
Predicting Visibility in Designs of
Public Spaces

Daniel Kersten, Robert Shakespeare, and
William Thompson

UUCS-13-001

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

February 21, 2013

Abstract

We propose a method for anticipating potential visual hazards during the design phase of an
architectural project. In particular, we focus on the needs of people with impaired vision.
The method uses a model of human visual loss together with physically accurate rendering
of scenes. It avoids the major challenge of automated computer recognition of obstacles,
and instead uses easily computable surface geometry data to highlight regions that may
require boosts in contrast to improve visibility.



Predicting visibility
in designs of public spaces

D. Kerstena,∗, R. Shakespeareb, W. Thompsonc

aDepartment. of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, USA
bTheater Department, Indiana University

cComputer Science Department, University of Utah

Abstract

We propose a method for anticipating potential visual hazards during the design phase of an architectural project. In particular,
we focus on the needs of people with impaired vision. The method uses a model of human visual loss together with physically
accurate rendering of scenes. It avoids the major challenge of automated computer recognition of obstacles, and instead uses easily
computable surface geometry data to highlight regions that may require boosts in contrast to improve visibility.

Keywords: low-vision, contrast sensitivity, hazard, design, obstacles

Introduction

Good vision depends on high spatial acuity, high contrast
sensitivity, and an intact visual field [15]. Losses in any of these
capacities creates difficulties in interpreting and navigating an
environment. Public spaces, such as lobbies, offices, restau-
rants, and stores, pose unique challenges for a person with vi-
sion loss. Such spaces are often encountered by the person for
the first time, and present unexpected hazards such as steps,
ramps, doorways, glass walls, benches, and other obstacles. In
addition, growing demands on energy conservation constrain il-
lumination design1, which in turn impacts visibility. Although
there is no engineering solution to compensate for poor acuity
per se, design choices can be made to boost brightness con-
trast in scene regions crucial to safe navigation, while at the
same time avoiding sources of misleading contrast. We pro-
pose a method to assist designers in locating potential sources
of visual ambiguity during the design phases of a project. The
method builds on past work in characterizing human visual sen-
sitivity together with physically realistic 3D graphics modeling
and rendering.

Contrast, defined more precisely below, is a measure of the
spatial change in intensity over some specified region in an im-
age. The location and amount of contrast is a consequence of a
complex interaction of illumination with surface geometry, ma-
terial, and viewpoint. The type and arrangement of illumination
sources is important for both esthetics and practical function.
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1See for example, http://energy.gov/public-services/building-design, “En-
ergy Efficient Buildings Hub”; http://www.eebhub.org, and IESNA/ANSI RP-
28-2007: Lighting and the Visual Environment for Senior Living. New York:
Illuminating Engineering Society of North America (2007).

However, the effects of illumination can be hard to anticipate,
requiring substantial experience augmented by computationally
intensive, physically realistic simulations [20]. Added to this
difficulty is the challenge for a designer with normal vision
to anticipate the effects of illumination for persons with low-
vision. Low light or poor fixture placement can result in the
failure to see or accurately interpret potential hazards. Misin-
terpretations can also occur in well-lit scenes with high contrast.
Cast shadows and reflections can create false interpretations of
a scene, such as mistaking a shadow for a geometrical change
such as a hole, step, or a material change (e.g. from dry to wet).
Unfortunate material and shape choices can also create false
perceptions of geometrical change, such as a step, when there
is none. Such mistakes can occasionally be seen with normal
high visual acuity (Figure 1). Such real-life “illusions” become
increasingly problematic with clinical conditions that lead to a
loss of spatial resolution and contrast, as well as normal vision
under low light, and with age. We will call failure to detect
a critical feature or obstacle a “miss”, and incorrectly detecting
one as a “false positive”. Misses are often more costly than false
positives; however, any kind of mistake can have unforeseen
negative consequences. Figure 2 illustrates how light stream-
ing through a window can be misinterpreted as a step, which
contributes to missing the true step which is slightly higher in
the visual field. We describe a tool to anticipate visibility prob-
lems, including both misses and false positives, during the de-
sign stages of a project.

