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Abstract

We propose the use of symmetry theories as the basis fortdrpiatation of sensorimotor
data and the creation of more abstract representation® Weutline a cognitive archi-
tecture to implement such an approach and provide a set offisp@echanisms for 1-D,
2-D and 3-D sensorimotor processing. The overall goal istegrate low-level sensorimo-
tor data analysis and behavior with more abstract afforelaggresentations. Sensorimotor
affordance and cognition is an essential capability fdrlegrning robots. Given only min-
imal innate knowledge but well-defined sensorimotor cagminechanisms, a robot should
be able to identify useful relations between its differectuators and sensors. Symmetry
plays an important role in identifying invariant sensotuator signal relations, and these
invariances can be effectively exploited if such relatians bundled for future use. We
call these collections of simultaneous symmetries in dotusommands and sensed sig-
nalsSymmetry Bundleg\long with the theoretical framework and semantics of Syetrin
Bundles, we define new practical approaches to detect, fglamsil bundle the inherent
symmetries present in signals in order to form useful atiomes. The overall cognitive
architecture is called th€ognitive Symmetry Engine



1 Introduction

We explore the thesis that symmetry theory provides keyrorgeg principles for cog-
nitive robot architectures. Cognitive systems perceivéibeete and act in unstructured
environments, and the development of effective mentaltesilis a longstanding goal of
the Al and intelligent systems communities. As described/dayon et al. [69], cognition
"can be viewed as a process by which the system achievestyallaptive, anticipatory,
autonomous behavior, entailing embodied perception atidrecTheir survey consid-
ers two basic alternative approaches to cognitioognitivist (physical symbol systems)
andemergen{dynamical systems), where the cognitivist paradigm isenbosely aligned
with disembodied symbol manipulation and knowledge regmeion based on a priori
models, and the emergent paradigm purports dynamic skilstcaction in response to
perturbations to the embodiment. Basically, cognitivisentain that patterns of symbol
tokens are manipulated syntactically, and through persgpibol associations perception
is achieved as abstract symbol representations and aetiecsusal consequences of sym-
bol manipulation. In contrast, emergent systems are coecyrself-organizing networks
with a global system state representation which is sernadhytigrounded through skill con-
struction where perception is a response to system petininkend action is a perturbation
of the environment by the system. The emergent approachls=athe space of closed-
loop controllers to build higher-level behavior sequenaaisof lower ones so as to allow
a broader set of affordances in terms of the sensorimotarsdegam. An important aspect
of this discussion which concerns us here is that raised lighKrar and Edelman [31]:
"the system should be able to effect perceptual categaizate. to organize unlabeled
sensory signals of all modalities into categories withoptiari knowledge or external in-
struction.” We address this issue and propose that cettaiaimental a priori knowledge
about symmetries is vital to this function.

Vernon later took up Maturana and Varelaisactionconceptual framework for cognitive
systems [68]. The goal there is to understand how to destirbeole of development in
making an agent act effectively and gain new skills. The fiasi®delements of enaction
are: (1) autonomy, (2) embodiment, (3) emergence, (4) expeg and (5) sense making.
The last one is considered the most important: "emergenvlauge is generated by the
system itself and it captures some regularity or lawfulmesise interactions of the system,
i.e. its experience. However, the sense it makes is dependethe way in which it can
interact: its own actions and its perceptions of the enwvirents actions on it.”

This is the key issue addressed in this paper: it seems sameahtradictory to say that
"regularity or lawfulness” are captured "without a priomdéwledge.” How can a law or
regularity be recognized without knowing the law or rule?r ©laim is that symmetries
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help characterize these regularities.

Our goal is to advance the state of the art in embodied cogrsfistems. The requirement
for cognitive ability is ubiquitous, and its achievemenarisessential step for autonomous
mental development. At its root, a cognitive architectweaistructural commitment to
processes and representations that permit adaptive tonétooperating environment that
cannot be modeled completely a priori. A cognitive ageninoiges its behavior to achieve
an objective efficiently by finding models that resolve hiddgate information and that
help it to predict the future under a variety of real-worltlations. These processes in-
volve monitoring, exploration, logic, and communicatioithaother agents. It is necessary
to create new theories and realizations for cognitive aegdion in complex, real-time
systems that consist of interacting domain specific ageats) with rich internal state and
complex actions in order to facilitate the construction fiéeively organized cognitive
infrastructure.

The proposed technical basis for this is symmetry operatees in perception, represen-
tation and actuation. Our specific hypothesis is:

The Domain Theory Hypothesis We propose that robot affordance knowledge acquisi-
tion and perceptual fusion can be enabled by means of a cormam®orimotor semantics
which is provided by a set of group symmetry theories embeddpriori in each robot.
These theories inform the production of structural repredens of sensorimotor pro-
cesses, and these representations, in turn, permit peatémsion to broaden categories of
activity. TheDomain Theonypredicates:

1. arepresentation of an innate theory and inference rataté theory,
2. a perceptual mechanism to determine elements of a sefpandtors on the set,

3. a mechanism to determine that the set and its operators e@del of the innate
theory, and

4. mechanisms to allow the exploitation of the model in lesgrand model construc-
tion.

As pointed out by Weng [71], a major research question inreartious mental development

is "how a system develops mental capabilities through arteyus real-time interactions

with its environment by using its sensors and effectorstfotied by an intrinsic develop-

ment program coded in the genes or designed in by hand).”, Blvepresentation is sought

derived from sensorimotor signals as well as the groupinguch signals as processing
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takes place. Note that this assumes that no coordinate $rari&t in this setting; see [65]

for a discussion of coordinate frames in biological systesada et al. [2] give a good

account of the development of body representations in gicéd systems and maintain that
"motions deeply participate in the developmental procésensing and perception.” They
review data ranging from spinal reflexes with fixed motorgrais, to motion assembly, to

mixed motion combinations in the cerebrum. Lungarella @6p has much to say on this
issue, and of great interest here, states that "sponta@@tiviy in newborns are not mere

random movements ... instead organized kicks, arm movesngmbrt phase lags between
joints ... may induce correlations between sensing and mmetorons.”

Our proposed method is to detect and exploit various synmsatr the sensorimotor data
in order to achieve the objectives. Symmetry [73] plays god®ée in our understand-
ing of the world in that it addresses key issues of invariaaoel as noted by Viana [70]:
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Figure 1: The Symmetry EnginePerceptionrequires an appropriate set of operators to
constructG-reps this includes vector constructors, symmetry detectans, symmetry-
based data indexing and variance operatdCentrol actionrequires the ability to map
G-repsonto action sequences to achieve desired results in thelw@dncept Formation
operators allow the exchange Gfrepswith other agents.

“Symmetry provides a set of rules with which we may descrieasn regularities among

experimental objects.” Symmetry to us means an invariart,ly determining operators

which leave certain aspects of state invariant, it is pdssdeither identify similar objects

or to maintain specific constraints while performing othpemtions (e.g., move forward

while maintaining a constant distance from a wall). Operatlly, the hypothesis is that

group theoretic representations (G-Repgprm cognitive activity. In related work, Leyton
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proposedvreath productg35, 36] as a basis for cognition. Leyton argues thatvineath
group productis a basic representation for cognition as stated inGhaiping Principle
“Any perceptual organization is structured as an n-foldatlmeproduciz; @ ... G,,” and
proposes that “human perceptual and motor systems are trattused as wreath prod-
ucts.” We loosely use that formalism (the operatondicates a group sequence), and
plan to demonstrate that symmetry-based signal analydi€amcept formation allow us
to address (1) the sensorimotor reconstruction problejnaff@rdance learning, and (3)
affordance representation and indexing for life-long egree. A schematic view of our
proposed symmetry-based affordance architectureSyimemetry Engirjas given in Fig-
ure 1. The successful demonstration of this approach wilstitute a major advance in the
field of cognitive autonomous agents, and will also motiyaiet research programs into
human cognition. For a more biologically motivated cogmitarchitecture which learns
features for hierarchical models to recognize invariangcis, see [72] as well as other pa-
pers from the Honda research group on their approach to tnagarchitecture [5, 6, 58].

