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Abstract

Biological systems exhibit an amazing array of distributed sensor/actuator systems, and
the exploitation of principles and practices found in nature will lead to more effective ar-
tificial systems. The retina is an example of a highly tuned sensing organ, and the human
skin is comprised of a set of heterogeneous sensor and actuator elements. Moreover, the
specific organization and architecture of these systems depends on contextual influences
during the developmental stages of the organism. Comparable theoretical and technologi-
cal methodologies need to be found for wireless sensor networks. We propose the study of
reaction-diffusion systems from mathematical biology as a starting point for this endeavor.
Algorithms and experiments are described here for a useful set of pattern formation meth-
ods in wireless sensor networks.



1 Introduction

Alan Turing introduced a revolutionary reaction-diffusion model as the chemical basis of
morphogenesis [28], and this method lends itself particularly well to pattern synthesis in
distributed systems. For more detailed explanations, see his original paper (which provides
an exemplar of the scientific paper – theory, analysis and numerical solution on the Manch-
ester machine which Turing helped design and build!), as well as the works of Murray [20],
Meinhardt [18], and more recently, Maini and Othmer [17]. Turing’s key insight was that
diffusion of an inhibitory morphogen could lead to the formation of stable and variegated
patterns. This is related to nonlinear far from equilibrium thermodynamics, and dissipative
structures (e.g., see Prigogine [23, 25, 26] who received the Nobel prize in chemistry for
work in this area). One goal of our work is to understand how these principles are at work
in biological sensor systems and how they may be exploited in wireless sensor networks.

We have previously proposed to use Turing’s reaction-diffusion mechanism to generate
patterns in wireless sensor networks. [10]. The basis of this mechanism is a set of equations
that capture the reaction and diffusion aspects of certain chemical kinetics:

∂c

∂t
= f(c) + D∇2

c (1)

where f(c) describes the reaction and D∇2c expresses the diffusion component. The sim-
plest such systems have two morphogens or variables; one of these acts as the activator and
the other acts as the inhibitor. The two variable system can be modeled by:

∂u

∂t
= γf(u, v) + ∇2u,

∂v

∂t
= γg(u, v) + d∇2v (2)

where u and v are the concentrations of the morphogens, d is the diffusion coefficient and
γ is a constant measure of scale. The functions f(u, v) and g(u, v) represent the reaction
kinetics. As an example, we have explored the generation of spatial patterns using the
Turing system of equations:

f(u, v) = β − uv, g(u, v) = uv − v − α

where u and v are the morphogen concentrations, α and β are the decay and growth rates,
respectively, and γ sets the speed of the reaction. They define a domain in which Equation
(2) becomes linearly unstable to certain spatial disturbances. This domain is referred to as
Turing space where the concentrations of the two morphogens will become unstable and
result in the patterns shown in Figure 1.

The pattern is the result of each cell running the equations locally while diffusing to its
neighbors; a stable solution may be thresholded to produce a binary value at each sensor,
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Figure 1: Turing Spot Pattern.

and the total of these gives the pattern. Note that the distribution of these spots is close to
hexagonal.

We introduced the use of Turing’s reaction-diffusion pattern formation to support high-level
tasks in sensor networks (S-Nets). This has led us to explore various biologically motivated
mechanisms. We address below some issues that arise in trying to get reliable, efficient
patterns in irregular grids.

Much remains to be done at the higher level of information extraction, interpretation and
exploitation of networked sensor systems. Our central thesis is that bio-based engineering
will lead to strong solutions in this domain; that is, we propose to identify and ultimately
incorporate effective computational strategies used by biological systems. The challenge is
to identify mechanisms that lead to algorithms or paradigms that are reliable, inexpensive
and ubiquitous in many applications.

