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Figure 1: (Left) Summary plot of temperature data and (Right) covariance information between temperature and humidity data.

ABSTRACT

Traditionally, statistical summaries of categorical data often have
been visualized using graphical plots of central moments (e.g.,
mean and standard deviation), or cumulants (e.g., median and quar-
tiles) by box plots. In this work we reexamine the box plot and its
relatives and develop a new hybrid summary plot that combines mo-
ment, cumulant, and density information. In view of the important
role of plots in decision making, our work focuses on incorporating
additional descriptive parameters while simultaneously improving
the comprehensibility of the summary plots using advanced visual
techniques. In many complex situations providing a comprehensive
view of the data requires additional summary characteristics, there-
fore, we submit that these additional parameters, like higher-order
central moments can be valuable elements of multi-dimensional
summary displays.

CR Categories: G.3 [Probability and Statistics]: Multivariate
Statistics— [I.6.9]: Visualization—Information Visualization, Vi-
sualization Techniques and Methodologies

Keywords: Summary Statistics and Plots

1 INTRODUCTION

As the sophistication of scientific simulation and measurement de-
vices increases, so too does the quantity of data generated. In re-
cent years, we have witnessed an unprecedented demand for the vi-
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sual analysis of ever higher resolution datasets. Examples include
large-scale simulations of important physical phenomena and 3D
radiological scans of the human body. A clear understanding of im-
portant characteristics in the data through direct inspection is not
practical. As such, summary techniques play an important role in
data analysis by extracting salient features or descriptors, which
can then be presented graphically. This distillation of the data al-
lows the scientist or decision maker to understand and interpret the
essential structure data by providing a direct visual, yet quantita-
tive comparison of categories and a global overview of the entire
dataset.

Cumulant statistics, such as median and quartile values, are
among the most commonly used summary statistics. These statis-
tics partition the data into equally sized groups, revealing insights
into the layout of the data such as the range of values and where
the majority of the data lie. While these quantities are important,
they do not provide information about more subtle yet equally im-
portant characteristics of the data set such as whether the data is
peaky or skewed. Higher order moments, however, do indicate this
kind of information and thus are useful in summary plots. Addi-
tionally, density information, if available, should be included with
a data summarization.

Creating a summary plot style that clearly conveys essential
structures is difficult when additional information is included. Typ-
ically, the box plot [15] is used to convey the quartile range of a data
set. The principal advantage of the box plot is its elegant simplic-
ity of design. Overlaying large amounts of information on top of
the box plot leads to visual clutter that diminishes the effectiveness
of the summary. In this work, we have abbreviated the box plot
and createdmoment glyphs designed to reduce visual clutter while
staying highly informative. The presentation relies on the presence
of redundant visual information to reinforce interpretations as well
as ensure that our presentation method remains informative, even if
some of the statistical modalities are missing. Our goal is to create



a highly informative summary plot that maintains the aesthetic ap-
peal of the box plot while introducing additional parameters which
provide insight into the data distribution.

In order to create effective visualizations of data summaries sev-
eral challenges must be addressed. The first is understanding how
statistically to abstract and summarize the data. Typically, cumu-
lant information is used to express a data summary. While this type
of summary expresses important information about a distribution,
these values alone may not be enough. For example, one may come
across two distributions, one uni-modal (having one data value oc-
curring most frequently) and the other multimodal (multiple most
frequent values) whose box plot signatures are the same. Investi-
gating just the box plot could lead to the erroneous assumption that
the two distributions are very similar. The addition of higher or-
der moment statistics reveals not only distinctions in modality, but
other characteristics of the distribution such as skew and peakiness.
In this work, we seek to create a foundation for understanding how
these statistical modalities can work to create an effective data sum-
mary.

The presentation of density and moment information as an aug-
mentation of the box plot can increase the information content of
the plot while maintaining its concise form. The box plot has a
canonical feel; the “signature” of the plot is easily recognizable and
does not need much explanation to allow for a full understanding.
Our goal is to create a summary plot that incorporates higher order
information smoothly with the box plot in hopes that the summary
plot will similarly develop into an easily recognizable signature of
the data summary.

2 BACKGROUND

The main goal of this work is to present summary statistics in a
concise, informative manner while conveying the greatest amount
of information about the underlying data distribution as possible.
As such, previous work from data visualization and statistical tech-
niques for graphical presentation is examined.