Our major research thrusts to construct this robot cogndichitecture are:

e Symmetry (Symbol) Detection This involves the recognition of symmetry tokens
in sensorimotor data streams. Various methods are progoséus in 1D, 2D and
3D data. Here symmetries are various invariant affine taansitions between sub-
sets of the data, including translation, rotation, refagtscaling, etc. Also important
is the detection of local and global symmetry axes.

e Symmetry Parsing A collection of sensorimotor data gives rise to a set of tske
which must be parsed to produce higher-level nontermirmabgys (or concepts). We
propose that a symmetry grammar is innate in the robot, latietkperience informs
its specific structure for a given robot.

e Symmetry Exploitation: Symmetries can be used to solve the sensorimotor recon-
struction problem, to represent new concepts, and to dis@nd characterize useful
behaviors.

1.1 Cognitive Architecture

Figure 2 provides a more detailed view of our current cogaiéirchitectural implementa-

tion based on th&ymmetry EngineA particularly important feature is the Behavior Unit

(in the middle of the figure). Behavior is encodedGsject-Action Complexd4, 32] (in

brief, an OAC is a tripld £, T, M) where the execution is specified By 7" is a prediction

function on an attribute space, afndl is a statistical measure of success of the behavior).
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Figure 2: General Cognitive Framework Architecture.

In Figure 2, theBehavior Selectioriunction chooses the next OAC sequence based on
the current OAC, the current states of tBkeort-Term Perception Memoand theShort-
Term Motor Memoryas well as the available behaviors in th@ng-Term MemoryAs an
OAC executes, it provides context to both the perceptionmaotbr pipelines. Data arrives
continuously from the sensors and first undergoes specifkgogng and transformation
procedures, then is formed into percepts (symmetry cheniaations), and finally, results
are stored in th&hort-Term MemorySimilarly, motor commands are moved to tBleort-
Term Motor memorwhere they are then interpreted according to modality aedplecific
gualities desired, and finally, these more symbolic repragi®ns are decoded into specific
motor commands for the actuators.

As a simple example of the perceptual-motor duality of trehiecture, consider a square
shape. As described in more detail below, the boundary dflthpe can be represented as
a point which undergoes a specific sequence of symmetryforans: translation (half the
side length), reflection (about the line perpendicular ®eéhdpoint), and rotation (4-fold
about the z-axis). This same representation can be usesu msotor commands to trace
out the shape or to circumnavigate it (e.g., go around a)table

2 Symmetry Detection

Symmetry detection has played a large role in 2D and 3D imagdeshape analysis and
computer graphics; see [13, 16, 29, 28, 33, 34, 39, 47, 5XpHatics, we have previously
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shown how to use symmetry detection in range data analysigdsping [22]. Popplestone
and Liu showed the value of this approach in assembly plgn3i@]. More recently, Pop-
plestone and Grupen [53] gave a formal description of gemenasfer functions (GTF’s)
and their symmetries. Finally, Selig has provided a gedméasis for many aspects of
advanced robotics using Lie algebras [61, 62].

A symmetry defines an invariant; according to Weyl [73]:

An object is symmetrical if one can subject it to a certainrapen and
it appears exactly the same after the operation. The olgdaben said to be
invariant with respect to the given operation.

The simplest invariant is identity. This can apply to anwundiial item, i.e., a thing is itself,
or to a set of similar objects where the operation is some géwr(or other feature like
texture) transform. In general, an invariant is defined byaadformation under which
one object (or a feature of the object) is mapped to anothgrcokor its features). We
propose that sensoriomotor reconstruction can be moretiet#éy achieved by finding such
symmetry operators (invariants) on the sensor and actdatar(see also [10, 30]).

2.1 Symmetry Detection in 1-D Signals

Here we are looking for patterns in finite 1-D sample sets.tLbe the independent time
(sample index) variable and = f(¢;) be the sample values (e.g., real numbers). Assume a
set of sensorgy = {Y;,i = 1...ny} each of which produces a finite sequence of indexed
sense data values;; where: gives the sensor index andjives an ordinal temporal index,
and a set of actuatorgl = {A;,i = 1...n4} each of which has a finite length associated
control signal,4;;, where: is the actuator index angis a temporal ordinal index of the
control values. Symmetries are defined in terms of pernutatdf the sample indexes and
values. Givery;;,j = 1...2k + 1, a set of samples from a sensor, then symmetries are
detected as follows. Th&: + 1 sample points comprise a moving window on the data from
this sensor, and analysis takes place at the center @gint)( The possible symmetries
are:

Constant Signal (Any point maps to any other.) Under the map» z + a,Va € [k, k],
and mapping the correspondiggvalues as well, the sample signal does not change. All
possible permutations of time-sample pairs leave the bigveriant (i.e.,S,,, the symmetry
group characterizes a constant signal).
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Figure 3: Various Symmetries in a Sin Wave.

Periodic Signat (No point maps to itself.) Under the map— z + a, for some fixed,
non-zero value,, and mapping the correspondiggyalues as well, the sample signal does
not change.

Reflection Signal (Only one point maps to itself.) Under the map- a—xz, Va in[—k, k|,
and mapping the correspondipgalues as well, the sample signal does not change.

Asymmetric Signal: (Each point maps only to itself.) The only map for which tignsl
remains unchanged is the identity map:— x. Note that most functions are like this, as
are pure noise signals.

Linear signal In order to detect a linear (non-constant) relation in thedae take the
Y.

derivative of the sample data (i.&7; = %) and look for the constant signal.
J J

Gaussian Noise SignalAny signal for which the autocorrelation of the sample ssutts
in a low amplitude signal everywhere except zero.

Note that the above analysis could be performed on 1-D petstan the real line by quan-
tizing the sample values, and then looking for specific pastén symmetries existing on
those point sets. E.g., for a periodic pattern, all poirs getuld have the same translation
symmetry. Moreover, the analysis can also be done by pateagamples in terms of
grammars defining these symmetry types (see Section 3).



A first level symmetry is one that characterizes a singleadiga belonging to one of these
categories. Of course, composite signals can be condtrircte these as well, e.g., the
sine function has a hierarchy of symmetries (see Figure 3)seé®en in the figure, a sine
wave gives rise to several symmetries: there is a reflectiwengetry about the vertical
axis for points betweefv, 7], [r, 27|, etc., and the predominant symmetry is the discrete
translational symmetry of peridtt, i.e.,sin(z) = sin(x+27). Such a signal at the highest
level is then represented by the tokBA.;,((0,2+)), 7—2-- NOte that symmetry analysis may
be applied to transformed signals (e.g., to the histograansignal; e.g., where a Gaussian
sample is of type),). Asymmetric signals will also be represented as a symiselizience,
i.e., using the Symbolic Aggregate Approximation methodliafet al. [37].

Next, pairwise signal symmetries can exist between signdle same class:

e linear

— same linea; = a9, by = by

— parallel:a; = as, by # by

— intersect in point: rotation symmetry about intersectiomp
e periodic

— same periodP; = P,

— same Fourier coefficients!;, = Cy

e Gaussian

— same meanu; = ji,
— same variancer? = o3

We have developed algorithms to detect these symmetrieharedused them to classify
sensor and actuator types in the sensorimotor reconstnyatoblem (see [26] and below).
This allows sensor classification without any actuatioa.,(inuch lower energy expendi-
ture), and achieves much greater classification correstmapared to previous methods.
The symbolic output of the 1-D symmetry analysis is one of:

e ('1: an asymmetric signal
e T': a continuous translational signal; i.e., a line (segment} by + ¢ = 0.

e D;: a signal with reflective symmetry.
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e P: a periodic signal with base shapand period!'.
The extended analysis produces results for:

e GN(X): Gaussian noiseV (u, o?).