Others have explored the use of both reaction-diffusion and more general diffusion methods
in computer vision and robotics. For example, Fukuda et al. describe the use of reaction-
diffusion techniques in robot motion[6]. Moreover, as described by Peronna et al.[24],
multi-scale descriptions of images (i.e., scale-space) can be produced by embedding the
original image in a family of images obtained by convolving the original image with a
filter; Koenderink[15] showed that this is equivalent to finding the solution of the diffusion
equation:

It = 52I = Ixx + Iyy
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Figure 2: Robot Path in Reaction Diffusion Pattern (◦ is the fire control point; � is the robot
load point)

We believe that it will be quite useful for S-Nets to use similar methods to analyze sensed
data of various sorts. Other proposed diffusion models include, for example, [11] who
proposes directed diffusion - a datacentric communication coordination technique that “en-
ables energy savings by selecting empirically good paths and by caching and processing
data in- network.” The focus of such work is more on the networking and operating systems
aspects of the sensor network, whereas our work is more concerned with the sensor net-
work as a computation engine itself. More closely related to our work is that of Justh and
Krishnaprasad [12] who propose the active coordination of a large array of microactuators
by means of diffusive coupling implemented as interconnection templates, and Nagpal [22]
who describes methods to create patterns of diverse geometry. We believe that this style of
research will reap great benefits in three aspects: (1) network morphogenesis, (2) sensed
data analysis, and (3) display pattern synthesis.

As Meinhardt points out [18], “the control of development in a higher organism is one of
the major unresolved problems in biology ... in a developmental system a signaling and
signal-receiving mechanism must exist which enables the cell to communicate in a manner
appropriate to its position ... [the] goal is to show which interactions of substances can lead
to such signaling systems and how the cells then can respond to these signals in order that
stable states of determination are attained.” This matches our view of the core issues, and
we see that their solution can heavily impact sensor network algorithms as well.

For example, consider a forest fire scenario: sensor devices are dropped into a wide ge-
ographic area, establish a network, compute coordinate frames, calculate gradients, and
produce a stripe pattern of off-on signals that can be used by fire fighting agents to go to
a fire control point by following on devices (pattern == 1) and return by following off de-
vices (pattern == 0) (see Figure 2). Such patterns can be computed by very robust reaction-



diffusion systems derived from models of biological pattern formation.

Our general research program is to explore a small set of biological sensing and signaling
mechanisms, and we hope to make significant contributions by providing (1) biologically
realistic models and efficient computational counterparts, (2) fault tolerant frameworks in
which to run them, and (3) demonstrations of their application in human interface and
large-scale sensor networks. In addition, we are building S-Net simulation, emulation, and
experimentation testbeds [9]. Here we describe some initial results in the first of these
areas.

Patterns in the S-Net can be used to support many high-level algorithms or activities:

• stripe, spot or ring patterns can be used as encoders for physical or logical purposes;
for example, a robot can keep track of how far it has traveled (physical), or commu-
nication packets can travel along certain stripes to minimize power cost or to avoid
congestion (logical).

• certain sets of patterns form a basis set for 2D images (e.g., Haar or Hadamard basis
sets); any map (topo, etc.) or image can then be encoded in terms of the coefficients
associated with the respective basis images.

• the patterns can be used as a reference wave so that sensed data (or features derived
from it) can be encoded as an interference pattern (i.e., a hologram)

• moving waves can also be computed, and thus the S-Net can serve as a signal carrier
or modulator.

Understanding the precision and reliability of pattern formation is then of high importance.

The most common application of S-Nets is to serve as a sensory organ; e.g., to capture
images, sounds, chemical concentrations, temperature, etc., over the region of interest.
However, S-Nets may also be used as a display, either directly through LED’s or by making
values avaliable upon query. A biological analogy is the skin; a zebra’s stripes provide
coloration as well as a myriad of sensors embedded in the skin, and these serve to provide
some ecological advantage. A combination of these is especially interesting where the
display is influenced by the sensing; e.g., for camouflage effects like in the chameleon.

Given a set of SELs, sensor elements, in the plane, it may be useful to store and exploit a
pattern in the S-Net. For example, stripes may be useful for several purposes: (1) as path-
ways for physical or logical tasks, e.g., mobile agents trajectories or packet transmission,



(2) as distance encoders as mobile agents cross them, or (3) as boundary markers. The
ability to store arbitrary patterns (e.g., maps) has been shown useful [8, 4] for calculating
shortest paths for robots to follow through terrain with varying traversability properties.

If the SELs are situated in a coördinate frame, i.e., each SEL knows its (x, y) location, then
given a specification of the pattern as a function f(x, y), each SEL can determine its own
value. Useful binary patterns may also be represented as a bit stored at each SEL, which
requires a thresholding function t(x, y), as well; this works well for paths or checkerboards.
Moreover, combinations of stripe and checkerboard patterns may serve as a set of 2D basis
functions to allow the representation of any arbitrary pattern as a linear combination of
them.