For practical reasons, we focus on the effects of lighting un-
der static, monochrome viewing conditions, although the prin-
ciples and tools are extensible to motion and color. We propose
a method by which visibility-related mistakes may be antici-
pated by lighting and material choices that maximize contrast
in the right places, and minimize contrast in the wrong places.
But how much contrast is enough or too much? And what is
meant by the right or wrong places?
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Figure 2: Loss of spatial resolution and contrast. A. Left panel illustrates a low spatial resolution image of a room with table and chairs on the left, and a raised
ramp on the right. The ramp may or may not have a step at the end. The small horizontal bright patch in the lower right portion of the image, middle of the ramp,
might be mistaken for the rise of step brightly illuminated from the side. B. Middle panel illustrates low contrast, which also contributes to errors in perceptual
judgments. C. Right panel shows the scene with high contrast and high resolution. With normal vision, it is easy to correctly parse the bright region as due to bright
illumination on a flat floor rather than due to a change in the surface orientation of a step.

Figure 1: Apparent and real steps. The left panel shows a image of an actual
scene with an apparent set of steps. These steps are illusory, due to material
changes that mimic surface orientation and curvature changes associated with
the step runs and rises. The right panel shows a simulation with model steps
with the appropriate surface orientation changes. Additional occlusion cues,
including corners provide strong cues for steps.

Answers to the first question come from several decades of
research showing how visibility as a function of contrast and
spatial frequency affects various tasks such as reading, object
recognition, and navigation [15]. A key measure that takes both
contrast and resolution loss into account in the contrast sensi-
tivity function (CSF)[4] (Figure 6). The CSF measures the min-
imum amount of contrast required to detect a sine-wave grat-
ing2. Contrast sensitivity varies according to individual vision
losses, and decreases as a function of light level in normal vi-
sion as well [4]. Our physically realistic renderings specify
the predicted luminance values at each image location. Given a
prescribed CSF and a physically realistic simulation of a scene,
one can flag image regions whose contrast cannot be detected,
and thus pose a risk for missing an obstacle.

However, as illustrated above in Figure 2, one can have high
contrast regions that are easily detected, but that are neverthe-
less ambiguous as to cause due to lack of sufficient image res-
olution. While there may be sufficient information to recog-
nize the scene given only low spatial frequency content, i.e. by
its “gist”, this knowledge can be insufficient for discerning the
devil in the details, e.g. “I’m in a lobby, but is that a step? Is it

2A grating is an image pattern in which luminance is modulated sinusoidally
about a fixed mean level. The contrast of a grating is defined to be: (Lmax −

Lmean)/Lmean, where L represents luminance.

up or down?”. In a blurry image, one can lose contrast informa-
tion important for precise scene parsing, including localization
and identification of obstacles. A major challenge in applying
measures of visibility in natural scenes is that one needs to spec-
ify the regions of an image that are important. Although there
are existing results that could be applied to automating an anal-
ysis of overall contrast loss in rendered scenes (cf. [17], and
see Implementation section below), one would like to have a
method to automatically select regions corresponding to objects
relevant to the person’s task.

Answers to the second question–deciding the “right places”–
requires knowledge of the 3D structure of a scene together with
constraints based on the person’s task. We first discuss 3D
structure. Scene interpretation and safe passage requires de-
tection and recognition of potential hazards. A basic premise
is that accurate and reliable decisions critical for navigation
rest on the visibility of changes in the depth and orientation
of surfaces in the environment. Changes in intensity that co-
incide or correspond with surface transitions such as a step, a
post boundary, or a ramp are informative for scene understand-
ing and safe navigation. Changes primarily due to illumination
are more difficult to interpret and can confound detection and
recognition of objects because they are not stable with respect
to surface features of objects [10, 6]. This is illustrated in Fig-
ure 3. Note that it is almost impossible to accurately interpret
the scene from patches in the image whose contrast variation
is primarily due to illumination (upper left panel of Figure 3).
However, patches whose contrast source is surface orientation
and/or depth change (3, lower right) provide better information
for interpretability.