2.2 Symmetry Detection in 2-D Signals

Symmetries must also be found in 2-D and 3-D spatial data,dé&mera and range data
(note that the spatial layout of 1-D sensors - pixels - carebeled from the correlations in
the neighboring streams of 1-D signals [46, 49, 48]). Owwigethat much like in the case
of 1-D data where a central signal value is chosen as thencaigout which to find 1-D
symmetries, pixel-centric image transforms (e.g., thedolar transform) can be used to
help bring out symmetries in 2-D shapes. Moreover, such alysis is performed in terms
of a sensorimotor combination which is intrinsic to thateadj For example, saccadic
movement of the eye relates motor control information coatgd with the simultaneous
image percepts. This issue is further explored below in sgtryrexploitation.

The 2-D symmetries to be detected are:

e cyclic symmetrydenotedC,,): rotational symmetry o% radians (e.g., yin-yang
symbol) with no reflection symmetry.

e dihedral symmetrydenotedD,,): rotational and reflective symmetry (e..g., polygon).
[Note thatD; has one reflection symmetry axis and no rotational symmetgy; a
maple leaf with bilateral symmetry.]

e continuous rotational symmet(genoted)(2)): can be rotated about the center by
any angle; also has an infinite number of symmetry reflecti@s ée.g., circle).

These symmetries may be found on any point set and are nottegto closed boundaries
or figures. Thus, a pair of aligned parallel line segment® v, symmetry.

In terms of 2-D image symmetry analysis, we have implemeanetinvestigated a number
of existing symmetry detection algorithms, including taia symmetry group detection
[34]. Figure 4 shows a chaos image with several types of syimgmé&he four symmetry
sets are shown in Figure 5.
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Figure 4: Chaos Image from Lee [34].

However, our contribution to the detection of symmetry iD Zhapes extends Podolak’s
planar reflective symmetry transform (PRST) [51]); this noetitomputes a measure of
symmetry about each line through every point in a shape. i$li€omputationally expen-
sive method, and we propose to reduce this cost by choosinbgsesof points at which
to apply the PRST, as well as the possible orientations. Tdnse achieved by using the
Frieze Expansion Pattern (FEP) [34] which is computed dsvisl Pick a pointP, in the
shape; for a selected set of orientations, e.g., 1 degreenments from 0 to 360, take that
slice of the image and make it a column in the FEP. Figure p&hbws how the FEP is
formed, and the FEP of a square shape. If the FEP is formee aethter of mass of the
shape, then the following hold:

¢ A rotational symmetry exists if the FEP has a reflective axisugh the middle row,
and the upper half of the FEP image has a translational symifether continuous
or discrete).

e For a reflective symmetry axis to exist, it must occur at a maxn or minimum
on the upper half shape boundary curve of the FEP and have anmax at the
corresponding location on the lower half shape boundaryecaf the FEP.

e Certain features in the 1-D curves found in an FEP can be usddrtify the shape
basis for aG-rep.

These can be robustly determined (see Figure 6(c)); i.e.ptint sets do not need to be
perfectly symmetric.
11
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Figure 5: Symmetries Found in Chaos Image.

A 2-D reflective symmetry is a set of points in the plane thatiavariant under reflection
across a symmetry axis line through the set. Podolak’s rlatbosiders every orientation
at every pixel. However, reflective axes can be found as@ioFor every segmented
object with center of masS M and FEPF atcm, then if F7 is the top half shape boundary
of F" andF; is the bottom half shape boundary©f then letF'7 be F; flipped left right and
then flipped up-down; next check for translational similabietweent; andF'7, and where
the similarity is high, there is a reflective axis. Figure pgbows the detected symmetry
axes. Given an FEP, if there are reflective axes, then theedtegs for the full figure must
be found between two successive reflective axes. This isrshofigure 6 (¢). In this case
for the square, this is any of the half side segments. It s@bssible to use the polarimage
for this analysis.

In addition to 2-D symmetries, shape boundaries may besepted as 1-D signals (e.g., in
the FEP), and then analyzed in terms of 1-D symmetries. Ampieof this is the periodic
symmetry in the FEP boundary of a square (see Figure 6 (b)).
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Figure 6: Frieze Expansion Pattern (a) Formation, (b) fare, (c) Symmetry Axes.

2.3 3-D Signals

3-D surface points, homogeneous 2-D surfaces (e.g., plaa@$3-D surface normals may
all serve as basic symmetry elements for affordance leguritor example, a flat surface
with normal opposite the gravity vector allows platformdatotion. Data from a Kinect
or other range sensors allow easy acquisition of such datehake developed the 3D FEP
to detect symmetries in 3D data. For example, Figure 7 shioe&EP for synthetic cube
data (expanded at the center), as well as an abstractioe p&tiks and pits which are used
(in much the same way as maxima and minima in the 2-D FEP) sométe the symmetry
planes cutting through the cube (6 diagonal and 3 paralléiat is, any symmetry plane
must pass through maxima or minima of the 3-D FEP. Figure &shibe FEP for Kinect

) :
:

Cube

G200 400 \
el B 6~
| el 5
UL @ A ——

Symmetry Planes Abstraction of Peaks and Pits

Figure 7: Cube, FEP, and Symmetries.

3D FEP

data of a scene comprised of two corners of a cube viewed fneide the cube. As can be
seen,this method works well on real data.

The 3-D symmetries to be detected are:
13
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Figure 8: 3D FEP on Real Data.

¢ direct isometriegdenotedS F(n)): rigid motions; also called the special Euclidean
group.

e indirect isometrieddenotedD R): includes reflections; i.e) is a direct isometry
andR is a reflection.

3 Symmetry Parsing

As a simple example of concept representation, Leyton shwws symmetries can be
expressed as symbolic structures which capture not onlpéheeived layout of a shape,
but also to encode how the shape is produced (e.g., put a permpaint; translate the
pen, rotate the pen, translate the pen, etc. to get a gemerapresentation of a square
shape). That is, the sensorimotor data is converted intg@esee of symmetry symbols
which constitute a string in a language for which syntax ammantics exist. Note that
there is evidence that some such form of parsing takes plateei visual system [52];
Poggio et al. describe: "a class of simple and biologicadbiypible memory based modules
that learn transformations from unsupervised visual egpee. The main theorems show
that these modules provide (for every object) a signaturietwis invariant to local affine
transformations and approximately invariant for othensfarmations. [They] also prove
that, in a broad class of hierarchical architectures, sigea remain invariant from layer to
layer. The identification of these memory-based modulels eomplex (and simple) cells
in visual areas leads to a theory of invariant recognitiaritie ventral stream.” Bressloff et
al. describe symmetry and the striate cortex [8, 9]. Also[$@e66] as well as early work
by Foeldiak [19]. Symmetry is also exploited in various feag paradigms: Ravindran and
Barto [55, 56, 57] exploit symmetry in reinforcement leam(see our work also [24]).