2 Regular Geometric Figures

Equi-spaced straight line segments, stripes, with orientation θ, may be easily computed by
means of the following function ([21]):

f(x, y) = cos(xcos(θ) + ysin(θ))

Figure 3 shows the result with θ = 0 and θ = π/4.

Stripes at 0 degrees Stripes at 45 degrees

Figure 3: Vertical and 45o Stripes.

If the range of f(x, y) is [−1, 1], then a mobile agent can determine how far it is from the
center of the nearest stripe. Consider now the case of a set of SELs randomly distributed in
a square area (each x and y coördinate is sampled from a uniform distribution). Figure 4
shows an instance of 1,000 SELs. Each SEL can determine its own value using the formula
given above, and mobile agents can request this information in order to stay near the stripe
of interest; in this way, the mobile agent does not need to be incorporated into the S-Net



coördinate frame. Figure 5 shows the set of SELs with values near 1 shown as a circle (’o’)
and values near -1 shown as a dot (’.’) for both stripe orientation 0 and π/4.
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Figure 4: Sample of 1,000 SELs in a Square Area.
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Figure 5: Vertical and 45o Stripes in S-Net.

Another useful pattern is the checkerboard. The function:

f(x, y) = cos(x)cos(y)

thresholded by 0 < f(x, y) yields a checkerboard oriented along the x and y axes (see
Figure 6 for both the original and thresholded versions). Using 2,000 SELs, it is possible
to approximate the squares in an S-Net (thresholded at 0.3 < f(x, y) and f(x, y) < −0.3
as shown in Figure 7).



f(x,y) = cos(x)*cos(y) 0 < f(x,y)

Figure 6: Checkerboard in the Plane.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

X

Y

Figure 7: Checkerboard in S-Net.

As a final example, consider the hexagonal structure defined by:

f(x, y) = cos(
y
√

3 + x

2
) + cos(

y
√

3 − x

2
) + cos(x)

shown in Figure 8 with both original values and thresholded at 0 < f(x, y). Figure 9 shows
how this would be displayed by an S-Net.

Of course, if coördinates are available, any pattern which can be expressed as a 2D function
can be approximated by an S-Net. The quality of the approximation must be evaluated in
probabilistic terms when the distribution of SELs is random.

These regular patterns have been implemented on a set of Moteiv Tmote Sky motes, and
the results are shown in Figures 10 through 14. Figure 10 shows the set of the 42 motes
as laid out for these experiments. Figures 11 and 12 show the vertical and 45o lines, while
Figures 13 and 14 show the checkerboard and hexagonal layouts, respectively.



f(x,y) = hex(x,y) 0 < f(x,y)

Figure 8: Hexagonal Structure.
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Figure 9: Hexagonal Structure in S-Net.

3 Reaction-Diffusion Patterns

Some work has already been done to determine the range and type of patterns possible with
the Turing pattern formation approach. Theoretical aspects have been studied and regions
of the parameter space characterized as they relate to pattern formation (i.e., the parameters
are the coefficients in the PDEs) [2, 7, 16]. Others have investigated how pattern formation
is influenced by number of cells, time scale, and initial condition variation. In particular,
Bard and Lauder [3] showed that “stable repeating peaks of chemical concentration of
periodicity 2-20 cells can be obtained in embryos in periods of time less than an hour. We
do find however that these patterns are not reliable. Small variations in initial conditions
give small but significant changes in the number and positions of observed peaks.” They
showed that this method has difficulty producing exact patterns reliably. We have found
other difficulties in producing the patterns necessary to support higher-level tasks. We
describe these here and propose some solutions.



Figure 10: Layout of 42 X-bow T-Sky Motes.
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Figure 11: Vertical Lines in T-Sky Motes.
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Figure 12: 45o Lines in T-Sky Motes.
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Figure 13: Checkerboard Layout in T-Sky Motes.
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Figure 14: Hexagonal Layouts in T-Sky Motes.
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Figure 15: Typical 1-D Turing Pattern.

A more significant issue for us is that the reaction-diffusion pattern formation equations
assume that the inter-cell distance is uniform (and usually equal to 1). Our S-Nets, however,
do not form a uniformly spaced grid in 1D or 2D; in fact, we generally assume that the
sensor devices are randomly dropped in the environment. In addition, the diffusion part
of the equations uses the inter-node distances in the computation of the second derivative.
Two concerns are:

• these distances are not uniform, and

• in an actual implementation, there will be some amount of error in the inter-node
distance determination.