If one could automatically detect task-relevant regions in the
image, those regions could be checked for adequate or mislead-
ing contrast. The problem is that, despite considerable advances
in computer vision, an automatic solution to parsing an image
into its causes, i.e. material, depth, orientation, and illumina-
tion in the scene remains elusive (cf. [3]). Further, parsing
an image into regions that correspond to object or surface cate-
gories, such as “benches” or “stairs” also has no general, robust
automatic solution. To appreciate the problem in our context,
there is a huge space of possible obstacles. Consider just steps.
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Figure 3: Four causes of contrast. The image from Figure 1 (right panel, with actual steps), was broken up into subpatches and classified into four groups based
on the dominant cause of contrast in the patch: illumination, material, surface occlusion (i.e. abrupt depth change), and surface orientation change (i.e. concave or
convex surface intersections). The classifications were based on subjective judgment based on viewing the full color original image. The upper left panel shows
patches from a scene whose contrast is primarily due to spatial changes in illumination. The upper right panel shows patches of the image in Figure 1 whose
contrast is primarily due to material change. Material changes often coincide with depth changes. The lower left panel shows patches whose contrast is primarily
due to abrupt depth changes, i.e. to occlusion of one surface by another. The lower right panel shows patches whose contrast is primarily due to changes in surface
orientation, such as going from the run to rise of a step.

Figures 2 and 3 show straight and convexly curved steps, but
there are many other variations. Even with building code re-
quirements, steps come a wide variety of forms. They can be
concave, convex, and non-rectangular (winders), have riser and
treads adjacent to walls or not, have varieties of balusters and
newels, tread nosing or not, risers or not, treads can be mesh,
and so forth. Compound the large variation in potential ob-
stacle types with the infinite variation in the types of image
features corresponding to a given type, due to viewpoint, and
materials, and one begins to appreciate the problem. In our
study, we circumvent this problem by exploiting the fact that
designers work with scene descriptions, including object geom-
etry and layout using computer aided design (CAD) from the
start. Further, advances in physically realistic rendering of 3D
spaces provide physically accurate images that can be used as
input to models of human visual loss. CAD design files provide
a potentially rich source of scene information, including ob-
ject labels, shapes, positions, and materials. A major problem
in using this information is that it comes in many formats that
are software-dependent, and with labels and groupings that are
designer-dependent. Extracting and representing such informa-
tion in consistent standard format is a challenge by itself. Our
solution is to focus on extracting information from the depth
or “range” data. Range data is straightforward to obtain using
rendering environments such as Radiance. Further, a represen-
tation of depth change correlates well with object boundaries
(i.e. where there is often a depth discontinuity). Changes in
surface orientation correspond with key shape features, such
as the transition from run to rise in a step. Thus, a measure

of depth and/or orientation change provides a generic interme-
diate proxy for objects, surfaces, and potential obstacles. We
refer to such geometrical information as “ground-truth” and be-
low propose a simple method for using such “ground-truth” to
highlight problem regions in an image.

How about task? If one knew where a person is likely to go
and where they will look, we could further narrow the selection
of image regions. One could have a preselected list of labeled
surfaces, such as steps and hallways that afford actions, and in
principle even simulate potential actions with a space to check
for hazards. Our solution is more modest–we use the available
scene 3D depth data from a proposed design to automatically
select regions of interest that are within a volume reachable by
walking person, i.e. below a maximum height (e.g. 8’), and
within a fixed number of steps (e.g. four steps, 3’ each, or 12’).
Alternatively, our approach also allows a designer to interac-
tively select a specific region of interest (e.g. “these particular
steps” or “this hallway”), and have the program automatically
analyze this region over a range of lighting conditions for visi-
bility problems.

In summary, our approach is to automatically identify surface
geometry transitions important for successful scene interpreta-
tion and navigation and then check whether there is sufficient
change in local contrast. But we also go the other way, to check
whether regions with large contrast occur in the absence of ge-
ometric transitions, such as shadows across a floor. Figure 4
illustrates the main components of the procedure. An image
rendering and a map of surface distances is obtained from a de-
sign’s database. We refer to this latter map as “ground truth”.
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CAD design

Depth map

Photometric rendering Low vision Region-based
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Figure 4: Method. The scene model contains information regarding objects, materials, layout, illumination and viewpoint. The scene model is used to produce
an image rendering and a map of important locations extracted from the surface models in the scene. In the implementation tested, these regions are of two types:
unobstructed navigable floor space within a criterion distance (in green), and regions with potential obstacles (in red). Surface transitions include discontinuities in
depth, orientation, and curvature. Regions of interest can be constrained based on general a priori constraints such as “all regions below 8 feet and within 10 feet”,
or be targeted by a user such as “these particular steps” or “this walkway”. Information loss is computed by filtering the rendered image with a filter representing
the losses of a low-vision observer. The regions of interest are compared with the image representing image loss to check for ambiguities that might pose a risk.
These ambiguities include predictions of both edge misses (red) and false positives (green).