Group Representations (G-reps) Given a set of symmetry elements and axes produced
by the symmetry detection stage, it is necessary to deterhow they are best represented
by sequences of symbols in a language. Little detail on thosgss has been given in
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the literature. Consider, for example, Leyton’s favoritamyple, the square. While it is
true thatMod T C, (i.e., aline segment rotated 0,90,180, and 270 degrees)resaphe
symmetries of the square, it also characterizes a '+’ sigorddver, there is no association
of actuation events required to obtain sensor data for thjgct. For example, there is
control data associated with following the contour of thease either using (actuated)
sensors, or by tracing the path with the end effector, anavsgtmes in these control signals
must be parsed and paired with the discovered perceptuahsymes. The resultinG-rep
will be a description like:

T(d = 6cm; actuatorsy_s : [ay; ag;as), i =1...n);

C4(90 degrees [ay;; ag;; asil,i =1...p)

This annotated group seauence aives basic shape informrafating length of a side as
/ Reflection Symmetry (R)

............ Reflection A

.\. Xis
b — Translation Symmetry (T)
/ Rotation Symmetry (C)

J/‘

Rotation Axis (at corner, out of plane)

G'EFQJ?RéCQ“: G-Rep for a Square Shape.

well as sensorimotor traces in terms of 3 actuaters (Figure 9 shows this schemati-
cally. We introduce reflection into the representation sitigs mirrors the actuation trace
required to move along an edge in which velocity starts anfrelases to a max at the
middle, then slows to a stop at the end of the edge segmeng. tNat it may be more ap-
propriate to specify lengths and angles in terms of sens@ansequences of the specific
robot in case human defined units are not known. As opposesidoae, a '+’ sign will be
constructed as two separate strokes: start at a point, mstkaight line motion (acceler-
ating and decelerating in reflective symmetry), lifting e other line segment start point,
and again making a linear motion. Although the square angig share the same sym-
metries, they are distinguished by their motor sequencefact, the square will be more
like any other polygon than like a '+’ in terms of the actuat®equence. However, sym-
metry information (including asymmetry) provides a moretedict representation which
allows for discrete types of reasoning while retaining attgrounding to the sensorimotor
traces. Thus, a robot can know that two squares are similstructure, but of different
sizes.G-repsinclude information about other physical features likeocolveight, material
type, etc. One issue not addressed here is the hierarclaitakrof complex objects (e.g.,
15



TiC, TiC, [All under? PGL(3,R)
the projective linear transform]
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Figure 10: G-Reps Produc;d for a Scene.

a body has head, torso, legs and arms); however, this isss#tiéo some extent through
the use of the medial axis which provides a characterizaifcamn integral entity (e.g., a
human has arms, legs, head, and torso, all related by treugazonnected segments of the
3D medial axis). Thé&-repincludes the following information:

Group sequence representation of shape and processsntitie

Sensorimotor sequences of symbols (symmetries or SAXg3taissociated with en-
tities.

Medial axis (along with classified characteristic points).

Properties associated with symmetry elements. This ieslutbt only geometric
information, but also semantic information like color, lecparameters, etc. As for
the shape itself, the essential characterization can e @vterms of what we call
theshape basighis is the smallest part of the shape that informs the rébleand/or
rotation symmetries. Figure 11 shows the shape basisairckhe given shapes (the
second two shapes share the symmetry of the first two, but their shape bases are
not a simple translation).

R

Figure 11:Shape Basifor Each of Four Shapes.
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The output of the interaction with an environment such asshawn in Figure 10 is to pro-
duce symbol sequences (which encode both percept and nyataregtries) for the various
entities in the environment.

G-rep Grammar (1D) We next develop an attribute grammar [59] to define the teansl
tion semantics from signal values to symmetry symbols. dlth currently restricted to
1D signals, this still allows analysis of 2D shapes by enegdheir shape boundaries as
described from the FEP. The symmetry gramngar,is given as:

1. context-free syntaxstandard grammafy, for syntax
2. semantic attributessymbols associated with vocabulary@f
3. attribute domainsattribute value sets

4. semantic functionsdescribe how values are produced.

The productions are:
[This is a simplified description of the grammar].

(1) F = §'S{ju == pa)
(U — 518 < pa}
(3)D — S'S*{u; > pa)
(4)C — F
(5) C — CF{constant(C) == constant(F)}
(6) B — UD{slope(U) ~ —slope(D)}
(7) B — DU{slope(D) ~ —slope(U)}
(8) W — any permutation
(9) P — WHWH{attributes(W' = attributes(W?)}
10)Z—-C|B|P
(11) R — UZD{slope(U) ~ —slope(D)}
(12) R — DZU{slope(D) ~ —slope(U)}
(13) R — FZF{constant(F') ~ constant(F?)}
(14) R — URD{slope(U) ~ —slope(D)}
(15) R — DRU{slope(D) ~ —slope(U)}
(16) R — F RF{constant(F') =~ constant(F?*)}
17)S—=R|C|P
(18)A — U
(19)A — AU
(20E — D
17



(21)E — ED

Note that languages of repeated strings, as in productiby ¢enerally require a context
sensitive grammar, but we strict the repeated string’stlergnd can thus implement an
efficient parser. Constant strings can be recognized by F8Asantext free permutation
grammars exist (see [3, 11]).

In terms of our implementation, the 1D input string is firsbgessed as described in [37];
i.e., a Piecewise Average ApproXimation (PAA) is found, draim this a Symbolic Ag-
gregate approXimation (SAXY¥s then parses the SAX string to produce the b&siep.
Figure 12 shows the results of parsing a sine wayex 7|, and Figure 13 shows the parse
for a square shape. The symmetry analysis produces theiiojesymmetries for the sine
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Figure 12: Parse of a Sine Wave.
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Figure 13: Parse of a Square Shape.

Symmetry Start| End| Basic| Symmetry Symmetry
Type Index | Index | Length| Measure Index
periodic 1| 189 63 0.7663

reflective 90| 132 21 1.0000 111
reflective 27 69 21 0.9283 48
reflective 2 32 15 0.9239 17
reflective | 159 | 189 15 0.9239 174
reflective 59| 101 21 0.7334 80
reflective | 121| 163 21 0.7334 142

and these for the image of a square:

Symmetry Start| End| Basic| Symmetry Symmetry
Type Index | Index| Length| Measure Index
periodic 1| 356 89 0.9775

reflective 2 98 48 0.4063 50
reflective 2| 186 92 0.4168 94
reflective 2| 276 137 0.3895 139
reflective 3| 359 178 0.7410 181
reflective 87| 359 136 0.4554 223
reflective 177 359 91 0.4673 268
reflective | 265| 359 47 0.4072 312
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Note that it is the symmetry axes which are important.

4 Symmetry Exploitation

Next we demonstrate two powerful ways to exploit symmetrglgsis: (1) sensorimotor
reconstruction, and (2) symmetry bundles as robot affarésn(1) is the semantic compi-
lation of 1-D sensor signals into equivalence classes @istermine similar sets of sensors).
This allows further analysis to determine spatial layous@fisors, etc. (2) aims to detect
simultaneous sensor actuator symmetry sequences thableadseful behavior. For ex-
ample, pure translation for a two-wheeled robot resulsifoonstant (actuation) signals to
the wheels and results in a vertical translation symmettii@FEP. These can be grouped
to capture the notion ahove forwarcandmove backwardThe experiments described here
have been performed on a Turtlebot based on an I-Createnohetéee Figure 14) equipped
with cameras, IR, and a Kinect sensor.

Figure 14: Turtle Robot Platform.

4.1 Sensorimotor Reconstruction

The sensorimotor reconstruction process consists of treeviag steps: (1) perform actua-
tion command sequences, (2) record sensor data, (3) detes@ansor equivalence classes,
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and (4) determine sensor-actuator relations. An additicnitarion is to make this process
as efficient as possible.

In their sensorimotor reconstruction process, OlssorrcPipl5, 50] and others produce
sensor data by applying random values to the actuators foe geset amount of time,
and record the sensor sequences, and then look for simeantthose sequences. This has
several problems: (1) there is no guarantee that random mmavis will result in sensor
data that characterizes similar sensors, (2) there is n@ikifredictable) relation between
the actuation sequence and the sensor values, and (3) thigesigous actuation of multiple
actuators confuses the relationship between them and tiserse

To better understand sensorimotor effects, a systematioaph is helpful. That is, rather
than giving random control sequences and trying to decipimat happens, it is more ef-
fective to hypothesize what the actuator is (given limitedices) and then provide control
inputs for which the effects are known. Such hypotheses edndied as part of the devel-
opmental process. The basic types of control that can beegppiclude: none, impulse,
constant, step, linear, periodic, or other (e.g., random).