This has led us to investigate the impact of non-uniform spacing on the pattern computation.

The basic 1D Turing reaction-diffusion mechanism produces a pattern as shown in Fig-
ure 15, and takes about 1,040 iterations to converge for a set of 60 cells. A set of simulation
experiments were run with from 10 to 100 cells in steps of 10. Table 1 gives the results for



number of cells mean steps mean stripes
10 720 1.35
20 883 3.14
30 938 4.83
40 955 6.62
50 998 8.30
60 1,041 9.89
70 1,047 11.54
80 1,086 13.16
90 1,102 14.80

100 1,113 16.49

Table 1: Mean steps and stripes

max x/y offset ≤ 0.3 0.35 0.40 0.45 0.50 0.55 0.60 0.65 ≥
avg failures per trial 0.0 0.06 0.11 0.58 0.85 0.94 0.96 1.0

Table 2: Average Number of Convergence Failures as a Function of x/y Offset from Grid
Location.

the mean number of steps to converge (total change in morphogen a is less than 0.0001),
and the mean number of stripes formed.

Next consider what happens when non-unit distances are introduced as the inter-device
distances. The point locations are determined as follows:

• start with n equi-spaced points, 1 unit length apart,

• add uniform noise to the location with max x and y distances from the grid positions
varying from 0 to 0.65.

Table 2 gives the average number of failures to converge for the Turing pattern.

This result, as well as similar results with 2D patterns, argues against using actual inter-SEL
distances for the reaction-diffusion computation. However, this turns out to be an advantage
since the inter-SEL distances may be difficult to determine. Moreover, the patterns will
form based purely on the topological nature of the SEL interconnectivity graph. This can
be very advantageous in 2D pattern formation in the S-Net.
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Figure 16: S-Net Regular Grid 2-D Turing Pattern.

Figure 1 shows the Turing pattern, but it is formed in an n × n array, where every array
element has two vertical neighbors and two horizontal neighbors (boundary elements wrap
around to the opposite boundary elements), and all neighbors are at unit distance. This
makes the Laplacian calculation reasonably accurate.

As a first approximation to an arbitrary S-Net, we produce a set of SELs whose locations
correspond to these grid locations. However, if the grid connectivity is kept, and unit
distances are used in the Laplacian, then convergence occurs. Figure 16 shows a close up
of part of the grid, as well as the concentrations of morphogen a resulting from an execution
of the reaction-diffusion code at each SEL. The concentration of morphogen a in the S-Net
is displayed by producing an image array of specified size and assigning the appropriate
gray level at each pixel according to the amount of morphogen a at each SEL located in the
corresponding pixel. Also, note that in the S-Net, there is no wrap-around diffusion at the
boundaries.

Similar to the 1D case, we find that if the locations of the SELs are perturbed off the
grid locations, and we use the actual inter-SEL distances to compute the reaction-diffusion
equations, then the failure rate of convergence increases with distance from grid locations.
Figure 17 shows a set of SELs perturbed by up to 2 pixels in x and 2 pixels in y from the grid
positions, but maintaining the same connectivity as the grid, and the corresponding pattern
computed by the reaction-diffusion process. This is the pattern after 3,000 iterations, but it
has not yet stabilized and the spots have not yet developed.

Next, we consider the case of SELs randomly distributed in the square area. It turns out that
if all neighbors within a certain distance (e.g., broadcast range) are used in the reaction-
diffusion calculation, and the distances are used to compute the Laplacian, then the process
generally fails to converge. However, if each SEL randomly selects four of its neighbors
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Figure 17: S-Net of Perturbed Regular Grid 2-D Turing Pattern.
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Figure 18: S-Net of Randomly Placed SELs and the Resulting 2-D Turing Pattern using 4
Randomly Selected Neighbors.