2.1 Graphing Principles and Techniques

Creating graphics for data presentation is a difficult task involving
not only decisions about data display but also data interpretation.
Often, the graphic is intended to show specific characteristics of the
data, and the presentation style should make this intended purpose
clear. Poor presentation style can be distracting or even mislead
the viewer to erroneous conclusions. To alleviate these situations,
design practices for effective data visualization are outlined in nu-
merous sources [16, 6, 14]. These references not only direct the
scientist towards the “correct” graphical technique for data types,
but also describe how a visualization is interpreted by the viewer
and suggest methodologies to influence this interpretation.

2.2 Statistical Plotting Techniques

One of the most common approaches to graphing summary statis-
tics is the box plot [15] (or range bar [12]). A variety of box plots
can be seen in Figure 4. Typically, the box plot is used to divide
the data into four equally sized groups by drawing a box that ex-
tends from the upper to the lower quartile, and dividing this box by
a line at the median. Lines (or “whiskers”) locate the minimum and
maximum values in relation to the quartile range and outliers can be
indicated with an open circle. This approach is an effective method
for quickly summarizing and comparing data distributions.

The box plot can also used to show additional information be-
yond the five number summary. A survey of the introduction and
evolution of the box plot can be found in [5]. The variations of
the box plot range from simply changing the width or notching to

describe population sizes or confidence [10] to more extreme mod-
ifications to express density [9, 4], modality, or multivariate data
summaries [11, 8, 13].

A variation of the box plot most closely related to the work pre-
sented here enhances the traditional plot by thickening the quartile
lines to express skew, modality, and kurtosis [5]. While this ap-
proach is straightforward and clean, we desire a representation for
these values that has greater visual impact and a more intuitive in-
terpretation.

2.3 From Plots Towards Better Data Comprehension

While a box plot is effective in expressing information about a sin-
gle data distribution, more complex data sets require methods for
navigating the data space to achieve more a complete data under-
standing. Brushing [3] is a technique that allows the user to select
categories of data and see the correlation of the remaining data set.
Similarly, the contour spectrum [2] plots an assortment of metrics to
provide a quantitative understanding of the data, and allows the user
to select specific values for the metric variables which are reflected
in the plot and guide the user towards relevant visualizations.

3 THE 1D SUMMARY PLOT

The main challenges encountered in creating the hybrid summary
plot involve creating visual metaphors which encourage a mean-
ingful interpretation of the data. While the meanings of summary
information are well known, the visual presentation of this infor-
mation has yet to be completely described in an effective manner.
Extensive previous work has produced a generally universal treat-
ment of cumulant summary information in a clean, concise manner.
The box plot has been refined numerous times, resulting in a highly
effective style of presentation, including the incorporation of ad-
ditional information such as density. Our goal is to maintain the
clean style introduced by the box plot while increasing the amount
of summary information.
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Figure 2: Anatomy of a Summary Plot

The hybrid box plot that we are introducing can more formally
be titled thesummary plot. In this display not only is the quartile
information present in the form of a slightly modified box plot, but
also a collection of moments and density information. The anatomy
of a summary plot can be see in Figure 2. As shown in this figure,
we use an abbreviated form of the traditional box plot to convey



the minimum and maximum values, upper and lower middle quar-
tiles and the median. Each of the central moments is expressed as
a glyph, the design of which reflect the semantic meaning of the
moment. Finally, a histogram is added to convey the density of the
distribution.

3.1 Quartiles and the Histogram
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Figure 3: Histogram (top), cumulant histogram (middle), and violin
plot (bottom).

One of the simplest ways to describe a data distribution is to cal-
culate thequartiles of the data set. A quartile partitions the ordered
data into four equally sized subsets such that 25% of the data is
less than the lowest quartile, 50% of the data is less than the next
quartile (i.e. the median) and 75% of the data is less than the high-
est quartile. There are conflicting conventions concerning whether
the term “quartile” refers to the specific data value that cuts off the
partition or the subset. In this paper we adopt the former definition
in order to be able spatially to place the quartile values. Figure 3
demonstrates this distinction, plotting a single data distribution as
density and cumulative histograms. At the top of the figure, a his-
togram is displayed; the height at each point reflects the density of
the distribution at that data value. Below is a cumulant histogram in
which density is successively added. Reference lines illustrate the
quartile partitioning. At the bottom is a violin plot [9] displaying
both the distribution density and cumulant information in a compact
form.