Next, consider sensors. Some may be time-dependent (@eggydevel), while others may
depend on the environment (e.g., range sensors). Thusyibenpossible to classify ideal
(noiseless) sensors into time-dependent and time-indieme by applying no actuation and
looking to see which sensor signals are not constant (tsisnass the spatial environment
does not change). Therefore, it may be more useful to noatecthe system, and then clas-
sify sensors based on their variance properties. Thatieaiistic (with noise) scenarios, it
may be possible to group sensors without applying actuati@. The general symmetry
transform discovery problem for sensorimotor reconsionds: Given two sensors;; and
Ss, With data sequencé§ andTz, find a symmetry operator such thatly = o(7}).

Using the symmetries described above, we propose the fiolgpalgorithms.

Algorithm SBSG: Symmetry-based Sensor Grouping

1. Collect sensor data for given period
2. Cassify Sensors as Basic Types
3. For all linear sensors

a. Goup if simlar regression error
4. For all periodic sensors

a. Goup if simlar P and C
5. For all Gaussian sensors

a. Goup if simlar signals
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This algorithm assumes that sensors have an associated mi¢e that this requires no
actuation and assumes the environment does not changdy Rimasimilarity test for the
above algorithm depends on the agent embodiment.

Algorithm SBSR: Symmetry-based Sensorimotor Reconstructin

1. Run single actuator and
coll ect sensor data for given period
2. For each set of sensors of sane type
a. For each pair
i. If translation symetry hol ds
Determ ne shift val ue
(in actuation units)

This determines the relative distance (in actuation ubi$yveen sensors. E.g., for a set of
equi-spaced range sensors, this is the angular offset. Wed®monstrated this algorithm
elsewhere [25].

Any experiment should carefully state the questions to Issvared by the experiment and
attempt to set up a valid statistical framework. In addititre sensitivity of the answer to
essential parameters needs to be examined. We proposergsadgiouping correctness:
What is the correctness performance of the proposed groggngrator? This requires a
definition of correctness for performance and we proposédlt@ving (for more details,
see [23)]):

Correctness Measure Given (1) a set of sensor§S;,i = 1 : n} (2) a correct grouping
matrix, G, whereG is ann by n binary valued matrix withz (7, j) = 1 if sensorsS; and.S;
are in the same group aKidi, j) = 0 otherwise, and (3 ann by n binary matrix which
is the result of the grouping generator, then the groupimgectness measure is:

pa(G H) = [(6i5)/n%]

i=1 j=1

9,5 = 1 if G()==H(); O otherwise

We performed experiments with four types of physical sesisoricrophone, IR, camera

and range (the latter two from a Kinect) to validate the psgmbapproach. Data was taken

for the static case (no actuation). The microphone provialesl data stream, the IR was

used to make 12 data streams, while the camera and range el@&aaken from 625 pixel
22



subset in the images. Thus, a total of 1,263 1D sensor d&anssrwere analyzed. Fig-
ure 15 shows sample data from a camera and the microphone|laaswheir histograms.
Figure 16 shows the grouping matrix for similar sensc6t§,, j) == 1 means sensofis
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Figure 15: Trace and Histogram of a Pixel Data Stream (l&fg¢ce and Histogram of the
Microphone Data Stream (right).

Signal Indexes

Signal Indexes

Signal Indexes
jgffal Indexes

Segmentation Matrix Zoom In on Upper Left Corner

Figure 16: Grouping Matrix (White indicates Similar Sensor)

andj are similar. The left side of the figure shows the 12x12 groufRcsensors (upper
left) and the two 625x625 groups of camera and range serBoegight side of the figure
zooms in to show the 1x1 group (upper left) of the microphaereser. The performance
of this grouping depends on a threshold, and we looked atmtipadt on the correctness
measure for a wide range of threshold value. The result isttigagrouping correctness
measure was above 97% for all threshold values except attlgdaww and very high end.

4.2 Concept Formation

A low-level concept is formed with the discovery of a cohe¢sat of sensor data exhibiting
symmetry. We demonstrate this on real 2D camera data fromotieg’s vision sensor (see
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Figure 17). The first step in this process is to segment thgent@ obtain object shapes
(boundaries) which can then be converted to 1D signals (largorm) and parsed for
symmetries. A simple k-means clustering algorithm on th&/H&nsform of the origi-
nal image segments objects based on color, and object boesdadifferent clusters are
obtained by using the gradient (edge) map of the originalgenaThese 2D boundaries
are then converted to polar images from which 1D signals eaextracted to obtain the
SAX representation which is the input to the symmetry detecthe symmetry detector
successfully finds the periodic and reflective symmetriesanit of 4 objects in the image
which are shown as vertical red lines in Figure 17. (Due tostihgplicity of our image
segmentation code, boundaries may not be detected welyjariousome objects to obtain
good enough 1D SAX signals for symmetry detection; the bbakis missed presents two
surfaces and this causes a poor segmentation. Implemaotigt image segmentation
techniques using multisensor data (e.g., range) wouldsw this problem, and that is a
part of our future work.)

Object 4
Object 3

e Vi 4M

50 100 150 200 0 200

Object 7
7

X SN il

50 100 150 200 o 0

Camera Image Edge Polar Image 1D Signal SAX string Reflective Symmetry axes

Figure 17: Symmetry Detection in Bookshelf Objects.

The following symmetries were detected in the bookshelectsj corresponding to the
numbered segments.
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Object 3 Start| End| Basic| Symmetry
Symmetry Type Index | Index | Length| Measure
periodic 1| 270 90 0.5000
reflective 2 20 9 0.3497
reflective 2 88 43 0.4241
reflective 68 90 11 0.4152
reflective 2| 176 87 0.4627
reflective 90| 110 10 0.6862
reflective 87| 179 46 0.4759
reflective 157 179 11 0.6412
Object 4 Start End Basic| Symmetry
Symmetry Type Index Index| Length| Measure
periodic 1 270 90 0.6000
reflective 2.0000| 42.0000{ 20.0000 0.5902
reflective 2.0000| 90.0000| 44.0000 0.6079
reflective 36.0000| 102.0000( 33.0000 0.4067
reflective 3.0000| 179.0000| 88.0000 0.6802
reflective 62.0000| 164.0000y 51.0000 0.3894
reflective 91.0000| 179.0000( 44.0000 0.4098
reflective 139.0000| 179.0000| 20.0000 0.5495
reflective 171.0000| 179.0000; 4.0000 0.5698
Object 7 Start End Basic| Symmetry
Symmetry Type Index Index| Length| Measure
periodic 1| 180.0000| 90.0000 0.4333
reflective 9.0000| 49.0000| 20.0000 0.3173
reflective 2.0000| 88.0000| 43.0000 0.3473
reflective 74.0000| 108.0000y 17.0000 0.8864
reflective 111.0000| 159.0000| 24.0000 0.6126
reflective 136.0000| 168.0000| 16.0000 0.3159
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We are able to detect the reflective axes of objects closetexpected angles, as is evident
from above results. The reflective symmetry axes detectdgbiprevious step characterize
the symmetry of objects; Object 4 is characterized)aswhile Objects 3 and 7 are de-
termined to beD, (note that each object has its own shape basis set, etchoulh we
propose suclG-repsas direct representations for cognition, such results tsmpovide
advantages to other approaches. For example, the T funatian OAC would benefit
from an attribute space augmented with such symmetry gscsi particularly, during
execution of a particular action on an object. Interactiogtsveen robot end effectors and
world objects can be well defined in terms of actiok$ gver T, and expected outcome
(M), if certain attributes of those objects (e.g., symmetougs) are known. Consider the
action“Push a cube in a straight line without effecting a rotation ith which requires the
robot to push a cube to move it straight without rotating ioling the symmetry axes of
the cube allows this whereas pushing at any point away frasettaxes induces a torque
and hence a rotation. Symmetries also provide the basidrtartgral bootstrapping: if a
robot has formed the concept that a Dihedral Group 4 symniétryobject, like a square,
stays invariant under any multiples of"9@tation about its center of mass, or being flipped
about its symmetry axes, the robot can then predict thatebeltrof a similar action car-
ried out on any other object having’a, symmetry would be the same. Concepts like these
help identify similar or dissimilar objects, and can be udedctly as a representation or
to augment other approaches (like OACs) and therefore lésel§tio learning interactions
between robot and the world.

