
Fast, Effective BVH Updates for Dynamic Ray-Traced Scenes
Using Tree Rotations

Daniel Kopta Andrew Kensler Thiago Ize Josef Spjut Erik Brunvand Al Davis

Abstract

Bounding volume hierarchies are a popular choice for ray tracing
animated scenes due to the relative simplicity of refitting bounding
volumes around moving geometry. However, the quality of such
a refitted tree can degrade rapidly if objects in the scene deform
or rearrange significantly as the animation progresses, resulting in
dramatic increases in rendering times. Existing solutions involve oc-
casional or heuristically triggered rebuilds of the BVH to reduce this
effect. In this work, we describe how to efficiently extend refitting
with local restructuring operations called tree rotations which can
mitigate the effects that moving primitives have on BVH quality by
rearranging nodes in the tree during each refit rather than triggering
a full rebuild. The result is a fast, lightweight, incremental update
algorithm that requires negligible memory, has minor update times
and parallelizes easily, yet avoids significant degradation in tree
quality or the need for rebuilding while maintaining fast rendering
times. We show that our method approaches or exceeds the frame
rates of other techniques and is consistently among the best options
regardless of the animation scene.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray Tracing;

Keywords: ray tracing, acceleration structures, bounding volume
hierarchies, tree rotations, dynamic scenes, parallel update

1 Introduction and Background

Acceleration structure maintenance is a crucial component in any
interactive ray tracing system with dynamic scenes. As the geometry
changes from frame to frame, the existing acceleration structure
must be either updated or replaced with a new one, the latter of
which can be costly. An ideal update algorithm should produce an
acceleration structure that is as efficient to render as one rebuilt from
scratch by a high quality, offline build algorithm for that same frame,
yet it should produce it in as little time as possible.

In recent years, bounding volume hierarchies (BVHs) have been
a popular subject for research on efficient acceleration structure
update algorithms. They are also popular for our specific area of
interest which is animations where geometry is moved or deformed
on each frame. BVHs are relatively fast to render, and there is a
very simple update algorithm that involves node refitting [Wald et al.
2007] to handle moving and deforming geometry. Refitting works by
performing a post-order traversal of the nodes in the BVH tree. Each

leaf is updated with a new tight bounding volume around its corre-
sponding geometry, and the interior nodes combine these to form a
tight volume enclosing their children. With axis-aligned bounding
boxes, this process is fast and reasonably effective for small defor-
mations to the underlying geometry. However, the quality of the
tree can degrade rapidly when the geometry moves incoherently or
undergoes large topological changes.

Full rebuild algorithms for animations overcome this by replacing the
BVH with a new one before the degradation becomes too significant.
[Lauterbach et al. 2006] measures the degradation and performs a
rebuild on demand; while this is able to maintain low average frame
times, it introduces noticeable rendering pauses when a new tree
must be built.

[Ize et al. 2007] perform the rebuild asynchronously while refitting
frame to frame so that the tree quality never has a chance to become
too poor and rendering stalls never occur as with the method of
Lauterbach et al. While this removes the rendering stalls produced
by the method of Lauterbach et al., the asynchronous rebuild requires
a dedicated core just for rebuilding, significant changes to the ray
tracing system, adds an additional one frame lag in user input, and
requires storing two copies of the mesh and BVH.

[Wald 2007] avoids degradation by using a fast parallel build algo-
rithm to completely rebuild the tree for every frame. This has the
advantage of supporting all types of animations in addition to the
deformations handled by refitting, and allows each frame to have
an un-degraded tree. However, in order to achieve very low build
times, Wald had to produce lower quality trees than those used in
a high quality sweep or binned SAH. Furthermore, even these very
fast parallel builds were still significantly slower than refitting and
did not scale well to many cores, which makes per frame rebuilds
attractive only for animations with significant deformation or small
triangle counts.

[Wald et al. 2008] later combined fast parallel rebuilds with the
asynchronous rebuild in order to ensure that every few frames a
new tree would be available. This resulted in fairly good perfor-
mance for animations with significant deformation; however it still
has the disadvantage that between new trees performance can still
significantly degrade and for animations with less deformation the
overhead of dedicating multiple cores solely to building, in addition
to the refitting, results in inferior performance compared to just
refitting.