The calculation of the cumulant quartile is based on the his-
togram. The histogram employs a user specified number of bins
to sort the data based on value, giving a rough estimate of the den-
sity of the data distribution. From the histogram, the quartile values
are found using a straightforward counting algorithm. The position
of the quartile value is determined by dividing the number of data
points by the desired quartile position, and counting the sorted data
in the histogram until the quartile position is reached.

The traditional approach to presenting quartile information is
through the box plot. Using this technique, a box is drawn around
the inter-quartile range (the range between the upper and lower mid-
dle quartiles), the median position is denoted by a line through the
box, and lines extend to the minimum and maximum values. In ef-
forts to maximize the ratio of information to ink consumption and
improve aesthetics, the box plot has been refined numerous times.
Four versions of the box plot can be seen in Figure 4. The topmost
plot is the range bar, invented by Mary Eleanor Spear [12], next
is John Tukey’s box plot [15], Edward Tufte’s quartile plot [14],
and finally our abbreviated box plot. Our plot closely resembles
Tukey’s box plot with a few distinctions. First, the edges of the box
have been removed along with the center of the median and quartile
lines. The motivating factor in this change is to reduce the visual
clutter that occurs when moment and density information is over-
laid with the box plot. Additionally, the median lines are extended

Range Bar (Spear)




Box Plot (Tukey)

Quartile Plot (Tufte)

Abbreviated Box Plot

Figure 4: Variations of the box plot. From top to bottom: the range
bar [12], the box plot [15], the quartile plot [14], and our abbreviated
box plot.

slightly outside the boundary of the box, emphasizing the position
of the median and insuring this position does not get lost with the
addition of more information.
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Figure 5: The three color channels of the histogram color map.

In addition to summarizing the distribution of the data through
the box plot, the density information itself can be added to the vi-
sualization in the form of a histogram. This is similar to the violin
plot [9] in that we show the density amount by varying the width of
the quadrilaterals used to represent the bins of the histogram. Addi-
tionally, the histogram is color mapped based on the density. This
color mapping is a redundant mapping combining the three color
maps shown in Figure 5. On the left (red) the color map is the nor-
malized log density. Next, (green) the color map is square root of
the normalized density and finally, (blue) normalized linear density.
While each of these encodings can stand alone, we preferred the re-
dundant encoding due to the fact that the darkest stripes appeared
in the areas of the highest density and the resulting color is visually
pleasing.

A principal goal of this work is to summarize the distribution of
a data set. The histogram is an estimation of that distribution and
while its presentation with moment plots is redundant, we can imag-
ine a situation in which we do not have the data distribution but are
given only summary data. Thus, the summary display should not
only reiterate the distribution when presented with the histogram,
but also be able to convey it independently.

3.2 Moments

The moments of a distribution are statistical measures of certain
characteristics, the most well known moments being mean and stan-
dard deviation. The main distinction between the summaries pre-
sented by the quartiles and the moments is that the quartiles give



information about the location and variation changes in the data,
while moments express specific characteristics of the distribution
such as “peakiness”. One of the drawbacks of using only a box plot
to summarize a distribution is that multiple, distinct distributions
can have the same box plot signature; for instance a bimodal and
uni-modal distribution could have identical quartiles. Adding mo-
ment information exposes these types of distinctions while main-
taining the simplicity of the quartile summary.

The following is a list of the equations used to calculate the var-
ious moments, as well as the notation that will be used throughout
the paper:

Given a data set{xi}N
i=0, we define the following quantities:

Expected Value of x: < x >

Central Moments: µk ≃ 1
N ∑N

i=0(xi −µ1)
k

Mean: µ1 ≃ 1
N ∑N

i=0 xi

Variance: µ2 ≃ 1
N ∑N

i=0(xi −µ1)
2

Standard Deviation: σ =
√µ2

Skew: γ = µ3

σ3

Kurtosis: κ = µ4
σ4

Excess Kurtosis: κe = µ4

σ4 −3

Tail: τ ≃ 1
N ∑N

i=0(xi −µ1)
5

whereN is the number of data samples.

