
changed without disrupting the temporal order restrictiexpressed by these edges.

Having access to this kind of visual information has the ptigé to provide meaningful
insights very quickly.

6 Conclusions and Future Work

We have developed an automated system that constructsteh amurse organization
graph based on information provided by Canvas, a standanhibgaManagement Sys-
tem (LMS). A variety of types of material are representedhia hodes of the graph and
initially only their chronology is known. A detailed analg©f the materials based on the
text contained within each learning item allows a more inmfed representation which cap-
tures the topic relations among the items. A set of graphstoaimations is then defined
which convert the (basically) linear structure of the ceursa graph structure which makes
evident the dependencies and independencies of the lgatams. A specific test case,
CSO0, was transformed in this way to demonstrate the poweeahithod.

Information about the existing course was provided by e&sh is this process. The EN-
ABLE system gathered existing information from what was ladde about the course in
the LMS and represented it in a visual way. This shed light tiatvwstudents currently
have available through their access to the learning méariahe LMS. The most sig-
nificant finding was how entrenched theecedes relation is in the presentation of course
material. This relation often adds little meaning to howhéag items are related and yet
it is the predominant organization strategy used when ayspd information to students.
When comparing the visual representation of that orgamizatiee Figure 1 (upper) to the
20



Figure 11:precedesvs. prerequisite Relations.

alternative organizations produced by ENABLE, see Figuras®10, it is clear that there
is significant room for improvement in how the educationahawunity presents learning
material to students. Although this first phase was desigaenform instructors about

the many organization options available when making chantpe feeling of the authors
is that the effort to develop a graphical, non-linear repnéstion of a course could have
significant impact on how the students perceive and intevdhtcourse materials.

During the course of this work, we determined that even thoilng precedes relations
have been restricted to those that have common topic refattbey still express limited
information. We believe that a more informative relatiorthie prerequisite relation that
expresses a recommendation that one learning item be ctmdlefore another learning
item. Theprecedesrelation has one learning item directly following anothearing item.
This limits the connections between learning items and doésllow flexibility in order-
ing. Itis easy to identify cases when this representatidonadimited to express how the
learning items are actually related. For example, there beageveral learning items that
are designed to prepare a student to complete a particulaework assignment such as
a lecture, a class activity, a video, and a reading assignnusing precedes relations, a
graphical representation would look similar to that showRigure 11. Representing it this
way indicates a specific ordering between the learning itetren in fact this ordering is
not required. The lecture, video, activity, and reading lbardone independently of each
other and it is not necessary to complete them in any paati@rter. Aprerequisite order
would better represent the meaningful relations as showigare 11. Eliminatingore-
cedesrelations in favor oprerequisite relations will provide a more accurate representation
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Figure 12: The ENABLE System.

of the course material. This will facilitate flexible orgaations that become particularly
valuable in asynchronous settings such as online couesgsjital training, or competency
based learning.

In the future we hope to transform learning outcomes by (di)ifating deep student learn-
ing in science and engineering by providing the studentliaekl resulting from behavior
models based on monitoring paths taken through the on-tinese graph and linking that
to performance in the class, and (2) providing effectivdgdor the instructor to moni-
tor the effectiveness of the course material and its orgdioiz. The innovative use of a
Bayesian inference network, a technology currently apghechany intelligent systems,
will be developed and applied in a real-world learning eswiment to create a predictive
computational model for individual learners and educatéigure 12 shows our view of
the final ENABLE system. By identifying operational studerdarl@ng processes it may
be possible to detect how knowledge gaps are a consequetessafuccessful learning
strategies and tactics. Developing learning strategiedeachallenging, thus an effective
learning environment to support this must be designed anelalged. As a next step, we
propose to integrate a Bayesian inference network withireEfNABLE system to provide
synthesized data about learners’ activities, behaviois parformance. The instructor will
be enabled to develop customized navigation aids for leame(1) identifying first-order
relationships between different learning behaviors amtbpmance based on Bayesian net-

22



work data, and (2) developing second-order relationstmasreflect the underlying struc-
ture and the principles of the cues in first-order relatigmsh

The ultimate objectives of our research are to:

1. Create a rich graphical user interface that improves bahyuality and quantity of
student and teacher interaction with the learning material

e Conduct user testing at all stages of the system design,afsvent, and testing
to identify the usability of the interface and make revisitmased on the results.

e Create a graphical user interface that makes interactidntivit ENABLE sys-
tem available on mobile devices.

2. Create ENABLE from an existing interactive Learning Mamagat System inter-
face to support adaptive self-regulated learning so as to:

¢ Identify (automatically) learning strategies (e.g., pedlys through the mate-
rial) that can improve student performance.
e Provide early and ongoing prediction of student learningeess in a course.

3. Provide ENABLE with a Bayesian inference network to supfiwgtteacher’s effort
to personalize self-regulated learning in order to:

e Provide initial estimates of the value of each learningvitgti The system
would then provide feedback to the teacher about the aatyaddt of these
activities on student learning success.

e Make both predictions and learning strategies availabdéuidents and teachers.

We believe that the results presented here provide a goadtis to the achievement of
these goals.
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