In the implementation described below, the geometrical transi-
tions are determined by detecting discontinuities in depth and
orientation of surfaces from the range data. Task-relevant re-
gions of interest are then selected based either on a priori nav-
igable space constraints, or selection by the designer. Infor-
mation loss in the image is computed by filtering the rendered
image with a spatial filter that characterizes visual deficits in
acuity and contrast. Information loss is represented by a low
vision response map. The regions of interest are then compared
with the low vision response map to assess potential risk. We
consider two types of output and two types of application. The
first output is simply a measure of overall contrast variation in
the task-relevant region of interest. The second is local, and
flags geometrical edges whose image contrast is below a crite-
rion level (misses) or regions above criterion that have no edges
(false positives). In an online interactive application, predic-
tions of edge misses and false positives could be flagged for
inspection by a designer or used in a summary score. In an au-
tomated application, a batch of files (e.g. ranging over a series
of illumination conditions) is submitted, and the program re-
turns visibility scores (e.g. contrast response variation or miss
rate) for each image.

Implementation

Determining ground-truth and task-relevant regions
We use the physically accurate rendering model, Radiance, to

produce 1) High Dynamic Range (HDR) image files that accu-
rately represent the luminance intensity of the actual scene; 2)
a registered range map from the z-buffer, which represents the
distances from the viewer to surfaces in the scene; we also use
maps representing x, y, and z components of surface normals

at each point. In addition, we can also output the vertical and
horizontal distances of surface points from the ground plane,
useful for restricting relevant portions of the scene to a given
task-specification, such as “all surface points reachable within
12 feet and below 8 feet in height”.

Given a range data file r(x, y) that specifies distance as a func-
tion of image coordinates x, y, we identify salient locations by
finding where there are significant changes in depth and orien-
tation. We have tried several edge detection methods, and found
that the Canny edge detector [9], operating on the range map r,
and on the surface normal maps provides reasonable edge maps
of ground truth.3 The result, combining edges over range and
surface normal changes, is represented by OE .

e(x, y) = OE(r(x, y))

where e(x, y) = 1 and e(x, y) = 0 mark the presence and absence
of an edge at point (x, y), respectively.

To pick out regions of the image that are important for nav-
igation, we specify an operator, ROI(·), that selects an image
domain reflecting a region of interest based on task constraints.

3There is a substantial body of computer vision research on edge detection
in image intensity data, e.g. [13, 16]. No solution is perfect, and the problems
are well-known. Two basic problems are selecting the appropriate spatial scale
and spatial noise. If the scale is too coarse, important edges are missed and if
the scale is too fine, noise introduces spurious edges. In the range data from
architectural designs, noise could arise form fine-grain textural detail, such as
foliage. So far, we have found that scale choice is less problematic because
surfaces in designs tend to have smooth representations with sharp distinctions
between objects. Further, range data does not have confounding factors, such
as specularities and shadows, that complicate edge extraction from image in-
tensity data. An additional advantage is that the range maps have an absolute
spatial scale, which could be exploited to determine an appropriate degree of
smoothing if needed.
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Figure 6: Filter model of low-vision loss. The upper left panel shows the contrast sensitivity for normal vision (upper curve) and a low-vision observer (lower
curve). Contrast sensitivity is the reciprocal of contrast threshold. Contrast threshold is the minimum detectable contrast. Typically as spatial frequency increases
(and the period of the grating gets smaller), the visual response becomes smaller until the white and dark bars of the grating can no longer be resolved even
at 100% contrast, corresponding to the lower bound on contrast sensitivity of 1. Near normal visual response, corresponding to 20/20 vision, extends to about
50 cycles/degree. The lower curve shows the response of a low-vision model observer with 20/600 vision. The curves are based on the Barten model of the contrast
sensitivity function (CSF) [4]. The upper right panel shows normalized human visual contrast response (CRF) to a sine-wave grating as a function of spatial
frequency in cycles per degree of visual angle. In normal vision, the CSF is band-pass (see left panel), reflecting that response to low contrasts at low frequencies
is suppressed. Although there are cases of low-vision with abnormal low-frequency response, we wanted a filter that represented the common, and critical loss at
high frequencies. The upper right figure shows a modification in which the response left of the peak CSF are set to one. We assume radial symmetry (e.g. ignoring
aberrations such as astigmatism) and use the 1D CRF to represent constant loss in each polar direction. The lower left and lower right panels show the filtered
images of a room with a down-step. These images represent the information available for normal vision (left) and a low-vision observer (right). The image on
the right is the convolution of the left image with a 2D version of the spatial filter shown in the upper right, representing the loss experienced by an observer with
20/600 vision.
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Figure 5: Ground truth. The top panel shows original range data, which is
a map of the distance from the viewer indexed by position in the image. The
middle panels show the extracted orientation, depth, and combined orientation
and depth discontinuities, represented by e(x, y). The lower panels show the
range and edge maps restricted to the navigable region of interest. The metrics
and annotations use the task-specific edge map, et(x, y), together with a model
of vision loss to produce annotations and feedback for the designer.