Table 1: Moment Notation and Equations

A valuable way to gain intuition into how moments express char-
acteristics of a data distribution comes from the use of moments in
physics (Figure 6). In this example, a beam is placed on a fulcrum,
the position of which is dictated by the mean [1]. The moments can
then be thought of as weights used to balance the beam, each mo-
ment having a specific role in dynamically balancing the system.
While this approach is not meant to be a physically based expla-
nation of moments, those unfamiliar with the role of moments in
statistics may find this abstraction helpful.

mean
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Figure 6: Moment Arm Abstraction

3.2.1 Mean, Variance and Standard Deviation

The most familiar and frequently used moments are mean and vari-
ance (the first and second moments). The average of the data values
is an estimator of the mean of the underlying distribution, or the ex-
pected value of a random variable. Variance is a measure of the
dispersion of the data indicating the distance a random variable is
likely to fall from the expected value. Standard deviation is simply
the square root of variance. For the summary plots, we use only
mean and standard deviation, as standard deviation is derived from
variance.

The addition of mean and standard deviation into the summary
plot is very straightforward. The mean is rendered as a dark red
cross with a small circle in the center, denoted by a stylized bull’s

Figure 7: Mean and median glyphs align when values are equal.

eye. The width of the lines making up the cross are constructed
so that when the mean and median are displayed at the same loca-
tion, the glyphs line up, forming a straight line across the plot. This
emphasises normal distributions, and quickly reveals when a distri-
bution varies from a Gaussian. A close up of this can be seen in
Figure 7. Standard deviation is rendered as two glyphs on the plot,
as are all even moments. Two blue curved lines are placed on either
side of the mean to express the average variation from the mean.

3.2.2 Skew

Figure 8: Distributions with small (left) and large skew (right).

Skew is a measure of the degree of asymmetry of a distribution;
that is, the amount that the data is pushed to one side or the other.
Figure 8 shows various distributions with skew varying from small
to large. Based on the balance beam abstraction (see section 3.2),
we use a large triangle to denote skew in the summary plot and place
it so that it rests on the end of the distribution with the most weight
and pointing at the tail. Mathematically, we calculate the placement
of the skew glyph by first finding skew as defined in Table 1 and
placing the glyph−γ distance away from the mean, with the apex
of the triangle pointing toward the tail of the distribution.

3.2.3 Kurtosis

Kurtosis is a measure of how peaked or flat topped a distribution
is compared to a normal (Gaussian) distribution. Excess kurtosis
is the standard kurtosis measure normalized by the kurtosis of a
Gaussian. An example of distributions with different kurtosis can
be seen in Figure 9 where a flat, box-like distribution can be seen on
the far left. This type of distribution has large, negative kurtosis (i.e.
κe < 0) and is calledplatykurtic. Moving right, the kurtosis values
increase, getting very close to amesokurtic (normal) distribution
(i.e. κe = 0) and moving on to a highly peaked,leptokurtic (i.e.
κe > 0) distribution.

The glyphs chosen to represent kurtosis reflect the aforemen-
tioned categories of kurtosis. The glyphs are rendered using a deep



Figure 9: Distributions with small (left) to large (right) kurtosis.

purple color and are scaled so that their size reflects their magnitude
away from 0. To distinguish between flat and peaked, the glyphs as-
sume a flat or sharp shape depending on the sign of kurtosis. Thus,
for a highly positive value, the glyph is very pointy, and the more
negative the kurtosis value, the flatter the glyph.

3.2.4 Tail

Figure 10: Distributions with small (left) and large (right) tail values.

The final moment that we add to the summary plot is what we
refer to as tail, which is based on the fifth central momentµ5. The
quantity is sensitive to distribution asymmetry farther way from the
mean when compared to the skew. Tail will have a high magni-
tude when there are additional modes in the distribution or strong
outliers. Like skew, tail is rendered as a triangle pointing in the di-
rection of asymmetry. However, unlike skew, tail is rendered on the
same side of the mean as its sign. The tail glyph is rendered as a
sharp arrow head, where both the size and sharpness is dependent
on the tail quantity. The visual effect of this glyph should indicate
that there are a significant number of samples biased far from the
mean. Figure 10 shows a set of distributions which have tail values
varying from very negative to very positive. The center distribution
is a Gaussian.

4 JOINT 2D SUMMARIES

While a statistical summary for a 1D categorical data set is highly
useful, methods for comparing multiple, correlated data sets are
necessary to understand how samples with multiple distinct data
values are related. In this section we explore methods for sum-
marizing categorical data with pairs of values associated with each
sample. Note that we drop the summary of cumulants for higher
dimensional distributions. We do feel, however, that the cumulant
summary is important even in higher dimensions, and there does
exist a generalization of the box plot, known as the bag-plot [11].
Unfortunately, the bag plot approach does not necessarily have the
same correspondence to cumulant distributions as does the box plot.
It is a suitable approximation for many applications, but we will de-
fer discussion of multivariate cumulant summaries to future work.