Hybrid algorithms combine refitting with heuristics to determine
when to perform a partial rebuild or restructuring of a sub-tree. [Yoon
et al. 2007] uses a cost/benefit estimate of the culling efficiency of
ray intersection tests to restructure pairs of nodes, while [Garanzha
2008] looks for nodes whose children undergo divergent motion.
Both of these algorithms use multiple phases to first identify candi-
dates for restructuring, and then reconstruct them.

On a GPU, [Lauterbach et al. 2009] showed how a BVH could be
quickly built using the LBVH algorithm. However, tree quality
was significantly inferior to that produced by a standard SAH build,
especially if the model did not consist of uniformly distributed
triangles. [Pantaleoni and Luebke 2010] improved on the LBVH
build time and tree quality by exploiting spatial coherence in the
original mesh and performing a SAH build over the top level of the
tree. However, their HLBVH algorithm still depends on the LBVH

Figure 1: Potential tree rotations considered

and so suffers with nonuniform triangle distributions. Though a very
fast build, it is still two orders of magnitude slower than just refitting.
[Garanzha et al. 2011] further improves on HLBVH using work
queues, and is able to reduce the build time further, but is still almost
an order of magnitude slower than refitting alone. These algorithms,
however, are targeted specifically to GPUs and have not been shown
to be effective update strategies for a CPU-based build.

1.1 Tree Rotations for BVHs

Tree rotations for bounding volume hierarchies were first introduced
in [Kensler 2008], in which rotations are applied as a preprocess
on top of an offline build algorithm to improve the quality of the
BVH for static scenes. The algorithm starts with a BVH built from a
greedy surface area heuristic (SAH) [Goldsmith and Salmon 1987]
construction, it then considers potential improvements to the tree
via restructuring operations called tree rotations. Making hundreds
of full passes over the tree, the algorithm is able to reduce the SAH
cost and render time by up to 18% for static scenes.

Figure 1 shows the potential node swaps that the algorithm considers.
Each of the upper four rotations are the base primitive rotations and
involve exchanging a direct child of the node with a grandchild
on the opposite side. This has the effect of raising one subtree
at the expense of lowering the other. The lower two rotations are
compound rotations that can be composed through a sequence of the
upper four. These compound rotations are used in order to give the
algorithm the ability to find improvements that it might miss due to
the intermediate steps raising the SAH cost temporarily, and thus
getting stuck in local minima. Note that the figure is not symmetrical
with respect to the lower rotations on the grandchildren because the
missing two rotations merely produce mirrored trees. Since a tree
and its mirror share the same cost, that would result in redundant
work. This is the basic hill-climbing algorithm of [Kensler 2008].

Since the BVH is built from top down, it can only make estimates
about the true costs of the subtrees it is building. Once the tree is
built, however, we can know the true SAH cost of any given sub-
tree. Kensler’s algorithm uses this knowledge to consider swapping
certain nodes to place them under a different parent that can bound
them more efficiently as measured by the true SAH value. After
one pass over the tree, its new configuration presents new swapping
opportunities that were not apparent on the first pass. Any given
subtree may need to undergo a sequence of multiple rotations to
reach the optimal configuration. Since the intermediate steps to
reach that state may temporarily have a higher SAH cost, a simple
hill climbing approach is not sufficient. To solve this problem, simu-
lated annealing [Kirkpatrick et al. 1983] is applied, which allows for
detrimental changes to happen occasionally in order to avoid local
minima. This requires that many hundreds of passes over the tree

are made in order to eventually converge on a high quality solution.

Since the algorithm must make so many passes over the tree, it can
add several minutes to the build time, and up to 14 minutes for the
largest model tested. Using a high quality sweeping SAH build
algorithm, this translates to about 2 orders of magnitude increase in
build time. Scenes with uniformly distributed and sized triangles
such as laser scanned models tend to already be near the optimum
configuration from the initial build, so tree rotations only marginally
improve the SAH cost, and can even result in a slight increase in ren-
der time, since the correlation between SAH cost and render time is
not strictly related. Scenes with heterogeneous triangle distribution
and sizes such as architectural scenes see greater improvements. In
order to reach the reported 18% performance improvement, however,
the renderer must employ path tracing and not just simple ray casting.
This is likely due to the assumption that the SAH makes about rays
being evenly distributed in origin and direction [Kensler 2008].