Here, the ROI is simply determined by those image locations
that are reachable by a person, e.g. height h(x, y) lower than hc

feet, and distances d(x, y) within a predefined value, dc from the
viewer:

ROI(·) =

·, if h(x, y) < hc and d(x, y) < dc

Null, otherwise

For interactive applications, a designer could select a region
of concern for inspection, e.g. a pathway leading from the view-
point to an intermediate destination in the domain of the image.
Figure 5 shows examples of ground truth maps, and their re-
strictions to task-relevant regions.

The end-product for ground-truth calculation is given by:

et(x, y) = ROI(e(x, y)).

The bottom right panel of Figure 5 shows an example of et

(right).

Modeling loss of spatial resolution
Although, the forms of visual loss are extremely diverse, we

focused on the loss of spatial resolution, or more precisely the
loss of contrast information at high spatial frequencies. Loss of
spatial resolution or “acuity” is commonly measured as Snellen
acuity, but a more general measure is the contrast sensitivity
function or CSF (Figure 6). The diversity of vision loss to-
gether with the enormous range of scene variations in designs,
underscores the need to initially keep the model of vision loss as
simple as possible. Thus at this point, we ignore possible differ-
ential loss in multiple visual channels in human vision and the
effects of large changes in illuminance, resulting for example in
glare. We describe a simple “single-channel” model of visual
loss. This provides a base model on which future elaborations
can be developed and compared.4

The HDR image (from Radiance) is first converted to lumi-
nance contrast:

Iinput(x, y) =
HDR(x, y) − HDRavg

HDRavg

This is a “global” model of contrast. An image representing in-
formation loss, Iacuity(x, y) is then computed by convolving the
luminance contrast image with a “blur” kernel whose parame-
ters are determined by the contrast response function:

Iacuity(x, y) = CRFacuity ∗ Iinput

The shape of the CRF is determined by the CSF for a specified
Snellen acuity (Figure 6).

As with the ground-truth maps, we use the ROI operator to
restrict the region of image information loss to task-relevant ar-
eas:

4For example, a single-channel model doesn’t take into account the depen-
dency of spatial filtering on local luminance or multiple channel filtering by the
human visual system, cf. Peli [17].
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It(x, y) = ROI(Iacuity(x, y))

In the next section, we show how one can use It and et to
provide designer feedback through graphical annotations and
metrics.

Metrics and annotations

Region-based. Imagine now that a designer would like feed-
back demonstrating the information available to a low-vision
observer with a pre-specified level of acuity. A simple form
of feedback is to show the entire response image Iacuity (or It).
However, a major problem in relying on designer inspection
is that, in contrast to a low-vision observer, the designer has
considerable familiarity with the scene and likely the rendered
views as well. Prior knowledge is known to strongly bias the
interpretation of a blurry and otherwise ambiguous image [8].
Further, visibility on the display itself depends on calibration.
One solution is to provide the designer with objective feedback
in the form of a visibility score which be used to evaluate the
relative merits of various rendering choices. There is a very
large and active literature on image quality metrics, motivated
early on by the desire to reduce visible artifacts induced during
image compression [1, 21, 22]. These metrics focus on mea-
suring the difference between two images which can be used
to predict discriminability for normal human observers. Al-
most nothing, however, is known about visibility metrics that
reflect interpretability of a single natural image for low-vision
observers. Further, the ultimate purpose of a metric is not to
predict visibility per se for a particular image for a particular
standard observer, but rather to provide a summary score that
is correlated with functional visibility in the space once built.
A simple way to score the overall visibility of the task-relevant
region of Iacuity is to calculate the standard deviation of It (or
root-mean-squared-contrast, “RMSC”):

RMS C = std(It).