4.1 Joint Density

Jittered

Not Jittered

No Jitter

Jitter

Figure 11: The joint histogram.

The density of a set of samples drawn from a 2D distribution can
be directly visualized using a joint histogram. A joint histogram
can be generated by subdividing the 2D domain into NxN bins, and,
for each sample, incrementing the bin-count indexed by its pair of
data values. Our system displays the joint histogram by rendering
a quadrilateral at each bin location scaled by the square-root of the
normalized density for that bin.

When multiple categories are summarized simultaneously using
joint histograms, they tend to produce aliasing artifacts due to the
regularity of the bin spacing. To alleviate this problem, we jitter the



position of the quadrilaterals for each bin, where the magnitude of
the jitter is inversely proportional to the quadrilateral’s scale. This
constraint ensures that the quadrilateral is drawn at a randomized
location, but is always inside the bin.

4.2 Covariance

Skew Variance

Covariance

Figure 12: Covariance and Skew Variance

For multivariate distributions, the covariance matrix is the ana-
logue of variance in 1D distributions. The covariance of two data
sets,{xi}N

i=0,{x j}N
j=0 can be defined by:

Vi j =< (xi −µi)(x j −µ j) >=
1

N −1

N

∑
k=0

(xik −µi)(x jk −µ j)

whereµi and µ j are the means for each data set. Covariance is
a measure of how the two data sets vary in relation to each other.
For our presentations, the covariance matrix is used to transform
a unit disk, the way in which the disk is stretched visually relates
to covariance of the data sets. Since we are actually interested in a
multivariate analogue of standard deviation, we scale the covariance
ellipse-disk glyph by,

scale=
√

evmax

evmax
,

where evmax is the maximum eigenvalue of the covariance matrix.
Figure 12 shows the covariance ellipse between the first categories
of the temperature and humidity data sets. The covariance glyph
is laid on top of the joint histogram, and for reference, the mean
and standard deviation of both data sets are extended into the joint
space using lines. In this case the 1D summary plots for each of the
variables represents the marginalized distribution.

4.2.1 Skew-Variance

Just as covariance is the analogue of variance, higher order multi-
variate moments can also be described as matrices. The so called

“skew-variance” of two data sets,{xi}N
i=0,{x j}N

j=0 can be expressed
by two matrices,Vi2 j1 andVi1 j2 where:

Vim jn =< (xi −µi)
m(x j −µ j)

n
>=

1
N −1

N

∑
k=0

(xik −µi)
m(x jk −µ j)

n

In general, these matrices are neither symmetric, nor positive def-
inite. Vi2 j1 andVi1 j2 are, however, the transpose of one another;
therefore we only need one to capture the information expressed by
both. Skew variance is visualized using four sharp arrows pointing
in the direction of the skew. These directions are defined by the col-
umn vectors ofVi2 j1 andVi1 j2. As with covariance, skew-variance
visualizations are scaled by

scale=
3
√

evmax

evmax
,

where evmax is the maximum eigenvalue of the skew-variance ma-
trix.

4.3 Continuous 2D Categorical Data
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Figure 13: Electric potentials of the heart data.

The previous sections discussed the visual summary of a lim-
ited number of categories with 1D and 2D distributions. We now
consider the case of a continuous 2D domain with a 1D distribu-
tion. One can think of this case as having a continuous 2D array
of categories. Our system treats the summary visualization as a
height field. Figure 13 shows an example of a stochastic numerical
simulation of the electric potential in the human torso [7]. The sim-
ulation domain is a 2D second-order finite element mesh. The goal
of the simulation is a study of variation in electric potential induced
by perturbations of conductivity in various organs. To gather the
data, the simulation was run 100,000 times with different random
perturbations of lung conductivity. That is, we have 100,000 sam-
ples from the stochastic solutions distribution for each element in
the domain. Our summary of the data presents the mean (red), stan-
dard deviation (blue), skew (yellow-orange), and kurtosis (purple).
Just as with the 1D summaries, we useµ1 − γ to place the skew,



indicating the “heavy” side of the distribution. At every position in
this data set excess kurtosis is less than or equal to 0, indicating a
flat distribution. The opacity for all higher-order moments is pro-
portional to their magnitudes,i.e. they are only visible if they are
significant. This scale term is identical to the one used to scale the
size of these glyphs in the 1D summary plots. A flat image of the
domain colored by mean potential is mapped below the height field
summary for reference.