2 Incremental Updates via Tree Rotations

In this paper, we take the tree rotations as described by [Kensler
2008], which was a slow offline preprocess used on high quality
trees in order to get slightly higher quality trees, and instead make
the observation that while it is challenging to improve upon an
already high quality tree, tree rotations have a much easier time
improving upon a lower quality tree and the iterations can be applied
across successive frames even if the geometry is deforming across
those frames. This is precisely what occurs during an animation
using refitting, especially if geometry is moving incoherently. By
folding tree rotations into the refitting operations, we are able to
efficiently use tree rotations to dramatically improve the quality of
the trees generated by a BVH refit with only a small increase in
additional processing time and so can achieve better performance
on animations than refitting alone or per frame parallel rebuilds.

On each frame, after the geometry has been interpolated to its new
position, we do a standard refit which involves a post-order traversal
of the tree, during which we refit each node to enclose the underlying
geometry of its two child nodes. After refitting the node, the subtree
rooted at that node may no longer be structured in a manner that is
efficient for ray traversal. As triangles move apart from one another,
the tree structure that was built assuming their previous positions can
have awkward relationships between sibling nodes. While the BVH
has not changed structurally, the volumes within it have changed
spatially, potentially resulting in significant node overlap, making it
difficult to efficiently cull off sections of the tree.

After refitting a node using the traditional refitting algorithm, we
now consider restructuring its direct children and grandchildren
with tree rotations. This allows for two nodes to swap positions in
the tree, giving them a different parent and grouping them with a
different sibling. If this swap results in a better spatial organization
for the subtree, as represented by its SAH cost, then it is considered
a beneficial reconfiguration and the swap is kept. If a swap is made,
we then update the bounding volume of the affected parent node
with another refit operation that tightly bounds its new children. As
the tree quality degrades from moving geometry and refitting, our
tree rotations are able to find even more useful swaps to perform,
and can maintain the tree in a high quality state. Figure 2 illustrates
this process.

The node that we are considering rotations for is the outer black
bounding node that contains all 3 triangles in Figure 2. The green
triangle (b) that moves from one frame to the next was originally
grouped in a subtree with triangle (a) as its sibling. After (b) moves,
their parent node is refit, shown in red. This new red bounding
volume does not efficiently contain its two children, and results in a
large empty space and higher SAH cost. Rays passing through that

empty space ideally would not need to test against either of the two
nodes contained within that subtree, so a better tree organization
may be possible. After checking for beneficial rotations, we find that
swapping the leaf node containing triangle (a) with the leaf node
containing triangle (c) produces a tree with a lower SAH cost, and
the new red node contains less empty space. This process is done
from the bottom up for every node in the tree that has grandchildren.

Since Kensler’s hill climbing algorithm for tree rotations can be
implemented with a post-order traversal and works on the same data
as visited during refitting, we can remove most of the memory access
costs incurred by tree rotations by performing both the refitting and
rotations in the same pass over the tree. This results in a fast update
algorithm that is easy to add to any ray tracing system that already
uses refitting, and maintains a high quality tree without the need for
rebuilding. Furthermore, if the refitting is already parallelized, then
the rotations will also be parallelized simply by being added into the
refit.

The biggest caveat of our algorithm involves primitives and leaf
nodes during construction of the original tree. Primitives whose
motion may diverge need to be placed in separate leaf nodes in
order to prevent large empty spaces forming in their parent bounding
volume. In practice, this means that our implementation builds the
tree down to the level of a single primitive per leaf node, leading to
potentially larger trees than those produced by the SAH. A smarter
construction algorithm with a priori knowledge of how primitives
move together [Günther et al. 2006] could improve on this. Another
option would be to split and merge leaf nodes during rotation.

3 Results

To evaluate the performance of our algorithm, we implemented it
in the Manta interactive ray tracer [Bigler et al. 2006]. Starting
with the existing recursive refitting code, we extended this to also
maintain cost evaluations and to perform the most beneficial tree
rotation as each node is visited on each frame. For benchmarking
purposes, all results were gathered on a 2.67GHz 8-core Intel Xeon
X5550 running Manta, rendering all scenes at 1024x1024 pixels with
shadows for a single point light source. All refitting and rotation
updates and renderings used 8 parallel threads. For BVH traversal,
we use 8x8 ray packets and the interval arithmetic culling scheme
described in [Wald et al. 2007].