Intuitively, this score captures the overall effective contrast vari-
ation within the task-relevant region of the blurred image. The
number decreases with both loss of detail and contrast. High-
values indicate large variations in response, and a uniformly
constant response image would have a value of zero. Eval-
uation of the validity and merits of this or alternative global,
image-based metrics will require systematic research.

Edge-based. Another way to reduce the effects of designer
familiarity is to take advantage of our ability to calculate the
task-relevant edge map, et. We can provide visual feedback re-
garding geometrical edges in the scene which might be missed
or misinterpreted. Given a criterion threshold level, c, on the
gradient of the response, we find those edges in the range map
that have a contrast response change below criterion. This re-
sults in a map of misses:

misses(x, y) =

1, if |∇(It)| < c and et(x, y) = 1
0, otherwise

We can also highlight edge false positives:

f alsepositives(x, y) =

1, if |∇(It)| > c and et(x, y) = 0
0, otherwise

Figure 7: Edge misses and false positives. Misses, or edges where the re-
sponse gradient falls below threshold are shown in red. False positives, i.e.
edges whose contrast change is above threshold, are shown in green.

Given an assumption of the relative costs of the two types of
errors, one could calculate a summary score based on both. For
example, if the costs of a miss and false alarm were equal, a
simple summary score is d′, which is related to the area under
the Receiver Operating Characteristic or ROC curve [11] . One
advantage of such a measure is that it is independent of crite-
rion, c. The disadvantage is that the costs of misses could be
much higher than false alarms (e.g. missing a step vs. deciding
there is a step when the floor is actually flat as in Figure 1).

Future Work
Software tool

We have provided what we think is a practical and com-
pelling method that could be built into an interactive tool for
designers to evaluate the relative impacts of design choices for
people with impaired vision, or under low lighting.5 It has the
advantages of 1) reducing the effect of the unavoidable subjec-
tive biases a designer will have in trying to interpret a blurry
image as a low-vision person might; 2) providing the basis for
geometry-based metrics that could be used for interactive feed-
back, or the semi-automatic batch evaluation of a large space of

5The Barten model for the human CSF also takes into account loss of con-
trast sensitivity as a function of overall mean light level.
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Figure 8: Upper panel shows a processing pipeline for step down with overhead lighting: Luminance image→ region-of-interest→potential hazards within region-
of-interest→ visibility estimate of potential hazards. Lower panel shows the processing pipeline for step down with focused downlights to improve visibility. In
the right panel, the green lines are hazard features predicted to be visible for someone with 20/600 acuity, while the red lines indicate misses, i.e. features predicted
to be below the visibility threshold.

design choices (e.g. as in a daylight sequence in which several
dozen images might be generated from a particular viewpoint,
but over different times of day.).

Figure 8 illustrates a processing pipeline used for a proof-
of-concept interactive tool. First, Radiance software is used to
generate an accurate, high dynamic range luminance image for
a viewpoint chosen by the designer, which is then processed
to simulate a specified loss of acuity. The tool would provide
a visualization of the surviving information, demonstrating the
challenges to visibility. A second visualization shows the re-
sults of a quantitative analysis of the scene, indicating features
that are likely to be invisible at the specified acuity level. The
right panels of the upper and lower panels of Figure 8 illustrate
two of the measures that can be computed, involving average
contrast over a hazard and an estimation of visible (green) and
invisible (red) geometric features.

Validations
Considerable work needs to be done, however, to refine and

validate metrics and the utility of miss/false alarm annotations.
One practical way of proceeding is to use low-vision human
subjects (and/or normally sighted subjects with filtered im-
ages representing reduced acuity and contrast sensitivity) to la-
bel and trace object boundaries in images on a computer dis-
play calibrated for contrast and appropriate angular subtense
to reflect a given viewing distance. Performance can be com-
pared with the misses and false alarms produced by the method
described above to test, and determine algorithm parameters.
Recognition performance can also quantified as confusion ma-
trices for targets, and by tracing accuracy scores for the bound-
aries, as in [5], to test for correlations between region-based
and edge-based metrics and human performance. A key issue
is whether the parameters for a visibility metric derived from
one set of test images generalize to other contexts. Experimen-
tal data is essential to test and as needed improve the low vi-

sion filter models, and refine the algorithms for automatically
computing visibility, in order to choose, and fine-tune the most
useful visibility metrics.
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