4.3 Symmetry Bundles as Affordances

Once sensorimotor data is converted to symmetry symboksegs, they must be filtered
by the effects that they afford. This may also be keyed to 3Azggroup symmetry (affine)
operations (translation, rotation), and grounded in th#iqadars of the objects involved.
As an example of some simple affordances, consider thenfmiptwo.

1~
— - m (1111
TN

Figure 18: Polar Image Optical Flow Method to Detect PurenSiation.
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Translation For our two-wheeled Turtle robot, if constant and equaluesjare applied
to the two wheel motors, then the motion gives rise to a fodlexpansion image in the
direction of motion. Figure 18 shows how this produces aroolar translation symmetry in
the polar image in that all motion is upward. To determins,thiotion direction similarity
is used.

Rotation Constant but opposite torques on the two wheels results in@dietranslation
symmetry in image or range data. That is, a pixel producesiadge sequence of values,
where the period is related to the rotational speed. Rotaimws up as a translation
(periodic) in the polar image.

Thus, by setting up innate mechanisms to look for combinatimf symmetric (e.g., con-
stant, linear, periodic, etc.) actuator sequences thattresspecific symmetries in the
sensor data, the robot will be able to find useful behaviors.

A robot learns affordances as follows: it sends controlaigto its actuators which imme-
diately start receiving a stream of sensory signals (e-gm ftameras, odometers, micro-
phones, etc.). Itis useful to find relations between thess®g and control signals, and to
characterize how one varies with respect to the other whergsting patterns or invariants
occur. The sensor-actuator signal sets are processedjthtba Symmetry Engine (SE)
architecture to find invariances, if any, and store thersyasmetry bundleéee below);
the robot can re-use that knowledge should it encounter dasisituation again; this may
form the basis for structural bootstrapping [27]. Also,taer sensor signals can be better
analyzed if they are first transformed to another repreientan which it is easier and
more efficient to identify certain forms of invariance.

4.3.1 Symmetry Bundles

A Symmetry Bundlis a combination of

1. The sensorimotor or transformed signals of a robot's@srend actuators.

2. The operator which transforms the signal into a represient where the symmetry
exists.

3. The corresponding symmetries observed in the resultymaks.
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Sensor/Actuator Signals §;;) These consist of the 1-D, 2-D or 3-D actuator and sensor
signals (samples) produced or received during a specifiavi@h Symmetry bundles with
no actuation signals are calladtuation-free symmetry bundles

Transform Operator (7)) In the simple translation behavior described abdves the
transformation of a camera image to the polar image follolaed histogram of the motion
direction angles.

Symmetry (¥) A symmetry is one of the 1-D, 2-D or 3-D signal symmetries dsfin
above. In the case of the translation behavior, the symnietrthe both left and right
wheel actuation would be the same 1-D constant signal, vhdesymmetry in the polar
image would be the constant angle of motion direction (upvieach column).

We now describe in more detail the theory behind the traiosldiehavior scenario. As-
sume a perspective projection camera model and a diffatairive (two-wheeled) robot
(see Figure 14) that undergoes various motions (actuatishieh cause a change in its
video (sensor) signal. We use the perspective projectieoryhgiven in [20] and [67]. We
now describe in more detail the theory behind the transidtehavior scenario. Assume
a perspective projection camera model and a differentige dtwo-wheeled) robot (see
Figure 14) that undergoes various motions (actuationsghvbause a change in its video
(sensor) signal. We use the perspective projection thaeengn [20] and [67]. Figure 19
depicts the perspective projection model and the simpldei/ation can be stated as fol-
lows.

A point in the worldP,, is mapped to a point in the image;,.., i) as:

w0y = —f ru X +rY?Y +ri3ZY +t, (1)
! “ra XY 4 ro3Y W + r332v 4t

Tngw + TQQYw + TQng + ty
7”31Xw + ?"32Yw + ngZw + tz

(2)

where,s,, s, is the pixel size in the horizontal and vertical directiogspectivelyf, = si

is the length in horizontal pixel unitg, = Si is the length in horizontal pixel unitg, is
Yy
the focal length, anto,, o,) is the image center.

v—o0y = —fy

The intrinsic parameters are embedded in (2). Neglectiagddial distortion caused by
the lens, we can define the intrinsic and extrinsic transébion matrices\/;,,, and M.,
respectively, as
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Figure 19: Camera Model.

_f:v 0 Oz
Mint = 0 _fy Oy
0 0 1

and

rll r12 r13 t,
Mege = | r21 122 123 ¢,
r3l r32 r33 t,

Perspective projection can now be defined as:

T Xu
1
Yo
) - MintMezt Z (3)
3 1w

If P' =[x, y, z]* is the image pointan® = [X, Y, Z|T is the world point, then:

x:ZX,yzéY 4)
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4.3.2 A Symmetry Bundle Example: Pure Translational Motion

Here we assume the camera is moving forward in the direcfias optical axis. A sym-
metry bundle for this motion can be produced as follows.

Actuation and Sensor Signals The actuation signals are constant and small values so
that the robot moves forward slowly. The sensor signal igiem of motion directions in
the polar images derived from the sequence of camera imageged during the motion.

Transform Operator  The transform operator is the polar transform (defined apimke
lowed by the angle histogram operation.

Symmetries Three symmetries are found: (1) 1-D constant actuatiorasignleft wheel,
(2) 1-D constant actuation signal for right wheel, and (3}igal translation for all pixels
in the polar image (i.e., similar motion direction anglefofadians.

We now show that the vertical motion symmetry holds in thepohage for pure transla-
tional motion of the camera on the robot. We have from (4),

Assuming that the focal length of the camégres 1, we have

_X ,_Y
r=7,9Y=7

Therefore, if we move the camera forward &y, the image points in the new image will
bexr' = 2 ¢ =L

z—062’ z—06z"

Note that here we are assuming the camera frame and worle fi@ive the same, hence
the z axis from the optical center to the world reference (and tbddvpoint) is positive.
Therefore a shift ofz in the direction of the world point should decrease thealue by
that amount, given by — ¢z, assumingz > 0. The vector representing the movement of
the image pixels can be defined as,

z oz xdz
z—0z z #(z—02)
y oy Yoz
z—0z z z(z—0z)
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Its direction is then given by

0z xdz
arctan[(z(i’_éz))/(Z(zfaz))] = arctan Z

This means that the motion of each point in the polar imageoisgathe column corre-
sponding to the angle that point makes with the epipole. Theunt of movement of the
pixel is given by the magnitude of this vector as

= (VPR (o) ®

(z+4dz)

Notice that the movement of each point in the original camerage is along a vector
which projects out from the focus of expansion in the imadgo(aalled as thepipol§.

Figure 20 (a,b) shows two images from a translation sequevtdée (c) shows the motion
vector angle histogram for this pair. As can be seen, the nibajf motion vectors are
arounds radians.

Histogram
3000 T
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Polar Form of Image 1 Polar Form of Image 2
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Y]
-200 0 200
Motion Vector Direction (in degrees)

Figure 20: Pure Translation Sequence (a) and (b) and Regiition Vector Angle His-
togram (c).

Although we do not exploit it here, note that range segmemtas possible for pure transla-
tional motion when the image is converted to log-polar fofiine transform from Cartesian
coordinates(z, y), to log-polar,(p, #), can be given as [74]:

p = log/(z —z.)2 + (y — y.)? is the distance of that point from the center of expan-
sion(z.,y.), and

0 = tan~' 2= is the angle.
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In case of a forward translating camera, the image pointirs@cutive images move
radially outwards from the center.

We know the distance for this movement. This difference in the radial movement -

assuming the epipole is chosen as the center for log-palasfisrmation - can be derived
as follows.

p1 = log+/(%)?+ (£)? where? and ¥ is the world point projected onto the image and

ps = log \/( “=)? + (%;)? where - and - is the world point projected onto the

z—0z z—0z z—0z

image after movingz distance towards the world point.