Our example animations, seen in Figure 3, fall into two broad cate-
gories: smaller scenes with simple deformations (Cloth Ball (92k
triangles) and Fairy Forest (174k)), and scenes with a variety of sizes,
but with extensive deformations (Exploding Dragon and Bunny
(253k), Lion (1600k), N-Body Simulation (146k), and BART Mu-
seum (66k)). We measured the performance on each animation using
refitting only, and our proposed refitting with rotations. We also
measured performance on two baseline techniques: performing a

Figure 2: The effects of refitting and one possible rotation on a
simple subtree

full high quality SAH sweep rebuild on each frame, and performing
an approximate rebuild using SAH binning. Per frame SAH sweep
builds are impractical due to their lengthy build time, but the result-
ing tree is of very high quality. An ideal update algorithm would
produce these SAH trees instantly every frame, and so we simulate
this ideal but non-existent update algorithm by subtracting the re-
build time from the frame time when using a per frame SAH sweep
build. This represents the theoretical best case that all algorithms
should strive to meet. The binned SAH build is faster, but still too
slow; however, parallel binned SAH builds have been used with
some success. In practice scalability has been an issue with even
very fast implementations achieving 50–75% efficiency [Wald 2007].
Assuming future hardware and algorithms could allow for perfect
scalability to the 8 cores we tested, we would like to know whether
idealized parallel binned SAH rebuilds would allow for faster frame
times than refitting with rotations or just refitting. To simulate this,
we took the frame time using the serial binned SAH rebuild and
divided the rebuild time component by 8 in order to get a frame time
for a perfectly scaling binned rebuild.

Figure 6 shows the time to render a frame over the course of a 100
frame long animation for each of the test scenes. We allowed the
animations to loop 2.3× in order to show that rotations are fairly
stable even when changing between the end and start key frames
which usually are very different. As expected, using tree rotations is
never faster than the ideal update, but we can often get fairly close
to that ideal and are almost always faster than the parallel binned
rebuild. Rotations are, also as expected, almost always better than
the refit-only approach.

For the smaller, simpler scenes our rotation and refit algorithm
performs very well, tracking closely to the ideal full rebuild perfor-
mance. In both of these examples the idealized parallel build updates
are significantly slower because the amount of deformation is low
enough that rotating and refitting are able to keep the SAH cost close
to optimal, as evident by the SAH costs in Figure 6. Rotations, and
even simple refitting in the case of the Cloth Ball, are able to achieve
rates very close to the ideal update frame time.

For scenes with extensive deformation, regardless of size, simple
refitting results in very poor quality trees as evident by the orders
of magnitude increases to the SAH cost as the animation progresses
and the very high time to render a frame. With rotations, the SAH
cost is kept much lower than refitting, the frame times never blow
up as happens with refitting-only, and in fact the frame times often
continue to stay close to the ideal update performance.

The exception is the extremely chaotic BART Museum animation.
For this animation, while rotating is much better than refitting-only,
it still performs significantly worse than per frame rebuilds. In fact,
while not shown, even our single threaded approximate per frame
rebuild was able to achieve better frame rates than with rotations.
This is due to the initial tree being of very poor quality, as evident
by the SAH cost of even the ideal update being as poor as the
worst cost that refitting achieves in the Lion and Exploding Dragon
and Bunny animations. Given an extremely poor quality tree, tree
rotations are able to help but are not able to fix the inherently bad
tree and so rebuilding from scratch in this particular case is much
better. However, this is rare in practice, as evident that it required
a synthetic test to expose this limitation. Building a tree starting
from one of the other key frames would have given drastically better
results. Another option is to use the rebuild heuristic of [Lauterbach
et al. 2006] alongside rotations and force a parallel binned rebuild to
occur if the tree quality ever becomes extremely poor. Since in this
case performing a rebuild is already a good option, this would not
result in a stall and would likely result in overall better frame rates
than per frame rebuilds.

Figure 3: The 6 animations we used from top to bottom are Cloth Ball (92K tri), BART (66K tri), Fairy Forest (174K tri), Exploding Dragon
and Bunny (253K tri), Lion (1.6M tri), and N-body Simulation (146K tri).