(e.g., from the broadcast connectivity graph), then the reaction-diffusion process converges.
Figure 18 shows an example of this on a 5 × 5 square area using 2,000 SELs placed by
sampling the x and y coordinates from the uniform distribution. Figure 19 shows the layout
of a set of 42 X-Bow T-Sky motes; with the small number of motes, the reaction-diffusion
process leads to the formation of spots (i.e., the morphogen concentration a > 5). In one
instance, a spot appeared after 1,250 iterations; however, the spot pattern is not stable, and
eventually disappears if allowed to continue. We believe that several issues are at play: the
number of nodes, the asynchronous nature of the mote transmissions, as well as the locality
and bi-directionality of the connectivity.

One further example of the application of the spot formation reaction-diffusion process is
to create straight lines in S-Nets. This can be done without knowing the distance between
motes, and without a coördinate frame. Suppose the goal is to create stripes as shown in
Figure 2. At each mote, determine its neighbors with lowest and highest sensor measure-
ments. These are assumed to lie in the gradient direction. If the diffusion is restricted to
take place only through these neighbors, then the spots blend in this direction and become
straight lines. Figure 20 shows this result on a simulated set of motes.



Figure 19: Layout of a set of 42 X-Bow T-Sky Motes.
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Figure 20: Lines produced by 2D Reaction-Diffusion Process.



4 Conclusions and Future Work

We have described techniques for forming patterns in sensor networks based on trigono-
metric functions and reaction diffusion equations. Such methods may be used to process
data, although that is not discussed here, and to carry sensed signal information. The next
focus of our work is on the production of patterns based on sense data analysis (e.g., cam-
ouflage synthesis). Such methods may also find application in sensor network security;
in this scenario, a deformed pattern will emerge from a distributed computation if there
are any nodes which have fallen victim to attack, or if external nodes have managed to
get themselves incorporated into the S-Net. Of course, resource allocation and exploita-
tion may also be based on patterns, and given the random nature of the patterns, may help
conserve resources (e.g., energy) overall.

We are also exploring mesh generation in wireless sensor networks. As was pointed out by
Adamatzky et al. [1], physical reaction-diffusion computers can calculate Voronoi graphs.
Thus, a basis exists in the reaction-diffusion computation to produce good triangulations for
mote connectivity. The triangle are also important for computations on irregular meshes;
e.g., for finite element methods. We are exploring this in the context of a larger set of
motes.

Another area of research is the calculation of level sets [27] in the S-Net. These can be used
for shortest path computation where an arbitrary speed function may be defined. We have
shown how mobile robots can use this approach to find the lowest time path to traverse
variable speed terrain [5]. However, the Eikonal equation used there may be set up as a
reaction-diffusion system, and piggy-backed on the approach defined here.

Finally, stripes and spots may be of use for various purposes by mobile agents or the S-
Net, but a more direct combination of the S-Net as both a sensing and display device is
to be found in the creation of active camouflage. Consider the truck shown in Figure 21.
Although it has a standard camouflage tarpaulin, it does not blend well with the forest
behind it. Several problems exist with coloration and blobs versus stripes (e.g., tree trunks
and branches), leaf texture, etc.

One approach to overcome this mismatch is to pair a modeling process of the natural scene
behind the truck with a display synthesis component in front of the truck. The technical ba-
sis for such a mechanism can be found in the work of Zhu and Mumford [29]. They propose
(1) a theory for discovering the statistics of a set of natural images, and (2) a framework
which allows the definition of reaction-diffusion equations to produce similar natural im-
ages, and in particular, they show how to remove conspicuously dissimilar segments from
a scene. Specifically, they show that given a learned set of prior models that reproduce the



Figure 21: A Camouflaged Truck in the Forest.

Figure 22: Zhu and Mumford [29] Clutter Removal Example.

observed statistics, the potentials of the resulting Gibbs distributions have potentials of the
form:

U(I; Λ, S) =
K∑

α=1

∑

x,y

λα((F (α) × I)(x, y))

where S = {F (1), F (2), . . . , F (K)} is a set of filters and Λ = {λ(1), λ(2), . . . , λ(K)} is the
set of potential functions.

Reaction-diffusion equations are found as the gradient descent partial differential equations
on U(I; Λ, S); diffusion arises from the energy terms while pattern formation reactions are
related to the inverted energy terms. These are then used to remove clutter in a scene and
to denoise images. One example of this process given by Zhu and Mumford is shown in
Figure 22. We propose that the resulting images can be displayed by LEDs distributed
throughout the material of the camouflage canvas, and based upon our previous work in
e-textiles [13, 14, 19], we believe that technical solutions exist for the realization of this
goal.
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