The upward shift of this point in the log-polar image can besgias

pr = pr =log /(2522 + (25)2 — log T + (1P
= log \/22 + 2—10g(z—5z)—log\/m+logz

= log z — log(z — dz)

This final value is a constant for all world points having tlaeng > coordinate, and can
thus be used to perform range segmentation. This could¢cingeovide a motivation for a
robot to select pure translation behavior.

Perspective projection is demonstrated in Figure 21 whHerg@aths followed by different
image points are given by the red and green curves. In thisrerpnt, the camera is
rotated about its optical axis in the horizontal plane. Apaiith a greater-distance (and
constantr andy distance) from the optical center will be projected clogethe image
center than another non-collinear point which has a smallistance, since is in the
denominator.

4.3.3 Rotational Motion - Y Axis

Using equation (3) we can represent any world point visibléhe camera, on the image
plane. Assume that initially the camera reference frafifeand the world reference frame
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Figure 21: Lab Experiment.

(W) are coincident and aligned, i.€l" = C'. However, if the camera rotates about the Y
axis of W (or C), we have a rotation, sa§, applied to the camera frame (Note that there
is no translation involved if the camera is rotated aboubgBcal center, since the origin
of both the camera frame and the world frame stay at the sasigqm). This gives us

X
T Yw
T2 =R MintMemt 7 (6)
T3 bt

imagepoint
worldpoint

We use Euler angles [15] which differ from rotations in theckdean space in the way
they express the rotations in terms of the moving frame; TatedrameA to B we can use
Euler angles rotation sequenceﬁ%zfy,x/(a, B,~) also denoted as,

/

gR == g/R B//R g”R,
or Rz(a) Ry (8) Rx(7)

cosa —sina 0 cosae 0 —sina| |0 cosa —sina
—sina  cosa 0 —sina 0 cosa 0 —sina cosa
0 0 1 0 0 1 0 0 1

Since our camera rotates only aboutYhaxis, we can sek,(«) andRx () to the identity
which yields
gRzyixi(a, 8,7) = Ry(B)

Therefore we have, from (6),
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X

T cosa 0 —sina v
xT9 = 0 1 0 MintMe:Et Zw (7)
w
image

T3 —sina 0 cosa
1
world

Equation (7) gives the projection of a world point to an imaget given that the camera
has rotated by an angtecounterclockwise about theé axis.

An Euler angle rotation abot — Y — X is equivalent to a Euclidean rotation about the
fixed axes taken in opposite order (vViX. — Y — Z), so this method can be used to rotate
the camera instead of the standard rotation method.

Assuming for the moment that the camera reference frame anld veference frame are
aligned, we havé/;,; = I andM,,; = I and therefore

1 cosB 0 —sinfg| (X,
T = 0 1 0 Y., (8)
T3 sinf 0 cosf L

image world

Xy, cos 8 — Zy,sin 8
= Y., (9)
Xysin 8+ Z,, cos 8

world

Assumeu = ! andv = =z, therefore from (9) we have

_ XycosfB—Z,sinf

= 10

“ XypsinfB + Z,, cosf3 (10)
Yy

= 11

v Xypsin B+ Z, cos (11)

From (10) and (11) we can see that the points that follow #gétréine in the image plane
(i.e., v = constant) are the points wiffj, = 0 assuming the image center as the origin.
For these points the fact that, changes does not matter. For all other points the paths -
followed by points as the camera rotates - change as showig.imtFwhich is generated
using simulation and (10) and (11).

The path followed by a point in the image corresponding to ddvpoint (Y = 0, X =
+x), is a straight line, and for all other world poins & +y, X = £x), the path becomes
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Figure 22: Point motion: As Y values changes from O towardstpe or negative, the path
followed by the point tends towards a parabola. For Y=0 tth [ga straight line.

a parabola. This simple illustration allows us to see thariance for this type of camera
rotation; a point¥ = 0, X = +x) will maintain aY -axis invariance for a camera rotating
about theY-axis in theX Z-plane.

4.3.4 Rotational Motion - X Axis

For rotation about th&-axis we have the rotation matrix

1 0 0
R= 10 cosa —sina
0 sina cosw

Therefore, from (6) we have the transformation (assumirgjrathat camera reference
frame and world reference frame are coincident and aligned)

T Xw
T = | Yycosa — Z, sin« (12)

Y, sina + Z,, cosa world
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and

o Ao (13)

T3  Yypsina+ Z,coso

u =

Y, cosa — Z,, si
v:@: . o ina (14)
r3 Y,sina+ Z,coso

From (13) and (14) we can see that the points that follow agétréine in the image plane
(i.e.,u = constant) are the points witki,, = 0 assuming the image center as the origin.

05

05F

Figure 23: Point motion: As X values changes from O towardstpe or negative, the path
followed by the point tends towards a parabola. For X=0 tth [ga straight line.

4.3.5 Rotational Motion - Z Axis

For rotation about th&’-axis we have the rotation matrix

cosy —siny 0
R = |siny cosy 0
0 0 1

Therefore, from (6) we have the transformation (assumirgjrathat camera reference
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frame and world reference frame are coincident and aligned)

1 Xy cosy — Y, siny
T = | Xysiny + Y, cosy (15)
3/ image Zuw world
and
Xw - Yw 1
u:ﬂ: cos 7y sin y (16)
XT3 Zw
X, si Y, cos
v:ﬁ: SIn 7y + Yy, COS 7y (17)

€3 Zw

From (16) and (17) we can see that distance remains constant. Assumitig = ¢, the
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Figure 24: Point motion: As Z increases along with cameratia about Z-axis, the world
point which follows a circular path in the image plane cogesrto a point.

equations for, andv are reduced to the 2-D rotation of a point in thie— Y plane, which
effectively rotates a vector about the origin (therefoaeimg a circle).

Thus, rotation of the camera about theaxis will result in the points in the image moving

in a circle as showin in Fig. 6. As Z increases, because oppetive projection the circle
will become smaller and smaller and finally converge to a{oin
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4.3.6 Circular Motion - Single Time Step (Continuous)

Dudek et al. have explained the theory of a differential @mgbot in [18]. Continuous
circular motion can be defined using Fig. 7 as follows.

World Poi w o
or Olm\__.P=[X,Y,Z]

Y

]

<l

World
frame =
origin

Camera frame
of Reference VWP

o 7 z : 1
r sin @ 5 T
(a) Uniform circular motion. (b) Angle of rotation.

Figure 25: Circular Motion

Consider the following scenrio: A robot moves along a circplath (shown by the arc).
Its direction of velocity atx, y) is given byu. Every point(z, y) on this arc is at a distance
of r from the center, which is also the origin and coincides withworld reference frame.
If 7" is defined as the vector from the origin to any point on thelejrat any angl®, the
coordinates of that point can be given as

x =1 cosf (18)

y=r sinf (29)

Thereforr” can be given by

r cosf
r sin @
Note that the pointz, y) happens to be the origii, 0) in the camera reference frame.

Fig. 8 shows the camera, initially &t in the tangential directio@, move on the circum-

ference of a circle to poirit” in the tangential direction’. It can be easily proven that it

has rotated anti-clockwise by an angleConsider the polygowT PT’. We know that the
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angles of this polygon sum up 880°, thereforeZTPT" = 180 — . We also know that
a+ B =180 and thatn = LT PT". Therefores = 180 — a = 180 — (180 — ) =6

Fig. 9 gives a 3D illustration of the circular motion as on®mbnate frame (the cam-

i

Figure 26: Uniform circular motion.

era frame0®) moving with respect to another (the world fra®). Initially O is at a
distance of- with respect taO" on theX" axis. O¢ the moves along the circumference
of a circle with radius- andO" as its center. [Since th@“ frame is the camera frame,
conventionally, the- Z¢ axis points towards the world points.]