Another anomaly can be seen in the Lion scene. Compared to ideal
parallel binned SAH rebuilds, rotations and even simple refitting
are significantly faster in the Lion animation due to the large cost
of rebuilding that many triangles compared to the relatively quick
refit/rotation updates and time to render. For per frame rebuilds
to become competitive in large models, the amount of degeneracy
introduced by animation must be extremely severe—the lion scene
already has an extremely high SAH cost for refitting, and yet even
there it just matches the ideal parallel build time—or the amount of
rendering work must be very high, such as with non-interactive path
tracing, so as to make rebuild time a minor cost.

In order to get an idea of how expensive each update algorithm
is to perform, we investigated what the overhead cost is for each
technique. Figure 4 shows average time to update each frame for
refitting, refitting with rotations, and the ideal parallel approximate
rebuild for each of our test scenes. We can take the average of all
frames because the times for each algorithm are fairly insensitive to
which specific frame it is updating. Adding rotation to refitting only
increased the update time by a nominal 1.6–2× and is significantly
lower, usually by an order of magnitude, than even an idealized
parallel binned rebuild.

Though rotations are significantly more computationally expensive
than refitting, it ends up increasing the refitting update cost by less
than a factor of two. This is partly due to data sharing between
refitting and rotating. Refitting alone must bring every node in to
the cache at some point, and when we apply rotations on top of that,

Cloth ball Bart Fairy Exploding Drag Lion N-body

rotation+refit time (ms)
refit time (ms)

ideal parallel binned update time (ms)

2.98 4.47 4.87
8.45

44.2

3.71
1.84 2.30 2.95

4.58

27.7

2.36

13.6
10.5

27.0

38.4

261.6

21.0

Figure 4: Average time to update the BVH using refitting, refit-
ting+rotations, and an “ideal parallel binned” rebuild that scales
perfectly to all 8 cores.

we use the same node immediately after it has been refit, taking
advantage of temporal locality in the data. We also note that only
about one quarter of the total nodes are candidates for rotating. Leaf
nodes need not be rotated, cutting out the bottom level of the tree,
corresponding to about half of the nodes. In fact, the only nodes that
can be rotated are nodes with grandchildren, cutting out the next

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10

Ti
m

e(
m

s)

Animation Loop

Frame time in Exploding Drag. using rotations for various length animation loops

20 frame loop 100 frame loop 500 frame loop

Figure 5: Frame time for the Exploding Dragon and Bunny when
rendered using tree rotations where each animation loop consists of
20, 100, or 500 frames.

level of the tree as well, and another half of the remaining nodes.

The difference in the tree between one frame and the next can have
an effect on the behavior of tree rotations. This is not the case with
a rebuild, since it simply constructs a new tree based on whatever
position the triangles are currently in. With tree rotations however,
since we first refit the nodes from the old tree, the amount of motion
that occurred between one frame and the next will determine the
quality of a refit tree. The behavior of rotations will differ based on
the new quality of the refit tree. To examine this, we ran tests varying
the number of frames in one loop of an animation, thus varying the
amount of change the geometry undergoes from one frame to the
next. Figure 5 shows the frame time for the very chaotic Exploding
Dragon and Bunny animation when rendered using tree rotations
with 20, 100, and 500 frames per animation loop. Assuming an ideal
60fps for running the animation, the 20 frame loop would take an
extremely quick 0.33 seconds, the 100 frame animation would take
1.66 seconds and the 500 frame animation would take a very slow
8.33 seconds. The 20 frame loop has significant tree deterioration
between frames since the animation time step is larger between
frames, and so is more challenging for our algorithm; however it still
performs well compared to the other update methods. The 100 and
500 frame long loops exhibit similar performance, indicating that
the tree rotations had enough time to converge within the animation
loop. In addition to showing that our algorithm is fairly robust to
animation speed, it is also interesting to note that if the animation is
allowed to loop, tree quality can continue to improve so that after
just a few iterations the 20 frame loop has a tree quality almost as
good as the slow 500 frame loop.

4 Discussion

While our algorithm does a good job at preventing the tree from
blowing up as can happen with refitting alone, for certain animations
that start with an already extremely poor BVH and continue to have
very incoherent motion, such as the BART Museum animation, it is
not the algorithm of choice. In this case the tree quality is so poor
that it is faster to rebuild and render using a new tree than it is to just
render using the degenerate tree.