5 DISCUSSION

While the box plot has been used, almost universally, to summarize
statistical data for nearly 60 years, there are many characteristics of
a distribution that it cannot express. The mean or expected value
of the distribution, for instance, is one such characteristic. Without
this moment in the summary, a user may incorrectly assume that
the median and mean are the same or closely correlated. Certainly,
the same can be said about summaries based solely on the mo-
ments. This is especially true when the only moments considered
are the first two, mean and variance. Such a summary would im-
ply a symmetric uni-modal distribution, like a Gaussian. We have
not frequently seen normal distributions summarizing arbitrary dis-
tribution data in scientific simulation and imaging. Together, box
plot, cumulant and moment summaries express different, yet com-
plementary aspects of the data. However, they may still fail to ex-
pose important subtleties of the distribution. The density plots or
histograms simply summarize the the data itself. While the his-
togram summary makes the modes of the data easily discernible, it
does not allow the user to predict the median or mean values. By
combining all three summary methods, we can feel more confident
in the analysis of the data and the questions that the summary is
intended to help answer.

The display system for our summary plots was implemented us-
ing OpenGL, which allows a user to interactively explore multi-
dimensional summaries. Interactive control of view point and sum-
mary content is essential when the goal is to compare many cate-
gories with multivariate distributions,i.e. joint summaries, or muti-
dimensional categories,e.g. continuous 2D categorical data. The
depth complexity of such summaries can be overwhelming for arbi-
trary viewpoints in static 2D images. When the goal is a 2D image,
interactive control allows the user to select view points that focus
on key aspects of the summary yet include essential context. The
generation of summary snapshots utilises “gl2ps”, a freely avail-
able library for directly converting OpenGL images to Encapsu-
lated PostScript (EPS). This mechanism allows us to preserve the
resolution independent characteristics of the original vector art.

The assembly of our summary plots also emphasizes the con-
cept of marginal summary. As seen in Figure 1 (left), we show
summaries for each category, but add an additional summary that
covers all categories to the left of the value scale. This “marginal”
summary expresses global data characteristics that may not be ob-
vious in the individual category plots. This concept extends easily
to joint distributions, where the 1D summaries for each value be-
come a marginal summary for the 2D distribution, as seen in Fig-
ure 1 (right).

The development of this work is driven by the needs of large-
scale simulation and medical image analysis. This data generally
has on the order of millions of samples per category. The kind
of summary generated for this data is extremely robust; millions of
samples are generally sufficient for reliable moment and density es-
timation. When the number of samples available for each category
is substantially fewer, the measurement of higher-order moments
can break down. These moments,e.g. skew, kurtosis, and tail,
can be extremely sensitive to outliers when there are not enough
samples to adequately characterize the underlying distribution. The
density plot (histogram) visualization becomes extremely important

in this case. This aspect of the visualization should make it readily
apparent to the user that the summary is based on a sparse number
of samples. Our concern here motivates further research on incor-
porating measures of sufficient statistics as part of the summary.

Our future work will focus on further generalizations of sum-
mary plots to higher dimensions, both in terms of multivariate dis-
tributions and multi-dimensional category domains. We are also
interested in the automatic detection of distribution characteristics
such as multi-modality and correlating with specific analytic distri-
butions (e.g. Normal, Poisson, Raleigh, Chi-squared, etc...). Our
log-term goal is the development and release of a fully interac-
tive system for summary visualization that provides direct access to
the summary process, which will utimately allow interactive sum-
maries embedded in electronic report documents.

6 CONCLUSION

The box plot is a highly effective means for conveying cumulant
summary statistics. Using the box plot as inspiration, we have
created a hybrid summary plot that incorporates cumulant statis-
tics, density, and high-order moments. We have demonstrated a
generalized approach for provide joint 1D comparisons as well as
summaries of 2D categorical data. Our system aims at reducing
visual clutter, while redundantly encoding information and simul-
taneously presenting a large amount of data as a visual signature.
The presentation of data in a summarized and easy to read form can
quickly communicate large amounts of data, emphasize meaningful
characteristics, and facilitate visual comparisons.
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