Since we have the world point in the fixed frarG®”, we can use the perspective pro-
jection equation after alignin@"” with the camera framé&¢’. To achieve this we need
the folllowing set of rotations and a translation

1) Anti-clockwise rotation of0" about theX" axis (giving usO"" which aligns with
0% by an anglel and translation by to coincide with the origirD¢’, so that thez"V axis
coincides withZ¢.

2) Anti-clockwise rotation 0"’ by and angled about theY"" axis to give usO"".

The transform matrix for the rotation from" — O¢ can be given by

1 0 0
Rxw(=%) =10 cos(3) sin(})
0 —sin(f) cos(3)
and the translation can be given as
39



T, = —rcos(0)
T, = —rsin(6)
T,=0

So the combined transform matrix for this transformatiorulddoe

1 0 0 —rcos(0)
~ |0 cos(§) sin(3) —rsin(0)
RT)x = 0 —sin(3) cos(%) 0 (20)
0 0 0 1

The second rotation giving""’ — O"” can be given as

cos(f) 0 sin(0)
Rywi (0) = 0 1 0
—sin(f) 0 cos(6)
And since we are not translating in step 2), the translateonbe given as
T,=0
T, =0
T.=0

Hence the combined transform matrix can be given as

] (21)

A world point P can then be transformed using

cos(f) 0 sin(0)
0 1 0
—sin(d) 0 cos(6)

[RT]y =

o O O

T Xu
<x2) —[RTIy [RT]x | (22)
I3 1w

and the image coordinates v can be given (by perspective projection) as

=2 v="22 (23)

333’ I3

Equation (22) and (23) gives us the followingandv:
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(X —rcosf)cosf — Y sind

‘= —(X —rcosf)sinf — Y cos b
(24)
o Z —rsinf
v —(X —rcosf)sinf — Y cos b
and
X — — Ysi
u rcos ) cos 0 sin 0 (25)

v Z —rsinf

Consider a point directly in front of the camera (i.e., on tp&aal axis at some finite dis-
tance from the optical center). This poinP? = [XW YW ZWIT - will have its world
coordinates a®" = [r, Y 0]7, where

1)
2) YW is at some finite distance from the optical center of the camer
3) ZW = 0 since the point is directly in front of the camera

4) — Z% is theZ coordinate of the point in camera frame

X" = r, since the point is at the same distance alahgxis as the camera

As the camera moves in a circular fashion, a world pdit = [r, Y, 0] traces the
following path in the image plane (Fig. 7).

c—>

05F

v —

Figure 27: Path traced by a world point in the image plane (¥ sxscaled).
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In this case, equation (25) becomes

u (r —rcosf)cosf — YW sinf (26)
v

—7sin 6

Whenf — 0, cos — 1 and we can write (26) as

(r—rcosf) cos §—Y sin 6
—rsinf

limy_,g

1 —YWsing _ YW
—1111’19%0 —rsinf — r

Whenf — 7, cos — 0, sinf — 1 and we can write (26) as

(r—rcosf)cos§—YW sin 6

hm@ﬂ% —rsinf
BT —YW o YW
= hmg_% — =

Wheno — 7, cos ) = sinf) = 0.7071 = « (constant) and we can write (26) as

(r—ra)a—Y"a
—ro

(r—ra)—-YW

llmgﬁ z —

= hmgﬁg

Substituting the value af we get

u _ (r—r(0.7071))-YW

-r

<

If we assume: << Y and0.7071 << Y, we have! ~ @

We can see that given a point on an optical axis of a cameratlgir@ front of it, the
line along which the point moves as the camera rotates inleiréashion has a slopg )

that can be given by the ratio of the radius of the circle tobdd Y distance,YTW.

The following experiment (Fig. 8) shows how the said poinhdees when the camera
is moved along the circumference of a circle.

5 Conclusions and Future Work

We propose symmetry theory as a basis for sensorimotor sgcation in embodied cog-
nitive agents and have shown that this allows the identifinaif structure with simple and
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Figure 28: Path traced by a world point in the image plane.

elegant algorithms which are very efficient. The explomtatof noise structure in the sen-
sors allows unactuated grouping of the sensors, and thisodetorks robustly for physical
sensor data. Symmetry bundles are also proposed as an epfooaffordance discovery.

Several directions remain to be explored:

Structural Bootstrapping OnceG-repscan be synthesized for affordance, then boot-
strapping can be accomplished as follows. Givea-eepwith group sequencé’; @ G 2
.10 Gi . Gy, then it is abstractly the case that any group equivalerityeiot G; may

be substituted in its place as a hypothesized Gevep G110 Go ... G ... 1 G,. Of
course, this will need to be checked in the real world. E.gqung child knows that it can
get into a full-sized car; when presented with a toy car, thiklenay try to get into it, not
realizing that there is a problem with scale. We plan to engptbese issues in conjunction
with colleagues working on OAC'’s. Moreover, as pointed ouli@a symmetries can serve
as strong semantic attributes in learning OAC predictiorcfions.

Evolving Communication Mechanisms G-reps provide physical grounding for a robot;
i.e., a link between internal categories and the externaldvdn order to achieve social

symbol grounding (see Cangelosi [12]), robots must agre®nwesshared symbols and
their meaning. Schulz et al. [60] propose Lingodroids aspggr@ach to this, and describe
experiments in which a shared language is developed betvodens to describe places
(toponyms) and their relationships. Speakers and microgphare used for communica-
tion, and good success was achieved. We propose to appmétiod to attempt to have
robots develop a shared language for G-reps and behavigoarticular, we will explore a
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What is this?game in which robots will exchange G-reps for specific olsjectbehaviors
(e.g., move straight forward) based on their individualeps. Measures of success can
be based on the ability to perform the requested behaviots, tbace or circumnavigate

specific objects.
\ il & - }%
-

Figure 29: The complete description of the medial axis stmgowas defined by Giblin[21].
Our algorithm computes all critical points and charactsithem. On the left the creation
points are the endpoints of the medial axis, while the jumctioints are where three curves
of the medial axis meet. The curves of the medial axis aretrasing an evolution vector
field. No offsets or eikonal flows were computed. On the rigjiet ¥isible key points are
the where the boundary of the medial axis is closest to thecbljoundaries, fin points
(the ends of the junction curves) and 6-junction points, henction curves meet. The
bounding crest curves are traced, the junction curves amdhbets are traced with the
algorithm’s evolution vector fields as functions of time. dikonal offsets are computed.

Symmetry Axes Although generally not explicit in sensor data, symmetrgsaare also
important cognitive features. Blum introduced the medias &gvansform in [4], and much
subsequent work has been done in terms of algorithms foeteshination (also see Brady
[7]). The medial axis gives the morphology of a 3D object aawl lse used to determine the
intrinsic geometry (thickness) of both 2D and 3D shapescéitis lower dimensional than
the object, it can be used to determine both symmetry andrasyim of objects. In previ-
ous work our colleagues have obtained results on trackiegligtance between a moving
point and a planar spline shape [14, 64], and computed pMoranoi diagrams between
and within planar NURBS curves[63] (see Figure 29). Howevecantinuing the search
for methods that allow us to characterize the correct tapoés well as shape of the planar
and 3D medial axis, an approach is developed that used matiwaisingularity theory
to compute all ridges on B-spline bounded surfaces of suffi@moothness[42], and then
extended the results to spline surfaces of deficient smes#jihl] and also to compute
ridges of isosurfaces of volume data[44]. Most recentlg tipproach has been extended
to compute the interior medial axis of regionsfin bounded by tensor product parametric
B-spline surfaces[43]. The generic structure of the 3D mexkiss is a set of smooth sur-
faces along with a singular set consisting of edge curvesdbr curves, fin points and six
junction points. We plan to exploit these methods to deteemiopological and metrical
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symmetries. Although useful for a number of applicatioms of high importance here is
for grasp planning; colleagues in the European Xperienogegrteam (Przybylski et al.
[54] have recently developed a grasp planning method baséteanedial axis transform.
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