For models with significant deformation that also happen to have
low triangle counts, rebuilding per frame using a highly optimized
approximate parallel build algorithm can work well; however, for
larger models, as commonly found in modern games and scientific
visualizations, the per frame rebuilds are too expensive and rotations
become significantly better. This is clear in the exploding dragon

and lion animations; with the 252K triangle exploding dragon, the
parallel build and rotation method both have comparable worst case
performance, although the rotation method is significantly faster
when the deformation is low. For the 1.6M triangle lion animation,
however, parallel rebuilds introduce a significant overhead and are
always slower than using rotations. Even for smaller models when
the BVH can be built more quickly, rotations win out over rebuilds
if the deformation in the animation is not very severe, since they
require such little overhead and yet can maintain a high quality tree.

One inherent advantage of our algorithm is its ability to continually
improve the quality of the tree on each frame, potentially even
beyond that of a fresh build. Since the greedy top-down build is
only an estimate of the best build, we can fix up some of the bad
estimates by knowing the true SAH costs during the rotation pass.
We can see this in our results for the Fairy Forest animation, in
which tree rotations produce a higher quality tree than a sweeping
rebuild. This will become more pronounced if the animation settles
down and motion becomes minimal for some time, or even stops,
since rotations are continually applied on each frame.

5 Conclusion

We have presented a fast, lightweight BVH update algorithm that
can maintain high quality trees on every frame. For all but one of
the 6 animated scenes we tested, our algorithm roughly matches or
outperforms, both in average frame time and worst case frame time,
the other commonly used techniques for dynamic BVHs. It was
even able to match or outperform an idealized parallel approximate
build on all but the BART scene, even though no parallel build im-
plementations actually exist that perform that well. In practice, it is
safe to assume that our method will compare even more favorably.
Since rotations add only a small cost over refitting, all systems that
currently rely on refitting would likely always benefit by adding
rotations. Only in extremely degenerate animations, such as BART,
would we advocate using a full rebuild, or perhaps a combination
of rotations with partial rebuilds [Yoon et al. 2007] or a rebuild
heuristic [Lauterbach et al. 2006] to perform a full rebuild only
when the quality has deteriorated significantly. Likewise, while for
many animations rotations should outperform asynchronous rebuild-
ing [Wald et al. 2008], for sufficiently degenerate scenes for which
asynchronous rebuilds might be superior, our method could easily
be integrated into the asynchronous rebuilds since asynchronous
rebuilding already relies on refitting. In that case we could go more
frames without losing too much tree quality which would allow for
using fewer rebuild cores, or even only use a fraction of a core for
rebuilding, so that more resources can be dedicated to rendering.

Our results suggest that tree rotations should be the default update
method when rendering deformable animations with a BVH since
they have almost negligible cost, work very well for the vast majority
of scenes, and from a software engineering perspective can be easily
integrated into any preexisting system that already uses node refitting.
Furthermore, if the refit algorithm is already parallelized, which
is simple to do, then by inserting tree rotations into the refitting
operation, tree rotation updates will automatically be made parallel.
While this paper targets CPU-based BVH updates, in the context of
GPU ray tracing, since refitting is already used as part of an HLBVH
build and the refitting is almost an order of magnitude faster than the
overall build ([Garanzha et al. 2011] show that the Stanford Dragon
takes 1.0ms to refit and 8.1ms to build), using rotations, which in our
CPU implementation are roughly as expensive as refitting, should
still be an attractive tree update strategy. This is especially true in
scenes with reasonable amounts of deformation, such as the Fairy
Forest, where the HLBVH+SAH build might take about 4× longer
than the refitting with rotations update and also produces a lower
quality tree than using rotations.

Acknowledgements

The Fairy Forest scene is courtesy of the Utah 3D Animation Repos-
itory, the ClothBall, DragBun, and Lion scenes are from the UNC
Dynamic Scene Benchmarks suite, and the BART Museum scene is
from the Benchmark for Animated Ray Tracing suite.

References

BIGLER, J., STEPHENS, A., AND PARKER, S. G. 2006. Design
for parallel interactive ray tracing systems. In Symposium on
Interactive Ray Tracing.

GARANZHA, K., PANTALEONI, J., AND MCALLISTER, D. 2011.
Simpler and faster HLBVH with work queues. In High Perfor-
mance Graphics’11.

GARANZHA, K. 2008. Efficient clustered BVH update algorithm
for highly-dynamic models. In Symposium on Interactive Ray
Tracing, 123 –130.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation
of object hierarchies for ray tracing. Computer Graphics and
Applications, IEEE 7, 5 (may), 14 –20.

GÜNTHER, J., FRIEDRICH, H., WALD, I., SEIDEL, H.-P., AND
SLUSALLEK, P. 2006. Ray tracing animated scenes using motion
decomposition. Computer Graphics Forum 25, 3 (Sept.), 517–
525. (Proceedings of Eurographics).

IZE, T., WALD, I., AND PARKER, S. G. 2007. Asynchronous BVH
construction for ray tracing dynamic scenes on parallel multi-
core architectures. In Proceedings of the 2007 Eurographics
Symposium on Parallel Graphics and Visualization, 101–108.

KENSLER, A. 2008. Tree rotations for improving bounding volume
hierarchies. In Symposium on Interactive Ray Tracing, 73 –76.

KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. 1983.
Optimization by simulated annealing. Science 220, 4598, 671–
680.

LAUTERBACH, C., YOON, S.-E., MANOCHA, D., AND TUFT, D.
2006. RT-DEFORM: Interactive ray tracing of dynamic scenes
using BVHs. In Symposium on Interactive Ray Tracing, 39–46.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH Construction on GPUs.
Computer Graphics Forum 28, 2, 375–384.

PANTALEONI, J., AND LUEBKE, D. 2010. HLBVH: hierarchical
LBVH construction for real-time ray tracing of dynamic geometry.
In High Performance Graphics’10, 87–95.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics 26, 1.

WALD, I., IZE, T., AND PARKER, S. G. 2008. Fast, parallel,
and asynchronous construction of BVHs for ray tracing animated
scenes. Computers & Graphics 32, 1, 3–13.

WALD, I. 2007. On fast construction of SAH based bounding
volume hierarchies. In Symposium on Interactive Ray Tracing.

YOON, S.-E., CURTIS, S., AND MANOCHA, D. 2007. Ray tracing
dynamic scenes using selective restructuring. In ACM SIGGRAPH
2007 sketches, ACM, New York, NY, USA, SIGGRAPH ’07.

 16

 32

 64

 128

 256

 512

 1024

 0 50 100 150 200

Ti
m

e(
m

s)

Frame

N-body simulation (Frame time)

 128

 181

 256

 362

 512

Ti
m

e(
m

s)

Lion (Frame time)

 16

 32

 64

 128

 256

 512

 1024

 2048

Ti
m

e(
m

s)

Exploding dragon and bunny (Frame time)

 64

 76

 90

 107

 128

Ti
m

e(
m

s)

Fairy Forest (Frame time)

 8
 16
 32
 64

 128
 256
 512

 1024
 2048
 4096
 8192

Ti
m

e(
m

s)

BART (Frame time)

 8

 16

 32

 64

Ti
m

e(
m

s)

Cloth ball (Frame time)

Rotate frame time
Refit frame time

Ideal parallel binned frame time
Ideal update frame time

(a) Frame time

 32

 64

 128

 256

 512

 1024

 2048

 4096

 0 50 100 150 200

SA
H

 c
os

t

Frame

N-body simulation (SAH cost)

 128

 256

 512

 1024

 2048

SA
H

 c
os

t

Lion (SAH cost)

 4
 8

 16
 32
 64

 128
 256
 512

 1024

SA
H

 c
os

t

Exploding dragon and bunny (SAH cost)

 36

 38

 40

 42

 44

 46

 48
SA

H
 c

os
t

Fairy Forest (SAH cost)

 4

 16

 64

 256

 1024

 4096

 16384

 65536

SA
H

 c
os

t

BART (SAH cost)

 16

 22

 32

 45

 64

SA
H

 c
os

t

Cloth ball (SAH cost)

Rotate cost
Refit cost

Ideal parallel binned cost
Ideal update cost

(b) SAH cost

Figure 6: Performance results for the 6 test scenes we used. Each animation was run for 100 frames, then looped 2.3×. The “Ideal parallel
binned” algorithm is a binning BVH build that we simulate to unrealistically parallelize perfectly to 8 cores. The ”Ideal update” algorithm is
a simulation of a sweeping rebuild that happens instantly.

